Just as the swapoff system call allocates many pages of RAM to various
processes, perhaps triggering OOM, so "echo 2 >/sys/kernel/mm/ksm/run"
(unmerge) is liable to allocate many pages of RAM to various processes,
perhaps triggering OOM; and each is normally run from a modest admin
process (swapoff or shell), easily repeated until it succeeds.
So treat unmerge_and_remove_all_rmap_items() in the same way that we treat
try_to_unuse(): generalize PF_SWAPOFF to PF_OOM_ORIGIN, and bracket both
with that, to ask the OOM killer to kill them first, to prevent them from
spawning more and more OOM kills.
Signed-off-by: Hugh Dickins <hugh.dickins@tiscali.co.uk>
Acked-by: Izik Eidus <ieidus@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
A few cleanups, given the munlock fix: the comment on ksm_test_exit() no
longer applies, and it can be made private to ksm.c; there's no more
reference to mmu_gather or tlb.h, and mmap.c doesn't need ksm.h.
Signed-off-by: Hugh Dickins <hugh.dickins@tiscali.co.uk>
Acked-by: Izik Eidus <ieidus@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
KSM originally stood for Kernel Shared Memory: but the kernel has long
supported shared memory, and VM_SHARED and VM_MAYSHARE vmas, and KSM is
something else. So we switched to saying "merge" instead of "share".
But Chris Wright points out that this is confusing where mmap.c merges
adjacent vmas: most especially in the name VM_MERGEABLE_FLAGS, used by
is_mergeable_vma() to let vmas be merged despite flags being different.
Call it VMA_MERGE_DESPITE_FLAGS? Perhaps, but at present it consists
only of VM_CAN_NONLINEAR: so for now it's clearer on all sides to use
that directly, with a comment on it in is_mergeable_vma().
Signed-off-by: Hugh Dickins <hugh.dickins@tiscali.co.uk>
Acked-by: Izik Eidus <ieidus@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Add Documentation/vm/ksm.txt: how to use the Kernel Samepage Merging feature
Signed-off-by: Hugh Dickins <hugh.dickins@tiscali.co.uk>
Cc: Michael Kerrisk <mtk.manpages@googlemail.com>
Cc: Randy Dunlap <randy.dunlap@oracle.com>
Acked-by: Izik Eidus <ieidus@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
At present KSM is just a waste of space if you don't have CONFIG_SYSFS=y
to provide the /sys/kernel/mm/ksm files to tune and activate it.
Make KSM depend on SYSFS? Could do, but it might be better to provide
some defaults so that KSM works out-of-the-box, ready for testers to
madvise MADV_MERGEABLE, even without SYSFS.
Though anyone serious is likely to want to retune the numbers to their
taste once they have experience; and whether these settings ever reach
2.6.32 can be discussed along the way.
Save 1kB from tiny kernels by #ifdef'ing the SYSFS side of it.
Signed-off-by: Hugh Dickins <hugh.dickins@tiscali.co.uk>
Acked-by: Izik Eidus <ieidus@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Rawhide users have reported hang at startup when cryptsetup is run: the
same problem can be simply reproduced by running a program int main() {
mlockall(MCL_CURRENT | MCL_FUTURE); return 0; }
The problem is that exit_mmap() applies munlock_vma_pages_all() to
clean up VM_LOCKED areas, and its current implementation (stupidly)
tries to fault in absent pages, for example where PROT_NONE prevented
them being faulted in when mlocking. Whereas the "ksm: fix oom
deadlock" patch, knowing there's a race by which KSM might try to fault
in pages after exit_mmap() had finally zapped the range, backs out of
such faults doing nothing when its ksm_test_exit() notices mm_users 0.
So revert that part of "ksm: fix oom deadlock" which moved the
ksm_exit() call from before exit_mmap() to the middle of exit_mmap();
and remove those ksm_test_exit() checks from the page fault paths, so
allowing the munlocking to proceed without interference.
ksm_exit, if there are rmap_items still chained on this mm slot, takes
mmap_sem write side: so preventing KSM from working on an mm while
exit_mmap runs. And KSM will bail out as soon as it notices that
mm_users is already zero, thanks to its internal ksm_test_exit checks.
So that when a task is killed by OOM killer or the user, KSM will not
indefinitely prevent it from running exit_mmap to release its memory.
This does break a part of what "ksm: fix oom deadlock" was trying to
achieve. When unmerging KSM (echo 2 >/sys/kernel/mm/ksm), and even
when ksmd itself has to cancel a KSM page, it is possible that the
first OOM-kill victim would be the KSM process being faulted: then its
memory won't be freed until a second victim has been selected (freeing
memory for the unmerging fault to complete).
But the OOM killer is already liable to kill a second victim once the
intended victim's p->mm goes to NULL: so there's not much point in
rejecting this KSM patch before fixing that OOM behaviour. It is very
much more important to allow KSM users to boot up, than to haggle over
an unlikely and poorly supported OOM case.
We also intend to fix munlocking to not fault pages: at which point
this patch _could_ be reverted; though that would be controversial, so
we hope to find a better solution.
Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Acked-by: Justin M. Forbes <jforbes@redhat.com>
Acked-for-now-by: Hugh Dickins <hugh.dickins@tiscali.co.uk>
Cc: Izik Eidus <ieidus@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
There's a now-obvious deadlock in KSM's out-of-memory handling:
imagine ksmd or KSM_RUN_UNMERGE handling, holding ksm_thread_mutex,
trying to allocate a page to break KSM in an mm which becomes the
OOM victim (quite likely in the unmerge case): it's killed and goes
to exit, and hangs there waiting to acquire ksm_thread_mutex.
Clearly we must not require ksm_thread_mutex in __ksm_exit, simple
though that made everything else: perhaps use mmap_sem somehow?
And part of the answer lies in the comments on unmerge_ksm_pages:
__ksm_exit should also leave all the rmap_item removal to ksmd.
But there's a fundamental problem, that KSM relies upon mmap_sem to
guarantee the consistency of the mm it's dealing with, yet exit_mmap
tears down an mm without taking mmap_sem. And bumping mm_users won't
help at all, that just ensures that the pages the OOM killer assumes
are on their way to being freed will not be freed.
The best answer seems to be, to move the ksm_exit callout from just
before exit_mmap, to the middle of exit_mmap: after the mm's pages
have been freed (if the mmu_gather is flushed), but before its page
tables and vma structures have been freed; and down_write,up_write
mmap_sem there to serialize with KSM's own reliance on mmap_sem.
But KSM then needs to be careful, whenever it downs mmap_sem, to
check that the mm is not already exiting: there's a danger of using
find_vma on a layout that's being torn apart, or writing into page
tables which have been freed for reuse; and even do_anonymous_page
and __do_fault need to check they're not being called by break_ksm
to reinstate a pte after zap_pte_range has zapped that page table.
Though it might be clearer to add an exiting flag, set while holding
mmap_sem in __ksm_exit, that wouldn't cover the issue of reinstating
a zapped pte. All we need is to check whether mm_users is 0 - but
must remember that ksmd may detect that before __ksm_exit is reached.
So, ksm_test_exit(mm) added to comment such checks on mm->mm_users.
__ksm_exit now has to leave clearing up the rmap_items to ksmd,
that needs ksm_thread_mutex; but shift the exiting mm just after the
ksm_scan cursor so that it will soon be dealt with. __ksm_enter raise
mm_count to hold the mm_struct, ksmd's exit processing (exactly like
its processing when it finds all VM_MERGEABLEs unmapped) mmdrop it,
similar procedure for KSM_RUN_UNMERGE (which has stopped ksmd).
But also give __ksm_exit a fast path: when there's no complication
(no rmap_items attached to mm and it's not at the ksm_scan cursor),
it can safely do all the exiting work itself. This is not just an
optimization: when ksmd is not running, the raised mm_count would
otherwise leak mm_structs.
Signed-off-by: Hugh Dickins <hugh.dickins@tiscali.co.uk>
Acked-by: Izik Eidus <ieidus@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Do some housekeeping in ksm.c, to help make the next patch easier
to understand: remove the function remove_mm_from_lists, distributing
its code to its callsites scan_get_next_rmap_item and __ksm_exit.
That turns out to be a win in scan_get_next_rmap_item: move its
remove_trailing_rmap_items and cursor advancement up, and it becomes
simpler than before. __ksm_exit becomes messier, but will change
again; and moving its remove_trailing_rmap_items up lets us strengthen
the unstable tree item's age condition in remove_rmap_item_from_tree.
Signed-off-by: Hugh Dickins <hugh.dickins@tiscali.co.uk>
Acked-by: Izik Eidus <ieidus@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
break_ksm has been looping endlessly ignoring VM_FAULT_OOM: that should
only be a problem for ksmd when a memory control group imposes limits
(normally the OOM killer will kill others with an mm until it succeeds);
but in general (especially for MADV_UNMERGEABLE and KSM_RUN_UNMERGE) we
do need to route the error (or kill) back to the caller (or sighandling).
Test signal_pending in unmerge_ksm_pages, which could be a lengthy
procedure if it has to spill into swap: returning -ERESTARTSYS so that
trivial signals will restart but fatals will terminate (is that right?
we do different things in different places in mm, none exactly this).
unmerge_and_remove_all_rmap_items was forgetting to lock when going
down the mm_list: fix that. Whether it's successful or not, reset
ksm_scan cursor to head; but only if it's successful, reset seqnr
(shown in full_scans) - page counts will have gone down to zero.
This patch leaves a significant OOM deadlock, but it's a good step
on the way, and that deadlock is fixed in a subsequent patch.
Signed-off-by: Hugh Dickins <hugh.dickins@tiscali.co.uk>
Acked-by: Izik Eidus <ieidus@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
1. We don't use __break_cow entry point now: merge it into break_cow.
2. remove_all_slot_rmap_items is just a special case of
remove_trailing_rmap_items: use the latter instead.
3. Extend comment on unmerge_ksm_pages and rmap_items.
4. try_to_merge_two_pages should use try_to_merge_with_ksm_page
instead of duplicating its code; and so swap them around.
5. Comment on cmp_and_merge_page described last year's: update it.
Signed-off-by: Hugh Dickins <hugh.dickins@tiscali.co.uk>
Acked-by: Izik Eidus <ieidus@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
ksm_scan_thread already sleeps in wait_event_interruptible until setting
ksm_run activates it; but if there's nothing on its list to look at, i.e.
nobody has yet said madvise MADV_MERGEABLE, it's a shame to be clocking
up system time and full_scans: ksmd_should_run added to check that too.
And move the mutex_lock out around it: the new counts showed that when
ksm_run is stopped, a little work often got done afterwards, because it
had been read before taking the mutex.
Signed-off-by: Hugh Dickins <hugh.dickins@tiscali.co.uk>
Acked-by: Izik Eidus <ieidus@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
We kept agreeing not to bother about the unswappable shared KSM pages
which later become unshared by others: observation suggests they're not
a significant proportion. But they are disadvantageous, and it is easier
to break COW to replace them by swappable pages, than offer statistics
to show that they don't matter; then we can stop worrying about them.
Doing this in ksm_do_scan, they don't go through cmp_and_merge_page on
this pass: give them a good chance of getting into the unstable tree
on the next pass, or back into the stable, by computing checksum now.
Signed-off-by: Hugh Dickins <hugh.dickins@tiscali.co.uk>
Acked-by: Izik Eidus <ieidus@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The pages_shared and pages_sharing counts give a good picture of how
successful KSM is at sharing; but no clue to how much wasted work it's
doing to get there. Add pages_unshared (count of unique pages waiting
in the unstable tree, hoping to find a mate) and pages_volatile.
pages_volatile is harder to define. It includes those pages changing
too fast to get into the unstable tree, but also whatever other edge
conditions prevent a page getting into the trees: a high value may
deserve investigation. Don't try to calculate it from the various
conditions: it's the total of rmap_items less those accounted for.
Also show full_scans: the number of completed scans of everything
registered in the mm list.
The locking for all these counts is simply ksm_thread_mutex.
Signed-off-by: Hugh Dickins <hugh.dickins@tiscali.co.uk>
Acked-by: Izik Eidus <ieidus@redhat.com>
Acked-by: Andrea Arcangeli <aarcange@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The pages_shared count is incremented and decremented when adding a node
to and removing a node from the stable tree: easy to understand. But the
pages_sharing count was hard to follow, being adjusted in various places:
increment and decrement it when adding to and removing from the stable tree.
And the pages_sharing variable used to include the pages_shared, then those
were subtracted when shown in the pages_sharing sysfs file: now keep it as
an exclusive count of leaves hanging off the stable tree nodes, throughout.
Signed-off-by: Hugh Dickins <hugh.dickins@tiscali.co.uk>
Acked-by: Izik Eidus <ieidus@redhat.com>
Acked-by: Andrea Arcangeli <aarcange@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
We're not implementing swapping of KSM pages in its first release;
but when that follows, "kernel_pages_allocated" will be a very poor
name for the sysfs file showing number of nodes in the stable tree:
rename that to "pages_shared" throughout.
But we already have a "pages_shared", counting those page slots
sharing the shared pages: first rename that to... "pages_sharing".
What will become of "max_kernel_pages" when the pages shared can
be swapped? I guess it will just be removed, so keep that name.
Signed-off-by: Hugh Dickins <hugh.dickins@tiscali.co.uk>
Acked-by: Izik Eidus <ieidus@redhat.com>
Acked-by: Andrea Arcangeli <aarcange@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
ksm should try not to disturb other tasks as much as possible.
Signed-off-by: Izik Eidus <ieidus@redhat.com>
Cc: Chris Wright <chrisw@redhat.com>
Cc: Hugh Dickins <hugh.dickins@tiscali.co.uk>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Wu Fengguang <fengguang.wu@intel.com>
Cc: Balbir Singh <balbir@in.ibm.com>
Cc: Hugh Dickins <hugh.dickins@tiscali.co.uk>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Lee Schermerhorn <lee.schermerhorn@hp.com>
Cc: Avi Kivity <avi@redhat.com>
Cc: Nick Piggin <nickpiggin@yahoo.com.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
KSM's scan allows for user pages to be COWed or unmapped at any time,
without requiring any notification. But its stable tree does assume that
when it finds a KSM page where it placed a KSM page, then it is the same
KSM page that it placed there.
mremap move could break that assumption: if an area containing a KSM page
was unmapped, then an area containing a different KSM page was moved with
mremap into the place of the original, before KSM's scan came around to
notice. That could then poison a node of the stable tree, so that memcmps
would "lie" and upset the ordering of the tree.
Probably noone will ever need mremap move on a VM_MERGEABLE area; except
that prohibiting it would make trouble for schemes in which we try making
everything VM_MERGEABLE e.g. for testing: an mremap which normally works
would then fail mysteriously.
There's no need to go to any trouble, such as re-sorting KSM's list of
rmap_items to match the new layout: simply unmerge the area to COW all its
KSM pages before moving, but leave VM_MERGEABLE on so that they're
remerged later.
