There is a typo in comment, fix it.
Signed-off-by: Ethon Paul <ethp@qq.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Ralph Campbell <rcampbell@nvidia.com>
Link: http://lkml.kernel.org/r/20200411071041.16161-1-ethp@qq.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
There is a typo in commet, fix it.
Signed-off-by: Ethon Paul <ethp@qq.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Ralph Campbell <rcampbell@nvidia.com>
Link: http://lkml.kernel.org/r/20200411070701.16097-1-ethp@qq.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
There is a typo in comment, fix it.
Signed-off-by: Ethon Paul <ethp@qq.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Ralph Campbell <rcampbell@nvidia.com>
Link: http://lkml.kernel.org/r/20200411070307.16021-1-ethp@qq.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
There are some typos, fix them.
s/regsitration/registration
s/santity/sanity
s/decremeting/decrementing
Signed-off-by: Ethon Paul <ethp@qq.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Ralph Campbell <rcampbell@nvidia.com>
Link: http://lkml.kernel.org/r/20200411071544.16222-1-ethp@qq.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
There is a typo in comment, fix it.
Signed-off-by: Ethon Paul <ethp@qq.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Ralph Campbell <rcampbell@nvidia.com>
Link: http://lkml.kernel.org/r/20200410163206.14016-1-ethp@qq.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
There is a typo in comment, fix it.
Signed-off-by: Ethon Paul <ethp@qq.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Ralph Campbell <rcampbell@nvidia.com>
Link: http://lkml.kernel.org/r/20200410162427.13927-1-ethp@qq.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
There is a typo in comment, fix it.
s/recoreded/recorded
Signed-off-by: Ethon Paul <ethp@qq.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Ralph Campbell <rcampbell@nvidia.com>
Link: http://lkml.kernel.org/r/20200410160328.13843-1-ethp@qq.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Memory hotlug is broken for 32b systems at least since c6f03e2903 ("mm,
memory_hotplug: remove zone restrictions") which has considerably reworked
how can be memory associated with movable/kernel zones. The same is not
really trivial to achieve in 32b where only lowmem is the kernel zone.
While we can tweak this immediate problem around there are likely other
land mines hidden at other places.
It is also quite dubious that there is a real usecase for the memory
hotplug on 32b in the first place. Low memory is just too small to be
hotplugable (for hot add) and generally unusable for hotremove. Adding
more memory to highmem is also dubious because it would increase the low
mem or vmalloc space pressure for memmaps.
Restrict the functionality to 64b systems. This will help future
development to focus on usecases that have real life application. We can
remove this restriction in future in presence of a real life usecase of
course but until then make it explicit that hotplug on 32b is broken and
requires a non trivial amount of work to fix.
Robin said:
"32-bit Arm doesn't support memory hotplug, and as far as I'm aware
there's little likelihood of it ever wanting to. FWIW it looks like
SuperH is the only pure-32-bit architecture to have hotplug support at
all"
Signed-off-by: Michal Hocko <mhocko@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: David Hildenbrand <david@redhat.com>
Acked-by: Baoquan He <bhe@redhat.com>
Cc: Wei Yang <richardw.yang@linux.intel.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Robin Murphy <robin.murphy@arm.com>
Cc: Vamshi K Sthambamkadi <vamshi.k.sthambamkadi@gmail.com>
Link: http://lkml.kernel.org/r/20200218100532.GA4151@dhcp22.suse.cz
Link: https://bugzilla.kernel.org/show_bug.cgi?id=206401
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Patch series "mm/memory_hotplug: Interface to add driver-managed system
ram", v4.
kexec (via kexec_load()) can currently not properly handle memory added
via dax/kmem, and will have similar issues with virtio-mem. kexec-tools
will currently add all memory to the fixed-up initial firmware memmap. In
case of dax/kmem, this means that - in contrast to a proper reboot - how
that persistent memory will be used can no longer be configured by the
kexec'd kernel. In case of virtio-mem it will be harmful, because that
memory might contain inaccessible pieces that require coordination with
hypervisor first.
In both cases, we want to let the driver in the kexec'd kernel handle
detecting and adding the memory, like during an ordinary reboot.
Introduce add_memory_driver_managed(). More on the samentics are in patch
#1.
In the future, we might want to make this behavior configurable for
dax/kmem- either by configuring it in the kernel (which would then also
allow to configure kexec_file_load()) or in kexec-tools by also adding
"System RAM (kmem)" memory from /proc/iomem to the fixed-up initial
firmware memmap.
More on the motivation can be found in [1] and [2].
[1] https://lkml.kernel.org/r/20200429160803.109056-1-david@redhat.com
[2] https://lkml.kernel.org/r/20200430102908.10107-1-david@redhat.com
This patch (of 3):
Some device drivers rely on memory they managed to not get added to the
initial (firmware) memmap as system RAM - so it's not used as initial
system RAM by the kernel and the driver is under control. While this is
the case during cold boot and after a reboot, kexec is not aware of that
and might add such memory to the initial (firmware) memmap of the kexec
kernel. We need ways to teach kernel and userspace that this system ram
is different.
For example, dax/kmem allows to decide at runtime if persistent memory is
to be used as system ram. Another future user is virtio-mem, which has to
coordinate with its hypervisor to deal with inaccessible parts within
memory resources.
We want to let users in the kernel (esp. kexec) but also user space
(esp. kexec-tools) know that this memory has different semantics and
needs to be handled differently:
1. Don't create entries in /sys/firmware/memmap/
2. Name the memory resource "System RAM ($DRIVER)" (exposed via
/proc/iomem) ($DRIVER might be "kmem", "virtio_mem").
3. Flag the memory resource IORESOURCE_MEM_DRIVER_MANAGED
/sys/firmware/memmap/ [1] represents the "raw firmware-provided memory
map" because "on most architectures that firmware-provided memory map is
modified afterwards by the kernel itself". The primary user is kexec on
x86-64. Since commit d96ae53091 ("memory-hotplug: create
/sys/firmware/memmap entry for new memory"), we add all hotplugged memory
to that firmware memmap - which makes perfect sense for traditional memory
hotplug on x86-64, where real HW will also add hotplugged DIMMs to the
firmware memmap. We replicate what the "raw firmware-provided memory map"
looks like after hot(un)plug.
To keep things simple, let the user provide the full resource name instead
of only the driver name - this way, we don't have to manually
allocate/craft strings for memory resources. Also use the resource name
to make decisions, to avoid passing additional flags. In case the name
isn't "System RAM", it's special.
We don't have to worry about firmware_map_remove() on the removal path.
If there is no entry, it will simply return with -EINVAL.
We'll adapt dax/kmem in a follow-up patch.
[1] https://www.kernel.org/doc/Documentation/ABI/testing/sysfs-firmware-memmap
Signed-off-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Pankaj Gupta <pankaj.gupta.linux@gmail.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Pankaj Gupta <pankaj.gupta.linux@gmail.com>
Cc: Wei Yang <richard.weiyang@gmail.com>
Cc: Baoquan He <bhe@redhat.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Eric Biederman <ebiederm@xmission.com>
Cc: Pavel Tatashin <pasha.tatashin@soleen.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Link: http://lkml.kernel.org/r/20200508084217.9160-1-david@redhat.com
Link: http://lkml.kernel.org/r/20200508084217.9160-3-david@redhat.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The comment in add_memory_resource() is stale: hotadd_new_pgdat() will no
longer call get_pfn_range_for_nid(), as a hotadded pgdat will simply span
no pages at all, until memory is moved to the zone/node via
move_pfn_range_to_zone() - e.g., when onlining memory blocks.
The only archs that care about memblocks for hotplugged memory (either for
iterating over all system RAM or testing for memory validity) are arm64,
s390x, and powerpc - due to CONFIG_ARCH_KEEP_MEMBLOCK. Without
CONFIG_ARCH_KEEP_MEMBLOCK, we can simply stop messing with memblocks.
Signed-off-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Mike Rapoport <rppt@linux.ibm.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Baoquan He <bhe@redhat.com>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Pankaj Gupta <pankaj.gupta.linux@gmail.com>
Cc: Mike Rapoport <rppt@linux.ibm.com>
Cc: Anshuman Khandual <anshuman.khandual@arm.com>
Link: http://lkml.kernel.org/r/20200422155353.25381-3-david@redhat.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Patch series "mm/memory_hotplug: handle memblocks only with
CONFIG_ARCH_KEEP_MEMBLOCK", v1.
A hotadded node/pgdat will span no pages at all, until memory is moved to
the zone/node via move_pfn_range_to_zone() -> resize_pgdat_range - e.g.,
when onlining memory blocks. We don't have to initialize the
node_start_pfn to the memory we are adding.
This patch (of 2):
Especially, there is an inconsistency:
- Hotplugging memory to a memory-less node with cpus: node_start_pf == 0
- Offlining and removing last memory from a node: node_start_pfn == 0
- Hotplugging memory to a memory-less node without cpus: node_start_pfn != 0
As soon as memory is onlined, node_start_pfn is overwritten with the
actual start. E.g., when adding two DIMMs but only onlining one of both,
only that DIMM (with online memory blocks) is spanned by the node.
Currently, the validity of node_start_pfn really is linked to
node_spanned_pages != 0. With node_spanned_pages == 0 (e.g., before
onlining memory), it has no meaning.
So let's stop setting node_start_pfn, just to be overwritten via
move_pfn_range_to_zone(). This avoids confusion when looking at the code,
wondering which magic will be performed with the node_start_pfn in this
function, when hotadding a pgdat.
Signed-off-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Pankaj Gupta <pankaj.gupta.linux@gmail.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Baoquan He <bhe@redhat.com>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Pankaj Gupta <pankaj.gupta.linux@gmail.com>
Cc: Anshuman Khandual <anshuman.khandual@arm.com>
Cc: Mike Rapoport <rppt@linux.ibm.com>
Cc: Michal Hocko <mhocko@suse.com>
Link: http://lkml.kernel.org/r/20200422155353.25381-1-david@redhat.com
Link: http://lkml.kernel.org/r/20200422155353.25381-2-david@redhat.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Fortunately, all users of is_mem_section_removable() are gone. Get rid of
it, including some now unnecessary functions.
Signed-off-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Wei Yang <richard.weiyang@gmail.com>
Reviewed-by: Baoquan He <bhe@redhat.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Oscar Salvador <osalvador@suse.de>
Link: http://lkml.kernel.org/r/20200407135416.24093-3-david@redhat.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
For kvmalloc'ed data object that contains sensitive information like
cryptographic keys, we need to make sure that the buffer is always cleared
before freeing it. Using memset() alone for buffer clearing may not
provide certainty as the compiler may compile it away. To be sure, the
special memzero_explicit() has to be used.
This patch introduces a new kvfree_sensitive() for freeing those sensitive
data objects allocated by kvmalloc(). The relevant places where
kvfree_sensitive() can be used are modified to use it.
Fixes: 4f0882491a ("KEYS: Avoid false positive ENOMEM error on key read")
Suggested-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Waiman Long <longman@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Eric Biggers <ebiggers@google.com>
Acked-by: David Howells <dhowells@redhat.com>
Cc: Jarkko Sakkinen <jarkko.sakkinen@linux.intel.com>
Cc: James Morris <jmorris@namei.org>
Cc: "Serge E. Hallyn" <serge@hallyn.com>
Cc: Joe Perches <joe@perches.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Uladzislau Rezki <urezki@gmail.com>
Link: http://lkml.kernel.org/r/20200407200318.11711-1-longman@redhat.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
There is a typo in comment, fix it.
"nother" -> "another"
Signed-off-by: Jeongtae Park <jtp.park@samsung.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: David Hildenbrand <david@redhat.com>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Christoph Hellwig <hch@lst.de>
Link: http://lkml.kernel.org/r/20200604185239.20765-1-jtp.park@samsung.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This adds tests which will validate architecture page table helpers and
other accessors in their compliance with expected generic MM semantics.
This will help various architectures in validating changes to existing
page table helpers or addition of new ones.
This test covers basic page table entry transformations including but not
limited to old, young, dirty, clean, write, write protect etc at various
level along with populating intermediate entries with next page table page
and validating them.
Test page table pages are allocated from system memory with required size
and alignments. The mapped pfns at page table levels are derived from a
real pfn representing a valid kernel text symbol. This test gets called
via late_initcall().
This test gets built and run when CONFIG_DEBUG_VM_PGTABLE is selected.
Any architecture, which is willing to subscribe this test will need to
select ARCH_HAS_DEBUG_VM_PGTABLE. For now this is limited to arc, arm64,
x86, s390 and powerpc platforms where the test is known to build and run
successfully Going forward, other architectures too can subscribe the test
after fixing any build or runtime problems with their page table helpers.
Folks interested in making sure that a given platform's page table helpers
conform to expected generic MM semantics should enable the above config
which will just trigger this test during boot. Any non conformity here
will be reported as an warning which would need to be fixed. This test
will help catch any changes to the agreed upon semantics expected from
generic MM and enable platforms to accommodate it thereafter.
[anshuman.khandual@arm.com: v17]
Link: http://lkml.kernel.org/r/1587436495-22033-3-git-send-email-anshuman.khandual@arm.com
[anshuman.khandual@arm.com: v18]
Link: http://lkml.kernel.org/r/1588564865-31160-3-git-send-email-anshuman.khandual@arm.com
Suggested-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Anshuman Khandual <anshuman.khandual@arm.com>
Signed-off-by: Christophe Leroy <christophe.leroy@c-s.fr>
Signed-off-by: Qian Cai <cai@lca.pw>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Tested-by: Gerald Schaefer <gerald.schaefer@de.ibm.com> [s390]
Tested-by: Christophe Leroy <christophe.leroy@c-s.fr> [ppc32]
Reviewed-by: Ingo Molnar <mingo@kernel.org>
Cc: Mike Rapoport <rppt@linux.ibm.com>
Cc: Vineet Gupta <vgupta@synopsys.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Will Deacon <will@kernel.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Vasily Gorbik <gor@linux.ibm.com>
Cc: Christian Borntraeger <borntraeger@de.ibm.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Kirill A. Shutemov <kirill@shutemov.name>
Cc: Paul Walmsley <paul.walmsley@sifive.com>
Cc: Palmer Dabbelt <palmer@dabbelt.com>
Link: http://lkml.kernel.org/r/1583919272-24178-1-git-send-email-anshuman.khandual@arm.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
There are no architectures that use include/asm-generic/5level-fixup.h
therefore it can be removed along with __ARCH_HAS_5LEVEL_HACK define and
the code it surrounds
Signed-off-by: Mike Rapoport <rppt@linux.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Brian Cain <bcain@codeaurora.org>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Christophe Leroy <christophe.leroy@c-s.fr>
Cc: Fenghua Yu <fenghua.yu@intel.com>
Cc: Geert Uytterhoeven <geert+renesas@glider.be>
Cc: Guan Xuetao <gxt@pku.edu.cn>
Cc: James Morse <james.morse@arm.com>
Cc: Jonas Bonn <jonas@southpole.se>
Cc: Julien Thierry <julien.thierry.kdev@gmail.com>
Cc: Ley Foon Tan <ley.foon.tan@intel.com>
Cc: Marc Zyngier <maz@kernel.org>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Rich Felker <dalias@libc.org>
Cc: Russell King <linux@armlinux.org.uk>
Cc: Stafford Horne <shorne@gmail.com>
Cc: Stefan Kristiansson <stefan.kristiansson@saunalahti.fi>
Cc: Suzuki K Poulose <suzuki.poulose@arm.com>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Will Deacon <will@kernel.org>
Cc: Yoshinori Sato <ysato@users.sourceforge.jp>
Link: http://lkml.kernel.org/r/20200414153455.21744-15-rppt@kernel.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This check was added by commit 82f71ae4a2 ("mm: catch memory
commitment underflow") in 2014 to have a safety check for issues which
have been fixed. And there has been few report caught by it, as
described in its commit log:
: This shouldn't happen any more - the previous two patches fixed
: the committed_as underflow issues.
But it was really found by Qian Cai when he used the LTP memory stress
suite to test a RFC patchset, which tries to improve scalability of
per-cpu counter 'vm_committed_as', by chosing a bigger 'batch' number for
loose overcommit policies (OVERCOMMIT_ALWAYS and OVERCOMMIT_GUESS), while
keeping current number for OVERCOMMIT_NEVER.
With that patchset, when system firstly uses a loose policy, the
'vm_committed_as' count could be a big negative value, as its big 'batch'
number allows a big deviation, then when the policy is changed to
OVERCOMMIT_NEVER, the 'batch' will be decreased to a much smaller value,
thus hits this WARN check.
To mitigate this, one proposed solution is to queue work on all online
CPUs to do a local sync for 'vm_committed_as' when changing policy to
OVERCOMMIT_NEVER, plus some global syncing to garante the case won't be
hit.
But this solution is costy and slow, given this check hasn't shown real
trouble or benefit, simply drop it from one hot path of MM. And perf
stats does show some tiny saving for removing it.
Reported-by: Qian Cai <cai@lca.pw>
Signed-off-by: Feng Tang <feng.tang@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Qian Cai <cai@lca.pw>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Konstantin Khlebnikov <koct9i@gmail.com>
Cc: Andi Kleen <andi.kleen@intel.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Kees Cook <keescook@chromium.org>
Link: http://lkml.kernel.org/r/20200603094804.GB89848@shbuild999.sh.intel.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The original code in mm/mremap.c checks huge pmd by:
if (is_swap_pmd(*old_pmd) || pmd_trans_huge(*old_pmd)) {
However, a DAX mapped nvdimm is mapped as huge page (by default) but it
is not transparent huge page (_PAGE_PSE | PAGE_DEVMAP). This commit
changes the condition to include the case.
This addresses CVE-2020-10757.
Fixes: 5c7fb56e5e ("mm, dax: dax-pmd vs thp-pmd vs hugetlbfs-pmd")
Cc: <stable@vger.kernel.org>
Reported-by: Fan Yang <Fan_Yang@sjtu.edu.cn>
Signed-off-by: Fan Yang <Fan_Yang@sjtu.edu.cn>
Tested-by: Fan Yang <Fan_Yang@sjtu.edu.cn>
Tested-by: Dan Williams <dan.j.williams@intel.com>
Reviewed-by: Dan Williams <dan.j.williams@intel.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
virtio-mem wants to offline and remove a memory block once it unplugged
all subblocks (e.g., using alloc_contig_range()). Let's provide
an interface to do that from a driver. virtio-mem already supports to
offline partially unplugged memory blocks. Offlining a fully unplugged
memory block will not require to migrate any pages. All unplugged
subblocks are PageOffline() and have a reference count of 0 - so
offlining code will simply skip them.
All we need is an interface to offline and remove the memory from kernel
module context, where we don't have access to the memory block devices
(esp. find_memory_block() and device_offline()) and the device hotplug
lock.
To keep things simple, allow to only work on a single memory block.
Acked-by: Michal Hocko <mhocko@suse.com>
Tested-by: Pankaj Gupta <pankaj.gupta.linux@gmail.com>
Acked-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: David Hildenbrand <david@redhat.com>
Cc: Oscar Salvador <osalvador@suse.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Pavel Tatashin <pasha.tatashin@soleen.com>
Cc: Wei Yang <richard.weiyang@gmail.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Qian Cai <cai@lca.pw>
Signed-off-by: David Hildenbrand <david@redhat.com>
Link: https://lore.kernel.org/r/20200507140139.17083-9-david@redhat.com
Signed-off-by: Michael S. Tsirkin <mst@redhat.com>
virtio-mem wants to allow to offline memory blocks of which some parts
were unplugged (allocated via alloc_contig_range()), especially, to later
offline and remove completely unplugged memory blocks. The important part
is that PageOffline() has to remain set until the section is offline, so
these pages will never get accessed (e.g., when dumping). The pages should
not be handed back to the buddy (which would require clearing PageOffline()
and result in issues if offlining fails and the pages are suddenly in the
buddy).
Let's allow to do that by allowing to isolate any PageOffline() page
when offlining. This way, we can reach the memory hotplug notifier
MEM_GOING_OFFLINE, where the driver can signal that he is fine with
offlining this page by dropping its reference count. PageOffline() pages
with a reference count of 0 can then be skipped when offlining the
pages (like if they were free, however they are not in the buddy).
Anybody who uses PageOffline() pages and does not agree to offline them
(e.g., Hyper-V balloon, XEN balloon, VMWare balloon for 2MB pages) will not
decrement the reference count and make offlining fail when trying to
migrate such an unmovable page. So there should be no observable change.
Same applies to balloon compaction users (movable PageOffline() pages), the
pages will simply be migrated.
Note 1: If offlining fails, a driver has to increment the reference
count again in MEM_CANCEL_OFFLINE.
Note 2: A driver that makes use of this has to be aware that re-onlining
the memory block has to be handled by hooking into onlining code
(online_page_callback_t), resetting the page PageOffline() and
not giving them to the buddy.
Reviewed-by: Alexander Duyck <alexander.h.duyck@linux.intel.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Tested-by: Pankaj Gupta <pankaj.gupta.linux@gmail.com>
Acked-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Juergen Gross <jgross@suse.com>
Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Cc: Pavel Tatashin <pavel.tatashin@microsoft.com>
Cc: Alexander Duyck <alexander.h.duyck@linux.intel.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Anthony Yznaga <anthony.yznaga@oracle.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Mike Rapoport <rppt@linux.ibm.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Anshuman Khandual <anshuman.khandual@arm.com>
Cc: Qian Cai <cai@lca.pw>
Cc: Pingfan Liu <kernelfans@gmail.com>
Signed-off-by: David Hildenbrand <david@redhat.com>
Link: https://lore.kernel.org/r/20200507140139.17083-7-david@redhat.com
Signed-off-by: Michael S. Tsirkin <mst@redhat.com>
We also want to unplug online memory (contained in online memory blocks
and, therefore, managed by the buddy), and eventually replug it later.
When requested to unplug memory, we use alloc_contig_range() to allocate
subblocks in online memory blocks (so we are the owner) and send them to
our hypervisor. When requested to plug memory, we can replug such memory
using free_contig_range() after asking our hypervisor.
We also want to mark all allocated pages PG_offline, so nobody will
touch them. To differentiate pages that were never onlined when
onlining the memory block from pages allocated via alloc_contig_range(), we
use PageDirty(). Based on this flag, virtio_mem_fake_online() can either
online the pages for the first time or use free_contig_range().
It is worth noting that there are no guarantees on how much memory can
actually get unplugged again. All device memory might completely be
fragmented with unmovable data, such that no subblock can get unplugged.
We are not touching the ZONE_MOVABLE. If memory is onlined to the
ZONE_MOVABLE, it can only get unplugged after that memory was offlined
manually by user space. In normal operation, virtio-mem memory is
suggested to be onlined to ZONE_NORMAL. In the future, we will try to
make unplug more likely to succeed.
Add a module parameter to control if online memory shall be touched.
As we want to access alloc_contig_range()/free_contig_range() from
kernel module context, export the symbols.
Note: Whenever virtio-mem uses alloc_contig_range(), all affected pages
are on the same node, in the same zone, and contain no holes.
Acked-by: Michal Hocko <mhocko@suse.com> # to export contig range allocator API
Tested-by: Pankaj Gupta <pankaj.gupta.linux@gmail.com>
Cc: "Michael S. Tsirkin" <mst@redhat.com>
Cc: Jason Wang <jasowang@redhat.com>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Igor Mammedov <imammedo@redhat.com>
Cc: Dave Young <dyoung@redhat.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Pavel Tatashin <pasha.tatashin@soleen.com>
Cc: Stefan Hajnoczi <stefanha@redhat.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Mike Rapoport <rppt@linux.ibm.com>
Cc: Alexander Duyck <alexander.h.duyck@linux.intel.com>
Cc: Alexander Potapenko <glider@google.com>
Signed-off-by: David Hildenbrand <david@redhat.com>
Link: https://lore.kernel.org/r/20200507140139.17083-6-david@redhat.com
Signed-off-by: Michael S. Tsirkin <mst@redhat.com>
Merge more updates from Andrew Morton:
"More mm/ work, plenty more to come
Subsystems affected by this patch series: slub, memcg, gup, kasan,
pagealloc, hugetlb, vmscan, tools, mempolicy, memblock, hugetlbfs,
thp, mmap, kconfig"
* akpm: (131 commits)
arm64: mm: use ARCH_HAS_DEBUG_WX instead of arch defined
x86: mm: use ARCH_HAS_DEBUG_WX instead of arch defined
riscv: support DEBUG_WX
mm: add DEBUG_WX support
drivers/base/memory.c: cache memory blocks in xarray to accelerate lookup
mm/thp: rename pmd_mknotpresent() as pmd_mkinvalid()
powerpc/mm: drop platform defined pmd_mknotpresent()
mm: thp: don't need to drain lru cache when splitting and mlocking THP
hugetlbfs: get unmapped area below TASK_UNMAPPED_BASE for hugetlbfs
sparc32: register memory occupied by kernel as memblock.memory
include/linux/memblock.h: fix minor typo and unclear comment
mm, mempolicy: fix up gup usage in lookup_node
tools/vm/page_owner_sort.c: filter out unneeded line
mm: swap: memcg: fix memcg stats for huge pages
mm: swap: fix vmstats for huge pages
mm: vmscan: limit the range of LRU type balancing
mm: vmscan: reclaim writepage is IO cost
mm: vmscan: determine anon/file pressure balance at the reclaim root
mm: balance LRU lists based on relative thrashing
mm: only count actual rotations as LRU reclaim cost
...
pmd_present() is expected to test positive after pmdp_mknotpresent() as
the PMD entry still points to a valid huge page in memory.
pmdp_mknotpresent() implies that given PMD entry is just invalidated from
MMU perspective while still holding on to pmd_page() referred valid huge
page thus also clearing pmd_present() test. This creates the following
situation which is counter intuitive.
[pmd_present(pmd_mknotpresent(pmd)) = true]
This renames pmd_mknotpresent() as pmd_mkinvalid() reflecting the helper's
functionality more accurately while changing the above mentioned situation
as follows. This does not create any functional change.
[pmd_present(pmd_mkinvalid(pmd)) = true]
This is not applicable for platforms that define own pmdp_invalidate() via
__HAVE_ARCH_PMDP_INVALIDATE. Suggestion for renaming came during a
previous discussion here.
https://patchwork.kernel.org/patch/11019637/
[anshuman.khandual@arm.com: change pmd_mknotvalid() to pmd_mkinvalid() per Will]
Link: http://lkml.kernel.org/r/1587520326-10099-3-git-send-email-anshuman.khandual@arm.com
Suggested-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Anshuman Khandual <anshuman.khandual@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Will Deacon <will@kernel.org>
Cc: Vineet Gupta <vgupta@synopsys.com>
Cc: Russell King <linux@armlinux.org.uk>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Paul Mackerras <paulus@samba.org>
Link: http://lkml.kernel.org/r/1584680057-13753-3-git-send-email-anshuman.khandual@arm.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Since commit 8f182270df ("mm/swap.c: flush lru pvecs on compound page
arrival") THP would not stay in pagevec anymore. So the optimization made
by commit d965432234 ("thp: increase split_huge_page() success rate")
doesn't make sense anymore, which tries to unpin munlocked THPs from
pagevec by draining pagevec.
Draining lru cache before isolating THP in mlock path is also unnecessary.
b676b293fb ("mm, thp: fix mapped pages avoiding unevictable list on
mlock") added it and 9a73f61bdb ("thp, mlock: do not mlock PTE-mapped
file huge pages") accidentally carried it over after the above
optimization went in.
Signed-off-by: Yang Shi <yang.shi@linux.alibaba.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Daniel Jordan <daniel.m.jordan@oracle.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Link: http://lkml.kernel.org/r/1585946493-7531-1-git-send-email-yang.shi@linux.alibaba.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
ba841078cd ("mm/mempolicy: Allow lookup_node() to handle fatal signal")
has added a special casing for 0 return value because that was a possible
gup return value when interrupted by fatal signal. This has been fixed by
ae46d2aa6a ("mm/gup: Let __get_user_pages_locked() return -EINTR for
fatal signal") in the mean time so ba841078cd can be reverted.
This patch however doesn't go all the way to revert it because the check
for 0 is wrong and confusing here. Firstly it is inherently unsafe to
access the page when get_user_pages_locked returns 0 (aka no page
returned).
Fortunatelly this will not happen because get_user_pages_locked will not
return 0 when nr_pages > 0 unless FOLL_NOWAIT is specified which is not
the case here. Document this potential error code in gup code while we
are at it.
Signed-off-by: Michal Hocko <mhocko@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Peter Xu <peterx@redhat.com>
Link: http://lkml.kernel.org/r/20200421071026.18394-1-mhocko@kernel.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The commit 2262185c5b ("mm: per-cgroup memory reclaim stats") added
PGLAZYFREE, PGACTIVATE & PGDEACTIVATE stats for cgroups but missed
couple of places and PGLAZYFREE missed huge page handling. Fix that.
Also for PGLAZYFREE use the irq-unsafe function to update as the irq is
already disabled.
Fixes: 2262185c5b ("mm: per-cgroup memory reclaim stats")
Signed-off-by: Shakeel Butt <shakeelb@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Link: http://lkml.kernel.org/r/20200527182947.251343-1-shakeelb@google.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Many of the callbacks called by pagevec_lru_move_fn() does not correctly
update the vmstats for huge pages. Fix that. Also __pagevec_lru_add_fn()
use the irq-unsafe alternative to update the stat as the irqs are
already disabled.
Signed-off-by: Shakeel Butt <shakeelb@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Link: http://lkml.kernel.org/r/20200527182916.249910-1-shakeelb@google.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When LRU cost only shows up on one list, we abruptly stop scanning that
list altogether. That's an extreme reaction: by the time the other list
starts thrashing and the pendulum swings back, we may have no recent age
information on the first list anymore, and we could have significant
latencies until the scanner has caught up.
Soften this change in the feedback system by ensuring that no list
receives less than a third of overall pressure, and only distribute the
other 66% according to LRU cost. This ensures that we maintain a minimum
rate of aging on the entire workingset while it's being pressured, while
still allowing a generous rate of convergence when the relative sizes of
the lists need to adjust.
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Rik van Riel <riel@surriel.com>
Link: http://lkml.kernel.org/r/20200520232525.798933-15-hannes@cmpxchg.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The VM tries to balance reclaim pressure between anon and file so as to
reduce the amount of IO incurred due to the memory shortage. It already
counts refaults and swapins, but in addition it should also count
writepage calls during reclaim.
For swap, this is obvious: it's IO that wouldn't have occurred if the
anonymous memory hadn't been under memory pressure. From a relative
balancing point of view this makes sense as well: even if anon is cold and
reclaimable, a cache that isn't thrashing may have equally cold pages that
don't require IO to reclaim.
For file writeback, it's trickier: some of the reclaim writepage IO would
have likely occurred anyway due to dirty expiration. But not all of it -
premature writeback reduces batching and generates additional writes.
Since the flushers are already woken up by the time the VM starts writing
cache pages one by one, let's assume that we'e likely causing writes that
wouldn't have happened without memory pressure. In addition, the per-page
cost of IO would have probably been much cheaper if written in larger
batches from the flusher thread rather than the single-page-writes from
kswapd.
For our purposes - getting the trend right to accelerate convergence on a
stable state that doesn't require paging at all - this is sufficiently
accurate. If we later wanted to optimize for sustained thrashing, we can
still refine the measurements.
Count all writepage calls from kswapd as IO cost toward the LRU that the
page belongs to.
Why do this dynamically? Don't we know in advance that anon pages require
IO to reclaim, and so could build in a static bias?
First, scanning is not the same as reclaiming. If all the anon pages are
referenced, we may not swap for a while just because we're scanning the
anon list. During this time, however, it's important that we age
anonymous memory and the page cache at the same rate so that their
hot-cold gradients are comparable. Everything else being equal, we still
want to reclaim the coldest memory overall.
Second, we keep copies in swap unless the page changes. If there is
swap-backed data that's mostly read (tmpfs file) and has been swapped out
before, we can reclaim it without incurring additional IO.
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Rik van Riel <riel@surriel.com>
Link: http://lkml.kernel.org/r/20200520232525.798933-14-hannes@cmpxchg.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
We split the LRU lists into anon and file, and we rebalance the scan
pressure between them when one of them begins thrashing: if the file cache
experiences workingset refaults, we increase the pressure on anonymous
pages; if the workload is stalled on swapins, we increase the pressure on
the file cache instead.
With cgroups and their nested LRU lists, we currently don't do this
correctly. While recursive cgroup reclaim establishes a relative LRU
order among the pages of all involved cgroups, LRU pressure balancing is
done on an individual cgroup LRU level. As a result, when one cgroup is
thrashing on the filesystem cache while a sibling may have cold anonymous
pages, pressure doesn't get equalized between them.
This patch moves LRU balancing decision to the root of reclaim - the same
level where the LRU order is established.
It does this by tracking LRU cost recursively, so that every level of the
cgroup tree knows the aggregate LRU cost of all memory within its domain.
When the page scanner calculates the scan balance for any given individual
cgroup's LRU list, it uses the values from the ancestor cgroup that
initiated the reclaim cycle.
If one sibling is then thrashing on the cache, it will tip the pressure
balance inside its ancestors, and the next hierarchical reclaim iteration
will go more after the anon pages in the tree.
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Rik van Riel <riel@surriel.com>
Link: http://lkml.kernel.org/r/20200520232525.798933-13-hannes@cmpxchg.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Since the LRUs were split into anon and file lists, the VM has been
balancing between page cache and anonymous pages based on per-list ratios
of scanned vs. rotated pages. In most cases that tips page reclaim
towards the list that is easier to reclaim and has the fewest actively
used pages, but there are a few problems with it:
1. Refaults and LRU rotations are weighted the same way, even though
one costs IO and the other costs a bit of CPU.
2. The less we scan an LRU list based on already observed rotations,
the more we increase the sampling interval for new references, and
rotations become even more likely on that list. This can enter a
death spiral in which we stop looking at one list completely until
the other one is all but annihilated by page reclaim.
Since commit a528910e12 ("mm: thrash detection-based file cache sizing")
we have refault detection for the page cache. Along with swapin events,
they are good indicators of when the file or anon list, respectively, is
too small for its workingset and needs to grow.
For example, if the page cache is thrashing, the cache pages need more
time in memory, while there may be colder pages on the anonymous list.
Likewise, if swapped pages are faulting back in, it indicates that we
reclaim anonymous pages too aggressively and should back off.
Replace LRU rotations with refaults and swapins as the basis for relative
reclaim cost of the two LRUs. This will have the VM target list balances
that incur the least amount of IO on aggregate.
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Rik van Riel <riel@surriel.com>
Link: http://lkml.kernel.org/r/20200520232525.798933-12-hannes@cmpxchg.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When shrinking the active file list we rotate referenced pages only when
they're in an executable mapping. The others get deactivated. When it
comes to balancing scan pressure, though, we count all referenced pages as
rotated, even the deactivated ones. Yet they do not carry the same cost
to the system: the deactivated page *might* refault later on, but the
deactivation is tangible progress toward freeing pages; rotations on the
other hand cost time and effort without getting any closer to freeing
memory.
Don't treat both events as equal. The following patch will hook up LRU
balancing to cache and anon refaults, which are a much more concrete cost
signal for reclaiming one list over the other. Thus, remove the maybe-IO
cost bias from page references, and only note the CPU cost for actual
rotations that prevent the pages from getting reclaimed.
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Minchan Kim <minchan@kernel.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Rik van Riel <riel@surriel.com>
Link: http://lkml.kernel.org/r/20200520232525.798933-11-hannes@cmpxchg.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Operations like MADV_FREE, FADV_DONTNEED etc. currently move any affected
active pages to the inactive list to accelerate their reclaim (good) but
also steer page reclaim toward that LRU type, or away from the other
(bad).
The reason why this is undesirable is that such operations are not part of
the regular page aging cycle, and rather a fluke that doesn't say much
about the remaining pages on that list; they might all be in heavy use,
and once the chunk of easy victims has been purged, the VM continues to
apply elevated pressure on those remaining hot pages. The other LRU,
meanwhile, might have easily reclaimable pages, and there was never a need
to steer away from it in the first place.
As the previous patch outlined, we should focus on recording actually
observed cost to steer the balance rather than speculating about the
potential value of one LRU list over the other. In that spirit, leave
explicitely deactivated pages to the LRU algorithm to pick up, and let
rotations decide which list is the easiest to reclaim.
[cai@lca.pw: fix set-but-not-used warning]
Link: http://lkml.kernel.org/r/20200522133335.GA624@Qians-MacBook-Air.local
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Minchan Kim <minchan@kernel.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Rik van Riel <riel@surriel.com>
Cc: Qian Cai <cai@lca.pw>
Link: http://lkml.kernel.org/r/20200520232525.798933-10-hannes@cmpxchg.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Currently, scan pressure between the anon and file LRU lists is balanced
based on a mixture of reclaim efficiency and a somewhat vague notion of
"value" of having certain pages in memory over others. That concept of
value is problematic, because it has caused us to count any event that
remotely makes one LRU list more or less preferrable for reclaim, even
when these events are not directly comparable and impose very different
costs on the system. One example is referenced file pages that we still
deactivate and referenced anonymous pages that we actually rotate back to
the head of the list.
There is also conceptual overlap with the LRU algorithm itself. By
rotating recently used pages instead of reclaiming them, the algorithm
already biases the applied scan pressure based on page value. Thus, when
rebalancing scan pressure due to rotations, we should think of reclaim
cost, and leave assessing the page value to the LRU algorithm.
Lastly, considering both value-increasing as well as value-decreasing
events can sometimes cause the same type of event to be counted twice,
i.e. how rotating a page increases the LRU value, while reclaiming it
succesfully decreases the value. In itself this will balance out fine,
but it quietly skews the impact of events that are only recorded once.
The abstract metric of "value", the murky relationship with the LRU
algorithm, and accounting both negative and positive events make the
current pressure balancing model hard to reason about and modify.
This patch switches to a balancing model of accounting the concrete,
actually observed cost of reclaiming one LRU over another. For now, that
cost includes pages that are scanned but rotated back to the list head.
Subsequent patches will add consideration for IO caused by refaulting of
recently evicted pages.
Replace struct zone_reclaim_stat with two cost counters in the lruvec, and
make everything that affects cost go through a new lru_note_cost()
function.
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Rik van Riel <riel@surriel.com>
Link: http://lkml.kernel.org/r/20200520232525.798933-9-hannes@cmpxchg.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When we calculate the relative scan pressure between the anon and file LRU
lists, we have to assume that reclaim_stat can contain zeroes. To avoid
div0 crashes, we add 1 to all denominators like so:
anon_prio = swappiness;
file_prio = 200 - anon_prio;
[...]
/*
* The amount of pressure on anon vs file pages is inversely
* proportional to the fraction of recently scanned pages on
* each list that were recently referenced and in active use.
*/
ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1);
ap /= reclaim_stat->recent_rotated[0] + 1;
fp = file_prio * (reclaim_stat->recent_scanned[1] + 1);
fp /= reclaim_stat->recent_rotated[1] + 1;
spin_unlock_irq(&pgdat->lru_lock);
fraction[0] = ap;
fraction[1] = fp;
denominator = ap + fp + 1;
While reclaim_stat can contain 0, it's not actually possible for ap + fp
to be 0. One of anon_prio or file_prio could be zero, but they must still
add up to 200. And the reclaim_stat fraction, due to the +1 in there, is
always at least 1. So if one of the two numerators is 0, the other one
can't be. ap + fp is always at least 1. Drop the + 1.
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Rik van Riel <riel@surriel.com>
Link: http://lkml.kernel.org/r/20200520232525.798933-8-hannes@cmpxchg.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When the splitlru patches divided page cache and swap-backed pages into
separate LRU lists, the pressure balance between the lists was biased to
account for the fact that streaming IO can cause memory pressure with a
flood of pages that are used only once. New page cache additions would
tip the balance toward the file LRU, and repeat access would neutralize
that bias again. This ensured that page reclaim would always go for
used-once cache first.
