The btrfs git kernel trees is used to build a standalone tree for
compiling against older kernels. This commit makes the standalone tree
work with 2.6.27
Signed-off-by: Chris Mason <chris.mason@oracle.com>
* open/close_bdev_excl -> open/close_bdev_exclusive
* blkdev_issue_discard takes a GFP mask now
* Fix blkdev_issue_discard usage now that it is enabled
Signed-off-by: Chris Mason <chris.mason@oracle.com>
Seed device is a special btrfs with SEEDING super flag
set and can only be mounted in read-only mode. Seed
devices allow people to create new btrfs on top of it.
The new FS contains the same contents as the seed device,
but it can be mounted in read-write mode.
This patch does the following:
1) split code in btrfs_alloc_chunk into two parts. The first part does makes
the newly allocated chunk usable, but does not do any operation that modifies
the chunk tree. The second part does the the chunk tree modifications. This
division is for the bootstrap step of adding storage to the seed device.
2) Update device management code to handle seed device.
The basic idea is: For an FS grown from seed devices, its
seed devices are put into a list. Seed devices are
opened on demand at mounting time. If any seed device is
missing or has been changed, btrfs kernel module will
refuse to mount the FS.
3) make btrfs_find_block_group not return NULL when all
block groups are read-only.
Signed-off-by: Yan Zheng <zheng.yan@oracle.com>
While doing a commit, btrfs makes sure all the metadata blocks
were properly written to disk, calling wait_on_page_writeback for
each page. This writeback happens after allowing another transaction
to start, so it competes for the disk with other processes in the FS.
If the page writeback bit is still set, each wait_on_page_writeback might
trigger an unplug, even though the page might be waiting for checksumming
to finish or might be waiting for the async work queue to submit the
bio.
This trades wait_on_page_writeback for waiting on the extent writeback
bits. It won't trigger any unplugs and substantially improves performance
in a number of workloads.
This also changes the async bio submission to avoid requeueing if there
is only one device. The requeue just wastes CPU time because there are
no other devices to service.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
This patch removes the giant fs_info->alloc_mutex and replaces it with a bunch
of little locks.
There is now a pinned_mutex, which is used when messing with the pinned_extents
extent io tree, and the extent_ins_mutex which is used with the pending_del and
extent_ins extent io trees.
The locking for the extent tree stuff was inspired by a patch that Yan Zheng
wrote to fix a race condition, I cleaned it up some and changed the locking
around a little bit, but the idea remains the same. Basically instead of
holding the extent_ins_mutex throughout the processing of an extent on the
extent_ins or pending_del trees, we just hold it while we're searching and when
we clear the bits on those trees, and lock the extent for the duration of the
operations on the extent.
Also to keep from getting hung up waiting to lock an extent, I've added a
try_lock_extent so if we cannot lock the extent, move on to the next one in the
tree and we'll come back to that one. I have tested this heavily and it does
not appear to break anything. This has to be applied on top of my
find_free_extent redo patch.
I tested this patch on top of Yan's space reblancing code and it worked fine.
The only thing that has changed since the last version is I pulled out all my
debugging stuff, apparently I forgot to run guilt refresh before I sent the
last patch out. Thank you,
Signed-off-by: Josef Bacik <jbacik@redhat.com>
This is a large change for adding compression on reading and writing,
both for inline and regular extents. It does some fairly large
surgery to the writeback paths.
Compression is off by default and enabled by mount -o compress. Even
when the -o compress mount option is not used, it is possible to read
compressed extents off the disk.
If compression for a given set of pages fails to make them smaller, the
file is flagged to avoid future compression attempts later.
* While finding delalloc extents, the pages are locked before being sent down
to the delalloc handler. This allows the delalloc handler to do complex things
such as cleaning the pages, marking them writeback and starting IO on their
behalf.
* Inline extents are inserted at delalloc time now. This allows us to compress
the data before inserting the inline extent, and it allows us to insert
an inline extent that spans multiple pages.
* All of the in-memory extent representations (extent_map.c, ordered-data.c etc)
are changed to record both an in-memory size and an on disk size, as well
as a flag for compression.
From a disk format point of view, the extent pointers in the file are changed
to record the on disk size of a given extent and some encoding flags.
Space in the disk format is allocated for compression encoding, as well
as encryption and a generic 'other' field. Neither the encryption or the
'other' field are currently used.
In order to limit the amount of data read for a single random read in the
file, the size of a compressed extent is limited to 128k. This is a
software only limit, the disk format supports u64 sized compressed extents.
In order to limit the ram consumed while processing extents, the uncompressed
size of a compressed extent is limited to 256k. This is a software only limit
and will be subject to tuning later.