Signed-off-by: Hugh Dickins <hugh.dickins@tiscali.co.uk>
Signed-off-by: Chris Wright <chrisw@redhat.com>
Signed-off-by: Izik Eidus <ieidus@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Wu Fengguang <fengguang.wu@intel.com>
Cc: Balbir Singh <balbir@in.ibm.com>
Cc: Hugh Dickins <hugh.dickins@tiscali.co.uk>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Lee Schermerhorn <lee.schermerhorn@hp.com>
Cc: Avi Kivity <avi@redhat.com>
Cc: Nick Piggin <nickpiggin@yahoo.com.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Ksm is code that allows merging of identical pages between one or more
applications, in a way invisible to the applications that use it. Pages
that are merged are marked as read-only, then COWed when any application
tries to change them.
Whereas fork() allows sharing anonymous pages between parent and child,
ksm can share anonymous pages between unrelated processes.
Ksm works by walking over the memory pages of the applications it scans,
in order to find identical pages. It uses two sorted data structures,
called the stable and unstable trees, to locate identical pages in an
effective way.
When ksm finds two identical pages, it marks them as readonly and merges
them into a single page. After the pages have been marked as readonly and
merged into one, Linux treats them as normal copy-on-write pages, copying
to a fresh anonymous page if write access is required later.
Ksm scans and merges anonymous pages only in those memory areas that have
been registered with it by madvise(addr, length, MADV_MERGEABLE).
The ksm scanner is controlled by sysfs files in /sys/kernel/mm/ksm/:
max_kernel_pages - the maximum number of unswappable kernel pages
which may be allocated by ksm (0 for unlimited).
kernel_pages_allocated - how many ksm pages are currently allocated,
sharing identical content between different
processes (pages unswappable in this release).
pages_shared - how many pages have been saved by sharing with ksm pages
(kernel_pages_allocated being excluded from this count).
pages_to_scan - how many pages ksm should scan before sleeping.
sleep_millisecs - how many milliseconds ksm should sleep between scans.
run - write 0 to disable ksm, read 0 while ksm is disabled (default),
write 1 to run ksm, read 1 while ksm is running,
write 2 to disable ksm and unmerge all its pages.
Includes contributions by Andrea Arcangeli Chris Wright and Hugh Dickins.
[hugh.dickins@tiscali.co.uk: fix rare page leak]
Signed-off-by: Izik Eidus <ieidus@redhat.com>
Signed-off-by: Hugh Dickins <hugh.dickins@tiscali.co.uk>
Signed-off-by: Chris Wright <chrisw@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Wu Fengguang <fengguang.wu@intel.com>
Cc: Balbir Singh <balbir@in.ibm.com>
Cc: Hugh Dickins <hugh.dickins@tiscali.co.uk>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Lee Schermerhorn <lee.schermerhorn@hp.com>
Cc: Avi Kivity <avi@redhat.com>
Cc: Nick Piggin <nickpiggin@yahoo.com.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
KSM will need to identify its kernel merged pages unambiguously, and
/proc/kpageflags will probably like to do so too.
Since KSM will only be substituting anonymous pages, statistics are best
preserved by making a PageKsm page a special PageAnon page: one with no
anon_vma.
But KSM then needs its own page_add_ksm_rmap() - keep it in ksm.h near
PageKsm; and do_wp_page() must COW them, unlike singly mapped PageAnons.
Signed-off-by: Hugh Dickins <hugh.dickins@tiscali.co.uk>
Signed-off-by: Chris Wright <chrisw@redhat.com>
Signed-off-by: Izik Eidus <ieidus@redhat.com>
Cc: Wu Fengguang <fengguang.wu@intel.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Wu Fengguang <fengguang.wu@intel.com>
Cc: Balbir Singh <balbir@in.ibm.com>
Cc: Hugh Dickins <hugh.dickins@tiscali.co.uk>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Lee Schermerhorn <lee.schermerhorn@hp.com>
Cc: Avi Kivity <avi@redhat.com>
Cc: Nick Piggin <nickpiggin@yahoo.com.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
page_dup_rmap(), used on each mapped page when forking, was originally
just an inline atomic_inc of mapcount. 2.6.22 added CONFIG_DEBUG_VM
out-of-line checks to it, which would need to be ever-so-slightly
complicated to allow for the PageKsm() we're about to define.
But I think these checks never caught anything. And if it's coding errors
we're worried about, such checks should be in page_remove_rmap() too, not
just when forking; whereas if it's pagetable corruption we're worried
about, then they shouldn't be limited to CONFIG_DEBUG_VM.
Oh, just revert page_dup_rmap() to an inline atomic_inc of mapcount.
Signed-off-by: Hugh Dickins <hugh.dickins@tiscali.co.uk>
Signed-off-by: Chris Wright <chrisw@redhat.com>
Signed-off-by: Izik Eidus <ieidus@redhat.com>
Cc: Nick Piggin <npiggin@suse.de>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Wu Fengguang <fengguang.wu@intel.com>
Cc: Balbir Singh <balbir@in.ibm.com>
Cc: Hugh Dickins <hugh.dickins@tiscali.co.uk>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Lee Schermerhorn <lee.schermerhorn@hp.com>
Cc: Avi Kivity <avi@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This patch presents the mm interface to a dummy version of ksm.c, for
better scrutiny of that interface: the real ksm.c follows later.
When CONFIG_KSM is not set, madvise(2) reject MADV_MERGEABLE and
MADV_UNMERGEABLE with EINVAL, since that seems more helpful than
pretending that they can be serviced. But when CONFIG_KSM=y, accept them
even if KSM is not currently running, and even on areas which KSM will not
touch (e.g. hugetlb or shared file or special driver mappings).
Like other madvices, report ENOMEM despite success if any area in the
range is unmapped, and use EAGAIN to report out of memory.
Define vma flag VM_MERGEABLE to identify an area on which KSM may try
merging pages: leave it to ksm_madvise() to decide whether to set it.
Define mm flag MMF_VM_MERGEABLE to identify an mm which might contain
VM_MERGEABLE areas, to minimize callouts when forking or exiting.
Based upon earlier patches by Chris Wright and Izik Eidus.
Signed-off-by: Hugh Dickins <hugh.dickins@tiscali.co.uk>
Signed-off-by: Chris Wright <chrisw@redhat.com>
Signed-off-by: Izik Eidus <ieidus@redhat.com>
Cc: Michael Kerrisk <mtk.manpages@gmail.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Wu Fengguang <fengguang.wu@intel.com>
Cc: Balbir Singh <balbir@in.ibm.com>
Cc: Hugh Dickins <hugh.dickins@tiscali.co.uk>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Lee Schermerhorn <lee.schermerhorn@hp.com>
Cc: Avi Kivity <avi@redhat.com>
Cc: Nick Piggin <nickpiggin@yahoo.com.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
madvise.c has several levels of switch statements, what to do in which?
Move MADV_DOFORK code down from madvise_vma() to madvise_behavior(), so
madvise_vma() can be a simple router, to madvise_behavior() by default.
vma->vm_flags is an unsigned long so use the same type for new_flags. Add
missing comment lines to describe MADV_DONTFORK and MADV_DOFORK.
Signed-off-by: Hugh Dickins <hugh.dickins@tiscali.co.uk>
Signed-off-by: Chris Wright <chrisw@redhat.com>
Signed-off-by: Izik Eidus <ieidus@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Wu Fengguang <fengguang.wu@intel.com>
Cc: Balbir Singh <balbir@in.ibm.com>
Cc: Hugh Dickins <hugh.dickins@tiscali.co.uk>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Lee Schermerhorn <lee.schermerhorn@hp.com>
Cc: Avi Kivity <avi@redhat.com>
Cc: Nick Piggin <nickpiggin@yahoo.com.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
KSM is a linux driver that allows dynamicly sharing identical memory pages
between one or more processes.
Unlike tradtional page sharing that is made at the allocation of the
memory, ksm do it dynamicly after the memory was created. Memory is
periodically scanned; identical pages are identified and merged.
The sharing is made in a transparent way to the processes that use it.
Ksm is highly important for hypervisors (kvm), where in production
enviorments there might be many copys of the same data data among the host
memory. This kind of data can be: similar kernels, librarys, cache, and
so on.
Even that ksm was wrote for kvm, any userspace application that want to
use it to share its data can try it.
Ksm may be useful for any application that might have similar (page
aligment) data strctures among the memory, ksm will find this data merge
it to one copy, and even if it will be changed and thereforew copy on
writed, ksm will merge it again as soon as it will be identical again.
Another reason to consider using ksm is the fact that it might simplify
alot the userspace code of application that want to use shared private
data, instead that the application will mange shared area, ksm will do
this for the application, and even write to this data will be allowed
without any synchinization acts from the application.
Ksm was designed to be a loadable module that doesn't change the VM code
of linux.
This patch:
The set_pte_at_notify() macro allows setting a pte in the shadow page
table directly, instead of flushing the shadow page table entry and then
getting vmexit to set it. It uses a new change_pte() callback to do so.
set_pte_at_notify() is an optimization for kvm, and other users of
mmu_notifiers, for COW pages. It is useful for kvm when ksm is used,
because it allows kvm not to have to receive vmexit and only then map the
ksm page into the shadow page table, but instead map it directly at the
same time as Linux maps the page into the host page table.
Users of mmu_notifiers who don't implement new mmu_notifier_change_pte()
callback will just receive the mmu_notifier_invalidate_page() callback.
Signed-off-by: Izik Eidus <ieidus@redhat.com>
Signed-off-by: Chris Wright <chrisw@redhat.com>
Signed-off-by: Hugh Dickins <hugh.dickins@tiscali.co.uk>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Wu Fengguang <fengguang.wu@intel.com>
Cc: Balbir Singh <balbir@in.ibm.com>
Cc: Hugh Dickins <hugh.dickins@tiscali.co.uk>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Lee Schermerhorn <lee.schermerhorn@hp.com>
Cc: Avi Kivity <avi@redhat.com>
Cc: Nick Piggin <nickpiggin@yahoo.com.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
By the time PG_mlocked is cleared in the page freeing path, nobody else is
looking at our page->flags anymore.
It is thus safe to make the test-and-clear non-atomic and thereby removing
an unnecessary and expensive operation from a hotpath.
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Reviewed-by: Christoph Lameter <cl@linux-foundation.org>
Reviewed-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Christoph Lameter <cl@linux-foundation.org>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Nick Piggin <nickpiggin@yahoo.com.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
There is no need for double error checking.
Signed-off-by: Figo.zhang <figo1802@gmail.com>
Acked-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
__get_free_pages() with __GFP_HIGHMEM is not safe because the return
address cannot represent a highmem page. get_zeroed_page() already has
such a debug checking.
Signed-off-by: Akinobu Mita <akinobu.mita@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The pages in the list passed move_active_pages_to_lru() are already
touched by shrink_active_list(). IOW the prefetch in
move_active_pages_to_lru() don't populate any cache. it's pointless.
This patch remove it.
Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Reviewed-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Minchan Kim <minchan.kim@gmail.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Wu Fengguang <fengguang.wu@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The page_lru() already evaluate PageActive() and PageSwapBacked(). We
don't need to re-evaluate it.
Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Reviewed-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Minchan Kim <minchan.kim@gmail.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Wu Fengguang <fengguang.wu@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The move_active_pages_to_lru() function is called under irq disabled and
ClearPageActive() doesn't need irq disabling.
Then, this patch move it into shrink_active_list().
Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Reviewed-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Minchan Kim <minchan.kim@gmail.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Wu Fengguang <fengguang.wu@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The VM already avoids attempting to reclaim anon pages in various places,
But it doesn't avoid it for lumpy reclaim.
It shuffles lru list unnecessary so that it is pointless.
[akpm@linux-foundation.org: cleanup]
Signed-off-by: Minchan Kim <minchan.kim@gmail.com>
Reviewed-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Reviewed-by: Rik van Riel <riel@redhat.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
global_lru_pages() / zone_lru_pages() can be used in two ways:
- to estimate max reclaimable pages in determine_dirtyable_memory()
- to calculate the slab scan ratio
When swap is full or not present, the anon lru lists are not reclaimable
and also won't be scanned. So the anon pages shall not be counted in both
usage scenarios. Also rename to _reclaimable_pages: now they are counting
the possibly reclaimable lru pages.
It can greatly (and correctly) increase the slab scan rate under high
memory pressure (when most file pages have been reclaimed and swap is
full/absent), thus reduce false OOM kills.
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Reviewed-by: Rik van Riel <riel@redhat.com>
Reviewed-by: Christoph Lameter <cl@linux-foundation.org>
Reviewed-by: Minchan Kim <minchan.kim@gmail.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Wu Fengguang <fengguang.wu@intel.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Reviewed-by: Minchan Kim <minchan.kim@gmail.com>
Reviewed-by: Jesse Barnes <jbarnes@virtuousgeek.org>
Cc: David Howells <dhowells@redhat.com>
Cc: "Li, Ming Chun" <macli@brc.ubc.ca>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When way too many processes go into direct reclaim, it is possible for all
of the pages to be taken off the LRU. One result of this is that the next
process in the page reclaim code thinks there are no reclaimable pages
left and triggers an out of memory kill.
One solution to this problem is to never let so many processes into the
page reclaim path that the entire LRU is emptied. Limiting the system to
only having half of each inactive list isolated for reclaim should be
safe.
Signed-off-by: Rik van Riel <riel@redhat.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Wu Fengguang <fengguang.wu@intel.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
If the system is running a heavy load of processes then concurrent reclaim
can isolate a large number of pages from the LRU. /proc/vmstat and the
output generated for an OOM do not show how many pages were isolated.
This has been observed during process fork bomb testing (mstctl11 in LTP).
This patch shows the information about isolated pages.
Reproduced via:
-----------------------
% ./hackbench 140 process 1000
=> OOM occur
active_anon:146 inactive_anon:0 isolated_anon:49245
active_file:79 inactive_file:18 isolated_file:113
unevictable:0 dirty:0 writeback:0 unstable:0 buffer:39
free:370 slab_reclaimable:309 slab_unreclaimable:5492
mapped:53 shmem:15 pagetables:28140 bounce:0
Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Acked-by: Rik van Riel <riel@redhat.com>
Acked-by: Wu Fengguang <fengguang.wu@intel.com>
Reviewed-by: Minchan Kim <minchan.kim@gmail.com>
Cc: Hugh Dickins <hugh.dickins@tiscali.co.uk>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
If sc->isolate_pages() return 0, we don't need to call shrink_page_list().
In past days, shrink_inactive_list() handled it properly.
But commit fb8d14e1 (three years ago commit!) breaked it. current
shrink_inactive_list() always call shrink_page_list() although
isolate_pages() return 0.
This patch restore proper return value check.
Requirements:
o "nr_taken == 0" condition should stay before calling shrink_page_list().
o "nr_taken == 0" condition should stay after nr_scan related statistics
modification.
Cc: Wu Fengguang <fengguang.wu@intel.com>
Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Reviewed-by: Rik van Riel <riel@redhat.com>
Reviewed-by: Minchan Kim <minchan.kim@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Currently the pgmoved variable has two meanings. It causes harder
reviewing. This patch separates it.
Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Reviewed-by: Rik van Riel <riel@redhat.com>
Reviewed-by: Minchan Kim <minchan.kim@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
It is possible for the oom killer to select current as the task to kill.
When this happens, alloc_flags needs to be updated accordingly to set
ALLOC_NO_WATERMARKS so the subsequent allocation attempt may use memory
reserves as the result of its thread having TIF_MEMDIE set if the
allocation is not __GFP_NOMEMALLOC.
Acked-by: Mel Gorman <mel@csn.ul.ie>
Signed-off-by: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Recently we encountered OOM problems due to memory use of the GEM cache.
Generally a large amuont of Shmem/Tmpfs pages tend to create a memory
shortage problem.
We often use the following calculation to determine the amount of shmem
pages:
shmem = NR_ACTIVE_ANON + NR_INACTIVE_ANON - NR_ANON_PAGES
however the expression does not consider isolated and mlocked pages.
This patch adds explicit accounting for pages used by shmem and tmpfs.
Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Acked-by: Rik van Riel <riel@redhat.com>
Reviewed-by: Christoph Lameter <cl@linux-foundation.org>
Acked-by: Wu Fengguang <fengguang.wu@intel.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Hugh Dickins <hugh.dickins@tiscali.co.uk>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The amount of memory allocated to kernel stacks can become significant and
cause OOM conditions. However, we do not display the amount of memory
consumed by stacks.
Add code to display the amount of memory used for stacks in /proc/meminfo.
Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Reviewed-by: Christoph Lameter <cl@linux-foundation.org>
Reviewed-by: Minchan Kim <minchan.kim@gmail.com>
Reviewed-by: Rik van Riel <riel@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
It is often useful to know the statistics for all pages that are handled
like page cache pages when looking at OOM log output.
Therefore show_free_areas() should also display buffer cache statistics.
Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Acked-by: Wu Fengguang <fengguang.wu@intel.com>
Reviewed-by: Rik van Riel <riel@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
show_free_areas() displays only a limited amount of zone counters. This
patch includes additional counters in the display to allow easier
debugging. This may be especially useful if an OOM is due to running out
of DMA memory.
Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Reviewed-by: Christoph Lameter <cl@linux-foundation.org>
Acked-by: Wu Fengguang <fengguang.wu@intel.com>
Reviewed-by: Minchan Kim <minchan.kim@gmail.com>
Reviewed-by: Rik van Riel <riel@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
If an OOM happens, we really want to know the number of remaining
reclaimable pages. So the reclaimable slab and unreclaimable slab fields
should not be combined for display.
Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Reviewed-by: Minchan Kim <minchan.kim@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
I noticed that alloc_bootmem_huge_page() will only advance to the next
node on failure to allocate a huge page, potentially filling nodes with
huge-pages. I asked about this on linux-mm and linux-numa, cc'ing the
usual huge page suspects.
Mel Gorman responded:
I strongly suspect that the same node being used until allocation
failure instead of round-robin is an oversight and not deliberate
at all. It appears to be a side-effect of a fix made way back in
commit 63b4613c3f ["hugetlb: fix
hugepage allocation with memoryless nodes"]. Prior to that patch
it looked like allocations would always round-robin even when
allocation was successful.
This patch--factored out of my "hugetlb mempolicy" series--moves the
advance of the hstate next node from which to allocate up before the test
for success of the attempted allocation.
Note that alloc_bootmem_huge_page() is only used for order > MAX_ORDER
huge pages.
I'll post a separate patch for mainline/stable, as the above mentioned
"balance freeing" series renamed the next node to alloc function.
Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com>
Reviewed-by: Mel Gorman <mel@csn.ul.ie>
Reviewed-by: Andy Whitcroft <apw@canonical.com>
Reviewed-by: Andi Kleen <andi@firstfloor.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Use the [modified] free_pool_huge_page() function to return unused
surplus pages. This will help keep huge pages balanced across nodes
between freeing of unused surplus pages and freeing of persistent huge
pages [from set_max_huge_pages] by using the same node id "cursor". It
also eliminates some code duplication.
Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Nishanth Aravamudan <nacc@us.ibm.com>
Acked-by: David Rientjes <rientjes@google.com>
Cc: Adam Litke <agl@us.ibm.com>
Cc: Andy Whitcroft <apw@canonical.com>
Cc: Eric Whitney <eric.whitney@hp.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Free huges pages from nodes in round robin fashion in an attempt to keep
[persistent a.k.a static] hugepages balanced across nodes
New function free_pool_huge_page() is modeled on and performs roughly the
inverse of alloc_fresh_huge_page(). Replaces dequeue_huge_page() which
now has no callers, so this patch removes it.
Helper function hstate_next_node_to_free() uses new hstate member
next_to_free_nid to distribute "frees" across all nodes with huge pages.
Acked-by: David Rientjes <rientjes@google.com>
Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com>
Acked-by: Mel Gorman <mel@csn.ul.ie>
Cc: Nishanth Aravamudan <nacc@us.ibm.com>
Cc: Adam Litke <agl@us.ibm.com>
Cc: Andy Whitcroft <apw@canonical.com>
Cc: Eric Whitney <eric.whitney@hp.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Ummark function as having kernel-doc notation, fixing the kernel-doc
warning.
Warning(mm/page_alloc.c:4519): No description found for parameter 'zone'
Signed-off-by: Randy Dunlap <randy.dunlap@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
In test, some pages in swap-cache can't be migrated, as they aren't rmap.
unmap_and_move() ignores swap-cache page which is just read in and hasn't
rmap (see the comments in the code), but swap_aops provides .migratepage.
Better to migrate such pages instead of ignore them.
Signed-off-by: Shaohua Li <shaohua.li@intel.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Christoph Lameter <cl@linux-foundation.org>
Cc: Yakui Zhao <yakui.zhao@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
To initialize hotadded node, some pages are allocated. At that time, the
node hasn't memory, this makes the allocation always fail. In such case,
let's allocate pages from other nodes.
Signed-off-by: Shaohua Li <shaohua.li@intel.com>
Signed-off-by: Yakui Zhao <yakui.zhao@intel.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Christoph Lameter <cl@linux-foundation.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Pages on movable zone have two types, MIGRATE_MOVABLE and MIGRATE_RESERVE,
both them can be movable, because only movable memory allocation can get
pages from movable zone. This makes pages in movable zone always be able
to migrate.
Signed-off-by: Shaohua Li <shaohua.li@intel.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Christoph Lameter <cl@linux-foundation.org>
Cc: Yakui Zhao <yakui.zhao@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Pages marked as isolated should not be allocated again. If such pages
reside in pcp list, they can be allocated too, so there is a ping-pong
memory offline frees some pages to pcp list and the pages get allocated
and then memory offline frees them again, this loop will happen again and
again.
This should have no impact in normal code path, because in normal code
path, pages in pcp list aren't isolated, and below loop will break in the
first entry.
Signed-off-by: Shaohua Li <shaohua.li@intel.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Christoph Lameter <cl@linux-foundation.org>
Cc: Yakui Zhao <yakui.zhao@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
In my test, 128M memory is hot added, but zone's pcp batch is 0, which is
an obvious error. When pages are onlined, zone pcp should be updated
accordingly.
[akpm@linux-foundation.org: fix warnings]
Signed-off-by: Shaohua Li <shaohua.li@intel.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Christoph Lameter <cl@linux-foundation.org>
Cc: Yakui Zhao <yakui.zhao@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When a cpuset's nodemask is updated, all attached tasks have their cached
task->mems_allowed updated by a heap instead of requiring an explicit call
to cpuset_update_task_memory_state(), which has since been removed in
58568d2a82 ("cpuset,mm: update tasks'
mems_allowed in time").
Remove the obsoleted comment from the page allocator.
Cc: Paul Menage <menage@google.com>
Acked-by: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* 'perfcounters-rename-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip:
perf: Tidy up after the big rename
perf: Do the big rename: Performance Counters -> Performance Events
perf_counter: Rename 'event' to event_id/hw_event
perf_counter: Rename list_entry -> group_entry, counter_list -> group_list
Manually resolved some fairly trivial conflicts with the tracing tree in
include/trace/ftrace.h and kernel/trace/trace_syscalls.c.
Currently it just sleeps for a very short time, just 1 jiffy. If
we keep looping in there, continually delay for a little longer
of up to 100msec in total. That was the old limit for congestion
wait.
Signed-off-by: Jens Axboe <jens.axboe@oracle.com>
Improve the help text for PAGE_POISONING.
Also fix some typos and improve consistency within the file.
Signed-of-by: Frans Pop <elendil@planet.nl>
Signed-off-by: Jiri Kosina <jkosina@suse.cz>
Bye-bye Performance Counters, welcome Performance Events!
In the past few months the perfcounters subsystem has grown out its
initial role of counting hardware events, and has become (and is
becoming) a much broader generic event enumeration, reporting, logging,
monitoring, analysis facility.
Naming its core object 'perf_counter' and naming the subsystem
'perfcounters' has become more and more of a misnomer. With pending
code like hw-breakpoints support the 'counter' name is less and
less appropriate.
All in one, we've decided to rename the subsystem to 'performance
events' and to propagate this rename through all fields, variables
and API names. (in an ABI compatible fashion)
The word 'event' is also a bit shorter than 'counter' - which makes
it slightly more convenient to write/handle as well.
Thanks goes to Stephane Eranian who first observed this misnomer and
suggested a rename.
User-space tooling and ABI compatibility is not affected - this patch
should be function-invariant. (Also, defconfigs were not touched to
keep the size down.)
This patch has been generated via the following script:
FILES=$(find * -type f | grep -vE 'oprofile|[^K]config')
sed -i \
-e 's/PERF_EVENT_/PERF_RECORD_/g' \
-e 's/PERF_COUNTER/PERF_EVENT/g' \
-e 's/perf_counter/perf_event/g' \
-e 's/nb_counters/nb_events/g' \
-e 's/swcounter/swevent/g' \
-e 's/tpcounter_event/tp_event/g' \
$FILES
for N in $(find . -name perf_counter.[ch]); do
M=$(echo $N | sed 's/perf_counter/perf_event/g')
mv $N $M
done
FILES=$(find . -name perf_event.*)
sed -i \
-e 's/COUNTER_MASK/REG_MASK/g' \
-e 's/COUNTER/EVENT/g' \
-e 's/\<event\>/event_id/g' \
-e 's/counter/event/g' \
-e 's/Counter/Event/g' \
$FILES
... to keep it as correct as possible. This script can also be
used by anyone who has pending perfcounters patches - it converts
a Linux kernel tree over to the new naming. We tried to time this
change to the point in time where the amount of pending patches
is the smallest: the end of the merge window.
Namespace clashes were fixed up in a preparatory patch - and some
stylistic fallout will be fixed up in a subsequent patch.
( NOTE: 'counters' are still the proper terminology when we deal
with hardware registers - and these sed scripts are a bit
over-eager in renaming them. I've undone some of that, but
in case there's something left where 'counter' would be
better than 'event' we can undo that on an individual basis
instead of touching an otherwise nicely automated patch. )
Suggested-by: Stephane Eranian <eranian@google.com>
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Acked-by: Paul Mackerras <paulus@samba.org>
Reviewed-by: Arjan van de Ven <arjan@linux.intel.com>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: David Howells <dhowells@redhat.com>
Cc: Kyle McMartin <kyle@mcmartin.ca>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: <linux-arch@vger.kernel.org>
LKML-Reference: <new-submission>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Remove net/genetlink.h inclusion, now sched.c won't be recompiled
because of some networking changes.
Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
'current' is a pointer, so the right form is 'down_write(¤t->mm->mmap_sem)'.
Signed-off-by: Jianjun Kong <jianjun@zeuux.org>
Signed-off-by: Randy Dunlap <randy.dunlap@oracle.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/driver-core-2.6:
Driver Core: devtmpfs - kernel-maintained tmpfs-based /dev
debugfs: Modify default debugfs directory for debugging pktcdvd.
debugfs: Modified default dir of debugfs for debugging UHCI.
debugfs: Change debugfs directory of IWMC3200
debugfs: Change debuhgfs directory of trace-events-sample.h
debugfs: Fix mount directory of debugfs by default in events.txt
hpilo: add poll f_op
hpilo: add interrupt handler
hpilo: staging for interrupt handling
driver core: platform_device_add_data(): use kmemdup()
Driver core: Add support for compatibility classes
uio: add generic driver for PCI 2.3 devices
driver-core: move dma-coherent.c from kernel to driver/base
mem_class: fix bug
mem_class: use minor as index instead of searching the array
driver model: constify attribute groups
UIO: remove 'default n' from Kconfig
Driver core: Add accessor for device platform data
Driver core: move dev_get/set_drvdata to drivers/base/dd.c
Driver core: add new device to bus's list before probing
* 'writeback' of git://git.kernel.dk/linux-2.6-block:
writeback: fix possible bdi writeback refcounting problem
writeback: Fix bdi use after free in wb_work_complete()
writeback: improve scalability of bdi writeback work queues
writeback: remove smp_mb(), it's not needed with list_add_tail_rcu()
writeback: use schedule_timeout_interruptible()
writeback: add comments to bdi_work structure
writeback: splice dirty inode entries to default bdi on bdi_destroy()
writeback: separate starting of sync vs opportunistic writeback
writeback: inline allocation failure handling in bdi_alloc_queue_work()
writeback: use RCU to protect bdi_list
writeback: only use bdi_writeback_all() for WB_SYNC_NONE writeout
fs: Assign bdi in super_block
writeback: make wb_writeback() take an argument structure
writeback: merely wakeup flusher thread if work allocation fails for WB_SYNC_NONE
writeback: get rid of wbc->for_writepages
fs: remove bdev->bd_inode_backing_dev_info
We cannot safely ensure that the inodes are all gone at this point
in time, and we must not destroy this bdi with inodes having off it.
So just splice our entries to the default bdi since that one will
always persist.
Signed-off-by: Jens Axboe <jens.axboe@oracle.com>
bdi_start_writeback() is currently split into two paths, one for
WB_SYNC_NONE and one for WB_SYNC_ALL. Add bdi_sync_writeback()
for WB_SYNC_ALL writeback and let bdi_start_writeback() handle
only WB_SYNC_NONE.
Push down the writeback_control allocation and only accept the
parameters that make sense for each function. This cleans up
the API considerably.
Signed-off-by: Jens Axboe <jens.axboe@oracle.com>
Now that bdi_writeback_all() no longer handles integrity writeback,
it doesn't have to block anymore. This means that we can switch
bdi_list reader side protection to RCU.
Signed-off-by: Jens Axboe <jens.axboe@oracle.com>
Useful for some testing scenarios, although specific testing is often
done better through MADV_POISON
This can be done with the x86 level MCE injector too, but this interface
allows it to do independently from low level x86 changes.
v2: Add module license (Haicheng Li)
Signed-off-by: Andi Kleen <ak@linux.intel.com>
Impact: optional, useful for debugging
Add a new madvice sub command to inject poison for some
pages in a process' address space. This is useful for
testing the poison page handling.