Since e986850598 ("mm,vmscan: only evict file pages when we have
plenty"), page reclaim generally skips over swap-backed memory entirely as
long as there is used-once cache present, and will apply the LRU balancing
when only repeatedly accessed cache pages are left - at which point the
previous use-once bias will have been neutralized. This makes the
use-once cache balancing bias unnecessary.
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Minchan Kim <minchan@kernel.org>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Rik van Riel <riel@surriel.com>
Link: http://lkml.kernel.org/r/20200520232525.798933-7-hannes@cmpxchg.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
We activate cache refaults with reuse distances in pages smaller than the
size of the total cache. This allows new pages with competitive access
frequencies to establish themselves, as well as challenge and potentially
displace pages on the active list that have gone cold.
However, that assumes that active cache can only replace other active
cache in a competition for the hottest memory. This is not a great
default assumption. The page cache might be thrashing while there are
enough completely cold and unused anonymous pages sitting around that we'd
only have to write to swap once to stop all IO from the cache.
Activate cache refaults when their reuse distance in pages is smaller than
the total userspace workingset, including anonymous pages.
Reclaim can still decide how to balance pressure among the two LRUs
depending on the IO situation. Rotational drives will prefer avoiding
random IO from swap and go harder after cache. But fundamentally, hot
cache should be able to compete with anon pages for a place in RAM.
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Rik van Riel <riel@surriel.com>
Link: http://lkml.kernel.org/r/20200520232525.798933-6-hannes@cmpxchg.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
They're the same function, and for the purpose of all callers they are
equivalent to lru_cache_add().
[akpm@linux-foundation.org: fix it for local_lock changes]
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Rik van Riel <riel@surriel.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Minchan Kim <minchan@kernel.org>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Link: http://lkml.kernel.org/r/20200520232525.798933-5-hannes@cmpxchg.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
With the advent of fast random IO devices (SSDs, PMEM) and in-memory swap
devices such as zswap, it's possible for swap to be much faster than
filesystems, and for swapping to be preferable over thrashing filesystem
caches.
Allow setting swappiness - which defines the rough relative IO cost of
cache misses between page cache and swap-backed pages - to reflect such
situations by making the swap-preferred range configurable.
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Rik van Riel <riel@surriel.com>
Link: http://lkml.kernel.org/r/20200520232525.798933-4-hannes@cmpxchg.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Having statistics on pages scanned and pages reclaimed for both anon and
file pages makes it easier to evaluate changes to LRU balancing.
While at it, clean up the stat-keeping mess for isolation, putback,
reclaim stats etc. a bit: first the physical LRU operation (isolation and
putback), followed by vmstats, reclaim_stats, and then vm events.
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Rik van Riel <riel@surriel.com>
Link: http://lkml.kernel.org/r/20200520232525.798933-3-hannes@cmpxchg.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The reclaim code that balances between swapping and cache reclaim tries to
predict likely reuse based on in-memory reference patterns alone. This
works in many cases, but when it fails it cannot detect when the cache is
thrashing pathologically, or when we're in the middle of a swap storm.
The high seek cost of rotational drives under which the algorithm evolved
also meant that mistakes could quickly result in lockups from too
aggressive swapping (which is predominantly random IO). As a result, the
balancing code has been tuned over time to a point where it mostly goes
for page cache and defers swapping until the VM is under significant
memory pressure.
The resulting strategy doesn't make optimal caching decisions - where
optimal is the least amount of IO required to execute the workload.
The proliferation of fast random IO devices such as SSDs, in-memory
compression such as zswap, and persistent memory technologies on the
horizon, has made this undesirable behavior very noticable: Even in the
presence of large amounts of cold anonymous memory and a capable swap
device, the VM refuses to even seriously scan these pages, and can leave
the page cache thrashing needlessly.
This series sets out to address this. Since commit ("a528910e12ec mm:
thrash detection-based file cache sizing") we have exact tracking of
refault IO - the ultimate cost of reclaiming the wrong pages. This allows
us to use an IO cost based balancing model that is more aggressive about
scanning anonymous memory when the cache is thrashing, while being able to
avoid unnecessary swap storms.
These patches base the LRU balance on the rate of refaults on each list,
times the relative IO cost between swap device and filesystem
(swappiness), in order to optimize reclaim for least IO cost incurred.
History
I floated these changes in 2016. At the time they were incomplete and
full of workarounds due to a lack of infrastructure in the reclaim code:
We didn't have PageWorkingset, we didn't have hierarchical cgroup
statistics, and problems with the cgroup swap controller. As swapping
wasn't too high a priority then, the patches stalled out. With all
dependencies in place now, here we are again with much cleaner,
feature-complete patches.
I kept the acks for patches that stayed materially the same :-)
Below is a series of test results that demonstrate certain problematic
behavior of the current code, as well as showcase the new code's more
predictable and appropriate balancing decisions.
Test #1: No convergence
This test shows an edge case where the VM currently doesn't converge at
all on a new file workingset with a stale anon/tmpfs set.
The test sets up a cold anon set the size of 3/4 RAM, then tries to
establish a new file set half the size of RAM (flat access pattern).
The vanilla kernel refuses to even scan anon pages and never converges.
The file set is perpetually served from the filesystem.
The first test kernel is with the series up to the workingset patch
applied. This allows thrashing page cache to challenge the anonymous
workingset. The VM then scans the lists based on the current
scanned/rotated balancing algorithm. It converges on a stable state where
all cold anon pages are pushed out and the fileset is served entirely from
cache:
noconverge/5.7-rc5-mm noconverge/5.7-rc5-mm-workingset
Scanned 417719308.00 ( +0.00%) 64091155.00 ( -84.66%)
Reclaimed 417711094.00 ( +0.00%) 61640308.00 ( -85.24%)
Reclaim efficiency % 100.00 ( +0.00%) 96.18 ( -3.78%)
Scanned file 417719308.00 ( +0.00%) 59211118.00 ( -85.83%)
Scanned anon 0.00 ( +0.00%) 4880037.00 ( )
Swapouts 0.00 ( +0.00%) 2439957.00 ( )
Swapins 0.00 ( +0.00%) 257.00 ( )
Refaults 415246605.00 ( +0.00%) 59183722.00 ( -85.75%)
Restore refaults 0.00 ( +0.00%) 54988252.00 ( )
The second test kernel is with the full patch series applied, which
replaces the scanned/rotated ratios with refault/swapin rate-based
balancing. It evicts the cold anon pages more aggressively in the
presence of a thrashing cache and the absence of swapins, and so converges
with about 60% of the IO and reclaim activity:
noconverge/5.7-rc5-mm-workingset noconverge/5.7-rc5-mm-lrubalance
Scanned 64091155.00 ( +0.00%) 37579741.00 ( -41.37%)
Reclaimed 61640308.00 ( +0.00%) 35129293.00 ( -43.01%)
Reclaim efficiency % 96.18 ( +0.00%) 93.48 ( -2.78%)
Scanned file 59211118.00 ( +0.00%) 32708385.00 ( -44.76%)
Scanned anon 4880037.00 ( +0.00%) 4871356.00 ( -0.18%)
Swapouts 2439957.00 ( +0.00%) 2435565.00 ( -0.18%)
Swapins 257.00 ( +0.00%) 262.00 ( +1.94%)
Refaults 59183722.00 ( +0.00%) 32675667.00 ( -44.79%)
Restore refaults 54988252.00 ( +0.00%) 28480430.00 ( -48.21%)
We're triggering this case in host sideloading scenarios: When a host's
primary workload is not saturating the machine (primary load is usually
driven by user activity), we can optimistically sideload a batch job; if
user activity picks up and the primary workload needs the whole host
during this time, we freeze the sideload and rely on it getting pushed to
swap. Frequently that swapping doesn't happen and the completely inactive
sideload simply stays resident while the expanding primary worklad is
struggling to gain ground.
Test #2: Kernel build
This test is a a kernel build that is slightly memory-restricted (make -j4
inside a 400M cgroup).
Despite the very aggressive swapping of cold anon pages in test #1, this
test shows that the new kernel carefully balances swap against cache
refaults when both the file and the cache set are pressured.
It shows the patched kernel to be slightly better at finding the coldest
memory from the combined anon and file set to evict under pressure. The
result is lower aggregate reclaim and paging activity:
z 5.7-rc5-mm 5.7-rc5-mm-lrubalance
Real time 210.60 ( +0.00%) 210.97 ( +0.18%)
User time 745.42 ( +0.00%) 746.48 ( +0.14%)
System time 69.78 ( +0.00%) 69.79 ( +0.02%)
Scanned file 354682.00 ( +0.00%) 293661.00 ( -17.20%)
Scanned anon 465381.00 ( +0.00%) 378144.00 ( -18.75%)
Swapouts 185920.00 ( +0.00%) 147801.00 ( -20.50%)
Swapins 34583.00 ( +0.00%) 32491.00 ( -6.05%)
Refaults 212664.00 ( +0.00%) 172409.00 ( -18.93%)
Restore refaults 48861.00 ( +0.00%) 80091.00 ( +63.91%)
Total paging IO 433167.00 ( +0.00%) 352701.00 ( -18.58%)
Test #3: Overload
This next test is not about performance, but rather about the
predictability of the algorithm. The current balancing behavior doesn't
always lead to comprehensible results, which makes performance analysis
and parameter tuning (swappiness e.g.) very difficult.
The test shows the balancing behavior under equivalent anon and file
input. Anon and file sets are created of equal size (3/4 RAM), have the
same access patterns (a hot-cold gradient), and synchronized access rates.
Swappiness is raised from the default of 60 to 100 to indicate equal IO
cost between swap and cache.
With the vanilla balancing code, anon scans make up around 9% of the total
pages scanned, or a ~1:10 ratio. This is a surprisingly skewed ratio, and
it's an outcome that is hard to explain given the input parameters to the
VM.
The new balancing model targets a 1:2 balance: All else being equal,
reclaiming a file page costs one page IO - the refault; reclaiming an anon
page costs two IOs - the swapout and the swapin. In the test we observe a
~1:3 balance.
The scanned and paging IO numbers indicate that the anon LRU algorithm we
have in place right now does a slightly worse job at picking the coldest
pages compared to the file algorithm. There is ongoing work to improve
this, like Joonsoo's anon workingset patches; however, it's difficult to
compare the two aging strategies when the balancing between them is
behaving unintuitively.
The slightly less efficient anon reclaim results in a deviation from the
optimal 1:2 scan ratio we would like to see here - however, 1:3 is much
closer to what we'd want to see in this test than the vanilla kernel's
aging of 10+ cache pages for every anonymous one:
overload-100/5.7-rc5-mm-workingset overload-100/5.7-rc5-mm-lrubalance-realfile
Scanned 533633725.00 ( +0.00%) 595687785.00 ( +11.63%)
Reclaimed 494325440.00 ( +0.00%) 518154380.00 ( +4.82%)
Reclaim efficiency % 92.63 ( +0.00%) 86.98 ( -6.03%)
Scanned file 484532894.00 ( +0.00%) 456937722.00 ( -5.70%)
Scanned anon 49100831.00 ( +0.00%) 138750063.00 ( +182.58%)
Swapouts 8096423.00 ( +0.00%) 48982142.00 ( +504.98%)
Swapins 10027384.00 ( +0.00%) 62325044.00 ( +521.55%)
Refaults 479819973.00 ( +0.00%) 451309483.00 ( -5.94%)
Restore refaults 426422087.00 ( +0.00%) 399914067.00 ( -6.22%)
Total paging IO 497943780.00 ( +0.00%) 562616669.00 ( +12.99%)
Test #4: Parallel IO
It's important to note that these patches only affect the situation where
the kernel has to reclaim workingset memory, which is usually a
transitionary period. The vast majority of page reclaim occuring in a
system is from trimming the ever-expanding page cache.
These patches don't affect cache trimming behavior. We never swap as long
as we only have use-once cache moving through the file LRU, we only
consider swapping when the cache is actively thrashing.
The following test demonstrates this. It has an anon workingset that
takes up half of RAM and then writes a file that is twice the size of RAM
out to disk.
As the cache is funneled through the inactive file list, no anon pages are
scanned (aside from apparently some background noise of 10 pages):
5.7-rc5-mm 5.7-rc5-mm-lrubalance
Scanned 10714722.00 ( +0.00%) 10723445.00 ( +0.08%)
Reclaimed 10703596.00 ( +0.00%) 10712166.00 ( +0.08%)
Reclaim efficiency % 99.90 ( +0.00%) 99.89 ( -0.00%)
Scanned file 10714722.00 ( +0.00%) 10723435.00 ( +0.08%)
Scanned anon 0.00 ( +0.00%) 10.00 ( )
Swapouts 0.00 ( +0.00%) 7.00 ( )
Swapins 0.00 ( +0.00%) 0.00 ( +0.00%)
Refaults 92.00 ( +0.00%) 41.00 ( -54.84%)
Restore refaults 0.00 ( +0.00%) 0.00 ( +0.00%)
Total paging IO 92.00 ( +0.00%) 48.00 ( -47.31%)
This patch (of 14):
Currently, THP are counted as single pages until they are split right
before being swapped out. However, at that point the VM is already in the
middle of reclaim, and adjusting the LRU balance then is useless.
Always account THP by the number of basepages, and remove the fixup from
the splitting path.
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Shakeel Butt <shakeelb@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Rik van Riel <riel@surriel.com>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Minchan Kim <minchan@kernel.org>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Link: http://lkml.kernel.org/r/20200520232525.798933-1-hannes@cmpxchg.org
Link: http://lkml.kernel.org/r/20200520232525.798933-2-hannes@cmpxchg.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The previous patches have simplified the access rules around
page->mem_cgroup somewhat:
1. We never change page->mem_cgroup while the page is isolated by
somebody else. This was by far the biggest exception to our rules and
it didn't stop at lock_page() or lock_page_memcg().
2. We charge pages before they get put into page tables now, so the
somewhat fishy rule about "can be in page table as long as it's still
locked" is now gone and boiled down to having an exclusive reference to
the page.
Document the new rules. Any of the following will stabilize the
page->mem_cgroup association:
- the page lock
- LRU isolation
- lock_page_memcg()
- exclusive access to the page
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Alex Shi <alex.shi@linux.alibaba.com>
Reviewed-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: "Kirill A. Shutemov" <kirill@shutemov.name>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Roman Gushchin <guro@fb.com>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Balbir Singh <bsingharora@gmail.com>
Link: http://lkml.kernel.org/r/20200508183105.225460-20-hannes@cmpxchg.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Swapin faults were the last event to charge pages after they had already
been put on the LRU list. Now that we charge directly on swapin, the
lrucare portion of the charge code is unused.
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Alex Shi <alex.shi@linux.alibaba.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: "Kirill A. Shutemov" <kirill@shutemov.name>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Roman Gushchin <guro@fb.com>
Cc: Balbir Singh <bsingharora@gmail.com>
Cc: Shakeel Butt <shakeelb@google.com>
Link: http://lkml.kernel.org/r/20200508183105.225460-19-hannes@cmpxchg.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Right now, users that are otherwise memory controlled can easily escape
their containment and allocate significant amounts of memory that they're
not being charged for. That's because swap readahead pages are not being
charged until somebody actually faults them into their page table. This
can be exploited with MADV_WILLNEED, which triggers arbitrary readahead
allocations without charging the pages.
There are additional problems with the delayed charging of swap pages:
1. To implement refault/workingset detection for anonymous pages, we
need to have a target LRU available at swapin time, but the LRU is not
determinable until the page has been charged.
2. To implement per-cgroup LRU locking, we need page->mem_cgroup to be
stable when the page is isolated from the LRU; otherwise, the locks
change under us. But swapcache gets charged after it's already on the
LRU, and even if we cannot isolate it ourselves (since charging is not
exactly optional).
The previous patch ensured we always maintain cgroup ownership records for
swap pages. This patch moves the swapcache charging point from the fault
handler to swapin time to fix all of the above problems.
v2: simplify swapin error checking (Joonsoo)
[hughd@google.com: fix livelock in __read_swap_cache_async()]
Link: http://lkml.kernel.org/r/alpine.LSU.2.11.2005212246080.8458@eggly.anvils
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Alex Shi <alex.shi@linux.alibaba.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: "Kirill A. Shutemov" <kirill@shutemov.name>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Roman Gushchin <guro@fb.com>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Balbir Singh <bsingharora@gmail.com>
Cc: Rafael Aquini <aquini@redhat.com>
Cc: Alex Shi <alex.shi@linux.alibaba.com>
Link: http://lkml.kernel.org/r/20200508183105.225460-17-hannes@cmpxchg.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Without swap page tracking, users that are otherwise memory controlled can
easily escape their containment and allocate significant amounts of memory
that they're not being charged for. That's because swap does readahead,
but without the cgroup records of who owned the page at swapout, readahead
pages don't get charged until somebody actually faults them into their
page table and we can identify an owner task. This can be maliciously
exploited with MADV_WILLNEED, which triggers arbitrary readahead
allocations without charging the pages.
Make swap swap page tracking an integral part of memcg and remove the
Kconfig options. In the first place, it was only made configurable to
allow users to save some memory. But the overhead of tracking cgroup
ownership per swap page is minimal - 2 byte per page, or 512k per 1G of
swap, or 0.04%. Saving that at the expense of broken containment
semantics is not something we should present as a coequal option.
The swapaccount=0 boot option will continue to exist, and it will
eliminate the page_counter overhead and hide the swap control files, but
it won't disable swap slot ownership tracking.
This patch makes sure we always have the cgroup records at swapin time;
the next patch will fix the actual bug by charging readahead swap pages at
swapin time rather than at fault time.
v2: fix double swap charge bug in cgroup1/cgroup2 code gating
[hannes@cmpxchg.org: fix crash with cgroup_disable=memory]
Link: http://lkml.kernel.org/r/20200521215855.GB815153@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Alex Shi <alex.shi@linux.alibaba.com>
Cc: "Kirill A. Shutemov" <kirill@shutemov.name>
Cc: Roman Gushchin <guro@fb.com>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Balbir Singh <bsingharora@gmail.com>
Cc: Naresh Kamboju <naresh.kamboju@linaro.org>
Link: http://lkml.kernel.org/r/20200508183105.225460-16-hannes@cmpxchg.org
Debugged-by: Hugh Dickins <hughd@google.com>
Debugged-by: Michal Hocko <mhocko@kernel.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
A few cleanups to streamline the swap controller setup:
- Replace the do_swap_account flag with cgroup_memory_noswap. This
brings it in line with other functionality that is usually available
unless explicitly opted out of - nosocket, nokmem.
- Remove the really_do_swap_account flag that stores the boot option
and is later used to switch the do_swap_account. It's not clear why
this indirection is/was necessary. Use do_swap_account directly.
- Minor coding style polishing
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Alex Shi <alex.shi@linux.alibaba.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: "Kirill A. Shutemov" <kirill@shutemov.name>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Roman Gushchin <guro@fb.com>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Balbir Singh <bsingharora@gmail.com>
Link: http://lkml.kernel.org/r/20200508183105.225460-15-hannes@cmpxchg.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
There are no more users. RIP in peace.
[arnd@arndb.de: fix an unused-function warning]
Link: http://lkml.kernel.org/r/20200528095640.151454-1-arnd@arndb.de
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Alex Shi <alex.shi@linux.alibaba.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: "Kirill A. Shutemov" <kirill@shutemov.name>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Roman Gushchin <guro@fb.com>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Balbir Singh <bsingharora@gmail.com>
Link: http://lkml.kernel.org/r/20200508183105.225460-14-hannes@cmpxchg.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
With the page->mapping requirement gone from memcg, we can charge anon and
file-thp pages in one single step, right after they're allocated.
This removes two out of three API calls - especially the tricky commit
step that needed to happen at just the right time between when the page is
"set up" and when it's "published" - somewhat vague and fluid concepts
that varied by page type. All we need is a freshly allocated page and a
memcg context to charge.
v2: prevent double charges on pre-allocated hugepages in khugepaged
[hannes@cmpxchg.org: Fix crash - *hpage could be ERR_PTR instead of NULL]
Link: http://lkml.kernel.org/r/20200512215813.GA487759@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Alex Shi <alex.shi@linux.alibaba.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: "Kirill A. Shutemov" <kirill@shutemov.name>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Roman Gushchin <guro@fb.com>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Balbir Singh <bsingharora@gmail.com>
Cc: Qian Cai <cai@lca.pw>
Link: http://lkml.kernel.org/r/20200508183105.225460-13-hannes@cmpxchg.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
With rmap memcg locking already in place for NR_ANON_MAPPED, it's just a
small step to remove the MEMCG_RSS_HUGE wart and switch memcg to the
native NR_ANON_THPS accounting sites.
[hannes@cmpxchg.org: fixes]
Link: http://lkml.kernel.org/r/20200512121750.GA397968@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Tested-by: Naresh Kamboju <naresh.kamboju@linaro.org>
Reviewed-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Acked-by: Randy Dunlap <rdunlap@infradead.org> [build-tested]
Cc: Alex Shi <alex.shi@linux.alibaba.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: "Kirill A. Shutemov" <kirill@shutemov.name>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Roman Gushchin <guro@fb.com>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Balbir Singh <bsingharora@gmail.com>
Link: http://lkml.kernel.org/r/20200508183105.225460-12-hannes@cmpxchg.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Memcg maintains a private MEMCG_RSS counter. This divergence from the
generic VM accounting means unnecessary code overhead, and creates a
dependency for memcg that page->mapping is set up at the time of charging,
so that page types can be told apart.
Convert the generic accounting sites to mod_lruvec_page_state and friends
to maintain the per-cgroup vmstat counter of NR_ANON_MAPPED. We use
lock_page_memcg() to stabilize page->mem_cgroup during rmap changes, the
same way we do for NR_FILE_MAPPED.
With the previous patch removing MEMCG_CACHE and the private NR_SHMEM
counter, this patch finally eliminates the need to have page->mapping set
up at charge time. However, we need to have page->mem_cgroup set up by
the time rmap runs and does the accounting, so switch the commit and the
rmap callbacks around.
v2: fix temporary accounting bug by switching rmap<->commit (Joonsoo)
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Alex Shi <alex.shi@linux.alibaba.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: "Kirill A. Shutemov" <kirill@shutemov.name>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Roman Gushchin <guro@fb.com>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Balbir Singh <bsingharora@gmail.com>
Link: http://lkml.kernel.org/r/20200508183105.225460-11-hannes@cmpxchg.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Memcg maintains private MEMCG_CACHE and NR_SHMEM counters. This
divergence from the generic VM accounting means unnecessary code overhead,
and creates a dependency for memcg that page->mapping is set up at the
time of charging, so that page types can be told apart.
Convert the generic accounting sites to mod_lruvec_page_state and friends
to maintain the per-cgroup vmstat counters of NR_FILE_PAGES and NR_SHMEM.
The page is already locked in these places, so page->mem_cgroup is stable;
we only need minimal tweaks of two mem_cgroup_migrate() calls to ensure
it's set up in time.
Then replace MEMCG_CACHE with NR_FILE_PAGES and delete the private
NR_SHMEM accounting sites.
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Alex Shi <alex.shi@linux.alibaba.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: "Kirill A. Shutemov" <kirill@shutemov.name>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Roman Gushchin <guro@fb.com>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Balbir Singh <bsingharora@gmail.com>
Link: http://lkml.kernel.org/r/20200508183105.225460-10-hannes@cmpxchg.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Anonymous compound pages can be mapped by ptes, which means that if we
want to track NR_MAPPED_ANON, NR_ANON_THPS on a per-cgroup basis, we have
to be prepared to see tail pages in our accounting functions.
Make mod_lruvec_page_state() and lock_page_memcg() deal with tail pages
correctly, namely by redirecting to the head page which has the
page->mem_cgroup set up.
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Alex Shi <alex.shi@linux.alibaba.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: "Kirill A. Shutemov" <kirill@shutemov.name>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Roman Gushchin <guro@fb.com>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Balbir Singh <bsingharora@gmail.com>
Link: http://lkml.kernel.org/r/20200508183105.225460-9-hannes@cmpxchg.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When memcg uses the generic vmstat counters, it doesn't need to do
anything at charging and uncharging time. It does, however, need to
migrate counts when pages move to a different cgroup in move_account.
Prepare the move_account function for the arrival of NR_FILE_PAGES,
NR_ANON_MAPPED, NR_ANON_THPS etc. by having a branch for files and a
branch for anon, which can then divided into sub-branches.
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Alex Shi <alex.shi@linux.alibaba.com>
Reviewed-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: "Kirill A. Shutemov" <kirill@shutemov.name>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Roman Gushchin <guro@fb.com>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Balbir Singh <bsingharora@gmail.com>
Link: http://lkml.kernel.org/r/20200508183105.225460-8-hannes@cmpxchg.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The uncharge batching code adds up the anon, file, kmem counts to
determine the total number of pages to uncharge and references to drop.
But the next patches will remove the anon and file counters.
Maintain an aggregate nr_pages in the uncharge_gather struct.
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Alex Shi <alex.shi@linux.alibaba.com>
Reviewed-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: "Kirill A. Shutemov" <kirill@shutemov.name>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Roman Gushchin <guro@fb.com>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Balbir Singh <bsingharora@gmail.com>
Link: http://lkml.kernel.org/r/20200508183105.225460-7-hannes@cmpxchg.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The try/commit/cancel protocol that memcg uses dates back to when pages
used to be uncharged upon removal from the page cache, and thus couldn't
be committed before the insertion had succeeded. Nowadays, pages are
uncharged when they are physically freed; it doesn't matter whether the
insertion was successful or not. For the page cache, the transaction
dance has become unnecessary.
Introduce a mem_cgroup_charge() function that simply charges a newly
allocated page to a cgroup and sets up page->mem_cgroup in one single
step. If the insertion fails, the caller doesn't have to do anything but
free/put the page.
Then switch the page cache over to this new API.
Subsequent patches will also convert anon pages, but it needs a bit more
prep work. Right now, memcg depends on page->mapping being already set up
at the time of charging, so that it can maintain its own MEMCG_CACHE and
MEMCG_RSS counters. For anon, page->mapping is set under the same pte
lock under which the page is publishd, so a single charge point that can
block doesn't work there just yet.
The following prep patches will replace the private memcg counters with
the generic vmstat counters, thus removing the page->mapping dependency,
then complete the transition to the new single-point charge API and delete
the old transactional scheme.
v2: leave shmem swapcache when charging fails to avoid double IO (Joonsoo)
v3: rebase on preceeding shmem simplification patch
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Alex Shi <alex.shi@linux.alibaba.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: "Kirill A. Shutemov" <kirill@shutemov.name>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Roman Gushchin <guro@fb.com>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Balbir Singh <bsingharora@gmail.com>
Link: http://lkml.kernel.org/r/20200508183105.225460-6-hannes@cmpxchg.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The cgroup swaprate throttling is about matching new anon allocations to
the rate of available IO when that is being throttled. It's the io
controller hooking into the VM, rather than a memory controller thing.
Rename mem_cgroup_throttle_swaprate() to cgroup_throttle_swaprate(), and
drop the @memcg argument which is only used to check whether the preceding
page charge has succeeded and the fault is proceeding.
We could decouple the call from mem_cgroup_try_charge() here as well, but
that would cause unnecessary churn: the following patches convert all
callsites to a new charge API and we'll decouple as we go along.
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Alex Shi <alex.shi@linux.alibaba.com>
Reviewed-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: "Kirill A. Shutemov" <kirill@shutemov.name>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Roman Gushchin <guro@fb.com>
Cc: Balbir Singh <bsingharora@gmail.com>
Link: http://lkml.kernel.org/r/20200508183105.225460-5-hannes@cmpxchg.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Commit 215c02bc33 ("tmpfs: fix shmem_getpage_gfp() VM_BUG_ON")
recognized that hole punching can race with swapin and removed the
BUG_ON() for a truncated entry from the swapin path.
The patch also added a swapcache deletion to optimize this rare case:
Since swapin has the page locked, and free_swap_and_cache() merely
trylocks, this situation can leave the page stranded in swapcache.
Usually, page reclaim picks up stale swapcache pages, and the race can
happen at any other time when the page is locked. (The same happens for
non-shmem swapin racing with page table zapping.) The thinking here was:
we already observed the race and we have the page locked, we may as well
do the cleanup instead of waiting for reclaim.
However, this optimization complicates the next patch which moves the
cgroup charging code around. As this is just a minor speedup for a race
condition that is so rare that it required a fuzzer to trigger the
original BUG_ON(), it's no longer worth the complications.
Suggested-by: Hugh Dickins <hughd@google.com>
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Hugh Dickins <hughd@google.com>
Cc: Alex Shi <alex.shi@linux.alibaba.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: "Kirill A. Shutemov" <kirill@shutemov.name>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Roman Gushchin <guro@fb.com>
Cc: Balbir Singh <bsingharora@gmail.com>
Link: http://lkml.kernel.org/r/20200511181056.GA339505@cmpxchg.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The memcg charging API carries a boolean @compound parameter that tells
whether the page we're dealing with is a hugepage.
mem_cgroup_commit_charge() has another boolean @lrucare that indicates
whether the page needs LRU locking or not while charging. The majority of
callsites know those parameters at compile time, which results in a lot of
naked "false, false" argument lists. This makes for cryptic code and is a
breeding ground for subtle mistakes.
Thankfully, the huge page state can be inferred from the page itself and
doesn't need to be passed along. This is safe because charging completes
before the page is published and somebody may split it.
Simplify the callsites by removing @compound, and let memcg infer the
state by using hpage_nr_pages() unconditionally. That function does
PageTransHuge() to identify huge pages, which also helpfully asserts that
nobody passes in tail pages by accident.
The following patches will introduce a new charging API, best not to carry
over unnecessary weight.
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Alex Shi <alex.shi@linux.alibaba.com>
Reviewed-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: "Kirill A. Shutemov" <kirill@shutemov.name>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Roman Gushchin <guro@fb.com>
Cc: Balbir Singh <bsingharora@gmail.com>
Link: http://lkml.kernel.org/r/20200508183105.225460-4-hannes@cmpxchg.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The move_lock is a per-memcg lock, but the VM accounting code that needs
to acquire it comes from the page and follows page->mem_cgroup under RCU
protection. That means that the page becomes unlocked not when we drop
the move_lock, but when we update page->mem_cgroup. And that assignment
doesn't imply any memory ordering. If that pointer write gets reordered
against the reads of the page state - page_mapped, PageDirty etc. the
state may change while we rely on it being stable and we can end up
corrupting the counters.
Place an SMP memory barrier to make sure we're done with all page state by
the time the new page->mem_cgroup becomes visible.
Also replace the open-coded move_lock with a lock_page_memcg() to make it
more obvious what we're serializing against.
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Cc: Alex Shi <alex.shi@linux.alibaba.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: "Kirill A. Shutemov" <kirill@shutemov.name>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Roman Gushchin <guro@fb.com>
Cc: Balbir Singh <bsingharora@gmail.com>
Link: http://lkml.kernel.org/r/20200508183105.225460-3-hannes@cmpxchg.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Patch series "mm: memcontrol: charge swapin pages on instantiation", v2.
This patch series reworks memcg to charge swapin pages directly at
swapin time, rather than at fault time, which may be much later, or
not happen at all.
Changes in version 2:
- prevent double charges on pre-allocated hugepages in khugepaged
- leave shmem swapcache when charging fails to avoid double IO (Joonsoo)
- fix temporary accounting bug by switching rmap<->commit (Joonsoo)
- fix double swap charge bug in cgroup1/cgroup2 code gating
- simplify swapin error checking (Joonsoo)
- mm: memcontrol: document the new swap control behavior (Alex)
- review tags
The delayed swapin charging scheme we have right now causes problems:
- Alex's per-cgroup lru_lock patches rely on pages that have been
isolated from the LRU to have a stable page->mem_cgroup; otherwise
the lock may change underneath him. Swapcache pages are charged only
after they are added to the LRU, and charging doesn't follow the LRU
isolation protocol.
- Joonsoo's anon workingset patches need a suitable LRU at the time
the page enters the swap cache and displaces the non-resident
info. But the correct LRU is only available after charging.
- It's a containment hole / DoS vector. Users can trigger arbitrarily
large swap readahead using MADV_WILLNEED. The memory is never
charged unless somebody actually touches it.
- It complicates the page->mem_cgroup stabilization rules
In order to charge pages directly at swapin time, the memcg code base
needs to be prepared, and several overdue cleanups become a necessity:
To charge pages at swapin time, we need to always have cgroup
ownership tracking of swap records. We also cannot rely on
page->mapping to tell apart page types at charge time, because that's
only set up during a page fault.
To eliminate the page->mapping dependency, memcg needs to ditch its
private page type counters (MEMCG_CACHE, MEMCG_RSS, NR_SHMEM) in favor
of the generic vmstat counters and accounting sites, such as
NR_FILE_PAGES, NR_ANON_MAPPED etc.
To switch to generic vmstat counters, the charge sequence must be
adjusted such that page->mem_cgroup is set up by the time these
counters are modified.
The series is structured as follows:
1. Bug fixes
2. Decoupling charging from rmap
3. Swap controller integration into memcg
4. Direct swapin charging
This patch (of 19):
When replacing one page with another one in the cache, we have to decrease
the file count of the old page's NUMA node and increase the one of the new
NUMA node, otherwise the old node leaks the count and the new node
eventually underflows its counter.
Fixes: 74d609585d ("page cache: Add and replace pages using the XArray")
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Alex Shi <alex.shi@linux.alibaba.com>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Reviewed-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Reviewed-by: Balbir Singh <bsingharora@gmail.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: "Kirill A. Shutemov" <kirill@shutemov.name>
Cc: Roman Gushchin <guro@fb.com>
Link: http://lkml.kernel.org/r/20200508183105.225460-1-hannes@cmpxchg.org
Link: http://lkml.kernel.org/r/20200508183105.225460-2-hannes@cmpxchg.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
try_to_compact_zone() has been replaced by try_to_compact_pages(), which
is necessary to be updated in the comment of should_continue_reclaim().
Signed-off-by: Qiwu Chen <chenqiwu@xiaomi.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Link: http://lkml.kernel.org/r/20200501034907.22991-1-chenqiwu@xiaomi.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
commit 3c710c1ad1 ("mm, vmscan extract shrink_page_list reclaim counters
into a struct") changed data type for the function, so changing return
type for funciton and its caller.
Signed-off-by: Vaneet Narang <v.narang@samsung.com>
Signed-off-by: Maninder Singh <maninder1.s@samsung.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Amit Sahrawat <a.sahrawat@samsung.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Vlastimil Babka <vbabka@suse.cz>
Link: http://lkml.kernel.org/r/1588168259-25604-1-git-send-email-maninder1.s@samsung.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Fix an nr_isolate_* mismatch problem between cma and dirty lazyfree pages.
If try_to_unmap_one is used for reclaim and it detects a dirty lazyfree
page, then the lazyfree page is changed to a normal anon page having
SwapBacked by commit 802a3a92ad ("mm: reclaim MADV_FREE pages"). Even
with the change, reclaim context correctly counts isolated files because
it uses is_file_lru to distinguish file. And the change to anon is not
happened if try_to_unmap_one is used for migration. So migration context
like compaction also correctly counts isolated files even though it uses
page_is_file_lru insted of is_file_lru. Recently page_is_file_cache was
renamed to page_is_file_lru by commit 9de4f22a60 ("mm: code cleanup for
MADV_FREE").
But the nr_isolate_* mismatch problem happens on cma alloc. There is
reclaim_clean_pages_from_list which is being used only by cma. It was
introduced by commit 02c6de8d75 ("mm: cma: discard clean pages during
contiguous allocation instead of migration") to reclaim clean file pages
without migration. The cma alloc uses both reclaim_clean_pages_from_list
and migrate_pages, and it uses page_is_file_lru to count isolated files.
If there are dirty lazyfree pages allocated from cma memory region, the
pages are counted as isolated file at the beginging but are counted as
isolated anon after finished.
Mem-Info:
Node 0 active_anon:3045904kB inactive_anon:611448kB active_file:14892kB inactive_file:205636kB unevictable:10416kB isolated(anon):0kB isolated(file):37664kB mapped:630216kB dirty:384kB writeback:0kB shmem:42576kB writeback_tmp:0kB unstable:0kB all_unreclaimable? no
Like log above, there were too much isolated files, 37664kB, which
triggers too_many_isolated in reclaim even when there is no actually
isolated file in system wide. It could be reproducible by running two
programs, writing on MADV_FREE page and doing cma alloc, respectively.
Although isolated anon is 0, I found that the internal value of isolated
anon was the negative value of isolated file.
Fix this by compensating the isolated count for both LRU lists. Count
non-discarded lazyfree pages in shrink_page_list, then compensate the
counted number in reclaim_clean_pages_from_list.
Reported-by: Yong-Taek Lee <ytk.lee@samsung.com>
Suggested-by: Minchan Kim <minchan@kernel.org>
Signed-off-by: Jaewon Kim <jaewon31.kim@samsung.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Minchan Kim <minchan@kernel.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Marek Szyprowski <m.szyprowski@samsung.com>
Cc: Michal Nazarewicz <mina86@mina86.com>
Cc: Shaohua Li <shli@fb.com>
Link: http://lkml.kernel.org/r/20200426011718.30246-1-jaewon31.kim@samsung.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
We already defined the helper update_lru_size().
Let's use this to reduce code duplication.
Signed-off-by: Wei Yang <richard.weiyang@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Baoquan He <bhe@redhat.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Link: http://lkml.kernel.org/r/20200331221550.1011-1-richard.weiyang@gmail.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
None of the three callers of get_compound_page_dtor() want to know the
value; they just want to call the function. Replace it with
destroy_compound_page() which calls the dtor for them.
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Anshuman Khandual <anshuman.khandual@arm.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Link: http://lkml.kernel.org/r/20200517105051.9352-1-willy@infradead.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When huge_pte_offset() is called, the parameter sz can only be PUD_SIZE or
PMD_SIZE. If sz is PUD_SIZE and code can reach pud, then *pud must be
none, or normal hugetlb entry, or non-present (migration or hwpoisoned)
hugetlb entry, and we can directly return pud. When sz is PMD_SIZE, pud
must be none or present, and if code can reach pmd, we can directly return
pmd.
So after this patch the code is simplified by first check on the parameter
sz, and avoid unnecessary checks in current code. Same semantics of
existing code is maintained.
More details about relevant commits:
commit 9b19df292c ("mm/hugetlb.c: make huge_pte_offset() consistent
and document behaviour") changed the code path for pud and pmd handling,
see comments about why this patch intends to change it.
...
pud = pud_offset(p4d, addr);
if (sz != PUD_SIZE && pud_none(*pud)) // [1]
return NULL;
/* hugepage or swap? */
if (pud_huge(*pud) || !pud_present(*pud)) // [2]
return (pte_t *)pud;
pmd = pmd_offset(pud, addr);
if (sz != PMD_SIZE && pmd_none(*pmd)) // [3]
return NULL;
/* hugepage or swap? */
if (pmd_huge(*pmd) || !pmd_present(*pmd)) // [4]
return (pte_t *)pmd;
return NULL; // [5]
...
[1]: this is necessary, return NULL for sz == PMD_SIZE;
[2]: if sz == PUD_SIZE, all valid values of pud entry will cause return;
[3]: dead code, sz != PMD_SIZE never true;
[4]: all valid values of pmd entry will cause return;
[5]: dead code, because of check in [4].
Now, this patch combines [1] and [2] for pud, and combines [3], [4] and
[5] for pmd, so avoid unnecessary checks.