Checksumming is still done on compressed extents, and it is done on the
uncompressed version of the data. This way additional encodings can be
layered on without having to figure out which encoding to checksum.
Compression happens at delalloc time, which is basically singled threaded because
it is usually done by a single pdflush thread. This makes it tricky to
spread the compression load across all the cpus on the box. We'll have to
look at parallel pdflush walks of dirty inodes at a later time.
Decompression is hooked into readpages and it does spread across CPUs nicely.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
On 32 bit machines without CONFIG_LBD, the bi_sector field is only 32 bits.
Btrfs needs to cast it before shifting up, or we end up doing IO into
the wrong place.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
btrfs-vol -a /dev/xxx will zero the first and last two MB of the device.
The kernel code needs to wait for this IO to finish before it adds
the device.
btrfs metadata IO does not happen through the block device inode. A
separate address space is used, allowing the zero filled buffer heads in
the block device inode to be written to disk after FS metadata starts
going down to the disk via the btrfs metadata inode.
The end result is zero filled metadata blocks after adding new devices
into the filesystem.
The fix is a simple filemap_write_and_wait on the block device inode
before actually inserting it into the pool of available devices.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
This patch updates the space balancing code to utilize the new
backref format. Before, btrfs-vol -b would break any COW links
on data blocks or metadata. This was slow and caused the amount
of space used to explode if a large number of snapshots were present.
The new code can keeps the sharing of all data extents and
most of the tree blocks.
To maintain the sharing of data extents, the space balance code uses
a seperate inode hold data extent pointers, then updates the references
to point to the new location.
To maintain the sharing of tree blocks, the space balance code uses
reloc trees to relocate tree blocks in reference counted roots.
There is one reloc tree for each subvol, and all reloc trees share
same root key objectid. Reloc trees are snapshots of the latest
committed roots of subvols (root->commit_root).
To relocate a tree block referenced by a subvol, there are two steps.
COW the block through subvol's reloc tree, then update block pointer in
the subvol to point to the new block. Since all reloc trees share
same root key objectid, doing special handing for tree blocks
owned by them is easy. Once a tree block has been COWed in one
reloc tree, we can use the resulting new block directly when the
same block is required to COW again through other reloc trees.
In this way, relocated tree blocks are shared between reloc trees,
so they are also shared between subvols.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
Btrfs had compatibility code for kernels back to 2.6.18. These have
been removed, and will be maintained in a separate backport
git tree from now on.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
1) replace the per fs_info extent_io_tree that tracked free space with two
rb-trees per block group to track free space areas via offset and size. The
reason to do this is because most allocations come with a hint byte where to
start, so we can usually find a chunk of free space at that hint byte to satisfy
the allocation and get good space packing. If we cannot find free space at or
after the given offset we fall back on looking for a chunk of the given size as
close to that given offset as possible. When we fall back on the size search we
also try to find a slot as close to the size we want as possible, to avoid
breaking small chunks off of huge areas if possible.
2) remove the extent_io_tree that tracked the block group cache from fs_info and
replaced it with an rb-tree thats tracks block group cache via offset. also
added a per space_info list that tracks the block group cache for the particular
space so we can lookup related block groups easily.
3) cleaned up the allocation code to make it a little easier to read and a
little less complicated. Basically there are 3 steps, first look from our
provided hint. If we couldn't find from that given hint, start back at our
original search start and look for space from there. If that fails try to
allocate space if we can and start looking again. If not we're screwed and need
to start over again.
4) small fixes. there were some issues in volumes.c where we wouldn't allocate
the rest of the disk. fixed cow_file_range to actually pass the alloc_hint,
which has helped a good bit in making the fs_mark test I run have semi-normal
results as we run out of space. Generally with data allocations we don't track
where we last allocated from, so everytime we did a data allocation we'd search
through every block group that we have looking for free space. Now searching a
block group with no free space isn't terribly time consuming, it was causing a
slight degradation as we got more data block groups. The alloc_hint has fixed
this slight degredation and made things semi-normal.
There is still one nagging problem I'm working on where we will get ENOSPC when
there is definitely plenty of space. This only happens with metadata
allocations, and only when we are almost full. So you generally hit the 85%
mark first, but sometimes you'll hit the BUG before you hit the 85% wall. I'm
still tracking it down, but until then this seems to be pretty stable and make a
significant performance gain.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
The current code waits for the count of async bio submits to get below
a given threshold if it is too high right after adding the latest bio
to the work queue. This isn't optimal because the caller may have
sequential adjacent bios pending they are waiting to send down the pipe.
This changeset requires the caller to wait on the async bio count,
and changes the async checksumming submits to wait for async bios any
time they self throttle.