This patch can allow root to tie up large amounts of memory.
I got feedback from container developers and they didn't see any
problem.
v2: Use write flag for get_user_pages to make sure to always get
a fresh page
v3: Don't request write mapping (Fengguang Wu)
v4: Move MADV_* number to avoid conflict with KSM (Hugh Dickins)
Signed-off-by: Andi Kleen <ak@linux.intel.com>
Enable removing of corrupted pages through truncation
for a bunch of file systems: ext*, xfs, gfs2, ocfs2, ntfs
These should cover most server needs.
I chose the set of migration aware file systems for this
for now, assuming they have been especially audited.
But in general it should be safe for all file systems
on the data area that support read/write and truncate.
Caveat: the hardware error handler does not take i_mutex
for now before calling the truncate function. Is that ok?
Cc: tytso@mit.edu
Cc: hch@infradead.org
Cc: mfasheh@suse.com
Cc: aia21@cantab.net
Cc: hugh.dickins@tiscali.co.uk
Cc: swhiteho@redhat.com
Signed-off-by: Andi Kleen <ak@linux.intel.com>
Add the high level memory handler that poisons pages
that got corrupted by hardware (typically by a two bit flip in a DIMM
or a cache) on the Linux level. The goal is to prevent everyone
from accessing these pages in the future.
This done at the VM level by marking a page hwpoisoned
and doing the appropriate action based on the type of page
it is.
The code that does this is portable and lives in mm/memory-failure.c
To quote the overview comment:
High level machine check handler. Handles pages reported by the
hardware as being corrupted usually due to a 2bit ECC memory or cache
failure.
This focuses on pages detected as corrupted in the background.
When the current CPU tries to consume corruption the currently
running process can just be killed directly instead. This implies
that if the error cannot be handled for some reason it's safe to
just ignore it because no corruption has been consumed yet. Instead
when that happens another machine check will happen.
Handles page cache pages in various states. The tricky part
here is that we can access any page asynchronous to other VM
users, because memory failures could happen anytime and anywhere,
possibly violating some of their assumptions. This is why this code
has to be extremely careful. Generally it tries to use normal locking
rules, as in get the standard locks, even if that means the
error handling takes potentially a long time.
Some of the operations here are somewhat inefficient and have non
linear algorithmic complexity, because the data structures have not
been optimized for this case. This is in particular the case
for the mapping from a vma to a process. Since this case is expected
to be rare we hope we can get away with this.
There are in principle two strategies to kill processes on poison:
- just unmap the data and wait for an actual reference before
killing
- kill as soon as corruption is detected.
Both have advantages and disadvantages and should be used
in different situations. Right now both are implemented and can
be switched with a new sysctl vm.memory_failure_early_kill
The default is early kill.
The patch does some rmap data structure walking on its own to collect
processes to kill. This is unusual because normally all rmap data structure
knowledge is in rmap.c only. I put it here for now to keep
everything together and rmap knowledge has been seeping out anyways
Includes contributions from Johannes Weiner, Chris Mason, Fengguang Wu,
Nick Piggin (who did a lot of great work) and others.
Cc: npiggin@suse.de
Cc: riel@redhat.com
Signed-off-by: Andi Kleen <ak@linux.intel.com>
Acked-by: Rik van Riel <riel@redhat.com>
Reviewed-by: Hidehiro Kawai <hidehiro.kawai.ez@hitachi.com>
The dirtying of page and set_page_dirty() can be moved into the page lock.
- In shmem_write_end(), the page was dirtied while the page lock was held,
but it's being marked dirty just after dropping the page lock.
- In shmem_symlink(), both dirtying and marking can be moved into page lock.
It's valuable for the hwpoison code to know whether one bad page can be dropped
without losing data. It mainly judges by testing the PG_dirty bit after taking
the page lock. So it becomes important that the dirtying of page and the
marking of dirtiness are both done inside the page lock. Which is a common
practice, but sadly not a rule.
The noticeable exceptions are
- mapped pages
- pages with buffer_heads
The above pages could go dirty at any time. Fortunately the hwpoison will
unmap the page and release the buffer_heads beforehand anyway.
Many other types of pages (eg. metadata pages) can also be dirtied at will by
their owners, the hwpoison code cannot do meaningful things to them anyway.
Only the dirtiness of pagecache pages owned by regular files are interested.
v2: AK: Add comment about set_page_dirty rules (suggested by Peter Zijlstra)
Acked-by: Hugh Dickins <hugh.dickins@tiscali.co.uk>
Reviewed-by: WANG Cong <xiyou.wangcong@gmail.com>
Signed-off-by: Wu Fengguang <fengguang.wu@intel.com>
Signed-off-by: Andi Kleen <ak@linux.intel.com>
Truncating metadata pages is not safe right now before
we haven't audited all file systems.
To enable truncation only for data address space define
a new address_space callback error_remove_page.
This is used for memory_failure.c memory error handling.
This can be then set to truncate_inode_page()
This patch just defines the new operation and adds documentation.
Callers and users come in followon patches.
Signed-off-by: Andi Kleen <ak@linux.intel.com>
Add a simple way to invalidate a single page
This is just a refactoring of the truncate.c code.
Originally from Fengguang, modified by Andi Kleen.
Signed-off-by: Andi Kleen <ak@linux.intel.com>
Extract out truncate_inode_page() out of the truncate path so that
it can be used by memory-failure.c
[AK: description, headers, fix typos]
v2: Some white space changes from Fengguang Wu
Signed-off-by: Andi Kleen <ak@linux.intel.com>
If memory corruption hits the free buddy pages, we can safely ignore them.
No one will access them until page allocation time, then prep_new_page()
will automatically check and isolate PG_hwpoison page for us (for 0-order
allocation).
This patch expands prep_new_page() to check every component page in a high
order page allocation, in order to completely stop PG_hwpoison pages from
being recirculated.
Note that the common case -- only allocating a single page, doesn't
do any more work than before. Allocating > order 0 does a bit more work,
but that's relatively uncommon.
This simple implementation may drop some innocent neighbor pages, hopefully
it is not a big problem because the event should be rare enough.
This patch adds some runtime costs to high order page users.
[AK: Improved description]
v2: Andi Kleen:
Port to -mm code
Move check into separate function.
Don't dump stack in bad_pages for hwpoisoned pages.
Signed-off-by: Wu Fengguang <fengguang.wu@intel.com>
Signed-off-by: Andi Kleen <ak@linux.intel.com>
When a page has the poison bit set replace the PTE with a poison entry.
This causes the right error handling to be done later when a process runs
into it.
v2: add a new flag to not do that (needed for the memory-failure handler
later) (Fengguang)
v3: remove unnecessary is_migration_entry() test (Fengguang, Minchan)
Reviewed-by: Minchan Kim <minchan.kim@gmail.com>
Reviewed-by: Wu Fengguang <fengguang.wu@intel.com>
Signed-off-by: Andi Kleen <ak@linux.intel.com>
try_to_unmap currently has multiple modi (migration, munlock, normal unmap)
which are selected by magic flag variables. The logic is not very straight
forward, because each of these flag change multiple behaviours (e.g.
migration turns off aging, not only sets up migration ptes etc.)
Also the different flags interact in magic ways.
A later patch in this series adds another mode to try_to_unmap, so
this becomes quickly unmanageable.
Replace the different flags with a action code (migration, munlock, munmap)
and some additional flags as modifiers (ignore mlock, ignore aging).
This makes the logic more straight forward and allows easier extension
to new behaviours. Change all the caller to declare what they want to
do.
This patch is supposed to be a nop in behaviour. If anyone can prove
it is not that would be a bug.
Cc: Lee.Schermerhorn@hp.com
Cc: npiggin@suse.de
Signed-off-by: Andi Kleen <ak@linux.intel.com>
Bail out early when hardware poisoned pages are found in page fault handling.
Since they are poisoned they should not be mapped freshly into processes,
because that would cause another (potentially deadly) machine check
This is generally handled in the same way as OOM, just a different
error code is returned to the architecture code.
v2: Do a page unlock if needed (Fengguang Wu)
Signed-off-by: Andi Kleen <ak@linux.intel.com>
- Add a new VM_FAULT_HWPOISON error code to handle_mm_fault. Right now
architectures have to explicitely enable poison page support, so
this is forward compatible to all architectures. They only need
to add it when they enable poison page support.
- Add poison page handling in swap in fault code
v2: Add missing delayacct_clear_flag (Hidehiro Kawai)
v3: Really use delayacct_clear_flag (Hidehiro Kawai)
Signed-off-by: Andi Kleen <ak@linux.intel.com>
Memory migration uses special swap entry types to trigger special actions on
page faults. Extend this mechanism to also support poisoned swap entries, to
trigger poison handling on page faults. This allows follow-on patches to
prevent processes from faulting in poisoned pages again.
v2: Fix overflow in MAX_SWAPFILES (Fengguang Wu)
v3: Better overflow fix (Hidehiro Kawai)
Signed-off-by: Andi Kleen <ak@linux.intel.com>
Needed for later patch that walks rmap entries on its own.
This used to be very frowned upon, but memory-failure.c does
some rather specialized rmap walking and rmap has been stable
for quite some time, so I think it's ok now to export it.
Signed-off-by: Andi Kleen <ak@linux.intel.com>
This build bug:
mm/slub.c: In function 'kmem_cache_open':
mm/slub.c:2476: error: 'disable_higher_order_debug' undeclared (first use in this function)
mm/slub.c:2476: error: (Each undeclared identifier is reported only once
mm/slub.c:2476: error: for each function it appears in.)
Triggers because there's no !CONFIG_SLUB_DEBUG definition for
disable_higher_order_debug.
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Pekka Enberg <penberg@cs.helsinki.fi>
Devtmpfs lets the kernel create a tmpfs instance called devtmpfs
very early at kernel initialization, before any driver-core device
is registered. Every device with a major/minor will provide a
device node in devtmpfs.
Devtmpfs can be changed and altered by userspace at any time,
and in any way needed - just like today's udev-mounted tmpfs.
Unmodified udev versions will run just fine on top of it, and will
recognize an already existing kernel-created device node and use it.
The default node permissions are root:root 0600. Proper permissions
and user/group ownership, meaningful symlinks, all other policy still
needs to be applied by userspace.
If a node is created by devtmps, devtmpfs will remove the device node
when the device goes away. If the device node was created by
userspace, or the devtmpfs created node was replaced by userspace, it
will no longer be removed by devtmpfs.
If it is requested to auto-mount it, it makes init=/bin/sh work
without any further userspace support. /dev will be fully populated
and dynamic, and always reflect the current device state of the kernel.
With the commonly used dynamic device numbers, it solves the problem
where static devices nodes may point to the wrong devices.
It is intended to make the initial bootup logic simpler and more robust,
by de-coupling the creation of the inital environment, to reliably run
userspace processes, from a complex userspace bootstrap logic to provide
a working /dev.
Signed-off-by: Kay Sievers <kay.sievers@vrfy.org>
Signed-off-by: Jan Blunck <jblunck@suse.de>
Tested-By: Harald Hoyer <harald@redhat.com>
Tested-By: Scott James Remnant <scott@ubuntu.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/percpu: (46 commits)
powerpc64: convert to dynamic percpu allocator
sparc64: use embedding percpu first chunk allocator
percpu: kill lpage first chunk allocator
x86,percpu: use embedding for 64bit NUMA and page for 32bit NUMA
percpu: update embedding first chunk allocator to handle sparse units
percpu: use group information to allocate vmap areas sparsely
vmalloc: implement pcpu_get_vm_areas()
vmalloc: separate out insert_vmalloc_vm()
percpu: add chunk->base_addr
percpu: add pcpu_unit_offsets[]
percpu: introduce pcpu_alloc_info and pcpu_group_info
percpu: move pcpu_lpage_build_unit_map() and pcpul_lpage_dump_cfg() upward
percpu: add @align to pcpu_fc_alloc_fn_t
percpu: make @dyn_size mandatory for pcpu_setup_first_chunk()
percpu: drop @static_size from first chunk allocators
percpu: generalize first chunk allocator selection
percpu: build first chunk allocators selectively
percpu: rename 4k first chunk allocator to page
percpu: improve boot messages
percpu: fix pcpu_reclaim() locking
...
Fix trivial conflict as by Tejun Heo in kernel/sched.c
* 'x86-pat-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip:
x86, pat: Fix cacheflush address in change_page_attr_set_clr()
mm: remove !NUMA condition from PAGEFLAGS_EXTENDED condition set
x86: Fix earlyprintk=dbgp for machines without NX
x86, pat: Sanity check remap_pfn_range for RAM region
x86, pat: Lookup the protection from memtype list on vm_insert_pfn()
x86, pat: Add lookup_memtype to get the current memtype of a paddr
x86, pat: Use page flags to track memtypes of RAM pages
x86, pat: Generalize the use of page flag PG_uncached
x86, pat: Add rbtree to do quick lookup in memtype tracking
x86, pat: Add PAT reserve free to io_mapping* APIs
x86, pat: New i/f for driver to request memtype for IO regions
x86, pat: ioremap to follow same PAT restrictions as other PAT users
x86, pat: Keep identity maps consistent with mmaps even when pat_disabled
x86, mtrr: make mtrr_aps_delayed_init static bool
x86, pat/mtrr: Rendezvous all the cpus for MTRR/PAT init
generic-ipi: Allow cpus not yet online to call smp_call_function with irqs disabled
x86: Fix an incorrect argument of reserve_bootmem()
x86: Fix system crash when loading with "reservetop" parameter
* 'for-2.6.32' of git://git.kernel.dk/linux-2.6-block: (29 commits)
block: use blkdev_issue_discard in blk_ioctl_discard
Make DISCARD_BARRIER and DISCARD_NOBARRIER writes instead of reads
block: don't assume device has a request list backing in nr_requests store
block: Optimal I/O limit wrapper
cfq: choose a new next_req when a request is dispatched
Seperate read and write statistics of in_flight requests
aoe: end barrier bios with EOPNOTSUPP
block: trace bio queueing trial only when it occurs
block: enable rq CPU completion affinity by default
cfq: fix the log message after dispatched a request
block: use printk_once
cciss: memory leak in cciss_init_one()
splice: update mtime and atime on files
block: make blk_iopoll_prep_sched() follow normal 0/1 return convention
cfq-iosched: get rid of must_alloc flag
block: use interrupts disabled version of raise_softirq_irqoff()
block: fix comment in blk-iopoll.c
block: adjust default budget for blk-iopoll
block: fix long lines in block/blk-iopoll.c
block: add blk-iopoll, a NAPI like approach for block devices
...