I don't try to catch any invalid values in page table entry, as that will
be checked by caller and avoid extra branch in this function. Also no
assert on sz must equal PUD_SIZE or PMD_SIZE, since this function only
call for hugetlb mapping.
For commit 3c1d7e6ccb ("mm/hugetlb: fix a addressing exception caused by
huge_pte_offset"), since we don't read the entry more than once now,
variable pud_entry and pmd_entry are not needed.
Signed-off-by: Li Xinhai <lixinhai.lxh@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Jason Gunthorpe <jgg@mellanox.com>
Cc: Punit Agrawal <punit.agrawal@arm.com>
Cc: Longpeng <longpeng2@huawei.com>
Link: http://lkml.kernel.org/r/1587794313-16849-1-git-send-email-lixinhai.lxh@gmail.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Previously, a check for hugepages_supported was added before processing
hugetlb command line parameters. On some architectures such as powerpc,
hugepages_supported() is not set to true until after command line
processing. Therefore, no hugetlb command line parameters would be
accepted.
Remove the additional checks for hugepages_supported. In hugetlb_init,
print a warning if !hugepages_supported and command line parameters were
specified.
Reported-by: Sandipan Das <sandipan.osd@gmail.com>
Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Link: http://lkml.kernel.org/r/b1f04f9f-fa46-c2a0-7693-4a0679d2a1ee@oracle.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
With all hugetlb page processing done in a single file clean up code.
- Make code match desired semantics
- Update documentation with semantics
- Make all warnings and errors messages start with 'HugeTLB:'.
- Consistently name command line parsing routines.
- Warn if !hugepages_supported() and command line parameters have
been specified.
- Add comments to code
- Describe some of the subtle interactions
- Describe semantics of command line arguments
This patch also fixes issues with implicitly setting the number of
gigantic huge pages to preallocate. Previously on X86 command line,
hugepages=2 default_hugepagesz=1G
would result in zero 1G pages being preallocated and,
# grep HugePages_Total /proc/meminfo
HugePages_Total: 0
# sysctl -a | grep nr_hugepages
vm.nr_hugepages = 2
vm.nr_hugepages_mempolicy = 2
# cat /proc/sys/vm/nr_hugepages
2
After this patch 2 gigantic pages will be preallocated and all the proc,
sysfs, sysctl and meminfo files will accurately reflect this.
To address the issue with gigantic pages, a small change in behavior was
made to command line processing. Previously the command line,
hugepages=128 default_hugepagesz=2M hugepagesz=2M hugepages=256
would result in the allocation of 256 2M huge pages. The value 128 would
be ignored without any warning. After this patch, 128 2M pages will be
allocated and a warning message will be displayed indicating the value of
256 is ignored. This change in behavior is required because allocation of
implicitly specified gigantic pages must be done when the
default_hugepagesz= is encountered for gigantic pages. Previously the
code waited until later in the boot process (hugetlb_init), to allocate
pages of default size. However the bootmem allocator required for
gigantic allocations is not available at this time.
Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Tested-by: Sandipan Das <sandipan@linux.ibm.com>
Acked-by: Gerald Schaefer <gerald.schaefer@de.ibm.com> [s390]
Acked-by: Will Deacon <will@kernel.org>
Cc: Albert Ou <aou@eecs.berkeley.edu>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Christian Borntraeger <borntraeger@de.ibm.com>
Cc: Christophe Leroy <christophe.leroy@c-s.fr>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: David S. Miller <davem@davemloft.net>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Longpeng <longpeng2@huawei.com>
Cc: Mina Almasry <almasrymina@google.com>
Cc: Nitesh Narayan Lal <nitesh@redhat.com>
Cc: Palmer Dabbelt <palmer@dabbelt.com>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Paul Walmsley <paul.walmsley@sifive.com>
Cc: Peter Xu <peterx@redhat.com>
Cc: Randy Dunlap <rdunlap@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vasily Gorbik <gor@linux.ibm.com>
Cc: Anders Roxell <anders.roxell@linaro.org>
Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.ibm.com>
Cc: Qian Cai <cai@lca.pw>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Link: http://lkml.kernel.org/r/20200417185049.275845-5-mike.kravetz@oracle.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
hugetlb_add_hstate() prints a warning if the hstate already exists. This
was originally done as part of kernel command line parsing. If
'hugepagesz=' was specified more than once, the warning
pr_warn("hugepagesz= specified twice, ignoring\n");
would be printed.
Some architectures want to enable all huge page sizes. They would call
hugetlb_add_hstate for all supported sizes. However, this was done after
command line processing and as a result hstates could have already been
created for some sizes. To make sure no warning were printed, there would
often be code like:
if (!size_to_hstate(size)
hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT)
The only time we want to print the warning is as the result of command
line processing. So, remove the warning from hugetlb_add_hstate and add
it to the single arch independent routine processing "hugepagesz=". After
this, calls to size_to_hstate() in arch specific code can be removed and
hugetlb_add_hstate can be called without worrying about warning messages.
[mike.kravetz@oracle.com: fix hugetlb initialization]
Link: http://lkml.kernel.org/r/4c36c6ce-3774-78fa-abc4-b7346bf24348@oracle.com
Link: http://lkml.kernel.org/r/20200428205614.246260-5-mike.kravetz@oracle.com
Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Tested-by: Anders Roxell <anders.roxell@linaro.org>
Acked-by: Mina Almasry <almasrymina@google.com>
Acked-by: Gerald Schaefer <gerald.schaefer@de.ibm.com> [s390]
Acked-by: Will Deacon <will@kernel.org>
Cc: Albert Ou <aou@eecs.berkeley.edu>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Christian Borntraeger <borntraeger@de.ibm.com>
Cc: Christophe Leroy <christophe.leroy@c-s.fr>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: David S. Miller <davem@davemloft.net>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Longpeng <longpeng2@huawei.com>
Cc: Nitesh Narayan Lal <nitesh@redhat.com>
Cc: Palmer Dabbelt <palmer@dabbelt.com>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Paul Walmsley <paul.walmsley@sifive.com>
Cc: Peter Xu <peterx@redhat.com>
Cc: Randy Dunlap <rdunlap@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vasily Gorbik <gor@linux.ibm.com>
Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.ibm.com>
Cc: Qian Cai <cai@lca.pw>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Link: http://lkml.kernel.org/r/20200417185049.275845-4-mike.kravetz@oracle.com
Link: http://lkml.kernel.org/r/20200428205614.246260-4-mike.kravetz@oracle.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Now that architectures provide arch_hugetlb_valid_size(), parsing of
"hugepagesz=" can be done in architecture independent code. Create a
single routine to handle hugepagesz= parsing and remove all arch specific
routines. We can also remove the interface hugetlb_bad_size() as this is
no longer used outside arch independent code.
This also provides consistent behavior of hugetlbfs command line options.
The hugepagesz= option should only be specified once for a specific size,
but some architectures allow multiple instances. This appears to be more
of an oversight when code was added by some architectures to set up ALL
huge pages sizes.
Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Tested-by: Sandipan Das <sandipan@linux.ibm.com>
Reviewed-by: Peter Xu <peterx@redhat.com>
Acked-by: Mina Almasry <almasrymina@google.com>
Acked-by: Gerald Schaefer <gerald.schaefer@de.ibm.com> [s390]
Acked-by: Will Deacon <will@kernel.org>
Cc: Albert Ou <aou@eecs.berkeley.edu>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Christian Borntraeger <borntraeger@de.ibm.com>
Cc: Christophe Leroy <christophe.leroy@c-s.fr>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: David S. Miller <davem@davemloft.net>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Longpeng <longpeng2@huawei.com>
Cc: Nitesh Narayan Lal <nitesh@redhat.com>
Cc: Palmer Dabbelt <palmer@dabbelt.com>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Paul Walmsley <paul.walmsley@sifive.com>
Cc: Randy Dunlap <rdunlap@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vasily Gorbik <gor@linux.ibm.com>
Cc: Anders Roxell <anders.roxell@linaro.org>
Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.ibm.com>
Cc: Qian Cai <cai@lca.pw>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Link: http://lkml.kernel.org/r/20200417185049.275845-3-mike.kravetz@oracle.com
Link: http://lkml.kernel.org/r/20200428205614.246260-3-mike.kravetz@oracle.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Patch series "Clean up hugetlb boot command line processing", v4.
Longpeng(Mike) reported a weird message from hugetlb command line
processing and proposed a solution [1]. While the proposed patch does
address the specific issue, there are other related issues in command line
processing. As hugetlbfs evolved, updates to command line processing have
been made to meet immediate needs and not necessarily in a coordinated
manner. The result is that some processing is done in arch specific code,
some is done in arch independent code and coordination is problematic.
Semantics can vary between architectures.
The patch series does the following:
- Define arch specific arch_hugetlb_valid_size routine used to validate
passed huge page sizes.
- Move hugepagesz= command line parsing out of arch specific code and into
an arch independent routine.
- Clean up command line processing to follow desired semantics and
document those semantics.
[1] https://lore.kernel.org/linux-mm/20200305033014.1152-1-longpeng2@huawei.com
This patch (of 3):
The architecture independent routine hugetlb_default_setup sets up the
default huge pages size. It has no way to verify if the passed value is
valid, so it accepts it and attempts to validate at a later time. This
requires undocumented cooperation between the arch specific and arch
independent code.
For architectures that support more than one huge page size, provide a
routine arch_hugetlb_valid_size to validate a huge page size.
hugetlb_default_setup can use this to validate passed values.
arch_hugetlb_valid_size will also be used in a subsequent patch to move
processing of the "hugepagesz=" in arch specific code to a common routine
in arch independent code.
Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Gerald Schaefer <gerald.schaefer@de.ibm.com> [s390]
Acked-by: Will Deacon <will@kernel.org>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Paul Walmsley <paul.walmsley@sifive.com>
Cc: Palmer Dabbelt <palmer@dabbelt.com>
Cc: Albert Ou <aou@eecs.berkeley.edu>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Vasily Gorbik <gor@linux.ibm.com>
Cc: Christian Borntraeger <borntraeger@de.ibm.com>
Cc: David S. Miller <davem@davemloft.net>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Longpeng <longpeng2@huawei.com>
Cc: Christophe Leroy <christophe.leroy@c-s.fr>
Cc: Randy Dunlap <rdunlap@infradead.org>
Cc: Mina Almasry <almasrymina@google.com>
Cc: Peter Xu <peterx@redhat.com>
Cc: Nitesh Narayan Lal <nitesh@redhat.com>
Cc: Anders Roxell <anders.roxell@linaro.org>
Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.ibm.com>
Cc: Qian Cai <cai@lca.pw>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Link: http://lkml.kernel.org/r/20200428205614.246260-1-mike.kravetz@oracle.com
Link: http://lkml.kernel.org/r/20200428205614.246260-2-mike.kravetz@oracle.com
Link: http://lkml.kernel.org/r/20200417185049.275845-1-mike.kravetz@oracle.com
Link: http://lkml.kernel.org/r/20200417185049.275845-2-mike.kravetz@oracle.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
'max_ptes_shared' specifies how many pages can be shared across multiple
processes. Exceeding the number would block the collapse::
/sys/kernel/mm/transparent_hugepage/khugepaged/max_ptes_shared
A higher value may increase memory footprint for some workloads.
By default, at least half of pages has to be not shared.
[colin.king@canonical.com: fix several spelling mistakes]
Link: http://lkml.kernel.org/r/20200420084241.65433-1-colin.king@canonical.com
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Signed-off-by: Colin Ian King <colin.king@canonical.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Tested-by: Zi Yan <ziy@nvidia.com>
Reviewed-by: William Kucharski <william.kucharski@oracle.com>
Reviewed-by: Zi Yan <ziy@nvidia.com>
Acked-by: Yang Shi <yang.shi@linux.alibaba.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Ralph Campbell <rcampbell@nvidia.com>
Link: http://lkml.kernel.org/r/20200416160026.16538-9-kirill.shutemov@linux.intel.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Currently we have different copy-on-write semantics for anon- and
file-THP. For anon-THP we try to allocate huge page on the write fault,
but on file-THP we split PMD and allocate 4k page.
Arguably, file-THP semantics is more desirable: we don't necessary want to
unshare full PMD range from the parent on the first access. This is the
primary reason THP is unusable for some workloads, like Redis.
The original THP refcounting didn't allow to have PTE-mapped compound
pages, so we had no options, but to allocate huge page on CoW (with
fallback to 512 4k pages).
The current refcounting doesn't have such limitations and we can cut a lot
of complex code out of fault path.
khugepaged is now able to recover THP from such ranges if the
configuration allows.
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Tested-by: Zi Yan <ziy@nvidia.com>
Reviewed-by: William Kucharski <william.kucharski@oracle.com>
Reviewed-by: Zi Yan <ziy@nvidia.com>
Acked-by: Yang Shi <yang.shi@linux.alibaba.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Ralph Campbell <rcampbell@nvidia.com>
Link: http://lkml.kernel.org/r/20200416160026.16538-8-kirill.shutemov@linux.intel.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
We can collapse PTE-mapped compound pages. We only need to avoid handling
them more than once: lock/unlock page only once if it's present in the PMD
range multiple times as it handled on compound level. The same goes for
LRU isolation and putback.
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Tested-by: Zi Yan <ziy@nvidia.com>
Reviewed-by: William Kucharski <william.kucharski@oracle.com>
Reviewed-by: Zi Yan <ziy@nvidia.com>
Acked-by: Yang Shi <yang.shi@linux.alibaba.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Ralph Campbell <rcampbell@nvidia.com>
Link: http://lkml.kernel.org/r/20200416160026.16538-7-kirill.shutemov@linux.intel.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The page can be included into collapse as long as it doesn't have extra
pins (from GUP or otherwise).
Logic to check the refcount is moved to a separate function. For pages in
swap cache, add compound_nr(page) to the expected refcount, in order to
handle the compound page case. This is in preparation for the following
patch.
VM_BUG_ON_PAGE() was removed from __collapse_huge_page_copy() as the
invariant it checks is no longer valid: the source can be mapped multiple
times now.
[yang.shi@linux.alibaba.com: remove error message when checking external pins]
Link: http://lkml.kernel.org/r/1589317383-9595-1-git-send-email-yang.shi@linux.alibaba.com
[cai@lca.pw: fix set-but-not-used warning]
Link: http://lkml.kernel.org/r/20200521145644.GA6367@ovpn-112-192.phx2.redhat.com
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Signed-off-by: Yang Shi <yang.shi@linux.alibaba.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Tested-by: Zi Yan <ziy@nvidia.com>
Reviewed-by: William Kucharski <william.kucharski@oracle.com>
Reviewed-by: Zi Yan <ziy@nvidia.com>
Reviewed-by: John Hubbard <jhubbard@nvidia.com>
Acked-by: Yang Shi <yang.shi@linux.alibaba.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Ralph Campbell <rcampbell@nvidia.com>
Link: http://lkml.kernel.org/r/20200416160026.16538-6-kirill.shutemov@linux.intel.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
collapse_huge_page() tries to swap in pages that are part of the PMD
range. Just swapped in page goes though LRU add cache. The cache gets
extra reference on the page.
The extra reference can lead to the collapse fail: the following
__collapse_huge_page_isolate() would check refcount and abort collapse
seeing unexpected refcount.
The fix is to drain local LRU add cache in
__collapse_huge_page_swapin() if we successfully swapped in any pages.
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Tested-by: Zi Yan <ziy@nvidia.com>
Reviewed-by: William Kucharski <william.kucharski@oracle.com>
Reviewed-by: Zi Yan <ziy@nvidia.com>
Acked-by: Yang Shi <yang.shi@linux.alibaba.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Ralph Campbell <rcampbell@nvidia.com>
Link: http://lkml.kernel.org/r/20200416160026.16538-5-kirill.shutemov@linux.intel.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Having a page in LRU add cache offsets page refcount and gives
false-negative on PageLRU(). It reduces collapse success rate.
Drain all LRU add caches before scanning. It happens relatively rare and
should not disturb the system too much.
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Tested-by: Zi Yan <ziy@nvidia.com>
Reviewed-by: William Kucharski <william.kucharski@oracle.com>
Reviewed-by: Zi Yan <ziy@nvidia.com>
Acked-by: Yang Shi <yang.shi@linux.alibaba.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Ralph Campbell <rcampbell@nvidia.com>
Link: http://lkml.kernel.org/r/20200416160026.16538-4-kirill.shutemov@linux.intel.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
__collapse_huge_page_swapin() checks the number of referenced PTE to
decide if the memory range is hot enough to justify swapin.
We have few problems with the approach:
- It is way too late: we can do the check much earlier and safe time.
khugepaged_scan_pmd() already knows if we have any pages to swap in
and number of referenced page.
- It stops collapse altogether if there's not enough referenced pages,
not only swappingin.
Fix it by making the right check early. We also can avoid additional
page table scanning if khugepaged_scan_pmd() haven't found any swap
entries.
Fixes: 0db501f7a3 ("mm, thp: convert from optimistic swapin collapsing to conservative")
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Tested-by: Zi Yan <ziy@nvidia.com>
Reviewed-by: William Kucharski <william.kucharski@oracle.com>
Reviewed-by: Zi Yan <ziy@nvidia.com>
Acked-by: Yang Shi <yang.shi@linux.alibaba.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Ralph Campbell <rcampbell@nvidia.com>
Link: http://lkml.kernel.org/r/20200416160026.16538-3-kirill.shutemov@linux.intel.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Add missing line breaks on pr_warn().
Signed-off-by: Chen Tao <chentao107@huawei.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Link: http://lkml.kernel.org/r/20200603063547.235825-1-chentao107@huawei.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Using padata during deferred init has only been tested on x86, so for now
limit it to this architecture.
If another arch wants this, it can find the max thread limit that's best
for it and override deferred_page_init_max_threads().
Signed-off-by: Daniel Jordan <daniel.m.jordan@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Tested-by: Josh Triplett <josh@joshtriplett.org>
Cc: Alexander Duyck <alexander.h.duyck@linux.intel.com>
Cc: Alex Williamson <alex.williamson@redhat.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Herbert Xu <herbert@gondor.apana.org.au>
Cc: Jason Gunthorpe <jgg@ziepe.ca>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Kirill Tkhai <ktkhai@virtuozzo.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Pavel Machek <pavel@ucw.cz>
Cc: Pavel Tatashin <pasha.tatashin@soleen.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Randy Dunlap <rdunlap@infradead.org>
Cc: Robert Elliott <elliott@hpe.com>
Cc: Shile Zhang <shile.zhang@linux.alibaba.com>
Cc: Steffen Klassert <steffen.klassert@secunet.com>
Cc: Steven Sistare <steven.sistare@oracle.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Zi Yan <ziy@nvidia.com>
Link: http://lkml.kernel.org/r/20200527173608.2885243-8-daniel.m.jordan@oracle.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Deferred page init used to report the number of pages initialized:
node 0 initialised, 32439114 pages in 97ms
Tracking this makes the code more complicated when using multiple threads.
Given that the statistic probably has limited value, especially since a
zone grows on demand so that the page count can vary, just remove it.
The boot message now looks like
node 0 deferred pages initialised in 97ms
Suggested-by: Alexander Duyck <alexander.h.duyck@linux.intel.com>
Signed-off-by: Daniel Jordan <daniel.m.jordan@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Alexander Duyck <alexander.h.duyck@linux.intel.com>
Cc: Alex Williamson <alex.williamson@redhat.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Herbert Xu <herbert@gondor.apana.org.au>
Cc: Jason Gunthorpe <jgg@ziepe.ca>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Josh Triplett <josh@joshtriplett.org>
Cc: Kirill Tkhai <ktkhai@virtuozzo.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Pavel Machek <pavel@ucw.cz>
Cc: Pavel Tatashin <pasha.tatashin@soleen.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Randy Dunlap <rdunlap@infradead.org>
Cc: Robert Elliott <elliott@hpe.com>
Cc: Shile Zhang <shile.zhang@linux.alibaba.com>
Cc: Steffen Klassert <steffen.klassert@secunet.com>
Cc: Steven Sistare <steven.sistare@oracle.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Zi Yan <ziy@nvidia.com>
Link: http://lkml.kernel.org/r/20200527173608.2885243-6-daniel.m.jordan@oracle.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Initializing struct pages is a long task and keeping interrupts disabled
for the duration of this operation introduces a number of problems.
1. jiffies are not updated for long period of time, and thus incorrect time
is reported. See proposed solution and discussion here:
lkml/20200311123848.118638-1-shile.zhang@linux.alibaba.com
2. It prevents farther improving deferred page initialization by allowing
intra-node multi-threading.
We are keeping interrupts disabled to solve a rather theoretical problem
that was never observed in real world (See 3a2d7fa8a3).
Let's keep interrupts enabled. In case we ever encounter a scenario where
an interrupt thread wants to allocate large amount of memory this early in
boot we can deal with that by growing zone (see deferred_grow_zone()) by
the needed amount before starting deferred_init_memmap() threads.
Before:
[ 1.232459] node 0 initialised, 12058412 pages in 1ms
After:
[ 1.632580] node 0 initialised, 12051227 pages in 436ms
Fixes: 3a2d7fa8a3 ("mm: disable interrupts while initializing deferred pages")
Reported-by: Shile Zhang <shile.zhang@linux.alibaba.com>
Signed-off-by: Pavel Tatashin <pasha.tatashin@soleen.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Daniel Jordan <daniel.m.jordan@oracle.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: James Morris <jmorris@namei.org>
Cc: Kirill Tkhai <ktkhai@virtuozzo.com>
Cc: Sasha Levin <sashal@kernel.org>
Cc: Yiqian Wei <yiwei@redhat.com>
Cc: <stable@vger.kernel.org> [4.17+]
Link: http://lkml.kernel.org/r/20200403140952.17177-3-pasha.tatashin@soleen.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Patch series "initialize deferred pages with interrupts enabled", v4.
Keep interrupts enabled during deferred page initialization in order to
make code more modular and allow jiffies to update.
Original approach, and discussion can be found here:
http://lkml.kernel.org/r/20200311123848.118638-1-shile.zhang@linux.alibaba.com
This patch (of 3):
deferred_init_memmap() disables interrupts the entire time, so it calls
touch_nmi_watchdog() periodically to avoid soft lockup splats. Soon it
will run with interrupts enabled, at which point cond_resched() should be
used instead.
deferred_grow_zone() makes the same watchdog calls through code shared
with deferred init but will continue to run with interrupts disabled, so
it can't call cond_resched().
Pull the watchdog calls up to these two places to allow the first to be
changed later, independently of the second. The frequency reduces from
twice per pageblock (init and free) to once per max order block.
Fixes: 3a2d7fa8a3 ("mm: disable interrupts while initializing deferred pages")
Signed-off-by: Daniel Jordan <daniel.m.jordan@oracle.com>
Signed-off-by: Pavel Tatashin <pasha.tatashin@soleen.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: David Hildenbrand <david@redhat.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Shile Zhang <shile.zhang@linux.alibaba.com>
Cc: Kirill Tkhai <ktkhai@virtuozzo.com>
Cc: James Morris <jmorris@namei.org>
Cc: Sasha Levin <sashal@kernel.org>
Cc: Yiqian Wei <yiwei@redhat.com>
Cc: <stable@vger.kernel.org> [4.17+]
Link: http://lkml.kernel.org/r/20200403140952.17177-2-pasha.tatashin@soleen.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Restrict elements in compound_page_dtors[] array per NR_COMPOUND_DTORS and
explicitly position them according to enum compound_dtor_id. This
improves protection against possible misalignment between
compound_page_dtors[] and enum compound_dtor_id later on.
Signed-off-by: Anshuman Khandual <anshuman.khandual@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: David Hildenbrand <david@redhat.com>
Link: http://lkml.kernel.org/r/1589795958-19317-1-git-send-email-anshuman.khandual@arm.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Updating the zone watermarks by any means, like min_free_kbytes,
water_mark_scale_factor etc, when ->watermark_boost is set will result in
higher low and high watermarks than the user asked.
Below are the steps to reproduce the problem on system setup of Android
kernel running on Snapdragon hardware.
1) Default settings of the system are as below:
#cat /proc/sys/vm/min_free_kbytes = 5162
#cat /proc/zoneinfo | grep -e boost -e low -e "high " -e min -e Node
Node 0, zone Normal
min 797
low 8340
high 8539
2) Monitor the zone->watermark_boost(by adding a debug print in the
kernel) and whenever it is greater than zero value, write the same
value of min_free_kbytes obtained from step 1.
#echo 5162 > /proc/sys/vm/min_free_kbytes
3) Then read the zone watermarks in the system while the
->watermark_boost is zero. This should show the same values of
watermarks as step 1 but shown a higher values than asked.
#cat /proc/zoneinfo | grep -e boost -e low -e "high " -e min -e Node
Node 0, zone Normal
min 797
low 21148
high 21347
These higher values are because of updating the zone watermarks using the
macro min_wmark_pages(zone) which also adds the zone->watermark_boost.
#define min_wmark_pages(z) (z->_watermark[WMARK_MIN] +
z->watermark_boost)
So the steps that lead to the issue are:
1) On the extfrag event, watermarks are boosted by storing the required
value in ->watermark_boost.
2) User tries to update the zone watermarks level in the system through
min_free_kbytes or watermark_scale_factor.
3) Later, when kswapd woke up, it resets the zone->watermark_boost to
zero.
In step 2), we use the min_wmark_pages() macro to store the watermarks
in the zone structure thus the values are always offsetted by
->watermark_boost value. This can be avoided by resetting the
->watermark_boost to zero before it is used.
Signed-off-by: Charan Teja Reddy <charante@codeaurora.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Baoquan He <bhe@redhat.com>
Cc: Vinayak Menon <vinmenon@codeaurora.org>
Link: http://lkml.kernel.org/r/1589457511-4255-1-git-send-email-charante@codeaurora.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Initially, the per-cpu pagesets of each zone are set to the boot pagesets.
The real pagesets are allocated later but before that happens, page
allocations do occur and the numa stats for the boot pagesets get
incremented since they are common to all zones at that point.
The real pagesets, however, are allocated for the populated zones only.
Unpopulated zones, like those associated with memory-less nodes, continue
using the boot pageset and end up skewing the numa stats of the
corresponding node.
E.g.
$ numactl -H
available: 2 nodes (0-1)
node 0 cpus: 0 1 2 3
node 0 size: 0 MB
node 0 free: 0 MB
node 1 cpus: 4 5 6 7
node 1 size: 8131 MB
node 1 free: 6980 MB
node distances:
node 0 1
0: 10 40
1: 40 10
$ numastat
node0 node1
numa_hit 108 56495
numa_miss 0 0
numa_foreign 0 0
interleave_hit 0 4537
local_node 108 31547
other_node 0 24948
Hence, the boot pageset stats need to be cleared after the real pagesets
are allocated.
After this point, the stats of the boot pagesets do not change as page
allocations requested for a memory-less node will either fail (if
__GFP_THISNODE is used) or get fulfilled by a preferred zone of a
different node based on the fallback zonelist.
[sandipan@linux.ibm.com: v3]
Link: http://lkml.kernel.org/r/20200511170356.162531-1-sandipan@linux.ibm.com
Signed-off-by: Sandipan Das <sandipan@linux.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Konstantin Khlebnikov <khlebnikov@yandex-team.ru>
Cc: Michal Hocko <mhocko@suse.com>
Cc: "Kirill A . Shutemov" <kirill@shutemov.name>
Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.ibm.com>
Link: http://lkml.kernel.org/r/9c9c2d1b15e37f6e6bf32f99e3100035e90c4ac9.1588868430.git.sandipan@linux.ibm.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Pageblock migrate type is encoded in GFP flags, just as zone_type and
zonelist.
Currently we use gfp_zone() and gfp_zonelist() to extract related
information, it would be proper to use the same naming convention for
migrate type.
Signed-off-by: Wei Yang <richard.weiyang@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Pankaj Gupta <pankaj.gupta.linux@gmail.com>
Link: http://lkml.kernel.org/r/20200329080823.7735-1-richard.weiyang@gmail.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Slightly simplify the code by initializing user_mask with NODE_MASK_NONE,
instead of later calling nodes_clear(). This saves a line of code.
Signed-off-by: Wei Yang <richard.weiyang@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: John Hubbard <jhubbard@nvidia.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Pankaj Gupta <pankaj.gupta.linux@gmail.com>
Link: http://lkml.kernel.org/r/20200330220840.21228-1-richard.weiyang@gmail.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
classzone_idx is just different name for high_zoneidx now. So, integrate
them and add some comment to struct alloc_context in order to reduce
future confusion about the meaning of this variable.
The accessor, ac_classzone_idx() is also removed since it isn't needed
after integration.
In addition to integration, this patch also renames high_zoneidx to
highest_zoneidx since it represents more precise meaning.
Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Baoquan He <bhe@redhat.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: David Rientjes <rientjes@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Ye Xiaolong <xiaolong.ye@intel.com>
Link: http://lkml.kernel.org/r/1587095923-7515-3-git-send-email-iamjoonsoo.kim@lge.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Patch series "integrate classzone_idx and high_zoneidx", v5.
This patchset is followup of the problem reported and discussed two years
ago [1, 2]. The problem this patchset solves is related to the
classzone_idx on the NUMA system. It causes a problem when the lowmem
reserve protection exists for some zones on a node that do not exist on
other nodes.
This problem was reported two years ago, and, at that time, the solution
got general agreements [2]. But it was not upstreamed.
[1]: http://lkml.kernel.org/r/20180102063528.GG30397@yexl-desktop
[2]: http://lkml.kernel.org/r/1525408246-14768-1-git-send-email-iamjoonsoo.kim@lge.com
This patch (of 2):
Currently, we use classzone_idx to calculate lowmem reserve proetection
for an allocation request. This classzone_idx causes a problem on NUMA
systems when the lowmem reserve protection exists for some zones on a node
that do not exist on other nodes.
Before further explanation, I should first clarify how to compute the
classzone_idx and the high_zoneidx.
- ac->high_zoneidx is computed via the arcane gfp_zone(gfp_mask) and
represents the index of the highest zone the allocation can use
- classzone_idx was supposed to be the index of the highest zone on the
local node that the allocation can use, that is actually available in
the system
Think about following example. Node 0 has 4 populated zone,
DMA/DMA32/NORMAL/MOVABLE. Node 1 has 1 populated zone, NORMAL. Some
zones, such as MOVABLE, doesn't exist on node 1 and this makes following
difference.
Assume that there is an allocation request whose gfp_zone(gfp_mask) is the
zone, MOVABLE. Then, it's high_zoneidx is 3. If this allocation is
initiated on node 0, it's classzone_idx is 3 since actually
available/usable zone on local (node 0) is MOVABLE. If this allocation is
initiated on node 1, it's classzone_idx is 2 since actually
available/usable zone on local (node 1) is NORMAL.
You can see that classzone_idx of the allocation request are different
according to their starting node, even if their high_zoneidx is the same.
Think more about these two allocation requests. If they are processed on
local, there is no problem. However, if allocation is initiated on node 1
are processed on remote, in this example, at the NORMAL zone on node 0,
due to memory shortage, problem occurs. Their different classzone_idx
leads to different lowmem reserve and then different min watermark. See
the following example.
root@ubuntu:/sys/devices/system/memory# cat /proc/zoneinfo
Node 0, zone DMA
per-node stats
...
pages free 3965
min 5
low 8
high 11
spanned 4095
present 3998
managed 3977
protection: (0, 2961, 4928, 5440)
...
Node 0, zone DMA32
pages free 757955
min 1129
low 1887
high 2645
spanned 1044480
present 782303
managed 758116
protection: (0, 0, 1967, 2479)
...
Node 0, zone Normal
pages free 459806
min 750
low 1253
high 1756
spanned 524288
present 524288
managed 503620
protection: (0, 0, 0, 4096)
...
Node 0, zone Movable
pages free 130759
min 195
low 326
high 457
spanned 1966079
present 131072
managed 131072
protection: (0, 0, 0, 0)
...
Node 1, zone DMA
pages free 0
min 0
low 0
high 0
spanned 0
present 0
managed 0
protection: (0, 0, 1006, 1006)
Node 1, zone DMA32
pages free 0
min 0
low 0
high 0
spanned 0
present 0
managed 0
protection: (0, 0, 1006, 1006)
Node 1, zone Normal
per-node stats
...
pages free 233277
min 383
low 640
high 897
spanned 262144
present 262144
managed 257744
protection: (0, 0, 0, 0)
...
Node 1, zone Movable
pages free 0
min 0
low 0
high 0
spanned 262144
present 0
managed 0
protection: (0, 0, 0, 0)
- static min watermark for the NORMAL zone on node 0 is 750.
- lowmem reserve for the request with classzone idx 3 at the NORMAL on
node 0 is 4096.
- lowmem reserve for the request with classzone idx 2 at the NORMAL on
node 0 is 0.
So, overall min watermark is:
allocation initiated on node 0 (classzone_idx 3): 750 + 4096 = 4846
allocation initiated on node 1 (classzone_idx 2): 750 + 0 = 750
Allocation initiated on node 1 will have some precedence than allocation
initiated on node 0 because min watermark of the former allocation is
lower than the other. So, allocation initiated on node 1 could succeed on
node 0 when allocation initiated on node 0 could not, and, this could
cause too many numa_miss allocation. Then, performance could be
downgraded.
Recently, there was a regression report about this problem on CMA patches
since CMA memory are placed in ZONE_MOVABLE by those patches. I checked
that problem is disappeared with this fix that uses high_zoneidx for
classzone_idx.
http://lkml.kernel.org/r/20180102063528.GG30397@yexl-desktop
Using high_zoneidx for classzone_idx is more consistent way than previous
approach because system's memory layout doesn't affect anything to it.
With this patch, both classzone_idx on above example will be 3 so will
have the same min watermark.
allocation initiated on node 0: 750 + 4096 = 4846
allocation initiated on node 1: 750 + 4096 = 4846
One could wonder if there is a side effect that allocation initiated on
node 1 will use higher bar when allocation is handled on local since
classzone_idx could be higher than before. It will not happen because the
zone without managed page doesn't contributes lowmem_reserve at all.
Reported-by: Ye Xiaolong <xiaolong.ye@intel.com>
Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Tested-by: Ye Xiaolong <xiaolong.ye@intel.com>
Reviewed-by: Baoquan He <bhe@redhat.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: David Rientjes <rientjes@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Mel Gorman <mgorman@techsingularity.net>
Link: http://lkml.kernel.org/r/1587095923-7515-1-git-send-email-iamjoonsoo.kim@lge.com
Link: http://lkml.kernel.org/r/1587095923-7515-2-git-send-email-iamjoonsoo.kim@lge.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Because the lowmem reserve protection of a zone can't tell anything if the
zone is empty, except of adding one more line in /proc/zoneinfo.
Let's remove it from that zone's showing.
Signed-off-by: Baoquan He <bhe@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Link: http://lkml.kernel.org/r/20200402140113.3696-4-bhe@redhat.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When requesting memory allocation from a specific zone is not satisfied,
it will fall to lower zone to try allocating memory. In this case, lower
zone's ->lowmem_reserve[] will help protect its own memory resource. The
higher the relevant ->lowmem_reserve[] is, the harder the upper zone can
get memory from this lower zone.
However, this protection mechanism should be applied to populated zone,
but not an empty zone. So filling ->lowmem_reserve[] for empty zone is
not necessary, and may mislead people that it's valid data in that zone.
Node 2, zone DMA
pages free 0
min 0
low 0
high 0
spanned 0
present 0
managed 0
protection: (0, 0, 1024, 1024)
Node 2, zone DMA32
pages free 0
min 0
low 0
high 0
spanned 0
present 0
managed 0
protection: (0, 0, 1024, 1024)
Node 2, zone Normal
per-node stats
nr_inactive_anon 0
nr_active_anon 143
nr_inactive_file 0
nr_active_file 0
nr_unevictable 0
nr_slab_reclaimable 45
nr_slab_unreclaimable 254
Here clear out zone->lowmem_reserve[] if zone is empty.
Signed-off-by: Baoquan He <bhe@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Link: http://lkml.kernel.org/r/20200402140113.3696-3-bhe@redhat.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Patch series "improvements about lowmem_reserve and /proc/zoneinfo", v2.
This patch (of 3):
When people write to /proc/sys/vm/lowmem_reserve_ratio to change
sysctl_lowmem_reserve_ratio[], setup_per_zone_lowmem_reserve() is called
to recalculate all ->lowmem_reserve[] for each zone of all nodes as below:
static void setup_per_zone_lowmem_reserve(void)
{
...
for_each_online_pgdat(pgdat) {
for (j = 0; j < MAX_NR_ZONES; j++) {
...
while (idx) {
...
if (sysctl_lowmem_reserve_ratio[idx] < 1) {
sysctl_lowmem_reserve_ratio[idx] = 0;
lower_zone->lowmem_reserve[j] = 0;
} else {
...
}
}
}
}
Meanwhile, here, sysctl_lowmem_reserve_ratio[idx] will be tuned if its
value is smaller than '1'. As we know, sysctl_lowmem_reserve_ratio[] is
set for zone without regarding to which node it belongs to. That means
the tuning will be done on all nodes, even though it has been done in the
first node.
And the tuning will be done too even when init_per_zone_wmark_min() calls
setup_per_zone_lowmem_reserve(), where actually nobody tries to change
sysctl_lowmem_reserve_ratio[].
So now move the tuning into lowmem_reserve_ratio_sysctl_handler(), to make
code logic more reasonable.
Signed-off-by: Baoquan He <bhe@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Baoquan He <bhe@redhat.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: David Rientjes <rientjes@google.com>
Link: http://lkml.kernel.org/r/20200402140113.3696-1-bhe@redhat.com
Link: http://lkml.kernel.org/r/20200402140113.3696-2-bhe@redhat.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Since commit 397dc00e24 ("mips: sgi-ip27: switch from DISCONTIGMEM
to SPARSEMEM"), the last caller of free_bootmem_with_active_regions() was
gone. Now no user calls it any more.
Let's remove it.
Signed-off-by: Baoquan He <bhe@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: David Hildenbrand <david@redhat.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Link: http://lkml.kernel.org/r/20200402143455.5145-1-bhe@redhat.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Currently a cma area is barely used by the page allocator because it's
used only as a fallback from movable, however kswapd tries hard to make
sure that the fallback path isn't used.
This results in a system evicting memory and pushing data into swap, while
lots of CMA memory is still available. This happens despite the fact that
alloc_contig_range is perfectly capable of moving any movable allocations
out of the way of an allocation.
To effectively use the cma area let's alter the rules: if the zone has
more free cma pages than the half of total free pages in the zone, use cma
pageblocks first and fallback to movable blocks in the case of failure.
[guro@fb.com: ifdef the cma-specific code]
Link: http://lkml.kernel.org/r/20200311225832.GA178154@carbon.DHCP.thefacebook.com
Co-developed-by: Rik van Riel <riel@surriel.com>
Signed-off-by: Roman Gushchin <guro@fb.com>
Signed-off-by: Rik van Riel <riel@surriel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Minchan Kim <minchan@kernel.org>
Cc: Qian Cai <cai@lca.pw>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Anshuman Khandual <anshuman.khandual@arm.com>
Cc: Joonsoo Kim <js1304@gmail.com>
Link: http://lkml.kernel.org/r/20200306150102.3e77354b@imladris.surriel.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
We share similar code in check_[new|free]_page_bad() to get the page's bad
reason.
Let's extract it and reduce code duplication.
Signed-off-by: Wei Yang <richard.weiyang@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Anshuman Khandual <anshuman.khandual@arm.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Michal Hocko <mhocko@suse.com>
Link: http://lkml.kernel.org/r/20200411220357.9636-6-richard.weiyang@gmail.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
free_pages_check() is the counterpart of check_new_page(). Rename it to
use the same naming convention.