The end result is much higher sequential throughput.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
Before, the btrfs bdi congestion function was used to test for too many
async bios. This keeps that check to throttle pdflush, but also
adds a check while queuing bios.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
The multi-bio code is responsible for duplicating blocks in raid1 and
single spindle duplication. It has counters to make sure all of
the locations for a given extent are properly written before io completion
is returned to the higher layers.
But, it didn't always complete the same bio it was given, sometimes a
clone was completed instead. This lead to problems with the async
work queues because they saved a pointer to the bio in a struct off
bi_private.
The fix is to remember the original bio and only complete that one.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
The memory reclaiming issue happens when snapshot exists. In that
case, some cache entries may not be used during old snapshot dropping,
so they will remain in the cache until umount.
The patch adds a field to struct btrfs_leaf_ref to record create time. Besides,
the patch makes all dead roots of a given snapshot linked together in order of
create time. After a old snapshot was completely dropped, we check the dead
root list and remove all cache entries created before the oldest dead root in
the list.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
This creates one kthread for commits and one kthread for
deleting old snapshots. All the work queues are removed.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
Extent alloctions are still protected by a large alloc_mutex.
Objectid allocations are covered by a objectid mutex
Other btree operations are protected by a lock on individual btree nodes
Signed-off-by: Chris Mason <chris.mason@oracle.com>
If a bio submission is after a lock holder waiting for the bio
on the work queue, it is possible to deadlock. Move the bios
into their own pool.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
Btrfs has been using workqueues to spread the checksumming load across
other CPUs in the system. But, workqueues only schedule work on the
same CPU that queued the work, giving them a limited benefit for systems with
higher CPU counts.
This code adds a generic facility to schedule work with pools of kthreads,
and changes the bio submission code to queue bios up. The queueing is
important to make sure large numbers of procs on the system don't
turn streaming workloads into random workloads by sending IO down
concurrently.
The end result of all of this is much higher performance (and CPU usage) when
doing checksumming on large machines. Two worker pools are created,
one for writes and one for endio processing. The two could deadlock if
we tried to service both from a single pool.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
* Force chunk allocation when find_free_extent has to do a full scan
* Record the max key at the start of defrag so it doesn't run forever
* Block groups might not be contiguous, make a forward search for the
next block group in extent-tree.c
* Get rid of extra checks for total fs size
* Fix relocate_one_reference to avoid relocating the same file data block
twice when referenced by an older transaction
* Use the open device count when allocating chunks so that we don't
try to allocate from devices that don't exist
Signed-off-by: Chris Mason <chris.mason@oracle.com>
Devices can change after the scan ioctls are done, and btrfs_open_devices
needs to be able to verify them as they are opened and used by the FS.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
When duplicate copies exist, writes are allowed to fail to one of those
copies. This changeset includes a few changes that allow the FS to
continue even when some IOs fail.
It also adds verification of the parent generation number for btree blocks.
This generation is stored in the pointer to a block, and it ensures
that missed writes to are detected.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
This required a few structural changes to the code that manages bdev pointers:
The VFS super block now gets an anon-bdev instead of a pointer to the
lowest bdev. This allows us to avoid swapping the super block bdev pointer
around at run time.
The code to read in the super block no longer goes through the extent
buffer interface. Things got ugly keeping the mapping constant.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
The generic O_DIRECT code assumes all the bios have the same bdev,
which isn't true for multi-device btrfs.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
This allows other code that needs to walk every device in the FS to do so
without locking against allocations.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
The data read retry code needs to find the logical disk block before it
can resubmit new bios. But, finding this block isn't allowed to take
the fs_mutex because that will deadlock with a number of different callers.
This changes the retry code to use the extent map cache instead, but
that requires the extent map cache to have the extent we're looking for.
This is a problem because btrfs_drop_extent_cache just drops the entire
extent instead of the little tiny part it is invalidating.
The bulk of the code in this patch changes btrfs_drop_extent_cache to
invalidate only a portion of the extent cache, and changes btrfs_get_extent
to deal with the results.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
Block headers now store the chunk tree uuid
Chunk items records the device uuid for each stripes
Device extent items record better back refs to the chunk tree
Block groups record better back refs to the chunk tree
The chunk tree format has also changed. The objectid of BTRFS_CHUNK_ITEM_KEY
used to be the logical offset of the chunk. Now it is a chunk tree id,
with the logical offset being stored in the offset field of the key.
This allows a single chunk tree to record multiple logical address spaces,
upping the number of bytes indexed by a chunk tree from 2^64 to
2^128.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
This includes fixing a missing spinlock init call that caused oops on mount
for most kernels other than 2.6.25.
Signed-off-by: Chris Mason <chris.mason@oracle.com>