* 'kvm-updates/2.6.32' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (202 commits)
MAINTAINERS: update KVM entry
KVM: correct error-handling code
KVM: fix compile warnings on s390
KVM: VMX: Check cpl before emulating debug register access
KVM: fix misreporting of coalesced interrupts by kvm tracer
KVM: x86: drop duplicate kvm_flush_remote_tlb calls
KVM: VMX: call vmx_load_host_state() only if msr is cached
KVM: VMX: Conditionally reload debug register 6
KVM: Use thread debug register storage instead of kvm specific data
KVM guest: do not batch pte updates from interrupt context
KVM: Fix coalesced interrupt reporting in IOAPIC
KVM guest: fix bogus wallclock physical address calculation
KVM: VMX: Fix cr8 exiting control clobbering by EPT
KVM: Optimize kvm_mmu_unprotect_page_virt() for tdp
KVM: Document KVM_CAP_IRQCHIP
KVM: Protect update_cr8_intercept() when running without an apic
KVM: VMX: Fix EPT with WP bit change during paging
KVM: Use kvm_{read,write}_guest_virt() to read and write segment descriptors
KVM: x86 emulator: Add adc and sbb missing decoder flags
KVM: Add missing #include
...
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/penberg/slab-2.6:
slub: fix slab_pad_check()
slub: release kobject if sysfs_create_group failed in sysfs_slab_add
SLUB: fix ARCH_KMALLOC_MINALIGN cases 64 and 256
SLUB: Fix some coding style issues
SLUB: Drop write permission to /proc/slabinfo
slab: remove duplicate kmem_cache_init_late() declarations
slub: change kmem_cache->align to record the real alignment
slub: use size and objsize orders to disable debug flags
slub: add option to disable higher order debugging slabs
Introduce new function for generic inode syncing (vfs_fsync_range) and use
it from fsync() path. Introduce also new helper for syncing after a sync
write (generic_write_sync) using the generic function.
Use these new helpers for syncing from generic VFS functions. This makes
O_SYNC writes to block devices acquire i_mutex for syncing. If we really
care about this, we can make block_fsync() drop the i_mutex and reacquire
it before it returns.
CC: Evgeniy Polyakov <zbr@ioremap.net>
CC: ocfs2-devel@oss.oracle.com
CC: Joel Becker <joel.becker@oracle.com>
CC: Felix Blyakher <felixb@sgi.com>
CC: xfs@oss.sgi.com
CC: Anton Altaparmakov <aia21@cantab.net>
CC: linux-ntfs-dev@lists.sourceforge.net
CC: OGAWA Hirofumi <hirofumi@mail.parknet.co.jp>
CC: linux-ext4@vger.kernel.org
CC: tytso@mit.edu
Acked-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jan Kara <jack@suse.cz>
generic_file_aio_write_nolock() is now used only by block devices and raw
character device. Filesystems should use __generic_file_aio_write() in case
generic_file_aio_write() doesn't suit them. So rename the function to
blkdev_aio_write() and move it to fs/blockdev.c.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jan Kara <jack@suse.cz>
generic_file_direct_write() and generic_file_buffered_write() called
generic_osync_inode() if it was called on O_SYNC file or IS_SYNC inode. But
this is superfluous since generic_file_aio_write() does the syncing as well.
Also XFS and OCFS2 which call these functions directly handle syncing
themselves. So let's have a single place where syncing happens:
generic_file_aio_write().
We slightly change the behavior by syncing only the range of file to which the
write happened for buffered writes but that should be all that is required.
CC: ocfs2-devel@oss.oracle.com
CC: Joel Becker <joel.becker@oracle.com>
CC: Felix Blyakher <felixb@sgi.com>
CC: xfs@oss.sgi.com
Signed-off-by: Jan Kara <jack@suse.cz>
Rename __generic_file_aio_write_nolock() to __generic_file_aio_write(), add
comments to write helpers explaining how they should be used and export
__generic_file_aio_write() since it will be used by some filesystems.
CC: ocfs2-devel@oss.oracle.com
CC: Joel Becker <joel.becker@oracle.com>
Acked-by: Evgeniy Polyakov <zbr@ioremap.net>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jan Kara <jack@suse.cz>
This simple helper saves some filesystems conversion from byte offset
to page numbers and also makes the fdata* interface more complete.
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jan Kara <jack@suse.cz>
blk_ioctl_discard duplicates large amounts of code from blkdev_issue_discard,
the only difference between the two is that blkdev_issue_discard needs to
send a barrier discard request and blk_ioctl_discard a non-barrier one,
and blk_ioctl_discard needs to wait on the request. To facilitates this
add a flags argument to blkdev_issue_discard to control both aspects of the
behaviour. This will be very useful later on for using the waiting
funcitonality for other callers.
Based on an earlier patch from Matthew Wilcox <matthew@wil.cx>.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jens Axboe <jens.axboe@oracle.com>
When SLAB_POISON is used and slab_pad_check() finds an overwrite of the
slab padding, we call restore_bytes() on the whole slab, not only
on the padding.
Acked-by: Christoph Lameer <cl@linux-foundation.org>
Reported-by: Zdenek Kabelac <zdenek.kabelac@gmail.com>
Signed-off-by: Eric Dumazet <eric.dumazet@gmail.com>
Signed-off-by: Pekka Enberg <penberg@cs.helsinki.fi>
* 'writeback' of git://git.kernel.dk/linux-2.6-block:
writeback: check for registered bdi in flusher add and inode dirty
writeback: add name to backing_dev_info
writeback: add some debug inode list counters to bdi stats
writeback: get rid of pdflush completely
writeback: switch to per-bdi threads for flushing data
writeback: move dirty inodes from super_block to backing_dev_info
writeback: get rid of generic_sync_sb_inodes() export
* 'kmemleak' of git://linux-arm.org/linux-2.6:
kmemleak: Improve the "Early log buffer exceeded" error message
kmemleak: fix sparse warning for static declarations
kmemleak: fix sparse warning over overshadowed flags
kmemleak: move common painting code together
kmemleak: add clear command support
kmemleak: use bool for true/false questions
kmemleak: Do no create the clean-up thread during kmemleak_disable()
kmemleak: Scan all thread stacks
kmemleak: Don't scan uninitialized memory when kmemcheck is enabled
kmemleak: Ignore the aperture memory hole on x86_64
kmemleak: Printing of the objects hex dump
kmemleak: Do not report alloc_bootmem blocks as leaks
kmemleak: Save the stack trace for early allocations
kmemleak: Mark the early log buffer as __initdata
kmemleak: Dump object information on request
kmemleak: Allow rescheduling during an object scanning
Based on a suggestion from Jaswinder, clarify what the user would need
to do to avoid this error message from kmemleak.
Reported-by: Jaswinder Singh Rajput <jaswinder@kernel.org>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Also a debugging aid. We want to catch dirty inodes being added to
backing devices that don't do writeback.
Signed-off-by: Jens Axboe <jens.axboe@oracle.com>
This enables us to track who does what and print info. Its main use
is catching dirty inodes on the default_backing_dev_info, so we can
fix that up.
Signed-off-by: Jens Axboe <jens.axboe@oracle.com>
This gets rid of pdflush for bdi writeout and kupdated style cleaning.
pdflush writeout suffers from lack of locality and also requires more
threads to handle the same workload, since it has to work in a
non-blocking fashion against each queue. This also introduces lumpy
behaviour and potential request starvation, since pdflush can be starved
for queue access if others are accessing it. A sample ffsb workload that
does random writes to files is about 8% faster here on a simple SATA drive
during the benchmark phase. File layout also seems a LOT more smooth in
vmstat:
r b swpd free buff cache si so bi bo in cs us sy id wa
0 1 0 608848 2652 375372 0 0 0 71024 604 24 1 10 48 42
0 1 0 549644 2712 433736 0 0 0 60692 505 27 1 8 48 44
1 0 0 476928 2784 505192 0 0 4 29540 553 24 0 9 53 37
0 1 0 457972 2808 524008 0 0 0 54876 331 16 0 4 38 58
0 1 0 366128 2928 614284 0 0 4 92168 710 58 0 13 53 34
0 1 0 295092 3000 684140 0 0 0 62924 572 23 0 9 53 37
0 1 0 236592 3064 741704 0 0 4 58256 523 17 0 8 48 44
0 1 0 165608 3132 811464 0 0 0 57460 560 21 0 8 54 38
0 1 0 102952 3200 873164 0 0 4 74748 540 29 1 10 48 41
0 1 0 48604 3252 926472 0 0 0 53248 469 29 0 7 47 45
where vanilla tends to fluctuate a lot in the creation phase:
r b swpd free buff cache si so bi bo in cs us sy id wa
1 1 0 678716 5792 303380 0 0 0 74064 565 50 1 11 52 36
1 0 0 662488 5864 319396 0 0 4 352 302 329 0 2 47 51
0 1 0 599312 5924 381468 0 0 0 78164 516 55 0 9 51 40
0 1 0 519952 6008 459516 0 0 4 78156 622 56 1 11 52 37
1 1 0 436640 6092 541632 0 0 0 82244 622 54 0 11 48 41
0 1 0 436640 6092 541660 0 0 0 8 152 39 0 0 51 49
0 1 0 332224 6200 644252 0 0 4 102800 728 46 1 13 49 36
1 0 0 274492 6260 701056 0 0 4 12328 459 49 0 7 50 43
0 1 0 211220 6324 763356 0 0 0 106940 515 37 1 10 51 39
1 0 0 160412 6376 813468 0 0 0 8224 415 43 0 6 49 45
1 1 0 85980 6452 886556 0 0 4 113516 575 39 1 11 54 34
0 2 0 85968 6452 886620 0 0 0 1640 158 211 0 0 46 54
A 10 disk test with btrfs performs 26% faster with per-bdi flushing. A
SSD based writeback test on XFS performs over 20% better as well, with
the throughput being very stable around 1GB/sec, where pdflush only
manages 750MB/sec and fluctuates wildly while doing so. Random buffered
writes to many files behave a lot better as well, as does random mmap'ed
writes.
A separate thread is added to sync the super blocks. In the long term,
adding sync_supers_bdi() functionality could get rid of this thread again.
Signed-off-by: Jens Axboe <jens.axboe@oracle.com>
This is a first step at introducing per-bdi flusher threads. We should
have no change in behaviour, although sb_has_dirty_inodes() is now
ridiculously expensive, as there's no easy way to answer that question.
Not a huge problem, since it'll be deleted in subsequent patches.
Signed-off-by: Jens Axboe <jens.axboe@oracle.com>
shmfs wants purely standard POSIX ACL semantics, so we can use the new
generic VFS layer POSIX ACL checking rather than cooking our own
'permission()' function.
Reviewed-by: James Morris <jmorris@namei.org>
Acked-by: Serge Hallyn <serue@us.ibm.com>
Acked-by: Hugh Dickins <hugh.dickins@tiscali.co.uk>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This fixes these sparse warnings:
mm/kmemleak.c:1179:6: warning: symbol 'start_scan_thread' was not declared. Should it be static?
mm/kmemleak.c:1194:6: warning: symbol 'stop_scan_thread' was not declared. Should it be static?
Acked-by: Pekka Enberg <penberg@cs.helsinki.fi>
Signed-off-by: Luis R. Rodriguez <lrodriguez@atheros.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
A secondary irq_save is not required as a locking before it was
already disabling irqs.
This fixes this sparse warning:
mm/kmemleak.c:512:31: warning: symbol 'flags' shadows an earlier one
mm/kmemleak.c:448:23: originally declared here
Signed-off-by: Luis R. Rodriguez <lrodriguez@atheros.com>
Acked-by: Pekka Enberg <penberg@cs.helsinki.fi>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
When painting grey or black we do the same thing, bring
this together into a helper and identify coloring grey or
black explicitly with defines. This makes this a little
easier to read.
Signed-off-by: Luis R. Rodriguez <lrodriguez@atheros.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
In an ideal world your kmemleak output will be small, when its
not (usually during initial bootup) you can use the clear command
to ingore previously reported and unreferenced kmemleak objects. We
do this by painting all currently reported unreferenced objects grey.
We paint them grey instead of black to allow future scans on the same
objects as such objects could still potentially reference newly
allocated objects in the future.
To test a critical section on demand with a clean
/sys/kernel/debug/kmemleak you can do:
echo clear > /sys/kernel/debug/kmemleak
test your kernel or modules
echo scan > /sys/kernel/debug/kmemleak
Then as usual to get your report with:
cat /sys/kernel/debug/kmemleak
Signed-off-by: Luis R. Rodriguez <lrodriguez@atheros.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Acked-by: Pekka Enberg <penberg@cs.helsinki.fi>
Signed-off-by: Luis R. Rodriguez <lrodriguez@atheros.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
The kmemleak_disable() function could be called from various contexts
including IRQ. It creates a clean-up thread but the kthread_create()
function has restrictions on which contexts it can be called from,
mainly because of the kthread_create_lock. The patch changes the
kmemleak clean-up thread to a workqueue.
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Reported-by: Eric Paris <eparis@redhat.com>
On low-memory systems, anti-fragmentation gets disabled as fragmentation
cannot be avoided on a sufficiently large boundary to be worthwhile. Once
disabled, there is a period of time when all the pageblocks are marked
MOVABLE and the expectation is that they get marked UNMOVABLE at each call
to __rmqueue_fallback().
However, when MAX_ORDER is large the pageblocks do not change ownership
because the normal criteria are not met. This has the effect of
prematurely breaking up too many large contiguous blocks. This is most
serious on NOMMU systems which depend on high-order allocations to boot.
This patch causes pageblocks to change ownership on every fallback when
anti-fragmentation is disabled. This prevents the large blocks being
prematurely broken up.
This is a fix to commit 49255c619f [page
allocator: move check for disabled anti-fragmentation out of fastpath] and
the problem affects 2.6.31-rc8.
Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Tested-by: Paul Mundt <lethal@linux-sh.org>
Cc: David Howells <dhowells@redhat.com>
Cc: Pekka Enberg <penberg@cs.helsinki.fi>
Acked-by: Greg Ungerer <gerg@snapgear.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Fix the error handling in do_mmap_pgoff(). If do_mmap_shared_file() or
do_mmap_private() fail, we jump to the error_put_region label at which
point we cann __put_nommu_region() on the region - but we haven't yet
added the region to the tree, and so __put_nommu_region() may BUG
because the region tree is empty or it may corrupt the region tree.
To get around this, we can afford to add the region to the region tree
before calling do_mmap_shared_file() or do_mmap_private() as we keep
nommu_region_sem write-locked, so no-one can race with us by seeing a
transient region.
Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: Pekka Enberg <penberg@cs.helsinki.fi>
Acked-by: Paul Mundt <lethal@linux-sh.org>
Cc: Mel Gorman <mel@csn.ul.ie>
Acked-by: Greg Ungerer <gerg@snapgear.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This patch changes the for_each_process() loop with the
do_each_thread()/while_each_thread() pair.