Signed-off-by: Wei Yang <richard.weiyang@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Anshuman Khandual <anshuman.khandual@arm.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Michal Hocko <mhocko@suse.com>
Link: http://lkml.kernel.org/r/20200411220357.9636-5-richard.weiyang@gmail.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
free_pages_check_bad() is the counterpart of check_new_page_bad(). Rename
it to use the same naming convention.
Signed-off-by: Wei Yang <richard.weiyang@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Anshuman Khandual <anshuman.khandual@arm.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Michal Hocko <mhocko@suse.com>
Link: http://lkml.kernel.org/r/20200411220357.9636-4-richard.weiyang@gmail.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
After commit 5b57b8f227 ("mm/debug.c: always print flags in
dump_page()"), page->flags is always printed for a bad page. It is not
necessary to have bad_flags any more.
Suggested-by: Anshuman Khandual <anshuman.khandual@arm.com>
Signed-off-by: Wei Yang <richard.weiyang@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Cc: David Hildenbrand <david@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Michal Hocko <mhocko@suse.com>
Link: http://lkml.kernel.org/r/20200411220357.9636-3-richard.weiyang@gmail.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Patch series "mm/page_alloc.c: cleanup on check page", v3.
This patchset does some cleanup related to check page.
1. Remove unnecessary bad_reason assignment
2. Remove bad_flags to bad_page()
3. Rename function for naming convention
4. Extract common part to check page
Thanks for suggestions from David Rientjes and Anshuman Khandual.
This patch (of 5):
Since function returns directly, bad_[reason|flags] is not used any where.
And move this to the first.
This is a following cleanup for commit e570f56ccc ("mm:
check_new_page_bad() directly returns in __PG_HWPOISON case")
Signed-off-by: Wei Yang <richard.weiyang@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: David Hildenbrand <david@redhat.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Anshuman Khandual <anshuman.khandual@arm.com>
Cc: David Rientjes <rientjes@google.com>
Link: http://lkml.kernel.org/r/20200411220357.9636-2-richard.weiyang@gmail.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
find_min_pfn_with_active_regions() calls find_min_pfn_for_node() with nid
parameter set to MAX_NUMNODES. This makes the find_min_pfn_for_node()
traverse all memblock memory regions although the first PFN in the system
can be easily found with memblock_start_of_DRAM().
Use memblock_start_of_DRAM() in find_min_pfn_with_active_regions() and drop
now unused find_min_pfn_for_node().
Signed-off-by: Mike Rapoport <rppt@linux.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Tested-by: Hoan Tran <hoan@os.amperecomputing.com> [arm64]
Cc: Baoquan He <bhe@redhat.com>
Cc: Brian Cain <bcain@codeaurora.org>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: Greentime Hu <green.hu@gmail.com>
Cc: Greg Ungerer <gerg@linux-m68k.org>
Cc: Guan Xuetao <gxt@pku.edu.cn>
Cc: Guo Ren <guoren@kernel.org>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Helge Deller <deller@gmx.de>
Cc: "James E.J. Bottomley" <James.Bottomley@HansenPartnership.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Ley Foon Tan <ley.foon.tan@intel.com>
Cc: Mark Salter <msalter@redhat.com>
Cc: Matt Turner <mattst88@gmail.com>
Cc: Max Filippov <jcmvbkbc@gmail.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Michal Simek <monstr@monstr.eu>
Cc: Nick Hu <nickhu@andestech.com>
Cc: Paul Walmsley <paul.walmsley@sifive.com>
Cc: Richard Weinberger <richard@nod.at>
Cc: Rich Felker <dalias@libc.org>
Cc: Russell King <linux@armlinux.org.uk>
Cc: Stafford Horne <shorne@gmail.com>
Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Vineet Gupta <vgupta@synopsys.com>
Cc: Yoshinori Sato <ysato@users.sourceforge.jp>
Link: http://lkml.kernel.org/r/20200412194859.12663-21-rppt@kernel.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
free_area_init_node() now always uses memblock info and the zone PFN
limits so it does not need the backwards compatibility functions to
calculate the zone spanned and absent pages. The removal of the compat_
versions of zone_{abscent,spanned}_pages_in_node() in turn, makes
zone_size and zhole_size parameters unused.
The node_start_pfn is determined by get_pfn_range_for_nid(), so there is
no need to pass it to free_area_init_node().
As a result, the only required parameter to free_area_init_node() is the
node ID, all the rest are removed along with no longer used
compat_zone_{abscent,spanned}_pages_in_node() helpers.
Signed-off-by: Mike Rapoport <rppt@linux.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Tested-by: Hoan Tran <hoan@os.amperecomputing.com> [arm64]
Cc: Baoquan He <bhe@redhat.com>
Cc: Brian Cain <bcain@codeaurora.org>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: Greentime Hu <green.hu@gmail.com>
Cc: Greg Ungerer <gerg@linux-m68k.org>
Cc: Guan Xuetao <gxt@pku.edu.cn>
Cc: Guo Ren <guoren@kernel.org>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Helge Deller <deller@gmx.de>
Cc: "James E.J. Bottomley" <James.Bottomley@HansenPartnership.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Ley Foon Tan <ley.foon.tan@intel.com>
Cc: Mark Salter <msalter@redhat.com>
Cc: Matt Turner <mattst88@gmail.com>
Cc: Max Filippov <jcmvbkbc@gmail.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Michal Simek <monstr@monstr.eu>
Cc: Nick Hu <nickhu@andestech.com>
Cc: Paul Walmsley <paul.walmsley@sifive.com>
Cc: Richard Weinberger <richard@nod.at>
Cc: Rich Felker <dalias@libc.org>
Cc: Russell King <linux@armlinux.org.uk>
Cc: Stafford Horne <shorne@gmail.com>
Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Vineet Gupta <vgupta@synopsys.com>
Cc: Yoshinori Sato <ysato@users.sourceforge.jp>
Link: http://lkml.kernel.org/r/20200412194859.12663-20-rppt@kernel.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
free_area_init_node() is only used by x86 to initialize a memory-less
nodes. Make its name reflect this and drop all the function parameters
except node ID as they are anyway zero.
Signed-off-by: Mike Rapoport <rppt@linux.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Tested-by: Hoan Tran <hoan@os.amperecomputing.com> [arm64]
Cc: Baoquan He <bhe@redhat.com>
Cc: Brian Cain <bcain@codeaurora.org>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: Greentime Hu <green.hu@gmail.com>
Cc: Greg Ungerer <gerg@linux-m68k.org>
Cc: Guan Xuetao <gxt@pku.edu.cn>
Cc: Guo Ren <guoren@kernel.org>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Helge Deller <deller@gmx.de>
Cc: "James E.J. Bottomley" <James.Bottomley@HansenPartnership.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Ley Foon Tan <ley.foon.tan@intel.com>
Cc: Mark Salter <msalter@redhat.com>
Cc: Matt Turner <mattst88@gmail.com>
Cc: Max Filippov <jcmvbkbc@gmail.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Michal Simek <monstr@monstr.eu>
Cc: Nick Hu <nickhu@andestech.com>
Cc: Paul Walmsley <paul.walmsley@sifive.com>
Cc: Richard Weinberger <richard@nod.at>
Cc: Rich Felker <dalias@libc.org>
Cc: Russell King <linux@armlinux.org.uk>
Cc: Stafford Horne <shorne@gmail.com>
Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Vineet Gupta <vgupta@synopsys.com>
Cc: Yoshinori Sato <ysato@users.sourceforge.jp>
Link: http://lkml.kernel.org/r/20200412194859.12663-19-rppt@kernel.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Some architectures (e.g. ARC) have the ZONE_HIGHMEM zone below the
ZONE_NORMAL. Allowing free_area_init() parse max_zone_pfn array even it
is sorted in descending order allows using free_area_init() on such
architectures.
Add top -> down traversal of max_zone_pfn array in free_area_init() and
use the latter in ARC node/zone initialization.
[rppt@kernel.org: ARC fix]
Link: http://lkml.kernel.org/r/20200504153901.GM14260@kernel.org
[rppt@linux.ibm.com: arc: free_area_init(): take into account PAE40 mode]
Link: http://lkml.kernel.org/r/20200507205900.GH683243@linux.ibm.com
[akpm@linux-foundation.org: declare arch_has_descending_max_zone_pfns()]
Signed-off-by: Mike Rapoport <rppt@linux.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Tested-by: Hoan Tran <hoan@os.amperecomputing.com> [arm64]
Reviewed-by: Baoquan He <bhe@redhat.com>
Cc: Brian Cain <bcain@codeaurora.org>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: Greentime Hu <green.hu@gmail.com>
Cc: Greg Ungerer <gerg@linux-m68k.org>
Cc: Guan Xuetao <gxt@pku.edu.cn>
Cc: Guo Ren <guoren@kernel.org>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Helge Deller <deller@gmx.de>
Cc: "James E.J. Bottomley" <James.Bottomley@HansenPartnership.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Ley Foon Tan <ley.foon.tan@intel.com>
Cc: Mark Salter <msalter@redhat.com>
Cc: Matt Turner <mattst88@gmail.com>
Cc: Max Filippov <jcmvbkbc@gmail.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Michal Simek <monstr@monstr.eu>
Cc: Nick Hu <nickhu@andestech.com>
Cc: Paul Walmsley <paul.walmsley@sifive.com>
Cc: Richard Weinberger <richard@nod.at>
Cc: Rich Felker <dalias@libc.org>
Cc: Russell King <linux@armlinux.org.uk>
Cc: Stafford Horne <shorne@gmail.com>
Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Vineet Gupta <vgupta@synopsys.com>
Cc: Yoshinori Sato <ysato@users.sourceforge.jp>
Cc: Guenter Roeck <linux@roeck-us.net>
Link: http://lkml.kernel.org/r/20200412194859.12663-18-rppt@kernel.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The memmap_init() function was made to iterate over memblock regions and
as the result the early_pfn_in_nid() function became obsolete. Since
CONFIG_NODES_SPAN_OTHER_NODES is only used to pick a stub or a real
implementation of early_pfn_in_nid(), it is also not needed anymore.
Remove both early_pfn_in_nid() and the CONFIG_NODES_SPAN_OTHER_NODES.
Co-developed-by: Hoan Tran <Hoan@os.amperecomputing.com>
Signed-off-by: Hoan Tran <Hoan@os.amperecomputing.com>
Signed-off-by: Mike Rapoport <rppt@linux.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Tested-by: Hoan Tran <hoan@os.amperecomputing.com> [arm64]
Cc: Baoquan He <bhe@redhat.com>
Cc: Brian Cain <bcain@codeaurora.org>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: Greentime Hu <green.hu@gmail.com>
Cc: Greg Ungerer <gerg@linux-m68k.org>
Cc: Guan Xuetao <gxt@pku.edu.cn>
Cc: Guo Ren <guoren@kernel.org>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Helge Deller <deller@gmx.de>
Cc: "James E.J. Bottomley" <James.Bottomley@HansenPartnership.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Ley Foon Tan <ley.foon.tan@intel.com>
Cc: Mark Salter <msalter@redhat.com>
Cc: Matt Turner <mattst88@gmail.com>
Cc: Max Filippov <jcmvbkbc@gmail.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Michal Simek <monstr@monstr.eu>
Cc: Nick Hu <nickhu@andestech.com>
Cc: Paul Walmsley <paul.walmsley@sifive.com>
Cc: Richard Weinberger <richard@nod.at>
Cc: Rich Felker <dalias@libc.org>
Cc: Russell King <linux@armlinux.org.uk>
Cc: Stafford Horne <shorne@gmail.com>
Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Vineet Gupta <vgupta@synopsys.com>
Cc: Yoshinori Sato <ysato@users.sourceforge.jp>
Link: http://lkml.kernel.org/r/20200412194859.12663-17-rppt@kernel.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When called during boot the memmap_init_zone() function checks if each PFN
is valid and actually belongs to the node being initialized using
early_pfn_valid() and early_pfn_in_nid().
Each such check may cost up to O(log(n)) where n is the number of memory
banks, so for large amount of memory overall time spent in early_pfn*()
becomes substantial.
Since the information is anyway present in memblock, we can iterate over
memblock memory regions in memmap_init() and only call memmap_init_zone()
for PFN ranges that are know to be valid and in the appropriate node.
[cai@lca.pw: fix a compilation warning from Clang]
Link: http://lkml.kernel.org/r/CF6E407F-17DC-427C-8203-21979FB882EF@lca.pw
[bhe@redhat.com: fix the incorrect hole in fast_isolate_freepages()]
Link: http://lkml.kernel.org/r/8C537EB7-85EE-4DCF-943E-3CC0ED0DF56D@lca.pw
Link: http://lkml.kernel.org/r/20200521014407.29690-1-bhe@redhat.com
Signed-off-by: Baoquan He <bhe@redhat.com>
Signed-off-by: Mike Rapoport <rppt@linux.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Tested-by: Hoan Tran <hoan@os.amperecomputing.com> [arm64]
Cc: Brian Cain <bcain@codeaurora.org>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: Greentime Hu <green.hu@gmail.com>
Cc: Greg Ungerer <gerg@linux-m68k.org>
Cc: Guan Xuetao <gxt@pku.edu.cn>
Cc: Guo Ren <guoren@kernel.org>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Helge Deller <deller@gmx.de>
Cc: "James E.J. Bottomley" <James.Bottomley@HansenPartnership.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Ley Foon Tan <ley.foon.tan@intel.com>
Cc: Mark Salter <msalter@redhat.com>
Cc: Matt Turner <mattst88@gmail.com>
Cc: Max Filippov <jcmvbkbc@gmail.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Michal Simek <monstr@monstr.eu>
Cc: Nick Hu <nickhu@andestech.com>
Cc: Paul Walmsley <paul.walmsley@sifive.com>
Cc: Richard Weinberger <richard@nod.at>
Cc: Rich Felker <dalias@libc.org>
Cc: Russell King <linux@armlinux.org.uk>
Cc: Stafford Horne <shorne@gmail.com>
Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Vineet Gupta <vgupta@synopsys.com>
Cc: Yoshinori Sato <ysato@users.sourceforge.jp>
Cc: Qian Cai <cai@lca.pw>
Link: http://lkml.kernel.org/r/20200412194859.12663-16-rppt@kernel.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
free_area_init() has effectively became a wrapper for
free_area_init_nodes() and there is no point of keeping it. Still
free_area_init() name is shorter and more general as it does not imply
necessity to initialize multiple nodes.
Rename free_area_init_nodes() to free_area_init(), update the callers and
drop old version of free_area_init().
Signed-off-by: Mike Rapoport <rppt@linux.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Tested-by: Hoan Tran <hoan@os.amperecomputing.com> [arm64]
Reviewed-by: Baoquan He <bhe@redhat.com>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Cc: Brian Cain <bcain@codeaurora.org>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: Greentime Hu <green.hu@gmail.com>
Cc: Greg Ungerer <gerg@linux-m68k.org>
Cc: Guan Xuetao <gxt@pku.edu.cn>
Cc: Guo Ren <guoren@kernel.org>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Helge Deller <deller@gmx.de>
Cc: "James E.J. Bottomley" <James.Bottomley@HansenPartnership.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Ley Foon Tan <ley.foon.tan@intel.com>
Cc: Mark Salter <msalter@redhat.com>
Cc: Matt Turner <mattst88@gmail.com>
Cc: Max Filippov <jcmvbkbc@gmail.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Michal Simek <monstr@monstr.eu>
Cc: Nick Hu <nickhu@andestech.com>
Cc: Paul Walmsley <paul.walmsley@sifive.com>
Cc: Richard Weinberger <richard@nod.at>
Cc: Rich Felker <dalias@libc.org>
Cc: Russell King <linux@armlinux.org.uk>
Cc: Stafford Horne <shorne@gmail.com>
Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Vineet Gupta <vgupta@synopsys.com>
Cc: Yoshinori Sato <ysato@users.sourceforge.jp>
Link: http://lkml.kernel.org/r/20200412194859.12663-6-rppt@kernel.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Currently, architectures that use free_area_init() to initialize memory
map and node and zone structures need to calculate zone and hole sizes.
We can use free_area_init_nodes() instead and let it detect the zone
boundaries while the architectures will only have to supply the possible
limits for the zones.
Signed-off-by: Mike Rapoport <rppt@linux.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Tested-by: Hoan Tran <hoan@os.amperecomputing.com> [arm64]
Reviewed-by: Baoquan He <bhe@redhat.com>
Cc: Brian Cain <bcain@codeaurora.org>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: Greentime Hu <green.hu@gmail.com>
Cc: Greg Ungerer <gerg@linux-m68k.org>
Cc: Guan Xuetao <gxt@pku.edu.cn>
Cc: Guo Ren <guoren@kernel.org>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Helge Deller <deller@gmx.de>
Cc: "James E.J. Bottomley" <James.Bottomley@HansenPartnership.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Ley Foon Tan <ley.foon.tan@intel.com>
Cc: Mark Salter <msalter@redhat.com>
Cc: Matt Turner <mattst88@gmail.com>
Cc: Max Filippov <jcmvbkbc@gmail.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Michal Simek <monstr@monstr.eu>
Cc: Nick Hu <nickhu@andestech.com>
Cc: Paul Walmsley <paul.walmsley@sifive.com>
Cc: Richard Weinberger <richard@nod.at>
Cc: Rich Felker <dalias@libc.org>
Cc: Russell King <linux@armlinux.org.uk>
Cc: Stafford Horne <shorne@gmail.com>
Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Vineet Gupta <vgupta@synopsys.com>
Cc: Yoshinori Sato <ysato@users.sourceforge.jp>
Link: http://lkml.kernel.org/r/20200412194859.12663-5-rppt@kernel.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
CONFIG_HAVE_MEMBLOCK_NODE_MAP is used to differentiate initialization of
nodes and zones structures between the systems that have region to node
mapping in memblock and those that don't.
Currently all the NUMA architectures enable this option and for the
non-NUMA systems we can presume that all the memory belongs to node 0 and
therefore the compile time configuration option is not required.
The remaining few architectures that use DISCONTIGMEM without NUMA are
easily updated to use memblock_add_node() instead of memblock_add() and
thus have proper correspondence of memblock regions to NUMA nodes.
Still, free_area_init_node() must have a backward compatible version
because its semantics with and without CONFIG_HAVE_MEMBLOCK_NODE_MAP is
different. Once all the architectures will use the new semantics, the
entire compatibility layer can be dropped.
To avoid addition of extra run time memory to store node id for
architectures that keep memblock but have only a single node, the node id
field of the memblock_region is guarded by CONFIG_NEED_MULTIPLE_NODES and
the corresponding accessors presume that in those cases it is always 0.
Signed-off-by: Mike Rapoport <rppt@linux.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Tested-by: Hoan Tran <hoan@os.amperecomputing.com> [arm64]
Acked-by: Catalin Marinas <catalin.marinas@arm.com> [arm64]
Cc: Baoquan He <bhe@redhat.com>
Cc: Brian Cain <bcain@codeaurora.org>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: Greentime Hu <green.hu@gmail.com>
Cc: Greg Ungerer <gerg@linux-m68k.org>
Cc: Guan Xuetao <gxt@pku.edu.cn>
Cc: Guo Ren <guoren@kernel.org>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Helge Deller <deller@gmx.de>
Cc: "James E.J. Bottomley" <James.Bottomley@HansenPartnership.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Ley Foon Tan <ley.foon.tan@intel.com>
Cc: Mark Salter <msalter@redhat.com>
Cc: Matt Turner <mattst88@gmail.com>
Cc: Max Filippov <jcmvbkbc@gmail.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Michal Simek <monstr@monstr.eu>
Cc: Nick Hu <nickhu@andestech.com>
Cc: Paul Walmsley <paul.walmsley@sifive.com>
Cc: Richard Weinberger <richard@nod.at>
Cc: Rich Felker <dalias@libc.org>
Cc: Russell King <linux@armlinux.org.uk>
Cc: Stafford Horne <shorne@gmail.com>
Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Vineet Gupta <vgupta@synopsys.com>
Cc: Yoshinori Sato <ysato@users.sourceforge.jp>
Link: http://lkml.kernel.org/r/20200412194859.12663-4-rppt@kernel.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
early_pfn_to_nid() and its helper __early_pfn_to_nid() are spread around
include/linux/mm.h, include/linux/mmzone.h and mm/page_alloc.c.
Drop unused stub for __early_pfn_to_nid() and move its actual generic
implementation close to its users.
Signed-off-by: Mike Rapoport <rppt@linux.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Tested-by: Hoan Tran <hoan@os.amperecomputing.com> [arm64]
Reviewed-by: Baoquan He <bhe@redhat.com>
Cc: Brian Cain <bcain@codeaurora.org>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: Greentime Hu <green.hu@gmail.com>
Cc: Greg Ungerer <gerg@linux-m68k.org>
Cc: Guan Xuetao <gxt@pku.edu.cn>
Cc: Guo Ren <guoren@kernel.org>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Helge Deller <deller@gmx.de>
Cc: "James E.J. Bottomley" <James.Bottomley@HansenPartnership.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Ley Foon Tan <ley.foon.tan@intel.com>
Cc: Mark Salter <msalter@redhat.com>
Cc: Matt Turner <mattst88@gmail.com>
Cc: Max Filippov <jcmvbkbc@gmail.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Michal Simek <monstr@monstr.eu>
Cc: Nick Hu <nickhu@andestech.com>
Cc: Paul Walmsley <paul.walmsley@sifive.com>
Cc: Richard Weinberger <richard@nod.at>
Cc: Rich Felker <dalias@libc.org>
Cc: Russell King <linux@armlinux.org.uk>
Cc: Stafford Horne <shorne@gmail.com>
Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Vineet Gupta <vgupta@synopsys.com>
Cc: Yoshinori Sato <ysato@users.sourceforge.jp>
Link: http://lkml.kernel.org/r/20200412194859.12663-3-rppt@kernel.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Patch series "mm: rework free_area_init*() funcitons".
After the discussion [1] about removal of CONFIG_NODES_SPAN_OTHER_NODES
and CONFIG_HAVE_MEMBLOCK_NODE_MAP options, I took it a bit further and
updated the node/zone initialization.
Since all architectures have memblock, it is possible to use only the
newer version of free_area_init_node() that calculates the zone and node
boundaries based on memblock node mapping and architectural limits on
possible zone PFNs.
The architectures that still determined zone and hole sizes can be
switched to the generic code and the old code that took those zone and
hole sizes can be simply removed.
And, since it all started from the removal of
CONFIG_NODES_SPAN_OTHER_NODES, the memmap_init() is now updated to iterate
over memblocks and so it does not need to perform early_pfn_to_nid() query
for every PFN.
[1] https://lore.kernel.org/lkml/1585420282-25630-1-git-send-email-Hoan@os.amperecomputing.com
This patch (of 21):
There are several places in the code that directly dereference
memblock_region.nid despite this field being defined only when
CONFIG_HAVE_MEMBLOCK_NODE_MAP=y.
Replace these with calls to memblock_get_region_nid() to improve code
robustness and to avoid possible breakage when
CONFIG_HAVE_MEMBLOCK_NODE_MAP will be removed.
Signed-off-by: Mike Rapoport <rppt@linux.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Tested-by: Hoan Tran <hoan@os.amperecomputing.com> [arm64]
Reviewed-by: Baoquan He <bhe@redhat.com>
Cc: Brian Cain <bcain@codeaurora.org>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: Greentime Hu <green.hu@gmail.com>
Cc: Greg Ungerer <gerg@linux-m68k.org>
Cc: Guan Xuetao <gxt@pku.edu.cn>
Cc: Guo Ren <guoren@kernel.org>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Helge Deller <deller@gmx.de>
Cc: "James E.J. Bottomley" <James.Bottomley@HansenPartnership.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Ley Foon Tan <ley.foon.tan@intel.com>
Cc: Mark Salter <msalter@redhat.com>
Cc: Matt Turner <mattst88@gmail.com>
Cc: Max Filippov <jcmvbkbc@gmail.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Michal Simek <monstr@monstr.eu>
Cc: Mike Rapoport <rppt@kernel.org>
Cc: Nick Hu <nickhu@andestech.com>
Cc: Paul Walmsley <paul.walmsley@sifive.com>
Cc: Richard Weinberger <richard@nod.at>
Cc: Rich Felker <dalias@libc.org>
Cc: Russell King <linux@armlinux.org.uk>
Cc: Stafford Horne <shorne@gmail.com>
Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Vineet Gupta <vgupta@synopsys.com>
Cc: Yoshinori Sato <ysato@users.sourceforge.jp>
Link: http://lkml.kernel.org/r/20200412194859.12663-1-rppt@kernel.org
Link: http://lkml.kernel.org/r/20200412194859.12663-2-rppt@kernel.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Instead of scattering these assertions across the drivers, do this
assertion inside the core of get_user_pages_fast*() functions. That also
includes pin_user_pages_fast*() routines.
Add a might_lock_read(mmap_sem) call to internal_get_user_pages_fast().
Suggested-by: Matthew Wilcox <willy@infradead.org>
Signed-off-by: John Hubbard <jhubbard@nvidia.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Matthew Wilcox <willy@infradead.org>
Cc: Michel Lespinasse <walken@google.com>
Cc: Jason Gunthorpe <jgg@ziepe.ca>
Link: http://lkml.kernel.org/r/20200522010443.1290485-1-jhubbard@nvidia.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This is the FOLL_PIN equivalent of __get_user_pages_fast(), except with a
more descriptive name, and gup_flags instead of a boolean "write" in the
argument list.
Signed-off-by: John Hubbard <jhubbard@nvidia.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Daniel Vetter <daniel@ffwll.ch>
Cc: David Airlie <airlied@linux.ie>
Cc: Jani Nikula <jani.nikula@linux.intel.com>
Cc: "Joonas Lahtinen" <joonas.lahtinen@linux.intel.com>
Cc: Matthew Auld <matthew.auld@intel.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Rodrigo Vivi <rodrigo.vivi@intel.com>
Cc: Souptick Joarder <jrdr.linux@gmail.com>
Cc: Tvrtko Ursulin <tvrtko.ursulin@intel.com>
Link: http://lkml.kernel.org/r/20200519002124.2025955-4-jhubbard@nvidia.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
There were two nearly identical sets of code for gup_fast() style of
walking the page tables with interrupts disabled. This has lead to the
usual maintenance problems that arise from having duplicated code.
There is already a core internal routine in gup.c for gup_fast(), so just
enhance it very slightly: allow skipping the fall-back to "slow" (regular)
get_user_pages(), via the new FOLL_FAST_ONLY flag. Then, just call
internal_get_user_pages_fast() from __get_user_pages_fast(), and adjust
the API to match pre-existing API behavior.
There is a change in behavior from this refactoring: the nested form of
interrupt disabling is used in all gup_fast() variants now. That's
because there is only one place that interrupt disabling for page walking
is done, and so the safer form is required. This should, if anything,
eliminate possible (rare) bugs, because the non-nested form of enabling
interrupts was fragile at best.
[jhubbard@nvidia.com: fixup]
Link: http://lkml.kernel.org/r/20200521233841.1279742-1-jhubbard@nvidia.com
Signed-off-by: John Hubbard <jhubbard@nvidia.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Daniel Vetter <daniel@ffwll.ch>
Cc: David Airlie <airlied@linux.ie>
Cc: Jani Nikula <jani.nikula@linux.intel.com>
Cc: "Joonas Lahtinen" <joonas.lahtinen@linux.intel.com>
Cc: Matthew Auld <matthew.auld@intel.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Rodrigo Vivi <rodrigo.vivi@intel.com>
Cc: Souptick Joarder <jrdr.linux@gmail.com>
Cc: Tvrtko Ursulin <tvrtko.ursulin@intel.com>
Link: http://lkml.kernel.org/r/20200519002124.2025955-3-jhubbard@nvidia.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Patch series "mm/gup, drm/i915: refactor gup_fast, convert to pin_user_pages()", v2.
In order to convert the drm/i915 driver from get_user_pages() to
pin_user_pages(), a FOLL_PIN equivalent of __get_user_pages_fast() was
required. That led to refactoring __get_user_pages_fast(), with the
following goals:
1) As above: provide a pin_user_pages*() routine for drm/i915 to call,
in place of __get_user_pages_fast(),
2) Get rid of the gup.c duplicate code for walking page tables with
interrupts disabled. This duplicate code is a minor maintenance
problem anyway.
3) Make it easy for an upcoming patch from Souptick, which aims to
convert __get_user_pages_fast() to use a gup_flags argument, instead
of a bool writeable arg. Also, if this series looks good, we can
ask Souptick to change the name as well, to whatever the consensus
is. My initial recommendation is: get_user_pages_fast_only(), to
match the new pin_user_pages_only().
This patch (of 4):
This is in order to avoid a forward declaration of
internal_get_user_pages_fast(), in the next patch.
This is code movement only--all generated code should be identical.
Signed-off-by: John Hubbard <jhubbard@nvidia.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Daniel Vetter <daniel@ffwll.ch>
Cc: David Airlie <airlied@linux.ie>
Cc: Jani Nikula <jani.nikula@linux.intel.com>
Cc: "Joonas Lahtinen" <joonas.lahtinen@linux.intel.com>
Cc: Matthew Auld <matthew.auld@intel.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Rodrigo Vivi <rodrigo.vivi@intel.com>
Cc: Souptick Joarder <jrdr.linux@gmail.com>
Cc: Tvrtko Ursulin <tvrtko.ursulin@intel.com>
Link: http://lkml.kernel.org/r/20200522051931.54191-1-jhubbard@nvidia.com
Link: http://lkml.kernel.org/r/20200519002124.2025955-1-jhubbard@nvidia.com
Link: http://lkml.kernel.org/r/20200519002124.2025955-2-jhubbard@nvidia.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Currently reading memory.numa_stat traverses the underlying memcg tree
multiple times to accumulate the stats to present the hierarchical view of
the memcg tree. However the kernel already maintains the hierarchical
view of the stats and use it in memory.stat. Just use the same mechanism
in memory.numa_stat as well.
I ran a simple benchmark which reads root_mem_cgroup's memory.numa_stat
file in the presense of 10000 memcgs. The results are:
Without the patch:
$ time cat /dev/cgroup/memory/memory.numa_stat > /dev/null
real 0m0.700s
user 0m0.001s
sys 0m0.697s
With the patch:
$ time cat /dev/cgroup/memory/memory.numa_stat > /dev/null
real 0m0.001s
user 0m0.001s
sys 0m0.000s
[akpm@linux-foundation.org: avoid forcing out-of-line code generation]
Signed-off-by: Shakeel Butt <shakeelb@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Roman Gushchin <guro@fb.com>
Cc: Michal Hocko <mhocko@kernel.org>
Link: http://lkml.kernel.org/r/20200304022058.248270-1-shakeelb@google.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Write protect anon page faults require an accurate mapcount to decide
if to break the COW or not. This is implemented in the THP path with
reuse_swap_page() ->
page_trans_huge_map_swapcount()/page_trans_huge_mapcount().
If the COW triggers while the other processes sharing the page are
under a huge pmd split, to do an accurate reading, we must ensure the
mapcount isn't computed while it's being transferred from the head
page to the tail pages.
reuse_swap_cache() already runs serialized by the page lock, so it's
enough to add the page lock around __split_huge_pmd_locked too, in
order to add the missing serialization.
Note: the commit in "Fixes" is just to facilitate the backporting,
because the code before such commit didn't try to do an accurate THP
mapcount calculation and it instead used the page_count() to decide if
to COW or not. Both the page_count and the pin_count are THP-wide
refcounts, so they're inaccurate if used in
reuse_swap_page(). Reverting such commit (besides the unrelated fix to
the local anon_vma assignment) would have also opened the window for
memory corruption side effects to certain workloads as documented in
such commit header.
Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Suggested-by: Jann Horn <jannh@google.com>
Reported-by: Jann Horn <jannh@google.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Fixes: 6d0a07edd1 ("mm: thp: calculate the mapcount correctly for THP pages during WP faults")
Cc: stable@vger.kernel.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Pull networking updates from David Miller:
1) Allow setting bluetooth L2CAP modes via socket option, from Luiz
Augusto von Dentz.
2) Add GSO partial support to igc, from Sasha Neftin.
3) Several cleanups and improvements to r8169 from Heiner Kallweit.
4) Add IF_OPER_TESTING link state and use it when ethtool triggers a
device self-test. From Andrew Lunn.
5) Start moving away from custom driver versions, use the globally
defined kernel version instead, from Leon Romanovsky.
6) Support GRO vis gro_cells in DSA layer, from Alexander Lobakin.
7) Allow hard IRQ deferral during NAPI, from Eric Dumazet.
8) Add sriov and vf support to hinic, from Luo bin.
9) Support Media Redundancy Protocol (MRP) in the bridging code, from
Horatiu Vultur.
10) Support netmap in the nft_nat code, from Pablo Neira Ayuso.
11) Allow UDPv6 encapsulation of ESP in the ipsec code, from Sabrina
Dubroca. Also add ipv6 support for espintcp.
12) Lots of ReST conversions of the networking documentation, from Mauro
Carvalho Chehab.
13) Support configuration of ethtool rxnfc flows in bcmgenet driver,
from Doug Berger.
14) Allow to dump cgroup id and filter by it in inet_diag code, from
Dmitry Yakunin.
15) Add infrastructure to export netlink attribute policies to
userspace, from Johannes Berg.
16) Several optimizations to sch_fq scheduler, from Eric Dumazet.
17) Fallback to the default qdisc if qdisc init fails because otherwise
a packet scheduler init failure will make a device inoperative. From
Jesper Dangaard Brouer.
18) Several RISCV bpf jit optimizations, from Luke Nelson.
19) Correct the return type of the ->ndo_start_xmit() method in several
drivers, it's netdev_tx_t but many drivers were using
'int'. From Yunjian Wang.
20) Add an ethtool interface for PHY master/slave config, from Oleksij
Rempel.
21) Add BPF iterators, from Yonghang Song.
22) Add cable test infrastructure, including ethool interfaces, from
Andrew Lunn. Marvell PHY driver is the first to support this
facility.
23) Remove zero-length arrays all over, from Gustavo A. R. Silva.
24) Calculate and maintain an explicit frame size in XDP, from Jesper
Dangaard Brouer.
25) Add CAP_BPF, from Alexei Starovoitov.
26) Support terse dumps in the packet scheduler, from Vlad Buslov.
27) Support XDP_TX bulking in dpaa2 driver, from Ioana Ciornei.
28) Add devm_register_netdev(), from Bartosz Golaszewski.
29) Minimize qdisc resets, from Cong Wang.
30) Get rid of kernel_getsockopt and kernel_setsockopt in order to
eliminate set_fs/get_fs calls. From Christoph Hellwig.
* git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net-next: (2517 commits)
selftests: net: ip_defrag: ignore EPERM
net_failover: fixed rollback in net_failover_open()
Revert "tipc: Fix potential tipc_aead refcnt leak in tipc_crypto_rcv"
Revert "tipc: Fix potential tipc_node refcnt leak in tipc_rcv"
vmxnet3: allow rx flow hash ops only when rss is enabled
hinic: add set_channels ethtool_ops support
selftests/bpf: Add a default $(CXX) value
tools/bpf: Don't use $(COMPILE.c)
bpf, selftests: Use bpf_probe_read_kernel
s390/bpf: Use bcr 0,%0 as tail call nop filler
s390/bpf: Maintain 8-byte stack alignment
selftests/bpf: Fix verifier test
selftests/bpf: Fix sample_cnt shared between two threads
bpf, selftests: Adapt cls_redirect to call csum_level helper
bpf: Add csum_level helper for fixing up csum levels
bpf: Fix up bpf_skb_adjust_room helper's skb csum setting
sfc: add missing annotation for efx_ef10_try_update_nic_stats_vf()
crypto/chtls: IPv6 support for inline TLS
Crypto/chcr: Fixes a coccinile check error
Crypto/chcr: Fixes compilations warnings
...
- added support for MIPSr5 and P5600 cores
- converted Loongson PCI driver into a PCI host driver using the generic
PCI framework
- added emulation of CPUCFG command for Loogonson64 cpus
- removed of LASAT, PMC MSP71xx and NEC MARKEINS/EMMA
- ioremap cleanup
- fix for a race between two threads faulting the same page
- various cleanups and fixes
-----BEGIN PGP SIGNATURE-----
iQJOBAABCAA4FiEEbt46xwy6kEcDOXoUeZbBVTGwZHAFAl7WK54aHHRzYm9nZW5k
QGFscGhhLmZyYW5rZW4uZGUACgkQeZbBVTGwZHAbjA/9EEFeqNg9UNUH6/TS18QV
qkxKp0+LC4Jk+SduzLyYsYy6l/dSaKYl8m9jyJsWjM6BvBZTcMJJOnzIPRafI0s+
MK8GCSZunAkm25DsDvfobQUkbQ/UHjY/fuRpNslbDcsYqIKv90hUMd21ccXY6KC5
RY+aMlpjgksg1X8JJ7k1Rs05sXyUPqpESteyqehF1b/+Iyv7H2L3v5EvQwvPDs6f
TyVgNJU2B3RCU6/uAcWmHdVLxXd+Y8fM0vC8DCO0pg0rGf4be0FbZztHmeq6r2wy
g7wsO7acKWGzulFQD5ftVSQ6i8KHIDNDePmDMtU5oFcXkzUDdGvd3j3Gst19/nve
ZftNmQHOY1JqGUOhdq1fDG/4M3Vc5bvh3W6eMG22TuMLEWsOF8teY8uUa/vxOb+B
2NsJ9q6ylRS7RDWWOrApJWfFYPvhr5wlLxT+azWNa9y3bjV8vDLjNdU0mRLA1nsu
yLzYMwIhtWfZhkJZ+xJVSmQ6LjAHDN5TF/LEx/9itLg5t9wrEosFPAtOv8V15hy4
KBNvvWeoy7RRmBTNuKh7r9Ui4jw7GgxL4D1OwzCsF//GAiGyuuh0zMuUE8EXA6K5
MpdGt+bSOcLl8ILTtGir8e4MXLawDH8n94f8QWLb9FcOvU4KHUjRKU7EQ6dyD5dk
a7xskGLXWdVO3IJ/Xvxcaeo=
=eAtN
-----END PGP SIGNATURE-----
Merge tag 'mips_5.8' of git://git.kernel.org/pub/scm/linux/kernel/git/mips/linux
Pull MIPS updates from Thomas Bogendoerfer:
- added support for MIPSr5 and P5600 cores
- converted Loongson PCI driver into a PCI host driver using the
generic PCI framework
- added emulation of CPUCFG command for Loogonson64 cpus
- removed of LASAT, PMC MSP71xx and NEC MARKEINS/EMMA
- ioremap cleanup
- fix for a race between two threads faulting the same page
- various cleanups and fixes
* tag 'mips_5.8' of git://git.kernel.org/pub/scm/linux/kernel/git/mips/linux: (143 commits)
MIPS: ralink: drop ralink_clk_init for mt7621
MIPS: ralink: bootrom: mark a function as __init to save some memory
MIPS: Loongson64: Reorder CPUCFG model match arms
MIPS: Expose Loongson CPUCFG availability via HWCAP
MIPS: Loongson64: Guard against future cores without CPUCFG
MIPS: Fix build warning about "PTR_STR" redefinition
MIPS: Loongson64: Remove not used pci.c
MIPS: Loongson64: Define PCI_IOBASE
MIPS: CPU_LOONGSON2EF need software to maintain cache consistency
MIPS: DTS: Fix build errors used with various configs
MIPS: Loongson64: select NO_EXCEPT_FILL
MIPS: Fix IRQ tracing when call handle_fpe() and handle_msa_fpe()
MIPS: mm: add page valid judgement in function pte_modify
mm/memory.c: Add memory read privilege on page fault handling
mm/memory.c: Update local TLB if PTE entry exists
MIPS: Do not flush tlb page when updating PTE entry
MIPS: ingenic: Default to a generic board
MIPS: ingenic: Add support for GCW Zero prototype
MIPS: ingenic: DTS: Add memory info of GCW Zero
MIPS: Loongson64: Switch to generic PCI driver
...
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEE8rQSAMVO+zA4DBdWxWXV+ddtWDsFAl7U50AACgkQxWXV+ddt
WDtK1g//RXeNsTguYQr1N9R5eUPThjLEI0+4J0l4SYfCPU8Ou3C7nqpOEJJQgm8F
ezZE+16cWi9U5uGueOc+w0rfyz4AuIXKgzoz+c0/GG2+yV5jp6DsAMbWqojAb96L
V/N3HxEzR66jqwgVUBE/x5okb2SyY7//B1l/O0amc66XDO7KTMImpIwThere6zWZ
o2SNpYpHAPQeUYJQx8h+FAW3w1CxrCZmnifazU9Jqe9J7QeQLg7rbUlJDV38jySm
ZOA8ohKN9U1gPZy+dTU3kdyyuBIq1etkIaSPJANyTo5TczPKiC0IMg75cXtS4ae/
NSxhccMpSIjVMcIHARzSFGYKNP3sGNRsmaTUg/2Cx/9GoHOhYMiCAVc8qtBBpwJO
UI0siexrCe64RuTBMRRc128GdFv7IjmSImcdi8xaR62bCcUiNdEa3zvjRe/9tOEH
ET7Z85oBnKpSzpC3MdhSUU4dtHY5XLawP8z3oUU1VSzSWM2DVjlHf79/VzbOfp18
miCVpt94lCn/gUX7el6qcnbuvMAjDyeC6HmfD+TwzQgGwyV6TLgKN9lRXeH/Oy6/
VgjGQSavGHMll3zIGURmrBCXKudjJg0J+IP4wN1TimmSEMfwKH+7tnekQd8y5qlF
eXEIqlWNykKeDzEnmV9QJy+/cV83hVWM/mUslcTx39tLN/3B/Us=
=qTt8
-----END PGP SIGNATURE-----
Merge tag 'for-5.8-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux
Pull btrfs updates from David Sterba:
"Highlights:
- speedup dead root detection during orphan cleanup, eg. when there
are many deleted subvolumes waiting to be cleaned, the trees are
now looked up in radix tree instead of a O(N^2) search
- snapshot creation with inherited qgroup will mark the qgroup
inconsistent, requires a rescan
- send will emit file capabilities after chown, this produces a
stream that does not need postprocessing to set the capabilities
again
- direct io ported to iomap infrastructure, cleaned up and simplified
code, notably removing last use of struct buffer_head in btrfs code
Core changes:
- factor out backreference iteration, to be used by ordinary
backreferences and relocation code
- improved global block reserve utilization
* better logic to serialize requests
* increased maximum available for unlink
* improved handling on large pages (64K)
- direct io cleanups and fixes
* simplify layering, where cloned bios were unnecessarily created
for some cases
* error handling fixes (submit, endio)
* remove repair worker thread, used to avoid deadlocks during
repair
- refactored block group reading code, preparatory work for new type
of block group storage that should improve mount time on large
filesystems
Cleanups:
- cleaned up (and slightly sped up) set/get helpers for metadata data
structure members
- root bit REF_COWS got renamed to SHAREABLE to reflect the that the
blocks of the tree get shared either among subvolumes or with the
relocation trees
Fixes:
- when subvolume deletion fails due to ENOSPC, the filesystem is not
turned read-only
- device scan deals with devices from other filesystems that changed
ownership due to overwrite (mkfs)
- fix a race between scrub and block group removal/allocation
- fix long standing bug of a runaway balance operation, printing the
same line to the syslog, caused by a stale status bit on a reloc
tree that prevented progress
- fix corrupt log due to concurrent fsync of inodes with shared
extents
- fix space underflow for NODATACOW and buffered writes when it for
some reason needs to fallback to COW mode"
* tag 'for-5.8-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux: (133 commits)
btrfs: fix space_info bytes_may_use underflow during space cache writeout
btrfs: fix space_info bytes_may_use underflow after nocow buffered write
btrfs: fix wrong file range cleanup after an error filling dealloc range
btrfs: remove redundant local variable in read_block_for_search
btrfs: open code key_search
btrfs: split btrfs_direct_IO to read and write part
btrfs: remove BTRFS_INODE_READDIO_NEED_LOCK
fs: remove dio_end_io()
btrfs: switch to iomap_dio_rw() for dio
iomap: remove lockdep_assert_held()
iomap: add a filesystem hook for direct I/O bio submission
fs: export generic_file_buffered_read()
btrfs: turn space cache writeout failure messages into debug messages
btrfs: include error on messages about failure to write space/inode caches
btrfs: remove useless 'fail_unlock' label from btrfs_csum_file_blocks()
btrfs: do not ignore error from btrfs_next_leaf() when inserting checksums
btrfs: make checksum item extension more efficient
btrfs: fix corrupt log due to concurrent fsync of inodes with shared extents
btrfs: unexport btrfs_compress_set_level()
btrfs: simplify iget helpers
...
The SRMMU page-table allocator is not compatible with SPLIT_PTLOCK_CPUS
for two major reasons:
1. Pages are allocated via memblock, and therefore the ptl is not
cleared by prep_new_page(), which is expected by ptlock_init()
2. Multiple PTE tables can exist in a single page, causing them to
share the same ptl and deadlock when attempting to take the same
lock twice (e.g. as part of copy_page_range()).
Ensure that SPLIT_PTLOCK_CPUS is not selected for SPARC32.
Cc: David S. Miller <davem@davemloft.net>
Signed-off-by: Will Deacon <will@kernel.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
-----BEGIN PGP SIGNATURE-----
iQJEBAABCAAuFiEEwPw5LcreJtl1+l5K99NY+ylx4KYFAl7VOwMQHGF4Ym9lQGtl
cm5lbC5kawAKCRD301j7KXHgpoR7EADAlz3TCkb4wwuHytTBDrm6gVDdsJ9zUfQW
Cl2ASLtufA8PWZUCEI3vhFyOe6P5e+ZZ0O2HjljSevmHyogCaRYXFYVfbWKcQKuk
AcxiTgnYNevh8KbGLfJY1WL4eXsY+C3QUGivg35cCgrx+kr9oDaHMeqA9Tm1plyM
FSprDBoSmHPqRxiV/1gnr8uXLX6K7i/fHzwmKgySMhavum7Ma8W3wdAGebzvQwrO
SbFSuJVgz06e4B1Fzr/wSvVNUE/qW/KqfGuQKIp7VQFIywbgG7TgRMHjE1FSnpnh
gn+BfL+O5gc0sTvcOTGOE0SRWWwLx961WNg8Azq08l3fzsxLA6h8/AnoDf3i+QMA
rHmLpWZIic2xPSvjaFHX3/V9ITyGYeAMpAR77EL+4ivWrKv5JrBhnSLDt1fKILdg
5elxm7RDI+C4nCP4xuTlVCy5gCd6gwjgytKj+NUWhNq1WiGAD0B54SSiV+SbCSH6
Om2f5trcxz8E4pqWcf0k3LjFapVKRNV8v/+TmVkCdRPBl3y9P0h0wFTkkcEquqnJ
y7Yq6efdWviRCnX5w/r/yj0qBuk4xo5hMVsPmlthCWtnBm+xZQ6LwMRcq4HQgZgR
2SYNscZ3OFMekHssH7DvY4DAy1J+n83ims+KzbScbLg2zCZjh/scQuv38R5Eh9WZ
rCS8c+T7Ig==
=HYf4
-----END PGP SIGNATURE-----
Merge tag 'for-5.8/block-2020-06-01' of git://git.kernel.dk/linux-block
Pull block updates from Jens Axboe:
"Core block changes that have been queued up for this release:
- Remove dead blk-throttle and blk-wbt code (Guoqing)
- Include pid in blktrace note traces (Jan)
- Don't spew I/O errors on wouldblock termination (me)
- Zone append addition (Johannes, Keith, Damien)
- IO accounting improvements (Konstantin, Christoph)
- blk-mq hardware map update improvements (Ming)
- Scheduler dispatch improvement (Salman)
- Inline block encryption support (Satya)
- Request map fixes and improvements (Weiping)
- blk-iocost tweaks (Tejun)
- Fix for timeout failing with error injection (Keith)
- Queue re-run fixes (Douglas)
- CPU hotplug improvements (Christoph)
- Queue entry/exit improvements (Christoph)
- Move DMA drain handling to the few drivers that use it (Christoph)
- Partition handling cleanups (Christoph)"
* tag 'for-5.8/block-2020-06-01' of git://git.kernel.dk/linux-block: (127 commits)
block: mark bio_wouldblock_error() bio with BIO_QUIET
blk-wbt: rename __wbt_update_limits to wbt_update_limits
blk-wbt: remove wbt_update_limits
blk-throttle: remove tg_drain_bios
blk-throttle: remove blk_throtl_drain
null_blk: force complete for timeout request
blk-mq: drain I/O when all CPUs in a hctx are offline
blk-mq: add blk_mq_all_tag_iter
blk-mq: open code __blk_mq_alloc_request in blk_mq_alloc_request_hctx
blk-mq: use BLK_MQ_NO_TAG in more places
blk-mq: rename BLK_MQ_TAG_FAIL to BLK_MQ_NO_TAG
blk-mq: move more request initialization to blk_mq_rq_ctx_init
blk-mq: simplify the blk_mq_get_request calling convention
blk-mq: remove the bio argument to ->prepare_request
nvme: force complete cancelled requests
blk-mq: blk-mq: provide forced completion method
block: fix a warning when blkdev.h is included for !CONFIG_BLOCK builds
block: blk-crypto-fallback: remove redundant initialization of variable err
block: reduce part_stat_lock() scope
block: use __this_cpu_add() instead of access by smp_processor_id()
...
Just finished bisecting mmotm, to find why a test which used to take
four minutes now took more than an hour: the __buffer_migrate_page()
cleanup left behind a get_page() which attach_page_private() now does.
Fixes: cd0f371544 ("mm/migrate.c: call detach_page_private to cleanup code")
Signed-off-by: Hugh Dickins <hughd@google.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This series adds a selftest for hmm_range_fault() and several of the
DEVICE_PRIVATE migration related actions, and another simplification for
hmm_range_fault()'s API.
- Simplify hmm_range_fault() with a simpler return code, no
HMM_PFN_SPECIAL, and no customizable output PFN format
- Add a selftest for hmm_range_fault() and DEVICE_PRIVATE related
functionality
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEEfB7FMLh+8QxL+6i3OG33FX4gmxoFAl7VQr8ACgkQOG33FX4g
mxrpcg/+O+oZ2p8FDTZi/0BTaU0crUiKwJngmmv78UuvD8nzhOZ0fkhK2lsXn9Uo
70lYbfDUSX2TbReP7y39VArW0v+Bj7wo9/7AZ+R2o5A0ajC6kccjGdnb7uEc3L6v
CR+uumRYf/ZNz13cbuRBbYEz477DGnz+3vhBb4FLNTFj9XiNAC61jA1WUI0ep6x3
lDrkhDatqmdBJ+EqZDMq2+UH+lWbkptQT7hPqgEp6o7FqdnySxRd+rT3hALz5wNP
fbryfWXM7V1eh7Kxr2mBJJqIkgbdhGLj2yLl1Iz11BbG6u7AT20r23WTvJ7hUCyt
18574twdltZ81gheqqN7KVYYAo+5seMfP14QdthqzzBMo3pOeLG0JMVqQNisDPgn
Tf4lWF/GR7ajKxyRbLdvUgRE7pFQ9VMAiP86GoIpBFmSZQQDwcecnoYxg60zsTwR
yuf60gopfNsSWNmDqKT3td12PQyFQYHYT6ue1eW6Rb9P+yA++tZaGkvGFn7kHeNV
ZeUqsKEy6a9l6cDrFzNmsCcdNZg/qmw9mKFfa/4RRulU5jlskt/e52NiLaLU2rsr
0Tot3j5tMufLLorZPprMI3Z/M9ohVAS5DkX6ttcZDs5v0iGQEUOOnq0cXmwlJQ9I
0CHr2ImjiDr9v2fS+5ixaRNSHfnQWnHxcqq79UZiTjtPW1Daauo=
=twev
-----END PGP SIGNATURE-----
Merge tag 'for-linus-hmm' of git://git.kernel.org/pub/scm/linux/kernel/git/rdma/rdma
Pull hmm updates from Jason Gunthorpe:
"This series adds a selftest for hmm_range_fault() and several of the
DEVICE_PRIVATE migration related actions, and another simplification
for hmm_range_fault()'s API.
- Simplify hmm_range_fault() with a simpler return code, no
HMM_PFN_SPECIAL, and no customizable output PFN format
- Add a selftest for hmm_range_fault() and DEVICE_PRIVATE related
functionality"
* tag 'for-linus-hmm' of git://git.kernel.org/pub/scm/linux/kernel/git/rdma/rdma:
MAINTAINERS: add HMM selftests
mm/hmm/test: add selftests for HMM
mm/hmm/test: add selftest driver for HMM
mm/hmm: remove the customizable pfn format from hmm_range_fault
mm/hmm: remove HMM_PFN_SPECIAL
drm/amdgpu: remove dead code after hmm_range_fault()
mm/hmm: make hmm_range_fault return 0 or -1
- Update the ACPICA code in the kernel to upstream revision
20200430:
* Move acpi_gbl_next_cmd_num definition (Erik Kaneda).
* Ignore AE_ALREADY_EXISTS status in the disassembler when parsing
create operators (Erik Kaneda).
* Add status checks to the dispatcher (Erik Kaneda).
* Fix required parameters for _NIG and _NIH (Erik Kaneda).
* Make acpi_protocol_lengths static (Yue Haibing).
- Fix ACPI table reference counting errors in several places, mostly
in error code paths (Hanjun Guo).
- Extend the Generic Event Device (GED) driver to support _Exx and
_Lxx handler methods (Ard Biesheuvel).
- Add new acpi_evaluate_reg() helper and modify the ACPI PCI hotplug
code to use it (Hans de Goede).
- Add new DPTF battery participant driver and make the DPFT power
participant driver create more sysfs device attributes (Srinivas
Pandruvada).
- Improve the handling of memory failures in APEI (James Morse).
- Add new blacklist entry for Acer TravelMate 5735Z to the backlight
driver (Paul Menzel).
- Add i2c address for thermal control to the PMIC driver (Mauro
Carvalho Chehab).
- Allow the ACPI processor idle driver to work on platforms with
only one ACPI C-state present (Zhang Rui).
- Fix kobject reference count leaks in error code paths in two
places (Qiushi Wu).
- Delete unused proc filename macros and make some symbols static
(Pascal Terjan, Zheng Zengkai, Zou Wei).
-----BEGIN PGP SIGNATURE-----
iQJGBAABCAAwFiEE4fcc61cGeeHD/fCwgsRv/nhiVHEFAl7VHb8SHHJqd0Byand5
c29ja2kubmV0AAoJEILEb/54YlRxVboQAIjYda2RhQANIlIvoEa+Qd2/FBd3HXgU
Mv0LZ6y1xxxEZYeKne7zja1hzt5WetuZ1hZHGfg8YkXyrLqZGxfCIFbbhSA90BGG
PGzFerGmOBNzB3I9SN6iQY7vSqoFHvQEV1PVh24d+aHWZqj2lnaRRq+GT54qbRLX
/U3Hy5glFl8A/DCBP4cpoEjDr4IJHY68DathkDK2Ep2ybXV6B401uuqx8Su/OBd/
MQmJTYI1UK/RYBXfdzS9TIZahnkxBbU1cnLFy08Ve2mawl5YsHPEbvm77a0yX2M6
sOAerpgyzYNivAuOLpNIwhUZjpOY66nQuKAQaEl2cfRUkqt4nbmq7yDoH3d2MJLC
/Ccz955rV2YyD1DtyV+PyT+HB+/EVwH/+UCZ+gsSbdHvOiwdFU6VaTc2eI1qq8K9
4m5eEZFrAMPlvTzj/xVxr2Hfw1lbm23J5B5n7sM5HzYbT6MUWRQpvfV4zM3jTGz0
rQd8JmcHVvZk/MV1mGrYHrN5TnGTLWpbS4Yv1lAQa6FP0N0NxzVud7KRfLKnCnJ1
vh5yzW2fCYmVulJpuqxJDfXSqNV7n40CFrIewSp6nJRQXnWpImqHwwiA8fl51+hC
fBL72Ey08EHGFnnNQqbebvNglsodRWJddBy43ppnMHtuLBA/2GVKYf2GihPbpEBq
NHtX+Rd3vlWW
=xH3i
-----END PGP SIGNATURE-----
Merge tag 'acpi-5.8-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm
Pull ACPI updates from Rafael Wysocki:
"These update the ACPICA code in the kernel to upstream revision
20200430, fix several reference counting errors related to ACPI
tables, add _Exx / _Lxx support to the GED driver, add a new
acpi_evaluate_reg() helper, add new DPTF battery participant driver
and extend the DPFT power participant driver, improve the handling of
memory failures in the APEI code, add a blacklist entry to the
backlight driver, update the PMIC driver and the processor idle
driver, fix two kobject reference count leaks, and make a few janitory
changes.
Specifics:
- Update the ACPICA code in the kernel to upstream revision 20200430:
- Move acpi_gbl_next_cmd_num definition (Erik Kaneda).
- Ignore AE_ALREADY_EXISTS status in the disassembler when parsing
create operators (Erik Kaneda).
- Add status checks to the dispatcher (Erik Kaneda).
- Fix required parameters for _NIG and _NIH (Erik Kaneda).
- Make acpi_protocol_lengths static (Yue Haibing).
- Fix ACPI table reference counting errors in several places, mostly
in error code paths (Hanjun Guo).
- Extend the Generic Event Device (GED) driver to support _Exx and
_Lxx handler methods (Ard Biesheuvel).
- Add new acpi_evaluate_reg() helper and modify the ACPI PCI hotplug
code to use it (Hans de Goede).
- Add new DPTF battery participant driver and make the DPFT power
participant driver create more sysfs device attributes (Srinivas
Pandruvada).
- Improve the handling of memory failures in APEI (James Morse).
- Add new blacklist entry for Acer TravelMate 5735Z to the backlight
driver (Paul Menzel).
- Add i2c address for thermal control to the PMIC driver (Mauro
Carvalho Chehab).
- Allow the ACPI processor idle driver to work on platforms with only
one ACPI C-state present (Zhang Rui).
- Fix kobject reference count leaks in error code paths in two places
(Qiushi Wu).
- Delete unused proc filename macros and make some symbols static
(Pascal Terjan, Zheng Zengkai, Zou Wei)"
* tag 'acpi-5.8-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm: (32 commits)
ACPI: CPPC: Fix reference count leak in acpi_cppc_processor_probe()
ACPI: sysfs: Fix reference count leak in acpi_sysfs_add_hotplug_profile()
ACPI: GED: use correct trigger type field in _Exx / _Lxx handling
ACPI: DPTF: Add battery participant driver
ACPI: DPTF: Additional sysfs attributes for power participant driver
ACPI: video: Use native backlight on Acer TravelMate 5735Z
arm64: acpi: Make apei_claim_sea() synchronise with APEI's irq work
ACPI: APEI: Kick the memory_failure() queue for synchronous errors
mm/memory-failure: Add memory_failure_queue_kick()
ACPI / PMIC: Add i2c address for thermal control
ACPI: GED: add support for _Exx / _Lxx handler methods
ACPI: Delete unused proc filename macros
ACPI: hotplug: PCI: Use the new acpi_evaluate_reg() helper
ACPI: utils: Add acpi_evaluate_reg() helper
ACPI: debug: Make two functions static
ACPI: sleep: Put the FACS table after using it
ACPI: scan: Put SPCR and STAO table after using it
ACPI: EC: Put the ACPI table after using it
ACPI: APEI: Put the HEST table for error path
ACPI: APEI: Put the error record serialization table for error path
...
Merge updates from Andrew Morton:
"A few little subsystems and a start of a lot of MM patches.
Subsystems affected by this patch series: squashfs, ocfs2, parisc,
vfs. With mm subsystems: slab-generic, slub, debug, pagecache, gup,
swap, memcg, pagemap, memory-failure, vmalloc, kasan"
* emailed patches from Andrew Morton <akpm@linux-foundation.org>: (128 commits)
kasan: move kasan_report() into report.c
mm/mm_init.c: report kasan-tag information stored in page->flags
ubsan: entirely disable alignment checks under UBSAN_TRAP
kasan: fix clang compilation warning due to stack protector
x86/mm: remove vmalloc faulting
mm: remove vmalloc_sync_(un)mappings()
x86/mm/32: implement arch_sync_kernel_mappings()
x86/mm/64: implement arch_sync_kernel_mappings()
mm/ioremap: track which page-table levels were modified
mm/vmalloc: track which page-table levels were modified
mm: add functions to track page directory modifications
s390: use __vmalloc_node in stack_alloc
powerpc: use __vmalloc_node in alloc_vm_stack
arm64: use __vmalloc_node in arch_alloc_vmap_stack
mm: remove vmalloc_user_node_flags
mm: switch the test_vmalloc module to use __vmalloc_node
mm: remove __vmalloc_node_flags_caller
mm: remove both instances of __vmalloc_node_flags
mm: remove the prot argument to __vmalloc_node
mm: remove the pgprot argument to __vmalloc
...
The kasan_report() functions belongs to report.c, as it's a common
functions that does error reporting.
Reported-by: Leon Romanovsky <leon@kernel.org>
Signed-off-by: Andrey Konovalov <andreyknvl@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Tested-by: Leon Romanovsky <leon@kernel.org>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Leon Romanovsky <leonro@mellanox.com>
Link: http://lkml.kernel.org/r/78a81fde6eeda9db72a7fd55fbc33173a515e4b1.1589297433.git.andreyknvl@google.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The pageflags_layout_usage shows incorrect message by means of
mminit_loglevel when Kasan runs in the mode of software tag-based
enabled with CONFIG_KASAN_SW_TAGS. This patch corrects it and reports
kasan-tag information.
Signed-off-by: Jing Xia <jing.xia@unisoc.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Chunyan Zhang <chunyan.zhang@unisoc.com>
Cc: Orson Zhai <orson.zhai@unisoc.com>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Link: http://lkml.kernel.org/r/1586929370-10838-1-git-send-email-jing.xia.mail@gmail.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
KASAN uses a single cc-option invocation to disable both conserve-stack
and stack-protector flags. The former flag is not present in Clang,
which causes cc-option to fail, and results in stack-protector being
enabled.
Fix by using separate cc-option calls for each flag. Also collect all
flags in a variable to avoid calling cc-option multiple times for
different files.
Reported-by: Qian Cai <cai@lca.pw>
Signed-off-by: Andrey Konovalov <andreyknvl@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Marco Elver <elver@google.com>
Link: http://lkml.kernel.org/r/c2f0c8e4048852ae014f4a391d96ca42d27e3255.1590779332.git.andreyknvl@google.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
These functions are not needed anymore because the vmalloc and ioremap
mappings are now synchronized when they are created or torn down.
Remove all callers and function definitions.
Signed-off-by: Joerg Roedel <jroedel@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Tested-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
Acked-by: Andy Lutomirski <luto@kernel.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: "H . Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: "Rafael J. Wysocki" <rjw@rjwysocki.net>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vlastimil Babka <vbabka@suse.cz>
Link: http://lkml.kernel.org/r/20200515140023.25469-7-joro@8bytes.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Track at which levels in the page-table entries were modified by
vmap/vunmap.
After the page-table has been modified, use that information do decide
whether the new arch_sync_kernel_mappings() needs to be called.
[akpm@linux-foundation.org: map_kernel_range_noflush() needs the arch_sync_kernel_mappings() call]
Signed-off-by: Joerg Roedel <jroedel@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Andy Lutomirski <luto@kernel.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: "H . Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: "Rafael J. Wysocki" <rjw@rjwysocki.net>
Cc: Steven Rostedt (VMware) <rostedt@goodmis.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vlastimil Babka <vbabka@suse.cz>
Link: http://lkml.kernel.org/r/20200515140023.25469-3-joro@8bytes.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Open code it in __bpf_map_area_alloc, which is the only caller. Also
clean up __bpf_map_area_alloc to have a single vmalloc call with slightly
different flags instead of the current two different calls.
For this to compile for the nommu case add a __vmalloc_node_range stub to
nommu.c.
[akpm@linux-foundation.org: fix nommu.c build]
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Christian Borntraeger <borntraeger@de.ibm.com>
Cc: Christophe Leroy <christophe.leroy@c-s.fr>
Cc: Daniel Vetter <daniel.vetter@ffwll.ch>
Cc: David Airlie <airlied@linux.ie>
Cc: Gao Xiang <xiang@kernel.org>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Haiyang Zhang <haiyangz@microsoft.com>
Cc: "K. Y. Srinivasan" <kys@microsoft.com>
Cc: Laura Abbott <labbott@redhat.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Michael Kelley <mikelley@microsoft.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Nitin Gupta <ngupta@vflare.org>
Cc: Robin Murphy <robin.murphy@arm.com>
Cc: Sakari Ailus <sakari.ailus@linux.intel.com>
Cc: Stephen Hemminger <sthemmin@microsoft.com>
Cc: Sumit Semwal <sumit.semwal@linaro.org>
Cc: Wei Liu <wei.liu@kernel.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Paul Mackerras <paulus@ozlabs.org>
Cc: Vasily Gorbik <gor@linux.ibm.com>
Cc: Will Deacon <will@kernel.org>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Link: http://lkml.kernel.org/r/20200414131348.444715-27-hch@lst.de
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
No need to export the very low-level __vmalloc_node_range when the test
module can use a slightly higher level variant.
[akpm@linux-foundation.org: add missing `node' arg]
[akpm@linux-foundation.org: fix riscv nommu build]
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Christian Borntraeger <borntraeger@de.ibm.com>
Cc: Christophe Leroy <christophe.leroy@c-s.fr>
Cc: Daniel Vetter <daniel.vetter@ffwll.ch>
Cc: David Airlie <airlied@linux.ie>
Cc: Gao Xiang <xiang@kernel.org>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Haiyang Zhang <haiyangz@microsoft.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: "K. Y. Srinivasan" <kys@microsoft.com>
Cc: Laura Abbott <labbott@redhat.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Michael Kelley <mikelley@microsoft.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Nitin Gupta <ngupta@vflare.org>
Cc: Robin Murphy <robin.murphy@arm.com>
Cc: Sakari Ailus <sakari.ailus@linux.intel.com>
Cc: Stephen Hemminger <sthemmin@microsoft.com>
Cc: Sumit Semwal <sumit.semwal@linaro.org>
Cc: Wei Liu <wei.liu@kernel.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Paul Mackerras <paulus@ozlabs.org>
Cc: Vasily Gorbik <gor@linux.ibm.com>
Cc: Will Deacon <will@kernel.org>
Link: http://lkml.kernel.org/r/20200414131348.444715-26-hch@lst.de
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Just use __vmalloc_node instead which gets and extra argument. To be able
to to use __vmalloc_node in all caller make it available outside of
vmalloc and implement it in nommu.c.
[akpm@linux-foundation.org: fix nommu build]
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Christian Borntraeger <borntraeger@de.ibm.com>
Cc: Christophe Leroy <christophe.leroy@c-s.fr>
Cc: Daniel Vetter <daniel.vetter@ffwll.ch>
Cc: David Airlie <airlied@linux.ie>
Cc: Gao Xiang <xiang@kernel.org>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Haiyang Zhang <haiyangz@microsoft.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: "K. Y. Srinivasan" <kys@microsoft.com>
Cc: Laura Abbott <labbott@redhat.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Michael Kelley <mikelley@microsoft.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Nitin Gupta <ngupta@vflare.org>
Cc: Robin Murphy <robin.murphy@arm.com>
Cc: Sakari Ailus <sakari.ailus@linux.intel.com>
Cc: Stephen Hemminger <sthemmin@microsoft.com>
Cc: Sumit Semwal <sumit.semwal@linaro.org>
Cc: Wei Liu <wei.liu@kernel.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Paul Mackerras <paulus@ozlabs.org>
Cc: Vasily Gorbik <gor@linux.ibm.com>
Cc: Will Deacon <will@kernel.org>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Link: http://lkml.kernel.org/r/20200414131348.444715-25-hch@lst.de
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The real version just had a few callers that can open code it and remove
one layer of indirection. The nommu stub was public but only had a single
caller, so remove it and avoid a CONFIG_MMU ifdef in vmalloc.h.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Christian Borntraeger <borntraeger@de.ibm.com>
Cc: Christophe Leroy <christophe.leroy@c-s.fr>
Cc: Daniel Vetter <daniel.vetter@ffwll.ch>
Cc: David Airlie <airlied@linux.ie>
Cc: Gao Xiang <xiang@kernel.org>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Haiyang Zhang <haiyangz@microsoft.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: "K. Y. Srinivasan" <kys@microsoft.com>
Cc: Laura Abbott <labbott@redhat.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Michael Kelley <mikelley@microsoft.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Nitin Gupta <ngupta@vflare.org>
Cc: Robin Murphy <robin.murphy@arm.com>
Cc: Sakari Ailus <sakari.ailus@linux.intel.com>
Cc: Stephen Hemminger <sthemmin@microsoft.com>
Cc: Sumit Semwal <sumit.semwal@linaro.org>
Cc: Wei Liu <wei.liu@kernel.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Paul Mackerras <paulus@ozlabs.org>
Cc: Vasily Gorbik <gor@linux.ibm.com>
Cc: Will Deacon <will@kernel.org>
Link: http://lkml.kernel.org/r/20200414131348.444715-24-hch@lst.de
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This is always PAGE_KERNEL - for long term mappings with other properties
vmap should be used.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Christian Borntraeger <borntraeger@de.ibm.com>
Cc: Christophe Leroy <christophe.leroy@c-s.fr>
Cc: Daniel Vetter <daniel.vetter@ffwll.ch>
Cc: David Airlie <airlied@linux.ie>
Cc: Gao Xiang <xiang@kernel.org>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Haiyang Zhang <haiyangz@microsoft.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: "K. Y. Srinivasan" <kys@microsoft.com>
Cc: Laura Abbott <labbott@redhat.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Michael Kelley <mikelley@microsoft.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Nitin Gupta <ngupta@vflare.org>
Cc: Robin Murphy <robin.murphy@arm.com>
Cc: Sakari Ailus <sakari.ailus@linux.intel.com>
Cc: Stephen Hemminger <sthemmin@microsoft.com>
Cc: Sumit Semwal <sumit.semwal@linaro.org>
Cc: Wei Liu <wei.liu@kernel.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Paul Mackerras <paulus@ozlabs.org>
Cc: Vasily Gorbik <gor@linux.ibm.com>
Cc: Will Deacon <will@kernel.org>
Link: http://lkml.kernel.org/r/20200414131348.444715-19-hch@lst.de
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This function just has a single caller, open code it there.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Christian Borntraeger <borntraeger@de.ibm.com>
Cc: Christophe Leroy <christophe.leroy@c-s.fr>
Cc: Daniel Vetter <daniel.vetter@ffwll.ch>
Cc: David Airlie <airlied@linux.ie>
Cc: Gao Xiang <xiang@kernel.org>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Haiyang Zhang <haiyangz@microsoft.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: "K. Y. Srinivasan" <kys@microsoft.com>
Cc: Laura Abbott <labbott@redhat.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Michael Kelley <mikelley@microsoft.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Nitin Gupta <ngupta@vflare.org>
Cc: Robin Murphy <robin.murphy@arm.com>
Cc: Sakari Ailus <sakari.ailus@linux.intel.com>
Cc: Stephen Hemminger <sthemmin@microsoft.com>
Cc: Sumit Semwal <sumit.semwal@linaro.org>
Cc: Wei Liu <wei.liu@kernel.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Paul Mackerras <paulus@ozlabs.org>
Cc: Vasily Gorbik <gor@linux.ibm.com>
Cc: Will Deacon <will@kernel.org>
Link: http://lkml.kernel.org/r/20200414131348.444715-18-hch@lst.de
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Switch all callers to map_kernel_range, which symmetric to the unmap side
(as well as the _noflush versions).
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Christian Borntraeger <borntraeger@de.ibm.com>
Cc: Christophe Leroy <christophe.leroy@c-s.fr>
Cc: Daniel Vetter <daniel.vetter@ffwll.ch>
Cc: David Airlie <airlied@linux.ie>
Cc: Gao Xiang <xiang@kernel.org>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Haiyang Zhang <haiyangz@microsoft.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: "K. Y. Srinivasan" <kys@microsoft.com>
Cc: Laura Abbott <labbott@redhat.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Michael Kelley <mikelley@microsoft.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Nitin Gupta <ngupta@vflare.org>
Cc: Robin Murphy <robin.murphy@arm.com>
Cc: Sakari Ailus <sakari.ailus@linux.intel.com>
Cc: Stephen Hemminger <sthemmin@microsoft.com>
Cc: Sumit Semwal <sumit.semwal@linaro.org>
Cc: Wei Liu <wei.liu@kernel.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Paul Mackerras <paulus@ozlabs.org>
Cc: Vasily Gorbik <gor@linux.ibm.com>
Cc: Will Deacon <will@kernel.org>
Link: http://lkml.kernel.org/r/20200414131348.444715-17-hch@lst.de
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
None of the callers needs the number of pages, and a 0 / -errno return
value is a lot more intuitive.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Christian Borntraeger <borntraeger@de.ibm.com>
Cc: Christophe Leroy <christophe.leroy@c-s.fr>
Cc: Daniel Vetter <daniel.vetter@ffwll.ch>
Cc: David Airlie <airlied@linux.ie>
Cc: Gao Xiang <xiang@kernel.org>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Haiyang Zhang <haiyangz@microsoft.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: "K. Y. Srinivasan" <kys@microsoft.com>
Cc: Laura Abbott <labbott@redhat.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Michael Kelley <mikelley@microsoft.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Nitin Gupta <ngupta@vflare.org>
Cc: Robin Murphy <robin.murphy@arm.com>
Cc: Sakari Ailus <sakari.ailus@linux.intel.com>
Cc: Stephen Hemminger <sthemmin@microsoft.com>
Cc: Sumit Semwal <sumit.semwal@linaro.org>
Cc: Wei Liu <wei.liu@kernel.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Paul Mackerras <paulus@ozlabs.org>
Cc: Vasily Gorbik <gor@linux.ibm.com>
Cc: Will Deacon <will@kernel.org>
Link: http://lkml.kernel.org/r/20200414131348.444715-16-hch@lst.de
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This matches the map_kernel_range_noflush API. Also change to pass a size
instead of the end, similar to the noflush version.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Christian Borntraeger <borntraeger@de.ibm.com>
Cc: Christophe Leroy <christophe.leroy@c-s.fr>
Cc: Daniel Vetter <daniel.vetter@ffwll.ch>
Cc: David Airlie <airlied@linux.ie>
Cc: Gao Xiang <xiang@kernel.org>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Haiyang Zhang <haiyangz@microsoft.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: "K. Y. Srinivasan" <kys@microsoft.com>
Cc: Laura Abbott <labbott@redhat.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Michael Kelley <mikelley@microsoft.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Nitin Gupta <ngupta@vflare.org>
Cc: Robin Murphy <robin.murphy@arm.com>
Cc: Sakari Ailus <sakari.ailus@linux.intel.com>
Cc: Stephen Hemminger <sthemmin@microsoft.com>
Cc: Sumit Semwal <sumit.semwal@linaro.org>
Cc: Wei Liu <wei.liu@kernel.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Paul Mackerras <paulus@ozlabs.org>
Cc: Vasily Gorbik <gor@linux.ibm.com>
Cc: Will Deacon <will@kernel.org>
Link: http://lkml.kernel.org/r/20200414131348.444715-15-hch@lst.de
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
These have non-static aliases called map_kernel_range_noflush and
unmap_kernel_range_noflush that just differ slightly in the calling
conventions that pass addr + size instead of an end.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Christian Borntraeger <borntraeger@de.ibm.com>
Cc: Christophe Leroy <christophe.leroy@c-s.fr>
Cc: Daniel Vetter <daniel.vetter@ffwll.ch>
Cc: David Airlie <airlied@linux.ie>
Cc: Gao Xiang <xiang@kernel.org>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Haiyang Zhang <haiyangz@microsoft.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: "K. Y. Srinivasan" <kys@microsoft.com>
Cc: Laura Abbott <labbott@redhat.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Michael Kelley <mikelley@microsoft.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Nitin Gupta <ngupta@vflare.org>
Cc: Robin Murphy <robin.murphy@arm.com>
Cc: Sakari Ailus <sakari.ailus@linux.intel.com>
Cc: Stephen Hemminger <sthemmin@microsoft.com>
Cc: Sumit Semwal <sumit.semwal@linaro.org>
Cc: Wei Liu <wei.liu@kernel.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Paul Mackerras <paulus@ozlabs.org>
Cc: Vasily Gorbik <gor@linux.ibm.com>
Cc: Will Deacon <will@kernel.org>
Link: http://lkml.kernel.org/r/20200414131348.444715-14-hch@lst.de
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Ever use of addr in vb_free casts to unsigned long first, and the caller
has an unsigned long version of the address available anyway. Just pass
that and avoid all the casts.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Christian Borntraeger <borntraeger@de.ibm.com>
Cc: Christophe Leroy <christophe.leroy@c-s.fr>
Cc: Daniel Vetter <daniel.vetter@ffwll.ch>
Cc: David Airlie <airlied@linux.ie>
Cc: Gao Xiang <xiang@kernel.org>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Haiyang Zhang <haiyangz@microsoft.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: "K. Y. Srinivasan" <kys@microsoft.com>
Cc: Laura Abbott <labbott@redhat.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Michael Kelley <mikelley@microsoft.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Nitin Gupta <ngupta@vflare.org>
Cc: Robin Murphy <robin.murphy@arm.com>
Cc: Sakari Ailus <sakari.ailus@linux.intel.com>
Cc: Stephen Hemminger <sthemmin@microsoft.com>
Cc: Sumit Semwal <sumit.semwal@linaro.org>
Cc: Wei Liu <wei.liu@kernel.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Paul Mackerras <paulus@ozlabs.org>
Cc: Vasily Gorbik <gor@linux.ibm.com>
Cc: Will Deacon <will@kernel.org>
Link: http://lkml.kernel.org/r/20200414131348.444715-13-hch@lst.de
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This allows to unexport map_vm_area and unmap_kernel_range, which are
rather deep internal and should not be available to modules, as they for
example allow fine grained control of mapping permissions, and also
allow splitting the setup of a vmalloc area and the actual mapping and
thus expose vmalloc internals.
zsmalloc is typically built-in and continues to work (just like the
percpu-vm code using a similar patter), while modular zsmalloc also
continues to work, but must use copies.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Christian Borntraeger <borntraeger@de.ibm.com>
Cc: Christophe Leroy <christophe.leroy@c-s.fr>
Cc: Daniel Vetter <daniel.vetter@ffwll.ch>
Cc: David Airlie <airlied@linux.ie>
Cc: Gao Xiang <xiang@kernel.org>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Haiyang Zhang <haiyangz@microsoft.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: "K. Y. Srinivasan" <kys@microsoft.com>
Cc: Laura Abbott <labbott@redhat.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Michael Kelley <mikelley@microsoft.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Nitin Gupta <ngupta@vflare.org>
Cc: Robin Murphy <robin.murphy@arm.com>
Cc: Sakari Ailus <sakari.ailus@linux.intel.com>
Cc: Stephen Hemminger <sthemmin@microsoft.com>
Cc: Sumit Semwal <sumit.semwal@linaro.org>
Cc: Wei Liu <wei.liu@kernel.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Paul Mackerras <paulus@ozlabs.org>
Cc: Vasily Gorbik <gor@linux.ibm.com>
Cc: Will Deacon <will@kernel.org>
Link: http://lkml.kernel.org/r/20200414131348.444715-12-hch@lst.de
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Some processes dont't want to be killed early, but in "Action Required"
case, those also may be killed by BUS_MCEERR_AO when sharing memory with
other which is accessing the fail memory. And sending SIGBUS with
BUS_MCEERR_AO for action required error is strange, so ignore the
non-current processes here.