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Ingo Molnar reported the following kmemcheck warning when running both
kmemleak and kmemcheck enabled:
PM: Adding info for No Bus:vcsa7
WARNING: kmemcheck: Caught 32-bit read from uninitialized memory
(f6f6e1a4)
d873f9f600000000c42ae4c1005c87f70000000070665f666978656400000000
i i i i u u u u i i i i i i i i i i i i i i i i i i i i i u u u
^
Pid: 3091, comm: kmemleak Not tainted (2.6.31-rc7-tip #1303) P4DC6
EIP: 0060:[<c110301f>] EFLAGS: 00010006 CPU: 0
EIP is at scan_block+0x3f/0xe0
EAX: f40bd700 EBX: f40bd780 ECX: f16b46c0 EDX: 00000001
ESI: f6f6e1a4 EDI: 00000000 EBP: f10f3f4c ESP: c2605fcc
DS: 007b ES: 007b FS: 00d8 GS: 00e0 SS: 0068
CR0: 8005003b CR2: e89a4844 CR3: 30ff1000 CR4: 000006f0
DR0: 00000000 DR1: 00000000 DR2: 00000000 DR3: 00000000
DR6: ffff4ff0 DR7: 00000400
[<c110313c>] scan_object+0x7c/0xf0
[<c1103389>] kmemleak_scan+0x1d9/0x400
[<c1103a3c>] kmemleak_scan_thread+0x4c/0xb0
[<c10819d4>] kthread+0x74/0x80
[<c10257db>] kernel_thread_helper+0x7/0x3c
[<ffffffff>] 0xffffffff
kmemleak: 515 new suspected memory leaks (see
/sys/kernel/debug/kmemleak)
kmemleak: 42 new suspected memory leaks (see /sys/kernel/debug/kmemleak)
The problem here is that kmemleak will scan partially initialized
objects that makes kmemcheck complain. Fix that up by skipping
uninitialized memory regions when kmemcheck is enabled.
Reported-by: Ingo Molnar <mingo@elte.hu>
Acked-by: Ingo Molnar <mingo@elte.hu>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Pekka Enberg <penberg@cs.helsinki.fi>
kmem_cache_destroy() should call rcu_barrier() *after* kmem_cache_close() and
*before* sysfs_slab_remove() or risk rcu_free_slab() being called after
kmem_cache is deleted (kfreed).
rmmod nf_conntrack can crash the machine because it has to kmem_cache_destroy()
a SLAB_DESTROY_BY_RCU enabled cache.
Cc: <stable@kernel.org>
Reported-by: Zdenek Kabelac <zdenek.kabelac@gmail.com>
Signed-off-by: Eric Dumazet <eric.dumazet@gmail.com>
Acked-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Signed-off-by: Pekka Enberg <penberg@cs.helsinki.fi>
When CONFIG_SLUB_DEBUG is enabled, sysfs_slab_add should unlink and put the
kobject if sysfs_create_group failed. Otherwise, sysfs_slab_add returns error
then free kmem_cache s, thus memory of s->kobj is leaked.
Acked-by: Christoph Lameter <cl@linux-foundation.org>
Signed-off-by: Xiaotian Feng <dfeng@redhat.com>
Signed-off-by: Pekka Enberg <penberg@cs.helsinki.fi>
percpu incorrectly assumed that cpu0 was always there which led to the
following warning and eventual oops on sparc machines w/o cpu0.
WARNING: at mm/percpu.c:651 pcpu_map+0xdc/0x100()
Modules linked in:
Call Trace:
[000000000045eb70] warn_slowpath_common+0x50/0xa0
[000000000045ebdc] warn_slowpath_null+0x1c/0x40
[00000000004d493c] pcpu_map+0xdc/0x100
[00000000004d59a4] pcpu_alloc+0x3e4/0x4e0
[00000000004d5af8] __alloc_percpu+0x18/0x40
[00000000005b112c] __percpu_counter_init+0x4c/0xc0
...
Unable to handle kernel NULL pointer dereference
...
I7: <sysfs_new_dirent+0x30/0x120>
Disabling lock debugging due to kernel taint
Caller[000000000053c1b0]: sysfs_new_dirent+0x30/0x120
Caller[000000000053c7a4]: create_dir+0x24/0xc0
Caller[000000000053c870]: sysfs_create_dir+0x30/0x80
Caller[00000000005990e8]: kobject_add_internal+0xc8/0x200
...
Kernel panic - not syncing: Attempted to kill the idle task!
This patch fixes the problem by backporting parts from devel branch to
make percpu core not depend on the existence of cpu0.
Signed-off-by: Tejun Heo <tj@kernel.org>
Reported-by: Meelis Roos <mroos@linux.ee>
Cc: David Miller <davem@davemloft.net>
CONFIG_PAGEFLAGS_EXTENDED disables a trick to conserve pageflags.
This trick is indended to be enabled when the pressure on page flags
is very high.
The previous condition was:
- depends on 64BIT || SPARSEMEM_VMEMMAP || !NUMA || !SPARSEMEM
... however, the sparsemem code already has a way to crowd out the
node number from the pageflags, which means that !NUMA actually
doesn't contribute to hard pageflags exhaustion.
This is required for the new PG_uncached flag to not cause pageflags
exhaustion on x86_32 + PAE + SPARSEMEM + !NUMA.
Signed-off-by: H. Peter Anvin <hpa@zytor.com>
LKML-Reference: <4A9828F4.4040905@zytor.com>
Cc: Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
Cc: Suresh Siddha <suresh.siddha@intel.com>
If the minalign is 64 bytes, then the 96 byte cache should not be created
because it would conflict with the 128 byte cache.
If the minalign is 256 bytes, patching the size_index table should not
result in a buffer overrun.
The calculation "(i - 1) / 8" used to access size_index[] is moved to
a separate function as suggested by Christoph Lameter.
Acked-by: Christoph Lameter <cl@linux-foundation.org>
Signed-off-by: Aaro Koskinen <aaro.koskinen@nokia.com>
Signed-off-by: Pekka Enberg <penberg@cs.helsinki.fi>
Introducing printing of the objects hex dump to the seq file.
The number of lines to be printed is limited to HEX_MAX_LINES
to prevent seq file spamming. The actual number of printed
bytes is less than or equal to (HEX_MAX_LINES * HEX_ROW_SIZE).
(slight adjustments by Catalin Marinas)
Signed-off-by: Sergey Senozhatsky <sergey.senozhatsky@mail.by>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
This patch sets the min_count for alloc_bootmem objects to 0 so that
they are never reported as leaks. This is because many of these blocks
are only referred via the physical address which is not looked up by
kmemleak.
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Cc: Pekka Enberg <penberg@cs.helsinki.fi>
Before slab is initialised, kmemleak save the allocations in an early
log buffer. They are later recorded as normal memory allocations. This
patch adds the stack trace saving to the early log buffer, otherwise the
information shown for such objects only refers to the kmemleak_init()
function.
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
This buffer isn't needed after kmemleak was initialised so it can be
freed together with the .init.data section. This patch also marks
functions conditionally accessing the early log variables with __ref.
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
By writing dump=<addr> to the kmemleak file, kmemleak will look up an
object with that address and dump the information it has about it to
syslog. This is useful in debugging memory leaks.
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
If the object size is bigger than a predefined value (4K in this case),
release the object lock during scanning and call cond_resched().
Re-acquire the lock after rescheduling and test whether the object is
still valid.
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
An mlocked page might lose the isolatation race. This causes the page to
clear PG_mlocked while it remains in a VM_LOCKED vma. This means it can
be put onto the [in]active list. We can rescue it by using try_to_unmap()
in shrink_page_list().
But now, As Wu Fengguang pointed out, vmscan has a bug. If the page has
PG_referenced, it can't reach try_to_unmap() in shrink_page_list() but is
put into the active list. If the page is referenced repeatedly, it can
remain on the [in]active list without being moving to the unevictable
list.
This patch fixes it.
Reported-by: Wu Fengguang <fengguang.wu@intel.com>
Signed-off-by: Minchan Kim <minchan.kim@gmail.com>
Reviewed-by: KOSAKI Motohiro <<kosaki.motohiro@jp.fujitsu.com>
Cc: Lee Schermerhorn <lee.schermerhorn@hp.com>
Acked-by: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/percpu:
percpu: use the right flag for get_vm_area()
percpu, sparc64: fix sparse possible cpu map handling
init: set nr_cpu_ids before setup_per_cpu_areas()
If node_load[] is cleared everytime build_zonelists() is
called,node_load[] will have no help to find the next node that should
appear in the given node's fallback list.
Because of the bug, zonelist's node_order is not calculated as expected.
This bug affects on big machine, which has asynmetric node distance.
[synmetric NUMA's node distance]
0 1 2
0 10 12 12
1 12 10 12
2 12 12 10
[asynmetric NUMA's node distance]
0 1 2
0 10 12 20
1 12 10 14
2 20 14 10
This (my bug) is very old but no one has reported this for a long time.
Maybe because the number of asynmetric NUMA is very small and they use
cpuset for customizing node memory allocation fallback.
[akpm@linux-foundation.org: fix CONFIG_NUMA=n build]
Signed-off-by: Bo Liu <bo-liu@hotmail.com>
Reviewed-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Christoph Lameter <cl@linux-foundation.org>
Cc: <stable@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
According to the POSIX (1003.1-2008), the file descriptor shall have been
opened with read permission, regardless of the protection options specified to
mmap(). The ltp test cases mmap06/07 need this.
Signed-off-by: Graff Yang <graff.yang@gmail.com>
Acked-by: Paul Mundt <lethal@linux-sh.org>
Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: Greg Ungerer <gerg@snapgear.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The commit 2ff05b2b (oom: move oom_adj value) moveed the oom_adj value to
the mm_struct. It was a very good first step for sanitize OOM.
However Paul Menage reported the commit makes regression to his job
scheduler. Current OOM logic can kill OOM_DISABLED process.
Why? His program has the code of similar to the following.
...
set_oom_adj(OOM_DISABLE); /* The job scheduler never killed by oom */
...
if (vfork() == 0) {
set_oom_adj(0); /* Invoked child can be killed */
execve("foo-bar-cmd");
}
....
vfork() parent and child are shared the same mm_struct. then above
set_oom_adj(0) doesn't only change oom_adj for vfork() child, it's also
change oom_adj for vfork() parent. Then, vfork() parent (job scheduler)
lost OOM immune and it was killed.
Actually, fork-setting-exec idiom is very frequently used in userland program.
We must not break this assumption.
Then, this patch revert commit 2ff05b2b and related commit.
Reverted commit list
---------------------
- commit 2ff05b2b4e (oom: move oom_adj value from task_struct to mm_struct)
- commit 4d8b9135c3 (oom: avoid unnecessary mm locking and scanning for OOM_DISABLE)
- commit 8123681022 (oom: only oom kill exiting tasks with attached memory)
- commit 933b787b57 (mm: copy over oom_adj value at fork time)
Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Paul Menage <menage@google.com>
Cc: David Rientjes <rientjes@google.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Nick Piggin <npiggin@suse.de>
Cc: Mel Gorman <mel@csn.ul.ie>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
SLUB does not support writes to /proc/slabinfo so there should not be write
permission to do that either.
Signed-off-by: WANG Cong <amwang@redhat.com>
Signed-off-by: Pekka Enberg <penberg@cs.helsinki.fi>
Currently SELinux enforcement of controls on the ability to map low memory
is determined by the mmap_min_addr tunable. This patch causes SELinux to
ignore the tunable and instead use a seperate Kconfig option specific to how
much space the LSM should protect.
The tunable will now only control the need for CAP_SYS_RAWIO and SELinux
permissions will always protect the amount of low memory designated by
CONFIG_LSM_MMAP_MIN_ADDR.
This allows users who need to disable the mmap_min_addr controls (usual reason
being they run WINE as a non-root user) to do so and still have SELinux
controls preventing confined domains (like a web server) from being able to
map some area of low memory.
Signed-off-by: Eric Paris <eparis@redhat.com>
Signed-off-by: James Morris <jmorris@namei.org>
With x86 converted to embedding allocator, lpage doesn't have any user
left. Kill it along with cpa handling code.
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Jan Beulich <JBeulich@novell.com>
Now that percpu core can handle very sparse units, given that vmalloc
space is large enough, embedding first chunk allocator can use any
memory to build the first chunk. This patch teaches
pcpu_embed_first_chunk() about distances between cpus and to use
alloc/free callbacks to allocate node specific areas for each group
and use them for the first chunk.
This brings the benefits of embedding allocator to NUMA configurations
- no extra TLB pressure with the flexibility of unified dynamic
allocator and no need to restructure arch code to build memory layout
suitable for percpu. With units put into atom_size aligned groups
according to cpu distances, using large page for dynamic chunks is
also easily possible with falling back to reuglar pages if large
allocation fails.
Embedding allocator users are converted to specify NULL
cpu_distance_fn, so this patch doesn't cause any visible behavior
difference. Following patches will convert them.
Signed-off-by: Tejun Heo <tj@kernel.org>
ai->groups[] contains which units need to be put consecutively and at
what offset from the chunk base address. Compile this information
into pcpu_group_offsets[] and pcpu_group_sizes[] in
pcpu_setup_first_chunk() and use them to allocate sparse vm areas
using pcpu_get_vm_areas().
This will be used to allow directly using sparse NUMA memories as
percpu areas.
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Nick Piggin <npiggin@suse.de>
To directly use spread NUMA memories for percpu units, percpu
allocator will be updated to allow sparsely mapping units in a chunk.
As the distances between units can be very large, this makes
allocating single vmap area for each chunk undesirable. This patch
implements pcpu_get_vm_areas() and pcpu_free_vm_areas() which
allocates and frees sparse congruent vmap areas.
pcpu_get_vm_areas() take @offsets and @sizes array which define
distances and sizes of vmap areas. It scans down from the top of
vmalloc area looking for the top-most address which can accomodate all
the areas. The top-down scan is to avoid interacting with regular
vmallocs which can push up these congruent areas up little by little
ending up wasting address space and page table.
To speed up top-down scan, the highest possible address hint is
maintained. Although the scan is linear from the hint, given the
usual large holes between memory addresses between NUMA nodes, the
scanning is highly likely to finish after finding the first hole for
the last unit which is scanned first.
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Nick Piggin <npiggin@suse.de>
Separate out insert_vmalloc_vm() from __get_vm_area_node().
insert_vmalloc_vm() initializes vm_struct from vmap_area and inserts
it into vmlist. insert_vmalloc_vm() only initializes fields which can
be determined from @vm, @flags and @caller The rest should be
initialized by the caller. For __get_vm_area_node(), all other fields
just need to be cleared and this is done by using kzalloc instead of
kmalloc.
This will be used to implement pcpu_get_vm_areas().
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Nick Piggin <npiggin@suse.de>
The only thing percpu allocator wants to know about a vmalloc area is
the base address. Instead of requiring chunk->vm, add
chunk->base_addr which contains the necessary value. This simplifies
the code a bit and makes the dummy first_vm unnecessary. This change
will ease allowing a chunk to be mapped by multiple vms.
Signed-off-by: Tejun Heo <tj@kernel.org>
Currently units are mapped sequentially into address space. This
patch adds pcpu_unit_offsets[] which allows units to be mapped to
arbitrary offsets from the chunk base address. This is necessary to
allow sparse embedding which might would need to allocate address
ranges and memory areas which aren't aligned to unit size but
allocation atom size (page or large page size). This also simplifies
things a bit by removing the need to calculate offset from unit
number.