Suggested-by: Naoya Horiguchi <naoya.horiguchi@nec.com>
Signed-off-by: Wetp Zhang <wetp.zy@linux.alibaba.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Naoya Horiguchi <naoya.horiguchi@nec.com>
Acked-by: Pankaj Gupta <pankaj.gupta.linux@gmail.com>
Link: http://lkml.kernel.org/r/1590817116-21281-1-git-send-email-wetp.zy@linux.alibaba.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Since commit 25b2995a35 ("mm: remove MEMORY_DEVICE_PUBLIC support"),
the assignment to 'page' for pte_devmap case has been unnecessary.
Let's remove it.
[willy@infradead.org: changelog]
Signed-off-by: chenqiwu <chenqiwu@xiaomi.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Matthew Wilcox <willy@infradead.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Link: http://lkml.kernel.org/r/1587349685-31712-1-git-send-email-qiwuchen55@gmail.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Patch series "Fix W+X debug feature on x86"
Jan alerted me[1] that the W+X detection debug feature was broken in x86
by my change[2] to switch x86 to use the generic ptdump infrastructure.
Fundamentally the approach of trying to move the calculation of
effective permissions into note_page() was broken because note_page() is
only called for 'leaf' entries and the effective permissions are passed
down via the internal nodes of the page tree. The solution I've taken
here is to create a new (optional) callback which is called for all
nodes of the page tree and therefore can calculate the effective
permissions.
Secondly on some configurations (32 bit with PAE) "unsigned long" is not
large enough to store the table entries. The fix here is simple - let's
just use a u64.
[1] https://lore.kernel.org/lkml/d573dc7e-e742-84de-473d-f971142fa319@suse.com/
[2] 2ae27137b2 ("x86: mm: convert dump_pagetables to use walk_page_range")
This patch (of 2):
By switching the x86 page table dump code to use the generic code the
effective permissions are no longer calculated correctly because the
note_page() function is only called for *leaf* entries. To calculate
the actual effective permissions it is necessary to observe the full
hierarchy of the page tree.
Introduce a new callback for ptdump which is called for every entry and
can therefore update the prot_levels array correctly. note_page() can
then simply access the appropriate element in the array.
[steven.price@arm.com: make the assignment conditional on val != 0]
Link: http://lkml.kernel.org/r/430c8ab4-e7cd-6933-dde6-087fac6db872@arm.com
Fixes: 2ae27137b2 ("x86: mm: convert dump_pagetables to use walk_page_range")
Reported-by: Jan Beulich <jbeulich@suse.com>
Signed-off-by: Steven Price <steven.price@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Qian Cai <cai@lca.pw>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: <stable@vger.kernel.org>
Link: http://lkml.kernel.org/r/20200521152308.33096-1-steven.price@arm.com
Link: http://lkml.kernel.org/r/20200521152308.33096-2-steven.price@arm.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
While trying to use remote memcg charging in an out-of-tree kernel
module I found it's not working, because the current thread is a
workqueue thread.
As we will probably encounter this issue in the future as the users of
memalloc_use_memcg() grow, and it's nothing wrong for this usage, it's
better we fix it now.
Signed-off-by: Zefan Li <lizefan@huawei.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Roman Gushchin <guro@fb.com>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Link: http://lkml.kernel.org/r/1d202a12-26fe-0012-ea14-f025ddcd044a@huawei.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Add a memory.swap.high knob, which can be used to protect the system
from SWAP exhaustion. The mechanism used for penalizing is similar to
memory.high penalty (sleep on return to user space).
That is not to say that the knob itself is equivalent to memory.high.
The objective is more to protect the system from potentially buggy tasks
consuming a lot of swap and impacting other tasks, or even bringing the
whole system to stand still with complete SWAP exhaustion. Hopefully
without the need to find per-task hard limits.
Slowing misbehaving tasks down gradually allows user space oom killers
or other protection mechanisms to react. oomd and earlyoom already do
killing based on swap exhaustion, and memory.swap.high protection will
help implement such userspace oom policies more reliably.
We can use one counter for number of pages allocated under pressure to
save struct task space and avoid two separate hierarchy walks on the hot
path. The exact overage is calculated on return to user space, anyway.
Take the new high limit into account when determining if swap is "full".
Borrowing the explanation from Johannes:
The idea behind "swap full" is that as long as the workload has plenty
of swap space available and it's not changing its memory contents, it
makes sense to generously hold on to copies of data in the swap device,
even after the swapin. A later reclaim cycle can drop the page without
any IO. Trading disk space for IO.
But the only two ways to reclaim a swap slot is when they're faulted
in and the references go away, or by scanning the virtual address space
like swapoff does - which is very expensive (one could argue it's too
expensive even for swapoff, it's often more practical to just reboot).
So at some point in the fill level, we have to start freeing up swap
slots on fault/swapin. Otherwise we could eventually run out of swap
slots while they're filled with copies of data that is also in RAM.
We don't want to OOM a workload because its available swap space is
filled with redundant cache.
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Tejun Heo <tj@kernel.org>
Cc: Chris Down <chris@chrisdown.name>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Hugh Dickins <hughd@google.com>
Link: http://lkml.kernel.org/r/20200527195846.102707-5-kuba@kernel.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
High memory limit is currently recorded directly in struct mem_cgroup.
We are about to add a high limit for swap, move the field to struct
page_counter and add some helpers.
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Chris Down <chris@chrisdown.name>
Cc: Hugh Dickins <hughd@google.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Tejun Heo <tj@kernel.org>
Link: http://lkml.kernel.org/r/20200527195846.102707-4-kuba@kernel.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
We will want to call calculate_high_delay() twice - once for memory and
once for swap, and we should apply the clamp value to sum of the
penalties. Clamping has to be applied outside of calculate_high_delay().
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Chris Down <chris@chrisdown.name>
Cc: Hugh Dickins <hughd@google.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Tejun Heo <tj@kernel.org>
Link: http://lkml.kernel.org/r/20200527195846.102707-3-kuba@kernel.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Patch series "memcg: Slow down swap allocation as the available space
gets depleted", v6.
Tejun describes the problem as follows:
When swap runs out, there's an abrupt change in system behavior - the
anonymous memory suddenly becomes unmanageable which readily breaks any
sort of memory isolation and can bring down the whole system. To avoid
that, oomd [1] monitors free swap space and triggers kills when it drops
below the specific threshold (e.g. 15%).
While this works, it's far from ideal:
- Depending on IO performance and total swap size, a given
headroom might not be enough or too much.
- oomd has to monitor swap depletion in addition to the usual
pressure metrics and it currently doesn't consider memory.swap.max.
Solve this by adapting parts of the approach that memory.high uses -
slow down allocation as the resource gets depleted turning the depletion
behavior from abrupt cliff one to gradual degradation observable through
memory pressure metric.
[1] https://github.com/facebookincubator/oomd
This patch (of 4):
Slice the memory overage calculation logic a little bit so we can reuse
it to apply a similar penalty to the swap. The logic which accesses the
memory-specific fields (use and high values) has to be taken out of
calculate_high_delay().
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Hugh Dickins <hughd@google.com>
Cc: Chris Down <chris@chrisdown.name>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Tejun Heo <tj@kernel.org>
Link: http://lkml.kernel.org/r/20200527195846.102707-1-kuba@kernel.org
Link: http://lkml.kernel.org/r/20200527195846.102707-2-kuba@kernel.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
One way to measure the efficiency of memory reclaim is to look at the
ratio (pgscan+pfrefill)/pgsteal. However at the moment these stats are
not updated consistently at the system level and the ratio of these are
not very meaningful. The pgsteal and pgscan are updated for only global
reclaim while pgrefill gets updated for global as well as cgroup
reclaim.
Please note that this difference is only for system level vmstats. The
cgroup stats returned by memory.stat are actually consistent. The
cgroup's pgsteal contains number of reclaimed pages for global as well
as cgroup reclaim. So, one way to get the system level stats is to get
these stats from root's memory.stat, so, expose memory.stat for the root
cgroup.
From Johannes Weiner:
There are subtle differences between /proc/vmstat and
memory.stat, and cgroup-aware code that wants to watch the full
hierarchy currently has to know about these intricacies and
translate semantics back and forth.
Generally having the fully recursive memory.stat at the root
level could help a broader range of usecases.
Why not fix the stats by including both the global and cgroup reclaim
activity instead of exposing root cgroup's memory.stat? The reason is
the benefit of having metrics exposing the activity that happens purely
due to machine capacity rather than localized activity that happens due
to the limits throughout the cgroup tree. Additionally there are
userspace tools like sysstat(sar) which reads these stats to inform
about the system level reclaim activity. So, we should not break such
use-cases.
Suggested-by: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Shakeel Butt <shakeelb@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Yafang Shao <laoar.shao@gmail.com>
Acked-by: Chris Down <chris@chrisdown.name>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Roman Gushchin <guro@fb.com>
Cc: Michal Hocko <mhocko@kernel.org>
Link: http://lkml.kernel.org/r/20200508170630.94406-1-shakeelb@google.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When the variables count and limit have the same value(count == limit),
the result of min(margin, limit - count) statement should be 0 and the
variable margin is set to 0. So in this case, the min() statement is
not necessary and we can directly set the variable margin to 0.
Signed-off-by: Kaixu Xia <kaixuxia@tencent.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Link: http://lkml.kernel.org/r/1587479661-27237-1-git-send-email-kaixuxia@tencent.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
There's a new workingset counter introduced in commit 1899ad18c6 ("mm:
workingset: tell cache transitions from workingset thrashing"). With
the help of this counter we can know the workingset is transitioning or
thrashing. To leverage the benifit of this counter to memcg, we should
introduce it into memory.stat. Then we could know the workingset of the
workload inside a memcg better.
Bellow is the verification of this new counter in memory.stat. Read a
file into the memory and then read it again to make these pages be
active. The size of this file is 1G. (memory.max is greater than file
size) The counters in memory.stat will be
inactive_file 0
active_file 1073639424
workingset_refault 0
workingset_activate 0
workingset_restore 0
workingset_nodereclaim 0
Trigger the memcg reclaim by setting a lower value to memory.high, and
then some pages will be demoted into inactive list, and then some pages
in the inactive list will be evicted into the storage.
inactive_file 498094080
active_file 310063104
workingset_refault 0
workingset_activate 0
workingset_restore 0
workingset_nodereclaim 0
Then recover the memory.high and read the file into memory again. As a
result of it, the transitioning will occur. Bellow is the result of
this transitioning,
inactive_file 498094080
active_file 575397888
workingset_refault 64746
workingset_activate 64746
workingset_restore 64746
workingset_nodereclaim 0
Signed-off-by: Yafang Shao <laoar.shao@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Chris Down <chris@chrisdown.name>
Cc: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Suren Baghdasaryan <surenb@google.com>
Cc: Shakeel Butt <shakeelb@google.com>
Link: http://lkml.kernel.org/r/20200504153522.11553-1-laoar.shao@gmail.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Fix the heading and Size/Used/Priority field alignments in /proc/swaps.
If the Size and/or Used value is >= 10000000 (8 bytes), then the
alignment by using tab characters is broken.
This patch maintains the use of tabs for alignment. If spaces are
preferred, we can just use a Field Width specifier for the bytes and
inuse fields. That way those fields don't have to be a multiple of 8
bytes in width. E.g., with a field width of 12, both Size and Used
would always fit on the first line of an 80-column wide terminal (only
Priority would be on the second line).
There are actually 2 problems: heading alignment and field width. On an
xterm, if Used is 7 bytes in length, the tab does nothing, and the
display is like this, with no space/tab between the Used and Priority
fields. (ugh)
Filename Type Size Used Priority
/dev/sda8 partition 16779260 2023012-1
To be clear, if one does 'cat /proc/swaps >/tmp/proc.swaps', it does look
different, like so:
Filename Type Size Used Priority
/dev/sda8 partition 16779260 2086988 -1
Signed-off-by: Randy Dunlap <rdunlap@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Hugh Dickins <hughd@google.com>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Link: http://lkml.kernel.org/r/c0ffb41a-81ac-ddfa-d452-a9229ecc0387@infradead.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
In some swap scalability test, it is found that there are heavy lock
contention on swap cache even if we have split one swap cache radix tree
per swap device to one swap cache radix tree every 64 MB trunk in commit
4b3ef9daa4 ("mm/swap: split swap cache into 64MB trunks").
The reason is as follow. After the swap device becomes fragmented so
that there's no free swap cluster, the swap device will be scanned
linearly to find the free swap slots. swap_info_struct->cluster_next is
the next scanning base that is shared by all CPUs. So nearby free swap
slots will be allocated for different CPUs. The probability for
multiple CPUs to operate on the same 64 MB trunk is high. This causes
the lock contention on the swap cache.
To solve the issue, in this patch, for SSD swap device, a percpu version
next scanning base (cluster_next_cpu) is added. Every CPU will use its
own per-cpu next scanning base. And after finishing scanning a 64MB
trunk, the per-cpu scanning base will be changed to the beginning of
another randomly selected 64MB trunk. In this way, the probability for
multiple CPUs to operate on the same 64 MB trunk is reduced greatly.
Thus the lock contention is reduced too. For HDD, because sequential
access is more important for IO performance, the original shared next
scanning base is used.
To test the patch, we have run 16-process pmbench memory benchmark on a
2-socket server machine with 48 cores. One ram disk is configured as the
swap device per socket. The pmbench working-set size is much larger than
the available memory so that swapping is triggered. The memory read/write
ratio is 80/20 and the accessing pattern is random. In the original
implementation, the lock contention on the swap cache is heavy. The perf
profiling data of the lock contention code path is as following,
_raw_spin_lock_irq.add_to_swap_cache.add_to_swap.shrink_page_list: 7.91
_raw_spin_lock_irqsave.__remove_mapping.shrink_page_list: 7.11
_raw_spin_lock.swapcache_free_entries.free_swap_slot.__swap_entry_free: 2.51
_raw_spin_lock_irqsave.swap_cgroup_record.mem_cgroup_uncharge_swap: 1.66
_raw_spin_lock_irq.shrink_inactive_list.shrink_lruvec.shrink_node: 1.29
_raw_spin_lock.free_pcppages_bulk.drain_pages_zone.drain_pages: 1.03
_raw_spin_lock_irq.shrink_active_list.shrink_lruvec.shrink_node: 0.93
After applying this patch, it becomes,
_raw_spin_lock.swapcache_free_entries.free_swap_slot.__swap_entry_free: 3.58
_raw_spin_lock_irq.shrink_inactive_list.shrink_lruvec.shrink_node: 2.3
_raw_spin_lock_irqsave.swap_cgroup_record.mem_cgroup_uncharge_swap: 2.26
_raw_spin_lock_irq.shrink_active_list.shrink_lruvec.shrink_node: 1.8
_raw_spin_lock.free_pcppages_bulk.drain_pages_zone.drain_pages: 1.19
The lock contention on the swap cache is almost eliminated.
And the pmbench score increases 18.5%. The swapin throughput increases
18.7% from 2.96 GB/s to 3.51 GB/s. While the swapout throughput increases
18.5% from 2.99 GB/s to 3.54 GB/s.
We need really fast disk to show the benefit. I have tried this on 2
Intel P3600 NVMe disks. The performance improvement is only about 1%.
The improvement should be better on the faster disks, such as Intel Optane
disk.
[ying.huang@intel.com: fix cluster_next_cpu allocation and freeing, per Daniel]
Link: http://lkml.kernel.org/r/20200525002648.336325-1-ying.huang@intel.com
[ying.huang@intel.com: v4]
Link: http://lkml.kernel.org/r/20200529010840.928819-1-ying.huang@intel.com
Signed-off-by: "Huang, Ying" <ying.huang@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Daniel Jordan <daniel.m.jordan@oracle.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Tim Chen <tim.c.chen@linux.intel.com>
Cc: Hugh Dickins <hughd@google.com>
Link: http://lkml.kernel.org/r/20200520031502.175659-1-ying.huang@intel.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
To improve the code readability and take advantage of the common
implementation.
Signed-off-by: "Huang, Ying" <ying.huang@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Tim Chen <tim.c.chen@linux.intel.com>
Cc: Hugh Dickins <hughd@google.com>
Link: http://lkml.kernel.org/r/20200512081013.520201-1-ying.huang@intel.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Now, the scalability of swap code will drop much when the swap device
becomes fragmented, because the swap slots allocation batching stops
working. To solve the problem, in this patch, we will try to scan a
little more swap slots with restricted effort to batch the swap slots
allocation even if the swap device is fragmented. Test shows that the
benchmark score can increase up to 37.1% with the patch. Details are as
follows.
The swap code has a per-cpu cache of swap slots. These batch swap space
allocations to improve swap subsystem scaling. In the following code
path,
add_to_swap()
get_swap_page()
refill_swap_slots_cache()
get_swap_pages()
scan_swap_map_slots()
scan_swap_map_slots() and get_swap_pages() can return multiple swap
slots for each call. These slots will be cached in the per-CPU swap
slots cache, so that several following swap slot requests will be
fulfilled there to avoid the lock contention in the lower level swap
space allocation/freeing code path.
But this only works when there are free swap clusters. If a swap device
becomes so fragmented that there's no free swap clusters,
scan_swap_map_slots() and get_swap_pages() will return only one swap
slot for each call in the above code path. Effectively, this falls back
to the situation before the swap slots cache was introduced, the heavy
lock contention on the swap related locks kills the scalability.
Why does it work in this way? Because the swap device could be large,
and the free swap slot scanning could be quite time consuming, to avoid
taking too much time to scanning free swap slots, the conservative
method was used.
In fact, this can be improved via scanning a little more free slots with
strictly restricted effort. Which is implemented in this patch. In
scan_swap_map_slots(), after the first free swap slot is gotten, we will
try to scan a little more, but only if we haven't scanned too many slots
(< LATENCY_LIMIT). That is, the added scanning latency is strictly
restricted.
To test the patch, we have run 16-process pmbench memory benchmark on a
2-socket server machine with 48 cores. Multiple ram disks are
configured as the swap devices. The pmbench working-set size is much
larger than the available memory so that swapping is triggered. The
memory read/write ratio is 80/20 and the accessing pattern is random, so
the swap space becomes highly fragmented during the test. In the
original implementation, the lock contention on swap related locks is
very heavy. The perf profiling data of the lock contention code path is
as following,
_raw_spin_lock.get_swap_pages.get_swap_page.add_to_swap: 21.03
_raw_spin_lock_irq.shrink_inactive_list.shrink_lruvec.shrink_node: 1.92
_raw_spin_lock_irq.shrink_active_list.shrink_lruvec.shrink_node: 1.72
_raw_spin_lock.free_pcppages_bulk.drain_pages_zone.drain_pages: 0.69
While after applying this patch, it becomes,
_raw_spin_lock_irq.shrink_inactive_list.shrink_lruvec.shrink_node: 4.89
_raw_spin_lock_irq.shrink_active_list.shrink_lruvec.shrink_node: 3.85
_raw_spin_lock.free_pcppages_bulk.drain_pages_zone.drain_pages: 1.1
_raw_spin_lock_irqsave.pagevec_lru_move_fn.__lru_cache_add.do_swap_page: 0.88
That is, the lock contention on the swap locks is eliminated.
And the pmbench score increases 37.1%. The swapin throughput increases
45.7% from 2.02 GB/s to 2.94 GB/s. While the swapout throughput increases
45.3% from 2.04 GB/s to 2.97 GB/s.
Signed-off-by: "Huang, Ying" <ying.huang@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Tim Chen <tim.c.chen@linux.intel.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Hugh Dickins <hughd@google.com>
Link: http://lkml.kernel.org/r/20200427030023.264780-1-ying.huang@intel.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
There are two duplicate code to handle the case when there is no available
swap entry. To avoid this, we can compare tmp and max first and let the
second guard do its job.
No functional change is expected.
Signed-off-by: Wei Yang <richard.weiyang@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: "Huang, Ying" <ying.huang@intel.com>
Cc: Tim Chen <tim.c.chen@linux.intel.com>
Cc: Hugh Dickins <hughd@google.com>
Link: http://lkml.kernel.org/r/20200421213824.8099-3-richard.weiyang@gmail.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
If tmp is bigger or equal to max, we would jump to new_cluster.
Return true directly.
Signed-off-by: Wei Yang <richard.weiyang@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: "Huang, Ying" <ying.huang@intel.com>
Cc: Tim Chen <tim.c.chen@linux.intel.com>
Cc: Hugh Dickins <hughd@google.com>
Link: http://lkml.kernel.org/r/20200421213824.8099-2-richard.weiyang@gmail.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This is not necessary to use the variable found_free to record the status.
Just check tmp and max is enough.
Signed-off-by: Wei Yang <richard.weiyang@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: "Huang, Ying" <ying.huang@intel.com>
Cc: Tim Chen <tim.c.chen@linux.intel.com>
Cc: Hugh Dickins <hughd@google.com>
Link: http://lkml.kernel.org/r/20200421213824.8099-1-richard.weiyang@gmail.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
scan_swap_map_slots() is only called by scan_swap_map() and
get_swap_pages(). Both ensure nr would not exceed SWAP_BATCH.
Just remove it.
Signed-off-by: Wei Yang <richard.weiyang@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Hugh Dickins <hughd@google.com>
Link: http://lkml.kernel.org/r/20200325220309.9803-2-richard.weiyang@gmail.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Use min3() to simplify the comparison and make it more self-explaining.
Signed-off-by: Wei Yang <richard.weiyang@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Hugh Dickins <hughd@google.com>
Link: http://lkml.kernel.org/r/20200325220309.9803-1-richard.weiyang@gmail.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Now we can see there is redundant goto for SSD case. In these two places,
we can just let the code walk through to the correct tag instead of
explicitly jump to it.
Let's remove them for better readability.
Signed-off-by: Wei Yang <richard.weiyang@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Tim Chen <tim.c.chen@linux.intel.com>
Link: http://lkml.kernel.org/r/20200328060520.31449-4-richard.weiyang@gmail.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The code shows if this is ssd, it will jump to specific tag and skip the
following code for non-ssd.
Let's use "else if" to explicitly show the mutually exclusion for
ssd/non-ssd to reduce ambiguity.
Signed-off-by: Wei Yang <richard.weiyang@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Tim Chen <tim.c.chen@linux.intel.com>
Link: http://lkml.kernel.org/r/20200328060520.31449-3-richard.weiyang@gmail.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
scan_swap_map_slots() is used to iterate swap_map[] array for an
available swap entry. While after several optimizations, e.g. for ssd
case, the logic of this function is a little not easy to catch.
This patchset tries to clean up the logic a little:
* shows the ssd/non-ssd case is handled mutually exclusively
* remove some unnecessary goto for ssd case
This patch (of 3):
When si->cluster_nr is zero, function would reach done and return. The
increased offset would not be used any more. This means we can move the
offset increment into the if clause.
This brings a further code cleanup possibility.
Signed-off-by: Wei Yang <richard.weiyang@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Tim Chen <tim.c.chen@linux.intel.com>
Link: http://lkml.kernel.org/r/20200328060520.31449-1-richard.weiyang@gmail.com
Link: http://lkml.kernel.org/r/20200328060520.31449-2-richard.weiyang@gmail.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
In unuse_pte_range() we blindly swap-in pages without checking if the
swap entry is already present in the swap cache.
By doing this, the hit/miss ratio used by the swap readahead heuristic
is not properly updated and this leads to non-optimal performance during
swapoff.
Tracing the distribution of the readahead size returned by the swap
readahead heuristic during swapoff shows that a small readahead size is
used most of the time as if we had only misses (this happens both with
cluster and vma readahead), for example:
r::swapin_nr_pages(unsigned long offset):unsigned long:$retval
COUNT EVENT
36948 $retval = 8
44151 $retval = 4
49290 $retval = 1
527771 $retval = 2
Checking if the swap entry is present in the swap cache, instead, allows
to properly update the readahead statistics and the heuristic behaves in a
better way during swapoff, selecting a bigger readahead size:
r::swapin_nr_pages(unsigned long offset):unsigned long:$retval
COUNT EVENT
1618 $retval = 1
4960 $retval = 2
41315 $retval = 4
103521 $retval = 8
In terms of swapoff performance the result is the following:
Testing environment
===================
- Host:
CPU: 1.8GHz Intel Core i7-8565U (quad-core, 8MB cache)
HDD: PC401 NVMe SK hynix 512GB
MEM: 16GB
- Guest (kvm):
8GB of RAM
virtio block driver
16GB swap file on ext4 (/swapfile)
Test case
=========
- allocate 85% of memory
- `systemctl hibernate` to force all the pages to be swapped-out to the
swap file
- resume the system
- measure the time that swapoff takes to complete:
# /usr/bin/time swapoff /swapfile
Result (swapoff time)
======
5.6 vanilla 5.6 w/ this patch
----------- -----------------
cluster-readahead 22.09s 12.19s
vma-readahead 18.20s 15.33s
Conclusion
==========
The specific use case this patch is addressing is to improve swapoff
performance in cloud environments when a VM has been hibernated, resumed
and all the memory needs to be forced back to RAM by disabling swap.
This change allows to better exploits the advantages of the readahead
heuristic during swapoff and this improvement allows to to speed up the
resume process of such VMs.
[andrea.righi@canonical.com: update changelog]
Link: http://lkml.kernel.org/r/20200418084705.GA147642@xps-13
Signed-off-by: Andrea Righi <andrea.righi@canonical.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: "Huang, Ying" <ying.huang@intel.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Anchal Agarwal <anchalag@amazon.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Vineeth Remanan Pillai <vpillai@digitalocean.com>
Cc: Kelley Nielsen <kelleynnn@gmail.com>
Link: http://lkml.kernel.org/r/20200416180132.GB3352@xps-13
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
"prev_offset" is a static variable in swapin_nr_pages() that can be
accessed concurrently with only mmap_sem held in read mode as noticed by
KCSAN,
BUG: KCSAN: data-race in swap_cluster_readahead / swap_cluster_readahead
write to 0xffffffff92763830 of 8 bytes by task 14795 on cpu 17:
swap_cluster_readahead+0x2a6/0x5e0
swapin_readahead+0x92/0x8dc
do_swap_page+0x49b/0xf20
__handle_mm_fault+0xcfb/0xd70
handle_mm_fault+0xfc/0x2f0
do_page_fault+0x263/0x715
page_fault+0x34/0x40
1 lock held by (dnf)/14795:
#0: ffff897bd2e98858 (&mm->mmap_sem#2){++++}-{3:3}, at: do_page_fault+0x143/0x715
do_user_addr_fault at arch/x86/mm/fault.c:1405
(inlined by) do_page_fault at arch/x86/mm/fault.c:1535
irq event stamp: 83493
count_memcg_event_mm+0x1a6/0x270
count_memcg_event_mm+0x119/0x270
__do_softirq+0x365/0x589
irq_exit+0xa2/0xc0
read to 0xffffffff92763830 of 8 bytes by task 1 on cpu 22:
swap_cluster_readahead+0xfd/0x5e0
swapin_readahead+0x92/0x8dc
do_swap_page+0x49b/0xf20
__handle_mm_fault+0xcfb/0xd70
handle_mm_fault+0xfc/0x2f0
do_page_fault+0x263/0x715
page_fault+0x34/0x40
1 lock held by systemd/1:
#0: ffff897c38f14858 (&mm->mmap_sem#2){++++}-{3:3}, at: do_page_fault+0x143/0x715
irq event stamp: 43530289
count_memcg_event_mm+0x1a6/0x270
count_memcg_event_mm+0x119/0x270
__do_softirq+0x365/0x589
irq_exit+0xa2/0xc0
Signed-off-by: Qian Cai <cai@lca.pw>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Marco Elver <elver@google.com>
Cc: Hugh Dickins <hughd@google.com>
Link: http://lkml.kernel.org/r/20200402213748.2237-1-cai@lca.pw
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Use list_{prev,next}_entry() instead of list_entry() for better
code readability.
Signed-off-by: chenqiwu <chenqiwu@xiaomi.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: David Hildenbrand <david@redhat.com>
Cc: Wei Yang <richard.weiyang@gmail.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Pankaj Gupta <pankaj.gupta.linux@gmail.com>
Cc: Yang Shi <yang.shi@linux.alibaba.com>
Cc: Qian Cai <cai@lca.pw>
Cc: Baoquan He <bhe@redhat.com>
Link: http://lkml.kernel.org/r/1586599916-15456-2-git-send-email-qiwuchen55@gmail.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Introduce pin_user_pages_unlocked(), which is nearly identical to the
get_user_pages_unlocked() that it wraps, except that it sets FOLL_PIN
and rejects FOLL_GET.
Signed-off-by: John Hubbard <jhubbard@nvidia.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Andy Walls <awalls@md.metrocast.net>
Cc: Mauro Carvalho Chehab <mchehab@kernel.org>
Link: http://lkml.kernel.org/r/20200518012157.1178336-2-jhubbard@nvidia.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This patch is an attempt to update the documentation.
- Add/ remove extra * based on type of function static/global.
- Add description for functions and their input arguments.
[akpm@linux-foundation.org: s@/*@/**@]
Signed-off-by: Souptick Joarder <jrdr.linux@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Link: http://lkml.kernel.org/r/1588013630-4497-1-git-send-email-jrdr.linux@gmail.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
After an NFS page has been written it is considered "unstable" until a
COMMIT request succeeds. If the COMMIT fails, the page will be
re-written.
These "unstable" pages are currently accounted as "reclaimable", either
in WB_RECLAIMABLE, or in NR_UNSTABLE_NFS which is included in a
'reclaimable' count. This might have made sense when sending the COMMIT
required a separate action by the VFS/MM (e.g. releasepage() used to
send a COMMIT). However now that all writes generated by ->writepages()
will automatically be followed by a COMMIT (since commit 919e3bd9a8
("NFS: Ensure we commit after writeback is complete")) it makes more
sense to treat them as writeback pages.
So this patch removes NR_UNSTABLE_NFS and accounts unstable pages in
NR_WRITEBACK and WB_WRITEBACK.
A particular effect of this change is that when
wb_check_background_flush() calls wb_over_bg_threshold(), the latter
will report 'true' a lot less often as the 'unstable' pages are no
longer considered 'dirty' (as there is nothing that writeback can do
about them anyway).
Currently wb_check_background_flush() will trigger writeback to NFS even
when there are relatively few dirty pages (if there are lots of unstable
pages), this can result in small writes going to the server (10s of
Kilobytes rather than a Megabyte) which hurts throughput. With this
patch, there are fewer writes which are each larger on average.
Where the NR_UNSTABLE_NFS count was included in statistics
virtual-files, the entry is retained, but the value is hard-coded as
zero. static trace points and warning printks which mentioned this
counter no longer report it.
[akpm@linux-foundation.org: re-layout comment]
[akpm@linux-foundation.org: fix printk warning]
Signed-off-by: NeilBrown <neilb@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Jan Kara <jack@suse.cz>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Acked-by: Trond Myklebust <trond.myklebust@hammerspace.com>
Acked-by: Michal Hocko <mhocko@suse.com> [mm]
Cc: Christoph Hellwig <hch@lst.de>
Cc: Chuck Lever <chuck.lever@oracle.com>
Link: http://lkml.kernel.org/r/87d06j7gqa.fsf@notabene.neil.brown.name
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
PF_LESS_THROTTLE exists for loop-back nfsd (and a similar need in the
loop block driver and callers of prctl(PR_SET_IO_FLUSHER)), where a
daemon needs to write to one bdi (the final bdi) in order to free up
writes queued to another bdi (the client bdi).
The daemon sets PF_LESS_THROTTLE and gets a larger allowance of dirty
pages, so that it can still dirty pages after other processses have been
throttled. The purpose of this is to avoid deadlock that happen when
the PF_LESS_THROTTLE process must write for any dirty pages to be freed,
but it is being thottled and cannot write.
This approach was designed when all threads were blocked equally,
independently on which device they were writing to, or how fast it was.
Since that time the writeback algorithm has changed substantially with
different threads getting different allowances based on non-trivial
heuristics. This means the simple "add 25%" heuristic is no longer
reliable.
The important issue is not that the daemon needs a *larger* dirty page
allowance, but that it needs a *private* dirty page allowance, so that
dirty pages for the "client" bdi that it is helping to clear (the bdi
for an NFS filesystem or loop block device etc) do not affect the
throttling of the daemon writing to the "final" bdi.
This patch changes the heuristic so that the task is not throttled when
the bdi it is writing to has a dirty page count below below (or equal
to) the free-run threshold for that bdi. This ensures it will always be
able to have some pages in flight, and so will not deadlock.
In a steady-state, it is expected that PF_LOCAL_THROTTLE tasks might
still be throttled by global threshold, but that is acceptable as it is
only the deadlock state that is interesting for this flag.
This approach of "only throttle when target bdi is busy" is consistent
with the other use of PF_LESS_THROTTLE in current_may_throttle(), were
it causes attention to be focussed only on the target bdi.
So this patch
- renames PF_LESS_THROTTLE to PF_LOCAL_THROTTLE,
- removes the 25% bonus that that flag gives, and
- If PF_LOCAL_THROTTLE is set, don't delay at all unless the
global and the local free-run thresholds are exceeded.
Note that previously realtime threads were treated the same as
PF_LESS_THROTTLE threads. This patch does *not* change the behvaiour
for real-time threads, so it is now different from the behaviour of nfsd
and loop tasks. I don't know what is wanted for realtime.
[akpm@linux-foundation.org: coding style fixes]
Signed-off-by: NeilBrown <neilb@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Jan Kara <jack@suse.cz>
Acked-by: Chuck Lever <chuck.lever@oracle.com> [nfsd]
Cc: Christoph Hellwig <hch@lst.de>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Trond Myklebust <trond.myklebust@hammerspace.com>
Link: http://lkml.kernel.org/r/87ftbf7gs3.fsf@notabene.neil.brown.name
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
We no longer return 0 here and the comment doesn't tell us anything that
we don't already know (SIGBUS is a pretty good indicator that things
didn't work out).
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: William Kucharski <william.kucharski@oracle.com>
Link: http://lkml.kernel.org/r/20200529123243.20640-1-willy@infradead.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
We can cleanup code a little by call detach_page_private here.
[akpm@linux-foundation.org: use attach_page_private(), per Dave]
http://lkml.kernel.org/r/20200521225220.GV2005@dread.disaster.area
[akpm@linux-foundation.org: clear PagePrivate]
Signed-off-by: Guoqing Jiang <guoqing.jiang@cloud.ionos.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Chao Yu <yuchao0@huawei.com>
Cc: Cong Wang <xiyou.wangcong@gmail.com>
Cc: Dave Chinner <dchinner@redhat.com>
Cc: Eric Biggers <ebiggers@google.com>
Cc: Gao Xiang <gaoxiang25@huawei.com>
Cc: Jaegeuk Kim <jaegeuk@kernel.org>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: Joseph Qi <joseph.qi@linux.alibaba.com>
Cc: Junxiao Bi <junxiao.bi@oracle.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Zi Yan <ziy@nvidia.com>
Cc: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Cc: Miklos Szeredi <mszeredi@redhat.com>
Link: http://lkml.kernel.org/r/20200519214049.15179-1-guoqing.jiang@cloud.ionos.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Implement the new readahead aop and convert all callers (block_dev,
exfat, ext2, fat, gfs2, hpfs, isofs, jfs, nilfs2, ocfs2, omfs, qnx6,
reiserfs & udf).
The callers are all trivial except for GFS2 & OCFS2.
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Junxiao Bi <junxiao.bi@oracle.com> # ocfs2
Reviewed-by: Joseph Qi <joseph.qi@linux.alibaba.com> # ocfs2
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: John Hubbard <jhubbard@nvidia.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: William Kucharski <william.kucharski@oracle.com>
Cc: Chao Yu <yuchao0@huawei.com>
Cc: Cong Wang <xiyou.wangcong@gmail.com>
Cc: Darrick J. Wong <darrick.wong@oracle.com>
Cc: Eric Biggers <ebiggers@google.com>
Cc: Gao Xiang <gaoxiang25@huawei.com>
Cc: Jaegeuk Kim <jaegeuk@kernel.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Zi Yan <ziy@nvidia.com>
Cc: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Cc: Miklos Szeredi <mszeredi@redhat.com>
Link: http://lkml.kernel.org/r/20200414150233.24495-17-willy@infradead.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Ensure that memory allocations in the readahead path do not attempt to
reclaim file-backed pages, which could lead to a deadlock. It is
possible, though unlikely this is the root cause of a problem observed
by Cong Wang.
Reported-by: Cong Wang <xiyou.wangcong@gmail.com>
Suggested-by: Michal Hocko <mhocko@suse.com>
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: William Kucharski <william.kucharski@oracle.com>
Cc: Chao Yu <yuchao0@huawei.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Darrick J. Wong <darrick.wong@oracle.com>
Cc: Dave Chinner <dchinner@redhat.com>
Cc: Eric Biggers <ebiggers@google.com>
Cc: Gao Xiang <gaoxiang25@huawei.com>
Cc: Jaegeuk Kim <jaegeuk@kernel.org>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: Joseph Qi <joseph.qi@linux.alibaba.com>
Cc: Junxiao Bi <junxiao.bi@oracle.com>
Cc: Zi Yan <ziy@nvidia.com>
Cc: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Cc: Miklos Szeredi <mszeredi@redhat.com>
Link: http://lkml.kernel.org/r/20200414150233.24495-16-willy@infradead.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
If the page is already in cache, we don't set PageReadahead on it.
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: William Kucharski <william.kucharski@oracle.com>
Cc: Chao Yu <yuchao0@huawei.com>
Cc: Cong Wang <xiyou.wangcong@gmail.com>
Cc: Darrick J. Wong <darrick.wong@oracle.com>
Cc: Dave Chinner <dchinner@redhat.com>
Cc: Eric Biggers <ebiggers@google.com>
Cc: Gao Xiang <gaoxiang25@huawei.com>
Cc: Jaegeuk Kim <jaegeuk@kernel.org>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: Joseph Qi <joseph.qi@linux.alibaba.com>
Cc: Junxiao Bi <junxiao.bi@oracle.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Zi Yan <ziy@nvidia.com>
Cc: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Cc: Miklos Szeredi <mszeredi@redhat.com>
Link: http://lkml.kernel.org/r/20200414150233.24495-15-willy@infradead.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
ext4 and f2fs have duplicated the guts of the readahead code so they can
read past i_size. Instead, separate out the guts of the readahead code
so they can call it directly.
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Tested-by: Eric Biggers <ebiggers@google.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: William Kucharski <william.kucharski@oracle.com>
Reviewed-by: Eric Biggers <ebiggers@google.com>
Cc: Chao Yu <yuchao0@huawei.com>
Cc: Cong Wang <xiyou.wangcong@gmail.com>
Cc: Darrick J. Wong <darrick.wong@oracle.com>
Cc: Dave Chinner <dchinner@redhat.com>
Cc: Gao Xiang <gaoxiang25@huawei.com>
Cc: Jaegeuk Kim <jaegeuk@kernel.org>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: Joseph Qi <joseph.qi@linux.alibaba.com>
Cc: Junxiao Bi <junxiao.bi@oracle.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Zi Yan <ziy@nvidia.com>
Cc: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Cc: Miklos Szeredi <mszeredi@redhat.com>
Link: http://lkml.kernel.org/r/20200414150233.24495-14-willy@infradead.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
By reducing nr_to_read, we can eliminate this check from inside the loop.
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: John Hubbard <jhubbard@nvidia.com>
Reviewed-by: William Kucharski <william.kucharski@oracle.com>
Cc: Chao Yu <yuchao0@huawei.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Cong Wang <xiyou.wangcong@gmail.com>
Cc: Darrick J. Wong <darrick.wong@oracle.com>
Cc: Dave Chinner <dchinner@redhat.com>
Cc: Eric Biggers <ebiggers@google.com>
Cc: Gao Xiang <gaoxiang25@huawei.com>
Cc: Jaegeuk Kim <jaegeuk@kernel.org>
Cc: Joseph Qi <joseph.qi@linux.alibaba.com>
Cc: Junxiao Bi <junxiao.bi@oracle.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Zi Yan <ziy@nvidia.com>
Cc: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Cc: Miklos Szeredi <mszeredi@redhat.com>
Link: http://lkml.kernel.org/r/20200414150233.24495-13-willy@infradead.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This replaces ->readpages with a saner interface:
- Return void instead of an ignored error code.
- Page cache is already populated with locked pages when ->readahead
is called.
- New arguments can be passed to the implementation without changing
all the filesystems that use a common helper function like
mpage_readahead().
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: John Hubbard <jhubbard@nvidia.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: William Kucharski <william.kucharski@oracle.com>
Cc: Chao Yu <yuchao0@huawei.com>
Cc: Cong Wang <xiyou.wangcong@gmail.com>
Cc: Darrick J. Wong <darrick.wong@oracle.com>
Cc: Dave Chinner <dchinner@redhat.com>
Cc: Eric Biggers <ebiggers@google.com>
Cc: Gao Xiang <gaoxiang25@huawei.com>
Cc: Jaegeuk Kim <jaegeuk@kernel.org>
Cc: Joseph Qi <joseph.qi@linux.alibaba.com>
Cc: Junxiao Bi <junxiao.bi@oracle.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Zi Yan <ziy@nvidia.com>
Cc: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Cc: Miklos Szeredi <mszeredi@redhat.com>
Link: http://lkml.kernel.org/r/20200414150233.24495-12-willy@infradead.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When populating the page cache for readahead, mappings that use
->readpages must populate the page cache themselves as the pages are
passed on a linked list which would normally be used for the page
cache's LRU. For mappings that use ->readpage or the upcoming
->readahead method, we can put the pages into the page cache as soon as
they're allocated, which solves a race between readahead and direct IO.
It also lets us remove the gfp argument from read_pages().
Use the new readahead_page() API to implement the repeated calls to
->readpage(), just like most filesystems will.
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: William Kucharski <william.kucharski@oracle.com>
Cc: Chao Yu <yuchao0@huawei.com>
Cc: Cong Wang <xiyou.wangcong@gmail.com>
Cc: Darrick J. Wong <darrick.wong@oracle.com>
Cc: Dave Chinner <dchinner@redhat.com>
Cc: Eric Biggers <ebiggers@google.com>
Cc: Gao Xiang <gaoxiang25@huawei.com>
Cc: Jaegeuk Kim <jaegeuk@kernel.org>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: Joseph Qi <joseph.qi@linux.alibaba.com>
Cc: Junxiao Bi <junxiao.bi@oracle.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Zi Yan <ziy@nvidia.com>
Cc: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Cc: Miklos Szeredi <mszeredi@redhat.com>
Link: http://lkml.kernel.org/r/20200414150233.24495-11-willy@infradead.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Replace the page_offset variable with 'index + i'.
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: John Hubbard <jhubbard@nvidia.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: William Kucharski <william.kucharski@oracle.com>
Cc: Chao Yu <yuchao0@huawei.com>
Cc: Cong Wang <xiyou.wangcong@gmail.com>
Cc: Darrick J. Wong <darrick.wong@oracle.com>
Cc: Dave Chinner <dchinner@redhat.com>
Cc: Eric Biggers <ebiggers@google.com>
Cc: Gao Xiang <gaoxiang25@huawei.com>
Cc: Jaegeuk Kim <jaegeuk@kernel.org>
Cc: Joseph Qi <joseph.qi@linux.alibaba.com>
Cc: Junxiao Bi <junxiao.bi@oracle.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Zi Yan <ziy@nvidia.com>
Cc: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Cc: Miklos Szeredi <mszeredi@redhat.com>
Link: http://lkml.kernel.org/r/20200414150233.24495-10-willy@infradead.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Change the type of page_idx to unsigned long, and rename it -- it's just
a loop counter, not a page index.
Suggested-by: John Hubbard <jhubbard@nvidia.com>
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: William Kucharski <william.kucharski@oracle.com>
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Cc: Chao Yu <yuchao0@huawei.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Cong Wang <xiyou.wangcong@gmail.com>
Cc: Darrick J. Wong <darrick.wong@oracle.com>
Cc: Eric Biggers <ebiggers@google.com>
Cc: Gao Xiang <gaoxiang25@huawei.com>
Cc: Jaegeuk Kim <jaegeuk@kernel.org>
Cc: Joseph Qi <joseph.qi@linux.alibaba.com>
Cc: Junxiao Bi <junxiao.bi@oracle.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Zi Yan <ziy@nvidia.com>
Cc: Miklos Szeredi <mszeredi@redhat.com>
Link: http://lkml.kernel.org/r/20200414150233.24495-9-willy@infradead.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The word 'offset' is used ambiguously to mean 'byte offset within a
page', 'byte offset from the start of the file' and 'page offset from
the start of the file'.
Use 'index' to mean 'page offset from the start of the file' throughout
the readahead code.
[ We should probably rename the 'pgoff_t' type to 'pgidx_t' too - Linus ]
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Zi Yan <ziy@nvidia.com>
Reviewed-by: William Kucharski <william.kucharski@oracle.com>
Cc: Chao Yu <yuchao0@huawei.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Cong Wang <xiyou.wangcong@gmail.com>
Cc: Darrick J. Wong <darrick.wong@oracle.com>
Cc: Dave Chinner <dchinner@redhat.com>
Cc: Eric Biggers <ebiggers@google.com>
Cc: Gao Xiang <gaoxiang25@huawei.com>
Cc: Jaegeuk Kim <jaegeuk@kernel.org>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: Joseph Qi <joseph.qi@linux.alibaba.com>
Cc: Junxiao Bi <junxiao.bi@oracle.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Cc: Miklos Szeredi <mszeredi@redhat.com>
Link: http://lkml.kernel.org/r/20200414150233.24495-8-willy@infradead.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
In this patch, only between __do_page_cache_readahead() and
read_pages(), but it will be extended in upcoming patches. The
read_pages() function becomes aops centric, as this makes the most sense
by the end of the patchset.
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: John Hubbard <jhubbard@nvidia.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: William Kucharski <william.kucharski@oracle.com>
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Cc: Chao Yu <yuchao0@huawei.com>
Cc: Cong Wang <xiyou.wangcong@gmail.com>
Cc: Darrick J. Wong <darrick.wong@oracle.com>
Cc: Dave Chinner <dchinner@redhat.com>
Cc: Eric Biggers <ebiggers@google.com>
Cc: Gao Xiang <gaoxiang25@huawei.com>
Cc: Jaegeuk Kim <jaegeuk@kernel.org>
Cc: Joseph Qi <joseph.qi@linux.alibaba.com>
Cc: Junxiao Bi <junxiao.bi@oracle.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Zi Yan <ziy@nvidia.com>
Cc: Miklos Szeredi <mszeredi@redhat.com>
Link: http://lkml.kernel.org/r/20200414150233.24495-7-willy@infradead.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Simplify the callers by moving the check for nr_pages and the BUG_ON
into read_pages().
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Zi Yan <ziy@nvidia.com>
Reviewed-by: John Hubbard <jhubbard@nvidia.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: William Kucharski <william.kucharski@oracle.com>
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Cc: Chao Yu <yuchao0@huawei.com>
Cc: Cong Wang <xiyou.wangcong@gmail.com>
Cc: Darrick J. Wong <darrick.wong@oracle.com>
Cc: Dave Chinner <dchinner@redhat.com>
Cc: Eric Biggers <ebiggers@google.com>
Cc: Gao Xiang <gaoxiang25@huawei.com>
Cc: Jaegeuk Kim <jaegeuk@kernel.org>
Cc: Joseph Qi <joseph.qi@linux.alibaba.com>
Cc: Junxiao Bi <junxiao.bi@oracle.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Miklos Szeredi <mszeredi@redhat.com>
Link: http://lkml.kernel.org/r/20200414150233.24495-5-willy@infradead.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
We used to assign the return value to a variable, which we then ignored.
Remove the pretence of caring.
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: John Hubbard <jhubbard@nvidia.com>
Reviewed-by: William Kucharski <william.kucharski@oracle.com>
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Cc: Chao Yu <yuchao0@huawei.com>
Cc: Cong Wang <xiyou.wangcong@gmail.com>
Cc: Darrick J. Wong <darrick.wong@oracle.com>
Cc: Eric Biggers <ebiggers@google.com>
Cc: Gao Xiang <gaoxiang25@huawei.com>
Cc: Jaegeuk Kim <jaegeuk@kernel.org>
Cc: Joseph Qi <joseph.qi@linux.alibaba.com>
Cc: Junxiao Bi <junxiao.bi@oracle.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Zi Yan <ziy@nvidia.com>
Cc: Miklos Szeredi <mszeredi@redhat.com>
Link: http://lkml.kernel.org/r/20200414150233.24495-4-willy@infradead.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
ondemand_readahead has two callers, neither of which use the return
value. That means that both ra_submit and __do_page_cache_readahead()
can return void, and we don't need to worry that a present page in the
readahead window causes us to return a smaller nr_pages than we ought to
have.
Similarly, no caller uses the return value from
force_page_cache_readahead().
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: John Hubbard <jhubbard@nvidia.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: William Kucharski <william.kucharski@oracle.com>
Cc: Chao Yu <yuchao0@huawei.com>
Cc: Cong Wang <xiyou.wangcong@gmail.com>
Cc: Darrick J. Wong <darrick.wong@oracle.com>
Cc: Eric Biggers <ebiggers@google.com>
Cc: Gao Xiang <gaoxiang25@huawei.com>
Cc: Jaegeuk Kim <jaegeuk@kernel.org>
Cc: Joseph Qi <joseph.qi@linux.alibaba.com>
Cc: Junxiao Bi <junxiao.bi@oracle.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Zi Yan <ziy@nvidia.com>
Cc: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Cc: Miklos Szeredi <mszeredi@redhat.com>
Link: http://lkml.kernel.org/r/20200414150233.24495-3-willy@infradead.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Patch series "Change readahead API", v11.
This series adds a readahead address_space operation to replace the
readpages operation. The key difference is that pages are added to the
page cache as they are allocated (and then looked up by the filesystem)
instead of passing them on a list to the readpages operation and having
the filesystem add them to the page cache. It's a net reduction in code
for each implementation, more efficient than walking a list, and solves
the direct-write vs buffered-read problem reported by yu kuai at
http://lkml.kernel.org/r/20200116063601.39201-1-yukuai3@huawei.com
The only unconverted filesystems are those which use fscache. Their
conversion is pending Dave Howells' rewrite which will make the
conversion substantially easier. This should be completed by the end of
the year.
I want to thank the reviewers/testers; Dave Chinner, John Hubbard, Eric
Biggers, Johannes Thumshirn, Dave Sterba, Zi Yan, Christoph Hellwig and
Miklos Szeredi have done a marvellous job of providing constructive
criticism.
These patches pass an xfstests run on ext4, xfs & btrfs with no
regressions that I can tell (some of the tests seem a little flaky
before and remain flaky afterwards).
This patch (of 25):
The readahead code is part of the page cache so should be found in the
pagemap.h file. force_page_cache_readahead is only used within mm, so
move it to mm/internal.h instead. Remove the parameter names where they
add no value, and rename the ones which were actively misleading.
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: John Hubbard <jhubbard@nvidia.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: William Kucharski <william.kucharski@oracle.com>
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Cc: Chao Yu <yuchao0@huawei.com>
Cc: Cong Wang <xiyou.wangcong@gmail.com>
Cc: Darrick J. Wong <darrick.wong@oracle.com>
Cc: Dave Chinner <dchinner@redhat.com>
Cc: Eric Biggers <ebiggers@google.com>
Cc: Gao Xiang <gaoxiang25@huawei.com>
Cc: Jaegeuk Kim <jaegeuk@kernel.org>
Cc: Joseph Qi <joseph.qi@linux.alibaba.com>
Cc: Junxiao Bi <junxiao.bi@oracle.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Zi Yan <ziy@nvidia.com>
Cc: Miklos Szeredi <mszeredi@redhat.com>
Link: http://lkml.kernel.org/r/20200414150233.24495-1-willy@infradead.org
Link: http://lkml.kernel.org/r/20200414150233.24495-2-willy@infradead.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
We have seen a following problem on a RPi4 with 1G RAM:
BUG: Bad page state in process systemd-hwdb pfn:35601
page:ffff7e0000d58040 refcount:15 mapcount:131221 mapping:efd8fe765bc80080 index:0x1 compound_mapcount: -32767
Unable to handle kernel paging request at virtual address efd8fe765bc80080
Mem abort info:
ESR = 0x96000004
Exception class = DABT (current EL), IL = 32 bits
SET = 0, FnV = 0
EA = 0, S1PTW = 0
Data abort info:
ISV = 0, ISS = 0x00000004
CM = 0, WnR = 0
[efd8fe765bc80080] address between user and kernel address ranges
Internal error: Oops: 96000004 [#1] SMP
Modules linked in: btrfs libcrc32c xor xor_neon zlib_deflate raid6_pq mmc_block xhci_pci xhci_hcd usbcore sdhci_iproc sdhci_pltfm sdhci mmc_core clk_raspberrypi gpio_raspberrypi_exp pcie_brcmstb bcm2835_dma gpio_regulator phy_generic fixed sg scsi_mod efivarfs
Supported: No, Unreleased kernel
CPU: 3 PID: 408 Comm: systemd-hwdb Not tainted 5.3.18-8-default #1 SLE15-SP2 (unreleased)
Hardware name: raspberrypi rpi/rpi, BIOS 2020.01 02/21/2020
pstate: 40000085 (nZcv daIf -PAN -UAO)
pc : __dump_page+0x268/0x368
lr : __dump_page+0xc4/0x368
sp : ffff000012563860
x29: ffff000012563860 x28: ffff80003ddc4300
x27: 0000000000000010 x26: 000000000000003f
x25: ffff7e0000d58040 x24: 000000000000000f
x23: efd8fe765bc80080 x22: 0000000000020095
x21: efd8fe765bc80080 x20: ffff000010ede8b0
x19: ffff7e0000d58040 x18: ffffffffffffffff
x17: 0000000000000001 x16: 0000000000000007
x15: ffff000011689708 x14: 3030386362353637
x13: 6566386466653a67 x12: 6e697070616d2031
x11: 32323133313a746e x10: 756f6370616d2035
x9 : ffff00001168a840 x8 : ffff00001077a670
x7 : 000000000000013d x6 : ffff0000118a43b5
x5 : 0000000000000001 x4 : ffff80003dd9e2c8
x3 : ffff80003dd9e2c8 x2 : 911c8d7c2f483500
x1 : dead000000000100 x0 : efd8fe765bc80080
Call trace:
__dump_page+0x268/0x368
bad_page+0xd4/0x168
check_new_page_bad+0x80/0xb8
rmqueue_bulk.constprop.26+0x4d8/0x788
get_page_from_freelist+0x4d4/0x1228
__alloc_pages_nodemask+0x134/0xe48
alloc_pages_vma+0x198/0x1c0
do_anonymous_page+0x1a4/0x4d8
__handle_mm_fault+0x4e8/0x560
handle_mm_fault+0x104/0x1e0
do_page_fault+0x1e8/0x4c0
do_translation_fault+0xb0/0xc0
do_mem_abort+0x50/0xb0
el0_da+0x24/0x28
Code: f9401025 8b8018a0 9a851005 17ffffca (f94002a0)
Besides the underlying issue with page->mapping containing a bogus value
for some reason, we can see that __dump_page() crashed by trying to read
the pointer at mapping->host, turning a recoverable warning into full
Oops.
It can be expected that when page is reported as bad state for some
reason, the pointers there should not be trusted blindly.
So this patch treats all data in __dump_page() that depends on
page->mapping as lava, using probe_kernel_read_strict(). Ideally this
would include the dentry->d_parent recursively, but that would mean
changing printk handler for %pd. Chances of reaching the dentry
printing part with an initially bogus mapping pointer should be rather
low, though.
Also prefix printing mapping->a_ops with a description of what is being
printed. In case the value is bogus, %ps will print raw value instead
of the symbol name and then it's not obvious at all that it's printing
a_ops.
Reported-by: Petr Tesarik <ptesarik@suse.cz>
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: John Hubbard <jhubbard@nvidia.com>
Link: http://lkml.kernel.org/r/20200331165454.12263-1-vbabka@suse.cz
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
There is no need to copy SLUB_STATS items from root memcg cache to new
memcg cache copies. Doing so could result in stack overruns because the
store function only accepts 0 to clear the stat and returns an error for
everything else while the show method would print out the whole stat.
Then, the mismatch of the lengths returns from show and store methods
happens in memcg_propagate_slab_attrs():
else if (root_cache->max_attr_size < ARRAY_SIZE(mbuf))
buf = mbuf;
max_attr_size is only 2 from slab_attr_store(), then, it uses mbuf[64]
in show_stat() later where a bounch of sprintf() would overrun the stack
variable. Fix it by always allocating a page of buffer to be used in
show_stat() if SLUB_STATS=y which should only be used for debug purpose.
# echo 1 > /sys/kernel/slab/fs_cache/shrink
BUG: KASAN: stack-out-of-bounds in number+0x421/0x6e0
Write of size 1 at addr ffffc900256cfde0 by task kworker/76:0/53251
Hardware name: HPE ProLiant DL385 Gen10/ProLiant DL385 Gen10, BIOS A40 07/10/2019
Workqueue: memcg_kmem_cache memcg_kmem_cache_create_func
Call Trace:
number+0x421/0x6e0
vsnprintf+0x451/0x8e0
sprintf+0x9e/0xd0
show_stat+0x124/0x1d0
alloc_slowpath_show+0x13/0x20
__kmem_cache_create+0x47a/0x6b0
addr ffffc900256cfde0 is located in stack of task kworker/76:0/53251 at offset 0 in frame:
process_one_work+0x0/0xb90
this frame has 1 object:
[32, 72) 'lockdep_map'
Memory state around the buggy address:
ffffc900256cfc80: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
ffffc900256cfd00: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
>ffffc900256cfd80: 00 00 00 00 00 00 00 00 00 00 00 00 f1 f1 f1 f1
^
ffffc900256cfe00: 00 00 00 00 00 f2 f2 f2 00 00 00 00 00 00 00 00
ffffc900256cfe80: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
==================================================================
Kernel panic - not syncing: stack-protector: Kernel stack is corrupted in: __kmem_cache_create+0x6ac/0x6b0
Workqueue: memcg_kmem_cache memcg_kmem_cache_create_func
Call Trace:
__kmem_cache_create+0x6ac/0x6b0
Fixes: 107dab5c92 ("slub: slub-specific propagation changes")
Signed-off-by: Qian Cai <cai@lca.pw>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Glauber Costa <glauber@scylladb.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Link: http://lkml.kernel.org/r/20200429222356.4322-1-cai@lca.pw
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
list_slab_objects() is called when a slab is destroyed and there are
objects still left to list the objects in the syslog. This is a pretty
rare event.
And there it seems we take the list_lock and call kmalloc while holding
that lock.
Perform the allocation in free_partial() before the list_lock is taken.
Fixes: bbd7d57bfe ("slub: Potential stack overflow")
Signed-off-by: Christopher Lameter <cl@linux.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Tetsuo Handa <penguin-kernel@i-love.sakura.ne.jp>
Cc: Yu Zhao <yuzhao@google.com>
Link: http://lkml.kernel.org/r/alpine.DEB.2.21.2002031721250.1668@www.lameter.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
I came across some unnecessary uevents once again which reminded me
this. The patch seems to be lost in the leaves of the original
discussion [1], so resending.
[1] https://lore.kernel.org/r/alpine.DEB.2.21.2001281813130.745@www.lameter.com
Kmem caches are internal kernel structures so it is strange that
userspace notifiers would be needed. And I am not aware of any use of
these notifiers. These notifiers may just exist because in the initial
slub release the sysfs code was copied from another subsystem.
Signed-off-by: Christoph Lameter <cl@linux.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Michal Koutný <mkoutny@suse.com>
Acked-by: David Rientjes <rientjes@google.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Link: http://lkml.kernel.org/r/20200423115721.19821-1-mkoutny@suse.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The slub_debug is able to fix the corrupted slab freelist/page.
However, alloc_debug_processing() only checks the validity of current
and next freepointer during allocation path. As a result, once some
objects have their freepointers corrupted, deactivate_slab() may lead to
page fault.
Below is from a test kernel module when 'slub_debug=PUF,kmalloc-128
slub_nomerge'. The test kernel corrupts the freepointer of one free
object on purpose. Unfortunately, deactivate_slab() does not detect it
when iterating the freechain.
BUG: unable to handle page fault for address: 00000000123456f8
#PF: supervisor read access in kernel mode
#PF: error_code(0x0000) - not-present page
PGD 0 P4D 0
Oops: 0000 [#1] SMP PTI
... ...
RIP: 0010:deactivate_slab.isra.92+0xed/0x490
... ...
Call Trace:
___slab_alloc+0x536/0x570
__slab_alloc+0x17/0x30
__kmalloc+0x1d9/0x200
ext4_htree_store_dirent+0x30/0xf0
htree_dirblock_to_tree+0xcb/0x1c0
ext4_htree_fill_tree+0x1bc/0x2d0
ext4_readdir+0x54f/0x920
iterate_dir+0x88/0x190
__x64_sys_getdents+0xa6/0x140
do_syscall_64+0x49/0x170
entry_SYSCALL_64_after_hwframe+0x44/0xa9
Therefore, this patch adds extra consistency check in deactivate_slab().
Once an object's freepointer is corrupted, all following objects
starting at this object are isolated.
[akpm@linux-foundation.org: fix build with CONFIG_SLAB_DEBUG=n]
Signed-off-by: Dongli Zhang <dongli.zhang@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Joe Jin <joe.jin@oracle.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Link: http://lkml.kernel.org/r/20200331031450.12182-1-dongli.zhang@oracle.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
We have seen a "usercopy: Kernel memory overwrite attempt detected to
SLUB object 'dma-kmalloc-1 k' (offset 0, size 11)!" error on s390x, as
IUCV uses kmalloc() with __GFP_DMA because of memory address
restrictions. The issue has been discussed [2] and it has been noted
that if all the kmalloc caches are marked as usercopy, there's little
reason not to mark dma-kmalloc caches too. The 'dma' part merely means
that __GFP_DMA is used to restrict memory address range.
As Jann Horn put it [3]:
"I think dma-kmalloc slabs should be handled the same way as normal
kmalloc slabs. When a dma-kmalloc allocation is freshly created, it is
just normal kernel memory - even if it might later be used for DMA -,
and it should be perfectly fine to copy_from_user() into such
allocations at that point, and to copy_to_user() out of them at the
end. If you look at the places where such allocations are created, you
can see things like kmemdup(), memcpy() and so on - all normal
operations that shouldn't conceptually be different from usercopy in
any relevant way."
Thus this patch marks the dma-kmalloc-* caches as usercopy.
[1] https://bugzilla.suse.com/show_bug.cgi?id=1156053
[2] https://lore.kernel.org/kernel-hardening/bfca96db-bbd0-d958-7732-76e36c667c68@suse.cz/
[3] https://lore.kernel.org/kernel-hardening/CAG48ez1a4waGk9kB0WLaSbs4muSoK0AYAVk8=XYaKj4_+6e6Hg@mail.gmail.com/
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Christian Borntraeger <borntraeger@de.ibm.com>
Acked-by: Jiri Slaby <jslaby@suse.cz>
Cc: Jann Horn <jannh@google.com>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: Christopher Lameter <cl@linux.com>
Cc: Julian Wiedmann <jwi@linux.ibm.com>
Cc: Ursula Braun <ubraun@linux.ibm.com>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: David Windsor <dave@nullcore.net>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Laura Abbott <labbott@redhat.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: "Martin K. Petersen" <martin.petersen@oracle.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Christoffer Dall <christoffer.dall@linaro.org>
Cc: Dave Kleikamp <dave.kleikamp@oracle.com>
Cc: Jan Kara <jack@suse.cz>
Cc: Luis de Bethencourt <luisbg@kernel.org>
Cc: Marc Zyngier <marc.zyngier@arm.com>
Cc: Rik van Riel <riel@surriel.com>
Cc: Matthew Garrett <mjg59@google.com>
Cc: Michal Kubecek <mkubecek@suse.cz>
Link: http://lkml.kernel.org/r/7d810f6d-8085-ea2f-7805-47ba3842dc50@suse.cz
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Doing a "get_user_pages()" on a copy-on-write page for reading can be
ambiguous: the page can be COW'ed at any time afterwards, and the
direction of a COW event isn't defined.
Yes, whoever writes to it will generally do the COW, but if the thread
that did the get_user_pages() unmapped the page before the write (and
that could happen due to memory pressure in addition to any outright
action), the writer could also just take over the old page instead.
End result: the get_user_pages() call might result in a page pointer
that is no longer associated with the original VM, and is associated
with - and controlled by - another VM having taken it over instead.
So when doing a get_user_pages() on a COW mapping, the only really safe
thing to do would be to break the COW when getting the page, even when
only getting it for reading.
At the same time, some users simply don't even care.
For example, the perf code wants to look up the page not because it
cares about the page, but because the code simply wants to look up the
physical address of the access for informational purposes, and doesn't
really care about races when a page might be unmapped and remapped
elsewhere.
This adds logic to force a COW event by setting FOLL_WRITE on any
copy-on-write mapping when FOLL_GET (or FOLL_PIN) is used to get a page
pointer as a result.
The current semantics end up being:
- __get_user_pages_fast(): no change. If you don't ask for a write,
you won't break COW. You'd better know what you're doing.
- get_user_pages_fast(): the fast-case "look it up in the page tables
without anything getting mmap_sem" now refuses to follow a read-only
page, since it might need COW breaking. Which happens in the slow
path - the fast path doesn't know if the memory might be COW or not.
- get_user_pages() (including the slow-path fallback for gup_fast()):
for a COW mapping, turn on FOLL_WRITE for FOLL_GET/FOLL_PIN, with
very similar semantics to FOLL_FORCE.
If it turns out that we want finer granularity (ie "only break COW when
it might actually matter" - things like the zero page are special and
don't need to be broken) we might need to push these semantics deeper
into the lookup fault path. So if people care enough, it's possible
that we might end up adding a new internal FOLL_BREAK_COW flag to go
with the internal FOLL_COW flag we already have for tracking "I had a
COW".
Alternatively, if it turns out that different callers might want to
explicitly control the forced COW break behavior, we might even want to
make such a flag visible to the users of get_user_pages() instead of
using the above default semantics.
But for now, this is mostly commentary on the issue (this commit message
being a lot bigger than the patch, and that patch in turn is almost all
comments), with that minimal "enable COW breaking early" logic using the
existing FOLL_WRITE behavior.
[ It might be worth noting that we've always had this ambiguity, and it
could arguably be seen as a user-space issue.
You only get private COW mappings that could break either way in
situations where user space is doing cooperative things (ie fork()
before an execve() etc), but it _is_ surprising and very subtle, and
fork() is supposed to give you independent address spaces.
So let's treat this as a kernel issue and make the semantics of
get_user_pages() easier to understand. Note that obviously a true
shared mapping will still get a page that can change under us, so this
does _not_ mean that get_user_pages() somehow returns any "stable"
page ]
Reported-by: Jann Horn <jannh@google.com>
Tested-by: Christoph Hellwig <hch@lst.de>
Acked-by: Oleg Nesterov <oleg@redhat.com>
Acked-by: Kirill Shutemov <kirill@shutemov.name>
Acked-by: Jan Kara <jack@suse.cz>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Matthew Wilcox <willy@infradead.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
set from Mauro toward the completion of the RST conversion. I *really*
hope we are getting close to the end of this. Meanwhile, those patches
reach pretty far afield to update document references around the tree;
there should be no actual code changes there. There will be, alas, more of
the usual trivial merge conflicts.
Beyond that we have more translations, improvements to the sphinx
scripting, a number of additions to the sysctl documentation, and lots of
fixes.
-----BEGIN PGP SIGNATURE-----
iQFDBAABCAAtFiEEIw+MvkEiF49krdp9F0NaE2wMflgFAl7VId8PHGNvcmJldEBs
d24ubmV0AAoJEBdDWhNsDH5Yq/gH/iaDgirQZV6UZ2v9sfwQNYolNpf2sKAuOZjd
bPFB7WJoMQbKwQEvYrAUL2+5zPOcLYuIfzyOfo1BV1py+EyKbACcKjI4AedxfJF7
+NchmOBhlEqmEhzx2U08HRc4/8J223WG17fJRVsV3p+opJySexSFeQucfOciX5NR
RUCxweWWyg/FgyqjkyMMTtsePqZPmcT5dWTlVXISlbWzcv5NFhuJXnSrw8Sfzcmm
SJMzqItv3O+CabnKQ8kMLV2PozXTMfjeWH47ZUK0Y8/8PP9+cvqwFzZ0UDQJ1Xaz
oyW/TqmunaXhfMsMFeFGSwtfgwRHvXdxkQdtwNHvo1dV4dzTvDw=
=fDC/
-----END PGP SIGNATURE-----
Merge tag 'docs-5.8' of git://git.lwn.net/linux
Pull documentation updates from Jonathan Corbet:
"A fair amount of stuff this time around, dominated by yet another
massive set from Mauro toward the completion of the RST conversion. I
*really* hope we are getting close to the end of this. Meanwhile,
those patches reach pretty far afield to update document references
around the tree; there should be no actual code changes there. There
will be, alas, more of the usual trivial merge conflicts.
Beyond that we have more translations, improvements to the sphinx
scripting, a number of additions to the sysctl documentation, and lots
of fixes"
* tag 'docs-5.8' of git://git.lwn.net/linux: (130 commits)
Documentation: fixes to the maintainer-entry-profile template
zswap: docs/vm: Fix typo accept_threshold_percent in zswap.rst
tracing: Fix events.rst section numbering
docs: acpi: fix old http link and improve document format
docs: filesystems: add info about efivars content
Documentation: LSM: Correct the basic LSM description
mailmap: change email for Ricardo Ribalda
docs: sysctl/kernel: document unaligned controls
Documentation: admin-guide: update bug-hunting.rst
docs: sysctl/kernel: document ngroups_max
nvdimm: fixes to maintainter-entry-profile
Documentation/features: Correct RISC-V kprobes support entry
Documentation/features: Refresh the arch support status files
Revert "docs: sysctl/kernel: document ngroups_max"
docs: move locking-specific documents to locking/
docs: move digsig docs to the security book
docs: move the kref doc into the core-api book
docs: add IRQ documentation at the core-api book
docs: debugging-via-ohci1394.txt: add it to the core-api book
docs: fix references for ipmi.rst file
...
- Branch Target Identification (BTI)
* Support for ARMv8.5-BTI in both user- and kernel-space. This
allows branch targets to limit the types of branch from which
they can be called and additionally prevents branching to
arbitrary code, although kernel support requires a very recent
toolchain.
* Function annotation via SYM_FUNC_START() so that assembly
functions are wrapped with the relevant "landing pad"
instructions.
* BPF and vDSO updates to use the new instructions.
* Addition of a new HWCAP and exposure of BTI capability to
userspace via ID register emulation, along with ELF loader
support for the BTI feature in .note.gnu.property.
* Non-critical fixes to CFI unwind annotations in the sigreturn
trampoline.
- Shadow Call Stack (SCS)
* Support for Clang's Shadow Call Stack feature, which reserves
platform register x18 to point at a separate stack for each
task that holds only return addresses. This protects function
return control flow from buffer overruns on the main stack.
* Save/restore of x18 across problematic boundaries (user-mode,
hypervisor, EFI, suspend, etc).
* Core support for SCS, should other architectures want to use it
too.
* SCS overflow checking on context-switch as part of the existing
stack limit check if CONFIG_SCHED_STACK_END_CHECK=y.
- CPU feature detection
* Removed numerous "SANITY CHECK" errors when running on a system
with mismatched AArch32 support at EL1. This is primarily a
concern for KVM, which disabled support for 32-bit guests on
such a system.
* Addition of new ID registers and fields as the architecture has
been extended.
- Perf and PMU drivers
* Minor fixes and cleanups to system PMU drivers.
- Hardware errata
* Unify KVM workarounds for VHE and nVHE configurations.
* Sort vendor errata entries in Kconfig.
- Secure Monitor Call Calling Convention (SMCCC)
* Update to the latest specification from Arm (v1.2).
* Allow PSCI code to query the SMCCC version.
- Software Delegated Exception Interface (SDEI)
* Unexport a bunch of unused symbols.
* Minor fixes to handling of firmware data.
- Pointer authentication
* Add support for dumping the kernel PAC mask in vmcoreinfo so
that the stack can be unwound by tools such as kdump.
* Simplification of key initialisation during CPU bringup.
- BPF backend
* Improve immediate generation for logical and add/sub
instructions.
- vDSO
- Minor fixes to the linker flags for consistency with other
architectures and support for LLVM's unwinder.
- Clean up logic to initialise and map the vDSO into userspace.
- ACPI
- Work around for an ambiguity in the IORT specification relating
to the "num_ids" field.
- Support _DMA method for all named components rather than only
PCIe root complexes.
- Minor other IORT-related fixes.
- Miscellaneous
* Initialise debug traps early for KGDB and fix KDB cacheflushing
deadlock.
* Minor tweaks to early boot state (documentation update, set
TEXT_OFFSET to 0x0, increase alignment of PE/COFF sections).
* Refactoring and cleanup
-----BEGIN PGP SIGNATURE-----
iQFEBAABCgAuFiEEPxTL6PPUbjXGY88ct6xw3ITBYzQFAl7U9csQHHdpbGxAa2Vy
bmVsLm9yZwAKCRC3rHDchMFjNLBHCACs/YU4SM7Om5f+7QnxIKao5DBr2CnGGvdC
yTfDghFDTLQVv3MufLlfno3yBe5G8sQpcZfcc+hewfcGoMzVZXu8s7LzH6VSn9T9
jmT3KjDMrg0RjSHzyumJp2McyelTk0a4FiKArSIIKsJSXUyb1uPSgm7SvKVDwEwU
JGDzL9IGilmq59GiXfDzGhTZgmC37QdwRoRxDuqtqWQe5CHoRXYexg87HwBKOQxx
HgU9L7ehri4MRZfpyjaDrr6quJo3TVnAAKXNBh3mZAskVS9ZrfKpEH0kYWYuqybv
znKyHRecl/rrGePV8RTMtrwnSdU26zMXE/omsVVauDfG9hqzqm+Q
=w3qi
-----END PGP SIGNATURE-----
Merge tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux
Pull arm64 updates from Will Deacon:
"A sizeable pile of arm64 updates for 5.8.
Summary below, but the big two features are support for Branch Target
Identification and Clang's Shadow Call stack. The latter is currently
arm64-only, but the high-level parts are all in core code so it could
easily be adopted by other architectures pending toolchain support
Branch Target Identification (BTI):
- Support for ARMv8.5-BTI in both user- and kernel-space. This allows
branch targets to limit the types of branch from which they can be
called and additionally prevents branching to arbitrary code,
although kernel support requires a very recent toolchain.
- Function annotation via SYM_FUNC_START() so that assembly functions
are wrapped with the relevant "landing pad" instructions.
- BPF and vDSO updates to use the new instructions.
- Addition of a new HWCAP and exposure of BTI capability to userspace
via ID register emulation, along with ELF loader support for the
BTI feature in .note.gnu.property.
- Non-critical fixes to CFI unwind annotations in the sigreturn
trampoline.
Shadow Call Stack (SCS):
- Support for Clang's Shadow Call Stack feature, which reserves
platform register x18 to point at a separate stack for each task
that holds only return addresses. This protects function return
control flow from buffer overruns on the main stack.
- Save/restore of x18 across problematic boundaries (user-mode,
hypervisor, EFI, suspend, etc).
- Core support for SCS, should other architectures want to use it
too.
- SCS overflow checking on context-switch as part of the existing
stack limit check if CONFIG_SCHED_STACK_END_CHECK=y.
CPU feature detection:
- Removed numerous "SANITY CHECK" errors when running on a system
with mismatched AArch32 support at EL1. This is primarily a concern
for KVM, which disabled support for 32-bit guests on such a system.
- Addition of new ID registers and fields as the architecture has
been extended.
Perf and PMU drivers:
- Minor fixes and cleanups to system PMU drivers.
Hardware errata:
- Unify KVM workarounds for VHE and nVHE configurations.
- Sort vendor errata entries in Kconfig.
Secure Monitor Call Calling Convention (SMCCC):
- Update to the latest specification from Arm (v1.2).
- Allow PSCI code to query the SMCCC version.
Software Delegated Exception Interface (SDEI):
- Unexport a bunch of unused symbols.
- Minor fixes to handling of firmware data.
Pointer authentication:
- Add support for dumping the kernel PAC mask in vmcoreinfo so that
the stack can be unwound by tools such as kdump.
- Simplification of key initialisation during CPU bringup.
BPF backend:
- Improve immediate generation for logical and add/sub instructions.
vDSO:
- Minor fixes to the linker flags for consistency with other
architectures and support for LLVM's unwinder.
- Clean up logic to initialise and map the vDSO into userspace.
ACPI:
- Work around for an ambiguity in the IORT specification relating to
the "num_ids" field.
- Support _DMA method for all named components rather than only PCIe
root complexes.
- Minor other IORT-related fixes.
Miscellaneous:
- Initialise debug traps early for KGDB and fix KDB cacheflushing
deadlock.
- Minor tweaks to early boot state (documentation update, set
TEXT_OFFSET to 0x0, increase alignment of PE/COFF sections).
- Refactoring and cleanup"
* tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux: (148 commits)
KVM: arm64: Move __load_guest_stage2 to kvm_mmu.h
KVM: arm64: Check advertised Stage-2 page size capability
arm64/cpufeature: Add get_arm64_ftr_reg_nowarn()
ACPI/IORT: Remove the unused __get_pci_rid()
arm64/cpuinfo: Add ID_MMFR4_EL1 into the cpuinfo_arm64 context
arm64/cpufeature: Add remaining feature bits in ID_AA64PFR1 register
arm64/cpufeature: Add remaining feature bits in ID_AA64PFR0 register
arm64/cpufeature: Add remaining feature bits in ID_AA64ISAR0 register
arm64/cpufeature: Add remaining feature bits in ID_MMFR4 register
arm64/cpufeature: Add remaining feature bits in ID_PFR0 register
arm64/cpufeature: Introduce ID_MMFR5 CPU register
arm64/cpufeature: Introduce ID_DFR1 CPU register
arm64/cpufeature: Introduce ID_PFR2 CPU register
arm64/cpufeature: Make doublelock a signed feature in ID_AA64DFR0
arm64/cpufeature: Drop TraceFilt feature exposure from ID_DFR0 register
arm64/cpufeature: Add explicit ftr_id_isar0[] for ID_ISAR0 register
arm64: mm: Add asid_gen_match() helper
firmware: smccc: Fix missing prototype warning for arm_smccc_version_init
arm64: vdso: Fix CFI directives in sigreturn trampoline
arm64: vdso: Don't prefix sigreturn trampoline with a BTI C instruction
...
of local_lock_t - this primitive comes from the -rt project and identifies
CPU-local locking dependencies normally handled opaquely beind preempt_disable()
or local_irq_save/disable() critical sections.