With this change, there's no need for the arch code to know
pcpu_unit_size. Update pcpu_setup_first_chunk() and first chunk
allocators to return regular 0 or -errno return code instead of unit
size or -errno.
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: David S. Miller <davem@davemloft.net>
Till now, non-linear cpu->unit map was expressed using an integer
array which maps each cpu to a unit and used only by lpage allocator.
Although how many units have been placed in a single contiguos area
(group) is known while building unit_map, the information is lost when
the result is recorded into the unit_map array. For lpage allocator,
as all allocations are done by lpages and whether two adjacent lpages
are in the same group or not is irrelevant, this didn't cause any
problem. Non-linear cpu->unit mapping will be used for sparse
embedding and this grouping information is necessary for that.
This patch introduces pcpu_alloc_info which contains all the
information necessary for initializing percpu allocator.
pcpu_alloc_info contains array of pcpu_group_info which describes how
units are grouped and mapped to cpus. pcpu_group_info also has
base_offset field to specify its offset from the chunk's base address.
pcpu_build_alloc_info() initializes this field as if all groups are
allocated back-to-back as is currently done but this will be used to
sparsely place groups.
pcpu_alloc_info is a rather complex data structure which contains a
flexible array which in turn points to nested cpu_map arrays.
* pcpu_alloc_alloc_info() and pcpu_free_alloc_info() are provided to
help dealing with pcpu_alloc_info.
* pcpu_lpage_build_unit_map() is updated to build pcpu_alloc_info,
generalized and renamed to pcpu_build_alloc_info().
@cpu_distance_fn may be NULL indicating that all cpus are of
LOCAL_DISTANCE.
* pcpul_lpage_dump_cfg() is updated to process pcpu_alloc_info,
generalized and renamed to pcpu_dump_alloc_info(). It now also
prints which group each alloc unit belongs to.
* pcpu_setup_first_chunk() now takes pcpu_alloc_info instead of the
separate parameters. All first chunk allocators are updated to use
pcpu_build_alloc_info() to build alloc_info and call
pcpu_setup_first_chunk() with it. This has the side effect of
packing units for sparse possible cpus. ie. if cpus 0, 2 and 4 are
possible, they'll be assigned unit 0, 1 and 2 instead of 0, 2 and 4.
* x86 setup_pcpu_lpage() is updated to deal with alloc_info.
* sparc64 setup_per_cpu_areas() is updated to build alloc_info.
Although the changes made by this patch are pretty pervasive, it
doesn't cause any behavior difference other than packing of sparse
cpus. It mostly changes how information is passed among
initialization functions and makes room for more flexibility.
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: David Miller <davem@davemloft.net>
Unit map handling will be generalized and extended and used for
embedding sparse first chunk and other purposes. Relocate two
unit_map related functions upward in preparation. This patch just
moves the code without any actual change.
Signed-off-by: Tejun Heo <tj@kernel.org>
Now that all actual first chunk allocation and copying happen in the
first chunk allocators and helpers, there's no reason for
pcpu_setup_first_chunk() to try to determine @dyn_size automatically.
The only left user is page first chunk allocator. Make it determine
dyn_size like other allocators and make @dyn_size mandatory for
pcpu_setup_first_chunk().
Signed-off-by: Tejun Heo <tj@kernel.org>
First chunk allocators assume percpu areas have been linked using one
of PERCPU_*() macros and depend on __per_cpu_load symbol defined by
those macros, so there isn't much point in passing in static area size
explicitly when it can be easily calculated from __per_cpu_start and
__per_cpu_end. Drop @static_size from all percpu first chunk
allocators and helpers.
Signed-off-by: Tejun Heo <tj@kernel.org>
Now that all first chunk allocators are in mm/percpu.c, it makes sense
to make generalize percpu_alloc kernel parameter. Define PCPU_FC_*
and set pcpu_chosen_fc using early_param() in mm/percpu.c. Arch code
can use the set value to determine which first chunk allocator to use.
Signed-off-by: Tejun Heo <tj@kernel.org>
There's no need to build unused first chunk allocators in. Define
CONFIG_NEED_PER_CPU_*_FIRST_CHUNK and let archs enable them
selectively.
Signed-off-by: Tejun Heo <tj@kernel.org>
Page size isn't always 4k depending on arch and configuration. Rename
4k first chunk allocator to page.
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: David Howells <dhowells@redhat.com>
Improve percpu boot messages such that they're uniform and contain
more information.
Signed-off-by: Tejun Heo <tj@kernel.org>
Reviewed-by: Christoph Lameter <cl@linux-foundation.org>
pcpu_reclaim() calls pcpu_depopulate_chunk() which makes use of pages
array and bitmap returned by pcpu_get_pages_and_bitmap() and thus
should be called under pcpu_alloc_mutex. pcpu_reclaim() released the
mutex before calling depopulate leading to double free and other
strange problems caused by the unexpected concurrent usages of pages
array and bitmap. Fix it.
Signed-off-by: Tejun Heo <tj@kernel.org>
Reviewed-by: Christoph Lameter <cl@linux-foundation.org>
Conflicts:
arch/sparc/kernel/smp_64.c
arch/x86/kernel/cpu/perf_counter.c
arch/x86/kernel/setup_percpu.c
drivers/cpufreq/cpufreq_ondemand.c
mm/percpu.c
Conflicts in core and arch percpu codes are mostly from commit
ed78e1e078dd44249f88b1dd8c76dafb39567161 which substituted many
num_possible_cpus() with nr_cpu_ids. As for-next branch has moved all
the first chunk allocators into mm/percpu.c, the changes are moved
from arch code to mm/percpu.c.
Signed-off-by: Tejun Heo <tj@kernel.org>
get_vm_area() only accepts VM_* flags, not GFP_*.
And according to the doc of get_vm_area(), here should be
VM_ALLOC.
Signed-off-by: WANG Cong <amwang@redhat.com>
Acked-by: Tejun Heo <tj@kernel.org>
Cc: Ingo Molnar <mingo@elte.hu>
percpu code has been assuming num_possible_cpus() == nr_cpu_ids which
is incorrect if cpu_possible_map contains holes. This causes percpu
code to access beyond allocated memories and vmalloc areas. On a
sparc64 machine with cpus 0 and 2 (u60), this triggers the following
warning or fails boot.
WARNING: at /devel/tj/os/work/mm/vmalloc.c:106 vmap_page_range_noflush+0x1f0/0x240()
Modules linked in:
Call Trace:
[00000000004b17d0] vmap_page_range_noflush+0x1f0/0x240
[00000000004b1840] map_vm_area+0x20/0x60
[00000000004b1950] __vmalloc_area_node+0xd0/0x160
[0000000000593434] deflate_init+0x14/0xe0
[0000000000583b94] __crypto_alloc_tfm+0xd4/0x1e0
[00000000005844f0] crypto_alloc_base+0x50/0xa0
[000000000058b898] alg_test_comp+0x18/0x80
[000000000058dad4] alg_test+0x54/0x180
[000000000058af00] cryptomgr_test+0x40/0x60
[0000000000473098] kthread+0x58/0x80
[000000000042b590] kernel_thread+0x30/0x60
[0000000000472fd0] kthreadd+0xf0/0x160
---[ end trace 429b268a213317ba ]---
This patch fixes generic percpu functions and sparc64
setup_per_cpu_areas() so that they handle sparse cpu_possible_map
properly.
Please note that on x86, cpu_possible_map() doesn't contain holes and
thus num_possible_cpus() == nr_cpu_ids and this patch doesn't cause
any behavior difference.
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: David S. Miller <davem@davemloft.net>
Cc: Ingo Molnar <mingo@elte.hu>
clean up type-casting twice. "size_t" is typedef as "unsigned long" in
64-bit system, and "unsigned int" in 32-bit system, and the intermediate
cast to 'long' is pointless.
Signed-off-by: Figo.zhang <figo1802@gmail.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
At first, init_task's mems_allowed is initialized as this.
init_task->mems_allowed == node_state[N_POSSIBLE]
And cpuset's top_cpuset mask is initialized as this
top_cpuset->mems_allowed = node_state[N_HIGH_MEMORY]
Before 2.6.29:
policy's mems_allowed is initialized as this.
1. update tasks->mems_allowed by its cpuset->mems_allowed.
2. policy->mems_allowed = nodes_and(tasks->mems_allowed, user's mask)
Updating task's mems_allowed in reference to top_cpuset's one.
cpuset's mems_allowed is aware of N_HIGH_MEMORY, always.
In 2.6.30: After commit 58568d2a82
("cpuset,mm: update tasks' mems_allowed in time"), policy's mems_allowed
is initialized as this.
1. policy->mems_allowd = nodes_and(task->mems_allowed, user's mask)
Here, if task is in top_cpuset, task->mems_allowed is not updated from
init's one. Assume user excutes command as #numactrl --interleave=all
,....
policy->mems_allowd = nodes_and(N_POSSIBLE, ALL_SET_MASK)
Then, policy's mems_allowd can includes a possible node, which has no pgdat.
MPOL's INTERLEAVE just scans nodemask of task->mems_allowd and access this
directly.
NODE_DATA(nid)->zonelist even if NODE_DATA(nid)==NULL
Then, what's we need is making policy->mems_allowed be aware of
N_HIGH_MEMORY. This patch does that. But to do so, extra nodemask will
be on statck. Because I know cpumask has a new interface of
CPUMASK_ALLOC(), I added it to node.
This patch stands on old behavior. But I feel this fix itself is just a
Band-Aid. But to do fundametal fix, we have to take care of memory
hotplug and it takes time. (task->mems_allowd should be N_HIGH_MEMORY, I
think.)
mpol_set_nodemask() should be aware of N_HIGH_MEMORY and policy's nodemask
should be includes only online nodes.
In old behavior, this is guaranteed by frequent reference to cpuset's
code. Now, most of them are removed and mempolicy has to check it by
itself.
To do check, a few nodemask_t will be used for calculating nodemask. But,
size of nodemask_t can be big and it's not good to allocate them on stack.
Now, cpumask_t has CPUMASK_ALLOC/FREE an easy code for get scratch area.
NODEMASK_ALLOC/FREE shoudl be there.
[akpm@linux-foundation.org: cleanups & tweaks]
Tested-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Miao Xie <miaox@cn.fujitsu.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Christoph Lameter <cl@linux-foundation.org>
Cc: Paul Menage <menage@google.com>
Cc: Nick Piggin <nickpiggin@yahoo.com.au>
Cc: Yasunori Goto <y-goto@jp.fujitsu.com>
Cc: Pekka Enberg <penberg@cs.helsinki.fi>
Cc: David Rientjes <rientjes@google.com>
Cc: Lee Schermerhorn <lee.schermerhorn@hp.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
kmem_cache_init_late() has been declared in slab.h
CC: Nick Piggin <npiggin@suse.de>
CC: Matt Mackall <mpm@selenic.com>
CC: Christoph Lameter <cl@linux-foundation.org>
Signed-off-by: Wu Fengguang <fengguang.wu@intel.com>
Signed-off-by: Pekka Enberg <penberg@cs.helsinki.fi>
kmem_cache->align records the original align parameter value specified
by users. Function calculate_alignment might change it based on cache
line size. So change kmem_cache->align correspondingly.
Signed-off-by: Zhang Yanmin <yanmin_zhang@linux.intel.com>
Signed-off-by: Pekka Enberg <penberg@cs.helsinki.fi>
The page allocator warns once when an order >= MAX_ORDER is specified.
This is to catch callers of the allocator that are always falling back to
their worst-case when it was not expected. However, there are cases where
the caller is behaving correctly but cannot suppress the warning. This
patch allows the warning to be suppressed by the callers by specifying
__GFP_NOWARN.
Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Acked-by: David Rientjes <rientjes@google.com>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: "Rafael J. Wysocki" <rjw@sisk.pl>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
After commit ec64f51545 ("cgroup: fix
frequent -EBUSY at rmdir"), cgroup's rmdir (especially against memcg)
doesn't return -EBUSY by temporary ref counts. That commit expects all
refs after pre_destroy() is temporary but...it wasn't. Then, rmdir can
wait permanently. This patch tries to fix that and change followings.
- set CGRP_WAIT_ON_RMDIR flag before pre_destroy().
- clear CGRP_WAIT_ON_RMDIR flag when the subsys finds racy case.
if there are sleeping ones, wakes them up.
- rmdir() sleeps only when CGRP_WAIT_ON_RMDIR flag is set.
Tested-by: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Reported-by: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Reviewed-by: Paul Menage <menage@google.com>
Acked-by: Balbir Sigh <balbir@linux.vnet.ibm.com>
Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
As reported in Red Hat bz #509671, i_blocks for files on hugetlbfs get
accounting wrong when doing something like:
$ > foo
$ date > foo
date: write error: Invalid argument
$ /usr/bin/stat foo
File: `foo'
Size: 0 Blocks: 18446744073709547520 IO Block: 2097152 regular
...
This is because hugetlb_unreserve_pages() is unconditionally removing
blocks_per_huge_page(h) on each call rather than using the freed amount.
If there were 0 blocks, it goes negative, resulting in the above.
This is a regression from commit a551643895
("hugetlb: modular state for hugetlb page size")
which did:
- inode->i_blocks -= BLOCKS_PER_HUGEPAGE * freed;
+ inode->i_blocks -= blocks_per_huge_page(h);
so just put back the freed multiplier, and it's all happy again.
Signed-off-by: Eric Sandeen <sandeen@redhat.com>
Acked-by: Andi Kleen <andi@firstfloor.org>
Cc: William Lee Irwin III <wli@holomorphy.com>
Cc: <stable@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
If a task is oom killed and still cannot find memory when trying with
no watermarks, it's better to fail the allocation attempt than to loop
endlessly. Direct reclaim has already failed and the oom killer will
be a no-op since current has yet to die, so there is no other
alternative for allocations that are not __GFP_NOFAIL.
Acked-by: Mel Gorman <mel@csn.ul.ie>
Signed-off-by: David Rientjes <rientjes@google.com>
Acked-by: Hugh Dickins <hugh.dickins@tiscali.co.uk>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Fix a post-2.6.24 performace regression caused by
3dfa5721f1 ("page-allocator: preserve PFN
ordering when __GFP_COLD is set").
Narayanan reports "The regression is around 15%. There is no disk controller
as our setup is based on Samsung OneNAND used as a memory mapped device on a
OMAP2430 based board."
The page allocator tries to preserve contiguous PFN ordering when returning
pages such that repeated callers to the allocator have a strong chance of
getting physically contiguous pages, particularly when external fragmentation
is low. However, of the bulk of the allocations have __GFP_COLD set as they
are due to aio_read() for example, then the PFNs are in reverse PFN order.
This can cause performance degration when used with IO controllers that could
have merged the requests.