The generated code on mainline kernels doesn't change as a result, but still there
are benefits: improved debugging and better documentation of data structure
accesses.
The new local_lock_t primitives are introduced and then utilized in a couple of
kernel subsystems. No change in functionality is intended.
There's also other smaller changes and cleanups.
Signed-off-by: Ingo Molnar <mingo@kernel.org>
-----BEGIN PGP SIGNATURE-----
iQJFBAABCgAvFiEEBpT5eoXrXCwVQwEKEnMQ0APhK1gFAl7VAogRHG1pbmdvQGtl
cm5lbC5vcmcACgkQEnMQ0APhK1h67BAAusYb44jJyZUE74rmaLnJr0c6j7eJ6twT
8LKRwxb21Y35DMuX6M5ewmvnHiLFYmjL728z+y8O+SP8vb4PSJBX/75X+wsawIJB
cjHdxonyynVVC4zcbdrc37FsrOiVoKLbbZcpqRzHksKkCq2PHbFVxBNvEaKHZCWW
1jnq0MRy9wEJtW9EThDWPLD+OPWhBvocUFYJH4fiqCIaDiip/E16fz3i+yMPt545
Jz4Ibnsq+G5Ehm1N2AkaZuK9V9nYv85E7Z/UNiK4mkDOApE6OMS+q3d86BhqgPg5
g/HL3HNXAtIY74tBYAac5tAQglT+283LuTpEPt9BEjNM7QxKg/ecXO7lwtn7Boku
dACMqeuMHbLyru8uhbun/VBx1gca7HIhW1cvXO5OoR7o78fHpEFivjJ0B0OuSYAI
y+/DsA41OlkWSEnboUs+zTQgFatqxQPke92xpGOJtjVVZRYHRqxcPtw9WFmoVqWA
HeczDQLcSUhqbKSfr6X9BO2u3qxys5BzmImTKMqXEQ4d8Kk0QXbJgGYGfS8+ASey
Am/jwUP3Cvzs99NxLH5gECKRSuTx3rY7nRGaIBYa+Ui575bdSF8sVAF13riB2mBp
NJq2Pw0D36WcX7ecaC2Fk2ezkphbeuAr8E7gh/Mt/oVxjrfwRGfPMrnIwKygUydw
1W5x+WZ+WsY=
=TBTY
-----END PGP SIGNATURE-----
Merge tag 'locking-core-2020-06-01' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull locking updates from Ingo Molnar:
"The biggest change to core locking facilities in this cycle is the
introduction of local_lock_t - this primitive comes from the -rt
project and identifies CPU-local locking dependencies normally handled
opaquely beind preempt_disable() or local_irq_save/disable() critical
sections.
The generated code on mainline kernels doesn't change as a result, but
still there are benefits: improved debugging and better documentation
of data structure accesses.
The new local_lock_t primitives are introduced and then utilized in a
couple of kernel subsystems. No change in functionality is intended.
There's also other smaller changes and cleanups"
* tag 'locking-core-2020-06-01' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
zram: Use local lock to protect per-CPU data
zram: Allocate struct zcomp_strm as per-CPU memory
connector/cn_proc: Protect send_msg() with a local lock
squashfs: Make use of local lock in multi_cpu decompressor
mm/swap: Use local_lock for protection
radix-tree: Use local_lock for protection
locking: Introduce local_lock()
locking/lockdep: Replace zero-length array with flexible-array
locking/rtmutex: Remove unused rt_mutex_cmpxchg_relaxed()
xdp_umem.c had overlapping changes between the 64-bit math fix
for the calculation of npgs and the removal of the zerocopy
memory type which got rid of the chunk_size_nohdr member.
The mlx5 Kconfig conflict is a case where we just take the
net-next copy of the Kconfig entry dependency as it takes on
the ESWITCH dependency by one level of indirection which is
what the 'net' conflicting change is trying to ensure.
Signed-off-by: David S. Miller <davem@davemloft.net>
When collapse_file() calls try_to_release_page(), it has already isolated
the page: so if releasing buffers happens to fail (as it sometimes does),
remember to putback_lru_page(): otherwise that page is left unreclaimable
and unfreeable, and the file extent uncollapsible.
Fixes: 99cb0dbd47 ("mm,thp: add read-only THP support for (non-shmem) FS")
Signed-off-by: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Song Liu <songliubraving@fb.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Rik van Riel <riel@surriel.com>
Cc: <stable@vger.kernel.org> [5.4+]
Link: http://lkml.kernel.org/r/alpine.LSU.2.11.2005231837500.1766@eggly.anvils
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Kmemleak reported many leaks while under memory pressue in,
slots = alloc_slots(pool, gfp);
which is referenced by "zhdr" in init_z3fold_page(),
zhdr->slots = slots;
However, "zhdr" could be gone without freeing slots as the later will be
freed separately when the last "handle" off of "handles" array is freed.
It will be within "slots" which is always aligned.
unreferenced object 0xc000000fdadc1040 (size 104):
comm "oom04", pid 140476, jiffies 4295359280 (age 3454.970s)
hex dump (first 32 bytes):
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
backtrace:
z3fold_zpool_malloc+0x7b0/0xe10
alloc_slots at mm/z3fold.c:214
(inlined by) init_z3fold_page at mm/z3fold.c:412
(inlined by) z3fold_alloc at mm/z3fold.c:1161
(inlined by) z3fold_zpool_malloc at mm/z3fold.c:1735
zpool_malloc+0x34/0x50
zswap_frontswap_store+0x60c/0xda0
zswap_frontswap_store at mm/zswap.c:1093
__frontswap_store+0x128/0x330
swap_writepage+0x58/0x110
pageout+0x16c/0xa40
shrink_page_list+0x1ac8/0x25c0
shrink_inactive_list+0x270/0x730
shrink_lruvec+0x444/0xf30
shrink_node+0x2a4/0x9c0
do_try_to_free_pages+0x158/0x640
try_to_free_pages+0x1bc/0x5f0
__alloc_pages_slowpath.constprop.60+0x4dc/0x15a0
__alloc_pages_nodemask+0x520/0x650
alloc_pages_vma+0xc0/0x420
handle_mm_fault+0x1174/0x1bf0
Signed-off-by: Qian Cai <cai@lca.pw>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Vitaly Wool <vitaly.wool@konsulko.com>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Link: http://lkml.kernel.org/r/20200522220052.2225-1-cai@lca.pw
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The various struct pagevec per CPU variables are protected by disabling
either preemption or interrupts across the critical sections. Inside
these sections spinlocks have to be acquired.
These spinlocks are regular spinlock_t types which are converted to
"sleeping" spinlocks on PREEMPT_RT enabled kernels. Obviously sleeping
locks cannot be acquired in preemption or interrupt disabled sections.
local locks provide a trivial way to substitute preempt and interrupt
disable instances. On a non PREEMPT_RT enabled kernel local_lock() maps
to preempt_disable() and local_lock_irq() to local_irq_disable().
Create lru_rotate_pvecs containing the pagevec and the locallock.
Create lru_pvecs containing the remaining pagevecs and the locallock.
Add lru_add_drain_cpu_zone() which is used from compact_zone() to avoid
exporting the pvec structure.
Change the relevant call sites to acquire these locks instead of using
preempt_disable() / get_cpu() / get_cpu_var() and local_irq_disable() /
local_irq_save().
There is neither a functional change nor a change in the generated
binary code for non PREEMPT_RT enabled non-debug kernels.
When lockdep is enabled local locks have lockdep maps embedded. These
allow lockdep to validate the protections, i.e. inappropriate usage of a
preemption only protected sections would result in a lockdep warning
while the same problem would not be noticed with a plain
preempt_disable() based protection.
local locks also improve readability as they provide a named scope for
the protections while preempt/interrupt disable are opaque scopeless.
Finally local locks allow PREEMPT_RT to substitute them with real
locking primitives to ensure the correctness of operation in a fully
preemptible kernel.
[ bigeasy: Adopted to use local_lock ]
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Link: https://lore.kernel.org/r/20200527201119.1692513-4-bigeasy@linutronix.de
Here add pte_sw_mkyoung function to make page readable on MIPS
platform during page fault handling. This patch improves page
fault latency about 10% on my MIPS machine with lmbench
lat_pagefault case.
It is noop function on other arches, there is no negative
influence on those architectures.
Signed-off-by: Bibo Mao <maobibo@loongson.cn>
Acked-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Thomas Bogendoerfer <tsbogend@alpha.franken.de>
If two threads concurrently fault at the same page, the thread that
won the race updates the PTE and its local TLB. For now, the other
thread gives up, simply does nothing, and continues.
It could happen that this second thread triggers another fault, whereby
it only updates its local TLB while handling the fault. Instead of
triggering another fault, let's directly update the local TLB of the
second thread. Function update_mmu_tlb is used here to update local
TLB on the second thread, and it is defined as empty on other arches.
Signed-off-by: Bibo Mao <maobibo@loongson.cn>
Acked-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Thomas Bogendoerfer <tsbogend@alpha.franken.de>
Export generic_file_buffered_read() to be used to supplement incomplete
direct reads.
Reviewed-by: Johannes Thumshirn <jthumshirn@suse.de>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Goldwyn Rodrigues <rgoldwyn@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The MSCC bug fix in 'net' had to be slightly adjusted because the
register accesses are done slightly differently in net-next.
Signed-off-by: David S. Miller <davem@davemloft.net>
free_handle() for a foreign handle may race with inter-page compaction,
what can lead to memory corruption.
To avoid that, take write lock not read lock in free_handle to be
synchronized with __release_z3fold_page().
For example KASAN can detect it:
==================================================================
BUG: KASAN: use-after-free in LZ4_decompress_safe+0x2c4/0x3b8
Read of size 1 at addr ffffffc976695ca3 by task GoogleApiHandle/4121
CPU: 0 PID: 4121 Comm: GoogleApiHandle Tainted: P S OE 4.19.81-perf+ #162
Hardware name: Sony Mobile Communications. PDX-203(KONA) (DT)
Call trace:
LZ4_decompress_safe+0x2c4/0x3b8
lz4_decompress_crypto+0x3c/0x70
crypto_decompress+0x58/0x70
zcomp_decompress+0xd4/0x120
...
Apart from that, initialize zhdr->mapped_count in init_z3fold_page() and
remove "newpage" variable because it is not used anywhere.
Signed-off-by: Uladzislau Rezki <uladzislau.rezki@sony.com>
Signed-off-by: Vitaly Wool <vitaly.wool@konsulko.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Qian Cai <cai@lca.pw>
Cc: Raymond Jennings <shentino@gmail.com>
Cc: <stable@vger.kernel.org>
Link: http://lkml.kernel.org/r/20200520082100.28876-1-vitaly.wool@konsulko.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
During early boot, while KASAN is not yet initialized, it is possible to
enter reporting code-path and end up in kasan_report().
While uninitialized, the branch there prevents generating any reports,
however, under certain circumstances when branches are being traced
(TRACE_BRANCH_PROFILING), we may recurse deep enough to cause kernel
reboots without warning.
To prevent similar issues in future, we should disable branch tracing
for the core runtime.
[elver@google.com: remove duplicate DISABLE_BRANCH_PROFILING, per Qian Cai]
Link: https://lore.kernel.org/lkml/20200517011732.GE24705@shao2-debian/
Link: http://lkml.kernel.org/r/20200522075207.157349-1-elver@google.com
Reported-by: kernel test robot <rong.a.chen@intel.com>
Signed-off-by: Marco Elver <elver@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Andrey Konovalov <andreyknvl@google.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Qian Cai <cai@lca.pw>
Cc: <stable@vger.kernel.org>
Link: http://lkml.kernel.org/r//20200517011732.GE24705@shao2-debian/
Link: http://lkml.kernel.org/r/20200519182459.87166-1-elver@google.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The GHES code calls memory_failure_queue() from IRQ context to schedule
work on the current CPU so that memory_failure() can sleep.
For synchronous memory errors the arch code needs to know any signals
that memory_failure() will trigger are pending before it returns to
user-space, possibly when exiting from the IRQ.
Add a helper to kick the memory failure queue, to ensure the scheduled
work has happened. This has to be called from process context, so may
have been migrated from the original cpu. Pass the cpu the work was
queued on.
Change memory_failure_work_func() to permit being called on the 'wrong'
cpu.
Signed-off-by: James Morse <james.morse@arm.com>
Tested-by: Tyler Baicar <baicar@os.amperecomputing.com>
Acked-by: Naoya Horiguchi <naoya.horiguchi@nec.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Move the bpf verifier trace check into the new switch statement in
HEAD.
Resolve the overlapping changes in hinic, where bug fixes overlap
the addition of VF support.
Signed-off-by: David S. Miller <davem@davemloft.net>
This change adds accounting for the memory allocated for shadow stacks.
Signed-off-by: Sami Tolvanen <samitolvanen@google.com>
Reviewed-by: Kees Cook <keescook@chromium.org>
Acked-by: Will Deacon <will@kernel.org>
Signed-off-by: Will Deacon <will@kernel.org>
KASAN is currently missing declarations for __asan_report* and __hwasan*
functions. This can lead to compiler warnings.
Reported-by: Leon Romanovsky <leon@kernel.org>
Reported-by: Randy Dunlap <rdunlap@infradead.org>
Signed-off-by: Andrey Konovalov <andreyknvl@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Tested-by: Leon Romanovsky <leon@kernel.org>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Link: http://lkml.kernel.org/r/45b445a76a79208918f0cc44bfabebaea909b54d.1589297433.git.andreyknvl@google.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
KASAN is incompatible with some kernel debugging/tracing features.
There's been multiple patches that disable those feature for some of
KASAN files one by one. Instead of prolonging that, disable these
features for all KASAN files at once.
Reported-by: Randy Dunlap <rdunlap@infradead.org>
Signed-off-by: Andrey Konovalov <andreyknvl@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Leon Romanovsky <leonro@mellanox.com>
Link: http://lkml.kernel.org/r/29bd753d5ff5596425905b0b07f51153e2345cc1.1589297433.git.andreyknvl@google.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
A user is not required to set a new address when using MREMAP_DONTUNMAP
as it can be used without MREMAP_FIXED. When doing so the remap event
will use new_addr which may not have been set and we didn't propagate it
back other then in the return value of remap_to.
Because ret is always the new address it's probably more correct to use
it rather than new_addr on the remap_event_complete call, and it
resolves this bug.
Fixes: e346b38130 ("mm/mremap: add MREMAP_DONTUNMAP to mremap()")
Reported-by: Randy Dunlap <rdunlap@infradead.org>
Signed-off-by: Brian Geffon <bgeffon@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Lokesh Gidra <lokeshgidra@google.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: "Michael S . Tsirkin" <mst@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Sonny Rao <sonnyrao@google.com>
Cc: Joel Fernandes <joel@joelfernandes.org>
Link: http://lkml.kernel.org/r/20200506172158.218366-1-bgeffon@google.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This part was overlooked when reworking the gup code on multiple
retries.
When we get the 2nd+ retry, we'll be with TRIED flag set. Current code
will bail out on the 2nd retry because the !TRIED check will fail so the
retry logic will be skipped. What's worse is that, it will also return
zero which errornously hints the caller that the page is faulted in
while it's not.
The !TRIED flag check seems to not be needed even before the mutliple
retries change because if we get a VM_FAULT_RETRY, it must be the 1st
retry, and we should not have TRIED set for that.
Fix it by removing the !TRIED check, at the meantime check against fatal
signals properly before the page fault so we can still properly respond
to the user killing the process during retries.
Fixes: 4426e945df ("mm/gup: allow VM_FAULT_RETRY for multiple times")
Reported-by: Randy Dunlap <rdunlap@infradead.org>
Signed-off-by: Peter Xu <peterx@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Alex Williamson <alex.williamson@redhat.com>
Cc: Brian Geffon <bgeffon@google.com>
Link: http://lkml.kernel.org/r/20200502003523.8204-1-peterx@redhat.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Presumably the intent here was that hmm_range_fault() could put the data
into some HW specific format and thus avoid some work. However, nothing
actually does that, and it isn't clear how anything actually could do that
as hmm_range_fault() provides CPU addresses which must be DMA mapped.
Perhaps there is some special HW that does not need DMA mapping, but we
don't have any examples of this, and the theoretical performance win of
avoiding an extra scan over the pfns array doesn't seem worth the
complexity. Plus pfns needs to be scanned anyhow to sort out any
DEVICE_PRIVATE pages.
This version replaces the uint64_t with an usigned long containing a pfn
and fixed flags. On input flags is filled with the HMM_PFN_REQ_* values,
on successful output it is filled with HMM_PFN_* values, describing the
state of the pages.
amdgpu is simple to convert, it doesn't use snapshot and doesn't use
per-page flags.
nouveau uses only 16 hmm_pte entries at most (ie fits in a few cache
lines), and it sweeps over its pfns array a couple of times anyhow. It
also has a nasty call chain before it reaches the dma map and hardware
suggesting performance isn't important:
nouveau_svm_fault():
args.i.m.method = NVIF_VMM_V0_PFNMAP
nouveau_range_fault()
nvif_object_ioctl()
client->driver->ioctl()
struct nvif_driver nvif_driver_nvkm:
.ioctl = nvkm_client_ioctl
nvkm_ioctl()
nvkm_ioctl_path()
nvkm_ioctl_v0[type].func(..)
nvkm_ioctl_mthd()
nvkm_object_mthd()
struct nvkm_object_func nvkm_uvmm:
.mthd = nvkm_uvmm_mthd
nvkm_uvmm_mthd()
nvkm_uvmm_mthd_pfnmap()
nvkm_vmm_pfn_map()
nvkm_vmm_ptes_get_map()
func == gp100_vmm_pgt_pfn
struct nvkm_vmm_desc_func gp100_vmm_desc_spt:
.pfn = gp100_vmm_pgt_pfn
nvkm_vmm_iter()
REF_PTES == func == gp100_vmm_pgt_pfn()
dma_map_page()
Link: https://lore.kernel.org/r/5-v2-b4e84f444c7d+24f57-hmm_no_flags_jgg@mellanox.com
Acked-by: Felix Kuehling <Felix.Kuehling@amd.com>
Tested-by: Ralph Campbell <rcampbell@nvidia.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jason Gunthorpe <jgg@mellanox.com>
This is just an alias for HMM_PFN_ERROR, nothing cares that the error was
because of a special page vs any other error case.
Link: https://lore.kernel.org/r/4-v2-b4e84f444c7d+24f57-hmm_no_flags_jgg@mellanox.com
Acked-by: Felix Kuehling <Felix.Kuehling@amd.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: John Hubbard <jhubbard@nvidia.com>
Signed-off-by: Jason Gunthorpe <jgg@mellanox.com>
hmm_vma_walk->last is supposed to be updated after every write to the
pfns, so that it can be returned by hmm_range_fault(). However, this is
not done consistently. Fortunately nothing checks the return code of
hmm_range_fault() for anything other than error.
More importantly last must be set before returning -EBUSY as it is used to
prevent reading an output pfn as an input flags when the loop restarts.
For clarity and simplicity make hmm_range_fault() return 0 or -ERRNO. Only
set last when returning -EBUSY.
Link: https://lore.kernel.org/r/2-v2-b4e84f444c7d+24f57-hmm_no_flags_jgg@mellanox.com
Acked-by: Felix Kuehling <Felix.Kuehling@amd.com>
Tested-by: Ralph Campbell <rcampbell@nvidia.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jason Gunthorpe <jgg@mellanox.com>
-----BEGIN PGP SIGNATURE-----
iQJEBAABCAAuFiEEwPw5LcreJtl1+l5K99NY+ylx4KYFAl63WVAQHGF4Ym9lQGtl
cm5lbC5kawAKCRD301j7KXHgpkXWD/9qJgqQpPkigCCwwPHZ+phthw6gHeAgBxPH
Cw6P9QB4QCdacZjQA6QH3zdxaDsCCitQRioWPgxngs1326TKYNzBi7U3eTEwiK12
cnRybLnkzei4yzYVUSJk637oOoQh3CiJLvYcJBppGFi7crpbvlQv68M2hu05vhwL
R/91H62X/5UaUlc1cJV63OBk8euWzF6XNbCQQrR4ayDvz+BsV5Fs72vYa1gx7qIt
as/67oTT6y4U4pd74nT4OGkxDIXbXfn2eTbh5sMNc4ilBkqMyNbf8aOHdWqXZIBd
18RKpNl6h/fiDMJ0jsGliReONLjfRBcJla68Kn1AFONMcyxcXidjptOwLOt2fYWf
YMguCVMhfgxVBslzLWoQ9AWSiNVh36ycORWlCOrnRaOaQCb9OaLZ2fwibfZ0JsMd
0259Z5vA7MIUoobCc5akXOYHbpByA9FSYkKudgTYLpdjkn05kxQyA12GgJjW3sVw
ZRjoUuDuZDDUct6JcLWdrlONT8st05g+qf6PCoD+Jac8HtbpqHfKJJUtYecUat75
4hGKhuvTzpuVY0wNHo3sgqKfsejQODTN6UhejNI11Zs/nx6O0ze/qoDuWZHncnKl
158le+K5rNS8SUNbDBTMWp3OX4SJm/Gsf30fOWkkt6z1iaEfKc5sCxBHvSOeBEvH
M9pzy56Vtw==
=73nU
-----END PGP SIGNATURE-----
Merge tag 'block-5.7-2020-05-09' of git://git.kernel.dk/linux-block
Pull block fixes from Jens Axboe:
- a small series fixing a use-after-free of bdi name (Christoph,Yufen)
- NVMe fix for a regression with the smaller CQ update (Alexey)
- NVMe fix for a hang at namespace scanning error recovery (Sagi)
- fix race with blk-iocost iocg->abs_vdebt updates (Tejun)
* tag 'block-5.7-2020-05-09' of git://git.kernel.dk/linux-block:
nvme: fix possible hang when ns scanning fails during error recovery
nvme-pci: fix "slimmer CQ head update"
bdi: add a ->dev_name field to struct backing_dev_info
bdi: use bdi_dev_name() to get device name
bdi: move bdi_dev_name out of line
vboxsf: don't use the source name in the bdi name
iocost: protect iocg->abs_vdebt with iocg->waitq.lock
The name is only printed for a not registered bdi in writeback. Use the
device name there as is more useful anyway for the unlike case that the
warning triggers.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Jan Kara <jack@suse.cz>
Reviewed-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Reviewed-by: Bart Van Assche <bvanassche@acm.org>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Merge the _node vs normal version and drop the superflous gfp_t argument.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Jan Kara <jack@suse.cz>
Reviewed-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Reviewed-by: Bart Van Assche <bvanassche@acm.org>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Split out a new bdi_set_owner helper to set the owner, and move the policy
for creating the bdi name back into genhd.c, where it belongs.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Jan Kara <jack@suse.cz>
Reviewed-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Reviewed-by: Bart Van Assche <bvanassche@acm.org>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
bdi_register_va is only used by super.c, which can't be modular.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Jan Kara <jack@suse.cz>
Reviewed-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Reviewed-by: Bart Van Assche <bvanassche@acm.org>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Pull in block-5.7 fixes for 5.8. Mostly to resolve a conflict with
the blk-iocost changes, but we also need the base of the bdi
use-after-free as well as we build on top of it.
* block-5.7:
nvme: fix possible hang when ns scanning fails during error recovery
nvme-pci: fix "slimmer CQ head update"
bdi: add a ->dev_name field to struct backing_dev_info
bdi: use bdi_dev_name() to get device name
bdi: move bdi_dev_name out of line
vboxsf: don't use the source name in the bdi name
iocost: protect iocg->abs_vdebt with iocg->waitq.lock
block: remove the bd_openers checks in blk_drop_partitions
nvme: prevent double free in nvme_alloc_ns() error handling
null_blk: Cleanup zoned device initialization
null_blk: Fix zoned command handling
block: remove unused header
blk-iocost: Fix error on iocost_ioc_vrate_adj
bdev: Reduce time holding bd_mutex in sync in blkdev_close()
buffer: remove useless comment and WB_REASON_FREE_MORE_MEM, reason.
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Cache a copy of the name for the life time of the backing_dev_info
structure so that we can reference it even after unregistering.
Fixes: 68f23b8906 ("memcg: fix a crash in wb_workfn when a device disappears")
Reported-by: Yufen Yu <yuyufen@huawei.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Jan Kara <jack@suse.cz>
Reviewed-by: Bart Van Assche <bvanassche@acm.org>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Commit 1c30844d2d ("mm: reclaim small amounts of memory when an
external fragmentation event occurs") adds a boost_watermark() function
which increases the min watermark in a zone by at least
pageblock_nr_pages or the number of pages in a page block.
On Arm64, with 64K pages and 512M huge pages, this is 8192 pages or
512M. It does this regardless of the number of managed pages managed in
the zone or the likelihood of success.
This can put the zone immediately under water in terms of allocating
pages from the zone, and can cause a small machine to fail immediately
due to OoM. Unlike set_recommended_min_free_kbytes(), which
substantially increases min_free_kbytes and is tied to THP,
boost_watermark() can be called even if THP is not active.
The problem is most likely to appear on architectures such as Arm64
where pageblock_nr_pages is very large.
It is desirable to run the kdump capture kernel in as small a space as
possible to avoid wasting memory. In some architectures, such as Arm64,
there are restrictions on where the capture kernel can run, and
therefore, the space available. A capture kernel running in 768M can
fail due to OoM immediately after boost_watermark() sets the min in zone
DMA32, where most of the memory is, to 512M. It fails even though there
is over 500M of free memory. With boost_watermark() suppressed, the
capture kernel can run successfully in 448M.
This patch limits boost_watermark() to boosting a zone's min watermark
only when there are enough pages that the boost will produce positive
results. In this case that is estimated to be four times as many pages
as pageblock_nr_pages.
Mel said:
: There is no harm in marking it stable. Clearly it does not happen very
: often but it's not impossible. 32-bit x86 is a lot less common now
: which would previously have been vulnerable to triggering this easily.
: ppc64 has a larger base page size but typically only has one zone.
: arm64 is likely the most vulnerable, particularly when CMA is
: configured with a small movable zone.
Fixes: 1c30844d2d ("mm: reclaim small amounts of memory when an external fragmentation event occurs")
Signed-off-by: Henry Willard <henry.willard@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: David Hildenbrand <david@redhat.com>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: <stable@vger.kernel.org>
Link: http://lkml.kernel.org/r/1588294148-6586-1-git-send-email-henry.willard@oracle.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Since commit a9e7c39fa9 ("mm/vmscan.c: remove 7th argument of
isolate_lru_pages()"), the explanation of 'mode' argument has been
unnecessary. Let's remove it.
Signed-off-by: Qiwu Chen <chenqiwu@xiaomi.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Link: http://lkml.kernel.org/r/20200501090346.2894-1-chenqiwu@xiaomi.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Since 5.7-rc1, on btrfs we have a percpu counter initialization for
which we always pass a GFP_KERNEL gfp_t argument (this happens since
commit 2992df7326 ("btrfs: Implement DREW lock")).
That is safe in some contextes but not on others where allowing fs
reclaim could lead to a deadlock because we are either holding some
btrfs lock needed for a transaction commit or holding a btrfs
transaction handle open. Because of that we surround the call to the
function that initializes the percpu counter with a NOFS context using
memalloc_nofs_save() (this is done at btrfs_init_fs_root()).
However it turns out that this is not enough to prevent a possible
deadlock because percpu_alloc() determines if it is in an atomic context
by looking exclusively at the gfp flags passed to it (GFP_KERNEL in this
case) and it is not aware that a NOFS context is set.
Because percpu_alloc() thinks it is in a non atomic context it locks the
pcpu_alloc_mutex. This can result in a btrfs deadlock when
pcpu_balance_workfn() is running, has acquired that mutex and is waiting
for reclaim, while the btrfs task that called percpu_counter_init() (and
therefore percpu_alloc()) is holding either the btrfs commit_root
semaphore or a transaction handle (done fs/btrfs/backref.c:
iterate_extent_inodes()), which prevents reclaim from finishing as an
attempt to commit the current btrfs transaction will deadlock.
Lockdep reports this issue with the following trace:
======================================================
WARNING: possible circular locking dependency detected
5.6.0-rc7-btrfs-next-77 #1 Not tainted
------------------------------------------------------
kswapd0/91 is trying to acquire lock:
ffff8938a3b3fdc8 (&delayed_node->mutex){+.+.}, at: __btrfs_release_delayed_node.part.0+0x3f/0x320 [btrfs]
but task is already holding lock:
ffffffffb4f0dbc0 (fs_reclaim){+.+.}, at: __fs_reclaim_acquire+0x5/0x30
which lock already depends on the new lock.
the existing dependency chain (in reverse order) is:
-> #4 (fs_reclaim){+.+.}:
fs_reclaim_acquire.part.0+0x25/0x30
__kmalloc+0x5f/0x3a0
pcpu_create_chunk+0x19/0x230
pcpu_balance_workfn+0x56a/0x680
process_one_work+0x235/0x5f0
worker_thread+0x50/0x3b0
kthread+0x120/0x140
ret_from_fork+0x3a/0x50
-> #3 (pcpu_alloc_mutex){+.+.}:
__mutex_lock+0xa9/0xaf0
pcpu_alloc+0x480/0x7c0
__percpu_counter_init+0x50/0xd0
btrfs_drew_lock_init+0x22/0x70 [btrfs]
btrfs_get_fs_root+0x29c/0x5c0 [btrfs]
resolve_indirect_refs+0x120/0xa30 [btrfs]
find_parent_nodes+0x50b/0xf30 [btrfs]
btrfs_find_all_leafs+0x60/0xb0 [btrfs]
iterate_extent_inodes+0x139/0x2f0 [btrfs]
iterate_inodes_from_logical+0xa1/0xe0 [btrfs]
btrfs_ioctl_logical_to_ino+0xb4/0x190 [btrfs]
btrfs_ioctl+0x165a/0x3130 [btrfs]
ksys_ioctl+0x87/0xc0
__x64_sys_ioctl+0x16/0x20
do_syscall_64+0x5c/0x260
entry_SYSCALL_64_after_hwframe+0x49/0xbe
-> #2 (&fs_info->commit_root_sem){++++}:
down_write+0x38/0x70
btrfs_cache_block_group+0x2ec/0x500 [btrfs]
find_free_extent+0xc6a/0x1600 [btrfs]
btrfs_reserve_extent+0x9b/0x180 [btrfs]
btrfs_alloc_tree_block+0xc1/0x350 [btrfs]
alloc_tree_block_no_bg_flush+0x4a/0x60 [btrfs]
__btrfs_cow_block+0x122/0x5a0 [btrfs]
btrfs_cow_block+0x106/0x240 [btrfs]
commit_cowonly_roots+0x55/0x310 [btrfs]
btrfs_commit_transaction+0x509/0xb20 [btrfs]
sync_filesystem+0x74/0x90
generic_shutdown_super+0x22/0x100
kill_anon_super+0x14/0x30
btrfs_kill_super+0x12/0x20 [btrfs]
deactivate_locked_super+0x31/0x70
cleanup_mnt+0x100/0x160
task_work_run+0x93/0xc0
exit_to_usermode_loop+0xf9/0x100
do_syscall_64+0x20d/0x260
entry_SYSCALL_64_after_hwframe+0x49/0xbe
-> #1 (&space_info->groups_sem){++++}:
down_read+0x3c/0x140
find_free_extent+0xef6/0x1600 [btrfs]
btrfs_reserve_extent+0x9b/0x180 [btrfs]
btrfs_alloc_tree_block+0xc1/0x350 [btrfs]
alloc_tree_block_no_bg_flush+0x4a/0x60 [btrfs]
__btrfs_cow_block+0x122/0x5a0 [btrfs]
btrfs_cow_block+0x106/0x240 [btrfs]
btrfs_search_slot+0x50c/0xd60 [btrfs]
btrfs_lookup_inode+0x3a/0xc0 [btrfs]
__btrfs_update_delayed_inode+0x90/0x280 [btrfs]
__btrfs_commit_inode_delayed_items+0x81f/0x870 [btrfs]
__btrfs_run_delayed_items+0x8e/0x180 [btrfs]
btrfs_commit_transaction+0x31b/0xb20 [btrfs]
iterate_supers+0x87/0xf0
ksys_sync+0x60/0xb0
__ia32_sys_sync+0xa/0x10
do_syscall_64+0x5c/0x260
entry_SYSCALL_64_after_hwframe+0x49/0xbe
-> #0 (&delayed_node->mutex){+.+.}:
__lock_acquire+0xef0/0x1c80
lock_acquire+0xa2/0x1d0
__mutex_lock+0xa9/0xaf0
__btrfs_release_delayed_node.part.0+0x3f/0x320 [btrfs]
btrfs_evict_inode+0x40d/0x560 [btrfs]
evict+0xd9/0x1c0
dispose_list+0x48/0x70
prune_icache_sb+0x54/0x80
super_cache_scan+0x124/0x1a0
do_shrink_slab+0x176/0x440
shrink_slab+0x23a/0x2c0
shrink_node+0x188/0x6e0
balance_pgdat+0x31d/0x7f0
kswapd+0x238/0x550
kthread+0x120/0x140
ret_from_fork+0x3a/0x50
other info that might help us debug this:
Chain exists of:
&delayed_node->mutex --> pcpu_alloc_mutex --> fs_reclaim
Possible unsafe locking scenario:
CPU0 CPU1
---- ----
lock(fs_reclaim);
lock(pcpu_alloc_mutex);
lock(fs_reclaim);
lock(&delayed_node->mutex);
*** DEADLOCK ***
3 locks held by kswapd0/91:
#0: (fs_reclaim){+.+.}, at: __fs_reclaim_acquire+0x5/0x30
#1: (shrinker_rwsem){++++}, at: shrink_slab+0x12f/0x2c0
#2: (&type->s_umount_key#43){++++}, at: trylock_super+0x16/0x50
stack backtrace:
CPU: 1 PID: 91 Comm: kswapd0 Not tainted 5.6.0-rc7-btrfs-next-77 #1
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.12.0-0-ga698c8995f-prebuilt.qemu.org 04/01/2014
Call Trace:
dump_stack+0x8f/0xd0
check_noncircular+0x170/0x190
__lock_acquire+0xef0/0x1c80
lock_acquire+0xa2/0x1d0
__mutex_lock+0xa9/0xaf0
__btrfs_release_delayed_node.part.0+0x3f/0x320 [btrfs]
btrfs_evict_inode+0x40d/0x560 [btrfs]
evict+0xd9/0x1c0
dispose_list+0x48/0x70
prune_icache_sb+0x54/0x80
super_cache_scan+0x124/0x1a0
do_shrink_slab+0x176/0x440
shrink_slab+0x23a/0x2c0
shrink_node+0x188/0x6e0
balance_pgdat+0x31d/0x7f0
kswapd+0x238/0x550
kthread+0x120/0x140
ret_from_fork+0x3a/0x50
This could be fixed by making btrfs pass GFP_NOFS instead of GFP_KERNEL
to percpu_counter_init() in contextes where it is not reclaim safe,
however that type of approach is discouraged since
memalloc_[nofs|noio]_save() were introduced. Therefore this change
makes pcpu_alloc() look up into an existing nofs/noio context before
deciding whether it is in an atomic context or not.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Tejun Heo <tj@kernel.org>
Acked-by: Dennis Zhou <dennis@kernel.org>
Cc: Tejun Heo <tj@kernel.org>
Cc: Christoph Lameter <cl@linux.com>
Link: http://lkml.kernel.org/r/20200430164356.15543-1-fdmanana@kernel.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
In a couple of places in the slub memory allocator, the code uses
"s->offset" as a check to see if the free pointer is put right after the
object. That check is no longer true with commit 3202fa62fb ("slub:
relocate freelist pointer to middle of object").
As a result, echoing "1" into the validate sysfs file, e.g. of dentry,
may cause a bunch of "Freepointer corrupt" error reports like the
following to appear with the system in panic afterwards.
=============================================================================
BUG dentry(666:pmcd.service) (Tainted: G B): Freepointer corrupt
-----------------------------------------------------------------------------
To fix it, use the check "s->offset == s->inuse" in the new helper
function freeptr_outside_object() instead. Also add another helper
function get_info_end() to return the end of info block (inuse + free
pointer if not overlapping with object).
Fixes: 3202fa62fb ("slub: relocate freelist pointer to middle of object")
Signed-off-by: Waiman Long <longman@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Reviewed-by: Kees Cook <keescook@chromium.org>
Acked-by: Rafael Aquini <aquini@redhat.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Vitaly Nikolenko <vnik@duasynt.com>
Cc: Silvio Cesare <silvio.cesare@gmail.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Markus Elfring <Markus.Elfring@web.de>
Cc: Changbin Du <changbin.du@gmail.com>
Link: http://lkml.kernel.org/r/20200429135328.26976-1-longman@redhat.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Without CONFIG_PREEMPT, it can happen that we get soft lockups detected,
e.g., while booting up.
watchdog: BUG: soft lockup - CPU#0 stuck for 22s! [swapper/0:1]
CPU: 0 PID: 1 Comm: swapper/0 Not tainted 5.6.0-next-20200331+ #4
Hardware name: Red Hat KVM, BIOS 1.11.1-4.module+el8.1.0+4066+0f1aadab 04/01/2014
RIP: __pageblock_pfn_to_page+0x134/0x1c0
Call Trace:
set_zone_contiguous+0x56/0x70
page_alloc_init_late+0x166/0x176
kernel_init_freeable+0xfa/0x255
kernel_init+0xa/0x106
ret_from_fork+0x35/0x40
The issue becomes visible when having a lot of memory (e.g., 4TB)
assigned to a single NUMA node - a system that can easily be created
using QEMU. Inside VMs on a hypervisor with quite some memory
overcommit, this is fairly easy to trigger.
Signed-off-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Pavel Tatashin <pasha.tatashin@soleen.com>
Reviewed-by: Pankaj Gupta <pankaj.gupta.linux@gmail.com>
Reviewed-by: Baoquan He <bhe@redhat.com>
Reviewed-by: Shile Zhang <shile.zhang@linux.alibaba.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Kirill Tkhai <ktkhai@virtuozzo.com>
Cc: Shile Zhang <shile.zhang@linux.alibaba.com>
Cc: Pavel Tatashin <pasha.tatashin@soleen.com>
Cc: Daniel Jordan <daniel.m.jordan@oracle.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Alexander Duyck <alexander.duyck@gmail.com>
Cc: Baoquan He <bhe@redhat.com>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: <stable@vger.kernel.org>
Link: http://lkml.kernel.org/r/20200416073417.5003-1-david@redhat.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When I run my memcg testcase which creates lots of memcgs, I found
there're unexpected out of memory logs while there're still enough
available free memory. The error log is
mkdir: cannot create directory 'foo.65533': Cannot allocate memory
The reason is when we try to create more than MEM_CGROUP_ID_MAX memcgs,
an -ENOMEM errno will be set by mem_cgroup_css_alloc(), but the right
errno should be -ENOSPC "No space left on device", which is an
appropriate errno for userspace's failed mkdir.
As the errno really misled me, we should make it right. After this
patch, the error log will be
mkdir: cannot create directory 'foo.65533': No space left on device
[akpm@linux-foundation.org: s/EBUSY/ENOSPC/, per Michal]
[akpm@linux-foundation.org: s/EBUSY/ENOSPC/, per Michal]
Fixes: 73f576c04b ("mm: memcontrol: fix cgroup creation failure after many small jobs")
Suggested-by: Matthew Wilcox <willy@infradead.org>
Signed-off-by: Yafang Shao <laoar.shao@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Michal Hocko <mhocko@kernel.org>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Link: http://lkml.kernel.org/r/20200407063621.GA18914@dhcp22.suse.cz
Link: http://lkml.kernel.org/r/1586192163-20099-1-git-send-email-laoar.shao@gmail.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>