This patch attempts to preserve the contiguous ordering of PFNs for users of
__GFP_COLD.
Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Reported-by: Narayananu Gopalakrishnan <narayanan.g@samsung.com>
Tested-by: Narayanan Gopalakrishnan <narayanan.g@samsung.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: <stable@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Objects passed to kmemleak_seq_next() have an incremented reference
count (hence not freed) but they may point via object_list.next to
other freed objects. To avoid this, the whole start/next/stop sequence
must be protected by rcu_read_lock().
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Create bdgrab(). This function copies an existing reference to a
block_device. It is safe to call from any context.
Hibernation code wishes to copy a reference to the active swap device.
Right now it calls bdget() under a spinlock, but this is wrong because
bdget() can sleep. It doesn't need a full bdget() because we already
hold a reference to active swap devices (and the spinlock protects
against swapoff).
Fixes http://bugzilla.kernel.org/show_bug.cgi?id=13827
Signed-off-by: Alan Jenkins <alan-jenkins@tuffmail.co.uk>
Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl>
This patch moves the masking of debugging flags which increase a cache's
min order due to metadata when `slub_debug=O' is used from
kmem_cache_flags() to kmem_cache_open().
Instead of defining the maximum metadata size increase in a preprocessor
macro, this approach uses the cache's ->size and ->objsize members to
determine if the min order increased due to debugging options. If so,
the flags specified in the more appropriately named DEBUG_METADATA_FLAGS
are masked off.
This approach was suggested by Christoph Lameter
<cl@linux-foundation.org>.
Cc: Christoph Lameter <cl@linux-foundation.org>
Signed-off-by: David Rientjes <rientjes@google.com>
Signed-off-by: Pekka Enberg <penberg@cs.helsinki.fi>
mm: Pass virtual address to [__]p{te,ud,md}_free_tlb()
Upcoming paches to support the new 64-bit "BookE" powerpc architecture
will need to have the virtual address corresponding to PTE page when
freeing it, due to the way the HW table walker works.
Basically, the TLB can be loaded with "large" pages that cover the whole
virtual space (well, sort-of, half of it actually) represented by a PTE
page, and which contain an "indirect" bit indicating that this TLB entry
RPN points to an array of PTEs from which the TLB can then create direct
entries. Thus, in order to invalidate those when PTE pages are deleted,
we need the virtual address to pass to tlbilx or tlbivax instructions.
The old trick of sticking it somewhere in the PTE page struct page sucks
too much, the address is almost readily available in all call sites and
almost everybody implemets these as macros, so we may as well add the
argument everywhere. I added it to the pmd and pud variants for consistency.
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Acked-by: David Howells <dhowells@redhat.com> [MN10300 & FRV]
Acked-by: Nick Piggin <npiggin@suse.de>
Acked-by: Martin Schwidefsky <schwidefsky@de.ibm.com> [s390]
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* 'kmemleak' of git://linux-arm.org/linux-2.6:
kmemleak: Remove alloc_bootmem annotations introduced in the past
kmemleak: Add callbacks to the bootmem allocator
kmemleak: Allow partial freeing of memory blocks
kmemleak: Trace the kmalloc_large* functions in slub
kmemleak: Scan objects allocated during a scanning episode
kmemleak: Do not acquire scan_mutex in kmemleak_open()
kmemleak: Remove the reported leaks number limitation
kmemleak: Add more cond_resched() calls in the scanning thread
kmemleak: Renice the scanning thread to +10
Commit 1faa16d228 accidentally broke
the bdi congestion wait queue logic, causing us to wait on congestion
for WRITE (== 1) when we really wanted BLK_RW_ASYNC (== 0) instead.
Signed-off-by: Jens Axboe <jens.axboe@oracle.com>
When debugging is enabled, slub requires that additional metadata be
stored in slabs for certain options: SLAB_RED_ZONE, SLAB_POISON, and
SLAB_STORE_USER.
Consequently, it may require that the minimum possible slab order needed
to allocate a single object be greater when using these options. The
most notable example is for objects that are PAGE_SIZE bytes in size.
Higher minimum slab orders may cause page allocation failures when oom or
under heavy fragmentation.
This patch adds a new slub_debug option, which disables debugging by
default for caches that would have resulted in higher minimum orders:
slub_debug=O
When this option is used on systems with 4K pages, kmalloc-4096, for
example, will not have debugging enabled by default even if
CONFIG_SLUB_DEBUG_ON is defined because it would have resulted in a
order-1 minimum slab order.
Reported-by: Larry Finger <Larry.Finger@lwfinger.net>
Tested-by: Larry Finger <Larry.Finger@lwfinger.net>
Cc: Christoph Lameter <cl@linux-foundation.org>
Signed-off-by: David Rientjes <rientjes@google.com>
Signed-off-by: Pekka Enberg <penberg@cs.helsinki.fi>
kmemleak_alloc() calls were added in some places where alloc_bootmem was
called. Since now kmemleak tracks bootmem allocations, these explicit
calls should be run.
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Cc: Ingo Molnar <mingo@elte.hu>
Acked-by: Pekka Enberg <penberg@cs.helsinki.fi>
This patch adds kmemleak_alloc/free callbacks to the bootmem allocator.
This would allow scanning of such blocks and help avoiding a whole class
of false positives and more kmemleak annotations.
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Cc: Ingo Molnar <mingo@elte.hu>
Acked-by: Pekka Enberg <penberg@cs.helsinki.fi>
Reviewed-by: Johannes Weiner <hannes@cmpxchg.org>
Functions like free_bootmem() are allowed to free only part of a memory
block. This patch adds support for this via the kmemleak_free_part()
callback which removes the original object and creates one or two
additional objects as a result of the memory block split.
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Cc: Ingo Molnar <mingo@elte.hu>
Acked-by: Pekka Enberg <penberg@cs.helsinki.fi>
The kmalloc_large() and kmalloc_large_node() functions were missed when
adding the kmemleak hooks to the slub allocator. However, they should be
traced to avoid false positives.
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Cc: Christoph Lameter <cl@linux-foundation.org>
Acked-by: Pekka Enberg <penberg@cs.helsinki.fi>
Many of the false positives in kmemleak happen on busy systems where
objects are allocated during a kmemleak scanning episode. These objects
aren't scanned by default until the next memory scan. When such object
is added, for example, at the head of a list, it is possible that all
the other objects in the list become unreferenced until the next scan.
This patch adds checking for newly allocated objects at the end of the
scan and repeats the scanning on these objects. If Linux allocates
new objects at a higher rate than their scanning, it stops after a
predefined number of passes.
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Initially, the scan_mutex was acquired in kmemleak_open() and released
in kmemleak_release() (corresponding to /sys/kernel/debug/kmemleak
operations). This was causing some lockdep reports when the file was
closed from a different task than the one opening it. This patch moves
the scan_mutex acquiring in kmemleak_write() or kmemleak_seq_start()
with releasing in kmemleak_seq_stop().
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Since the leaks are no longer printed to the syslog, there is no point
in keeping this limitation. All the suspected leaks are shown on
/sys/kernel/debug/kmemleak file.
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Following recent fix to no longer reschedule in the scan_block()
function, the system may become unresponsive with !PREEMPT. This patch
re-adds the cond_resched() call to scan_block() but conditioned by the
allow_resched parameter.
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Cc: Ingo Molnar <mingo@elte.hu>
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/penberg/slab-2.6:
SLAB: Fix lockdep annotations
fix RCU-callback-after-kmem_cache_destroy problem in sl[aou]b
These warnings were observed on MIPS32 using 2.6.31-rc1 and gcc-4.2.0:
mm/page_alloc.c: In function 'alloc_pages_exact':
mm/page_alloc.c:1986: warning: passing argument 1 of 'virt_to_phys' makes pointer from integer without a cast
drivers/usb/mon/mon_bin.c: In function 'mon_alloc_buff':
drivers/usb/mon/mon_bin.c:1264: warning: passing argument 1 of 'virt_to_phys' makes pointer from integer without a cast
[akpm@linux-foundation.org: fix kernel/perf_counter.c too]
Signed-off-by: Kevin Cernekee <cernekee@gmail.com>
Cc: Andi Kleen <andi@firstfloor.org>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
In testing a backport of the write_begin/write_end AOPs, a 10% re-read
regression was noticed when running iozone. This regression was
introduced because the old AOPs would always do a mark_page_accessed(page)
after the commit_write, but when the new AOPs where introduced, the only
place this was kept was in pagecache_write_end().
This patch does the same thing in the generic case as what is done in
pagecache_write_end(), which is just to mark the page accessed before we
do write_end().
Signed-off-by: Josef Bacik <jbacik@redhat.com>
Acked-by: Nick Piggin <npiggin@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Large page first chunk allocator is primarily used for NUMA machines;
however, its NUMA handling is extremely simplistic. Regardless of
their proximity, each cpu is put into separate large page just to
return most of the allocated space back wasting large amount of
vmalloc space and increasing cache footprint.
This patch teachs NUMA details to large page allocator. Given
processor proximity information, pcpu_lpage_build_unit_map() will find
fitting cpu -> unit mapping in which cpus in LOCAL_DISTANCE share the
same large page and not too much virtual address space is wasted.
This greatly reduces the unit and thus chunk size and wastes much less
address space for the first chunk. For example, on 4/4 NUMA machine,
the original code occupied 16MB of virtual space for the first chunk
while the new code only uses 4MB - one 2MB page for each node.
[ Impact: much better space efficiency on NUMA machines ]
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Jan Beulich <JBeulich@novell.com>
Cc: Andi Kleen <andi@firstfloor.org>
Cc: David Miller <davem@davemloft.net>
Currently cpu and unit are always identity mapped. To allow more
efficient large page support on NUMA and lazy allocation for possible
but offline cpus, cpu -> unit mapping needs to be non-linear and/or
sparse. This can be easily implemented by adding a cpu -> unit
mapping array and using it whenever looking up the matching unit for a
cpu.
The only unusal conversion is in pcpu_chunk_addr_search(). The passed
in address is unit0 based and unit0 might not be in use so it needs to
be converted to address of an in-use unit. This is easily done by
adding the unit offset for the current processor.
[ Impact: allows non-linear/sparse cpu -> unit mapping, no visible change yet ]
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: David Miller <davem@davemloft.net>
percpu core doesn't need to tack all the allocated pages. It needs to
know whether certain pages are populated and a way to reverse map
address to page when freeing. This patch drops pcpu_chunk->page[] and
use populated bitmap and vmalloc_to_page() lookup instead. Using
vmalloc_to_page() exclusively is also possible but complicates first
chunk handling, inflates cache footprint and prevents non-standard
memory allocation for percpu memory.
pcpu_chunk->page[] was used to track each page's allocation and
allowed asymmetric population which happens during failure path;
however, with single bitmap for all units, this is no longer possible.
Bite the bullet and rewrite (de)populate functions so that things are
done in clearly separated steps such that asymmetric population
doesn't happen. This makes the (de)population process much more
modular and will also ease implementing non-standard memory usage in
the future (e.g. large pages).
This makes @get_page_fn parameter to pcpu_setup_first_chunk()
unnecessary. The parameter is dropped and all first chunk helpers are
updated accordingly. Please note that despite the volume most changes
to first chunk helpers are symbol renames for variables which don't
need to be referenced outside of the helper anymore.
This change reduces memory usage and cache footprint of pcpu_chunk.
Now only #unit_pages bits are necessary per chunk.
[ Impact: reduced memory usage and cache footprint for bookkeeping ]
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: David Miller <davem@davemloft.net>
(de)populate functions are about to be reimplemented to drop
pcpu_chunk->page array. Move a few functions so that the rewrite
patch doesn't have code movement making it more difficult to read.
[ Impact: code movement ]
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Ingo Molnar <mingo@elte.hu>
Now that all first chunk allocator helpers allocate and map the first
chunk themselves, there's no need to have optional default alloc/map
in pcpu_setup_first_chunk(). Drop @populate_pte_fn and only leave
@dyn_size optional and make all other params mandatory.
This makes it much easier to follow what pcpu_setup_first_chunk() is
doing and what actual differences tweaking each parameter results in.
[ Impact: drop unused code path ]
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Ingo Molnar <mingo@elte.hu>
Generalize and move x86 setup_pcpu_lpage() into
pcpu_lpage_first_chunk(). setup_pcpu_lpage() now is a simple wrapper
around the generalized version. Other than taking size parameters and
using arch supplied callbacks to allocate/free/map memory,
pcpu_lpage_first_chunk() is identical to the original implementation.
This simplifies arch code and will help converting more archs to
dynamic percpu allocator.
While at it, factor out pcpu_calc_fc_sizes() which is common to
pcpu_embed_first_chunk() and pcpu_lpage_first_chunk().
[ Impact: code reorganization and generalization ]
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Ingo Molnar <mingo@elte.hu>
At first, percpu first chunk was always setup page-by-page by the
generic code. To add other allocators, different parts of the generic
initialization was made optional. Now we have three allocators -
embed, remap and 4k. embed and remap fully handle allocation and
mapping of the first chunk while 4k still depends on generic code for
those. This makes the generic alloc/map paths specifci to 4k and
makes the code unnecessary complicated with optional generic
behaviors.
This patch makes the 4k allocator to allocate and map memory directly
instead of depending on the generic code. The only outside visible
change is that now dynamic area in the first chunk is allocated
up-front instead of on-demand. This doesn't make any meaningful
difference as the area is minimal (usually less than a page, just
enough to fill the alignment) on 4k allocator. Plus, dynamic area in
the first chunk usually gets fully used anyway.
This will allow simplification of pcpu_setpu_first_chunk() and removal
of chunk->page array.
[ Impact: no outside visible change other than up-front allocation of dyn area ]
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Ingo Molnar <mingo@elte.hu>
Generalize and move x86 setup_pcpu_4k() into pcpu_4k_first_chunk().
setup_pcpu_4k() now is a simple wrapper around the generalized
version. Other than taking size parameters and using arch supplied
callbacks to allocate/free memory, pcpu_4k_first_chunk() is identical
to the original implementation.
This simplifies arch code and will help converting more archs to
dynamic percpu allocator.
While at it, s/pcpu_populate_pte_fn_t/pcpu_fc_populate_pte_fn_t/ for
consistency.
[ Impact: code reorganization and generalization ]
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Ingo Molnar <mingo@elte.hu>
The only extra feature @unit_size provides is making dead space at the
end of the first chunk which doesn't have any valid usecase. Drop the
parameter. This will increase consistency with generalized 4k
allocator.
James Bottomley spotted missing conversion for the default
setup_per_cpu_areas() which caused build breakage on all arcsh which
use it.
[ Impact: drop unused code path ]
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: James Bottomley <James.Bottomley@HansenPartnership.com>
Cc: Ingo Molnar <mingo@elte.hu>
The @addr passed into pcpu_chunk_addr_search() is unit0 based address
and thus should be matched inside unit0 area. Currently, when it uses
chunk size when determining whether the address falls in the first
chunk. Addresses in unitN where N>0 shouldn't be passed in anyway, so
this doesn't cause any malfunction but fix it for consistency.
[ Impact: mostly cleanup ]
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Ingo Molnar <mingo@elte.hu>