Don't burden the common block code with with specifics of the libata DMA
draining mechanism. Instead move most of the code to the scsi midlayer.
That also means the nr_phys_segments adjustments in the blk-mq fast path
can go away entirely, given that SCSI never looks at nr_phys_segments
after mapping the request to a scatterlist.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
scsi_init_io is the only caller of scsi_init_sgtable. Merge the two
function to make upcoming changes a little easier.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
To be able to move some of the special purpose hacks in blk_rq_map_sg
into the callers we need a variant that returns the last mapped
S/G list element to the caller. Add that variant as __blk_rq_map_sg
and make blk_rq_map_sg a trivial inline wrapper around it.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
The RQF_COPY_USER is set for bio where the passthrough request mapping
helpers decided that bounce buffering is required. It is then used to
pad scatterlist for drivers that required it. But given that
non-passthrough requests are per definition aligned, and directly mapped
pass-through request must be aligned it is not actually required at all.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Dax related code already removed from this file.
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jianpeng Ma <jianpeng.ma@intel.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Systemtap 4.2 is unable to correctly interpret the "u32 (*missed_ppm)[2]"
argument of the iocost_ioc_vrate_adj trace entry defined in
include/trace/events/iocost.h leading to the following error:
/tmp/stapAcz0G0/stap_c89c58b83cea1724e26395efa9ed4939_6321_aux_6.c:78:8:
error: expected ‘;’, ‘,’ or ‘)’ before ‘*’ token
, u32[]* __tracepoint_arg_missed_ppm
That argument type is indeed rather complex and hard to read. Looking
at block/blk-iocost.c. It is just a 2-entry u32 array. By simplifying
the argument to a simple "u32 *missed_ppm" and adjusting the trace
entry accordingly, the compilation error was gone.
Fixes: 7caa47151a ("blkcg: implement blk-iocost")
Acked-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
Acked-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Waiman Long <longman@redhat.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
invalidate_partition and bdev_unhash_inode are always paired, and
invalidate_partition already does an icache lookup for the block device
inode. Piggy back on that to remove the inode from the hash.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
invalidate_partition is only used in genhd.c, so mark it static. Also
drop the return value given that is is always ignored.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
We just checked a little above that the block device for the partition
im busy. That implies no file system is mounted, and thus the only
thing in fsync_bdev that actually is used is sync_blockdev. Just call
sync_blockdev directly.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Given that the device must not be busy, most of the calls from
invalidate_partition that are related to file system metadata are
guranteed to not happen. Just open code the calls to sync_blockdev
and invalidate_bdev instead.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Use the blk_drop_partitions function instead of messing around with
ioctls that get kernel pointers. For this blk_drop_partitions needs
to be exported, which it normally shouldn't - make an exception for
s390 only.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
The gendisk can be trivially deducted from the block_device.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
The function has a single caller, so just open code it.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Move hd_ref_init out of line as there it isn't anywhere near a fast path,
and rename the rcu ref freeing callbacks to be more descriptive.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
All callers have the hd_struct at hand, so pass it instead of performing
another lookup.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Split each sub-command out into a separate helper, and move those helpers
to block/partitions/core.c instead of having a lot of partition
manipulation logic open coded in block/ioctl.c.
Signed-off-by: Christoph Hellwig <hch@lst.de
Signed-off-by: Jens Axboe <axboe@kernel.dk>
This reverts commit 7e70aa789d.
Now that we have the patches ("blk-mq: In blk_mq_dispatch_rq_list()
"no budget" is a reason to kick") and ("blk-mq: Rerun dispatching in
the case of budget contention") we should no longer need the fix in
the SCSI code. Revert it, resolving conflicts with other patches that
have touched this code.
With this revert (and the two new patches) I can run the script that
was in commit 7e70aa789d ("scsi: core: run queue if SCSI device
queue isn't ready and queue is idle") in a loop with no failure. If I
do this revert without the two new patches I can easily get a failure.
Signed-off-by: Douglas Anderson <dianders@chromium.org>
Reviewed-by: Ming Lei <ming.lei@redhat.com>
Acked-by: Martin K. Petersen <martin.petersen@oracle.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
If ever a thread running blk-mq code tries to get budget and fails it
immediately stops doing work and assumes that whenever budget is freed
up that queues will be kicked and whatever work the thread was trying
to do will be tried again.
One path where budget is freed and queues are kicked in the normal
case can be seen in scsi_finish_command(). Specifically:
- scsi_finish_command()
- scsi_device_unbusy()
- # Decrement "device_busy", AKA release budget
- scsi_io_completion()
- scsi_end_request()
- blk_mq_run_hw_queues()
The above is all well and good. The problem comes up when a thread
claims the budget but then releases it without actually dispatching
any work. Since we didn't schedule any work we'll never run the path
of finishing work / kicking the queues.
This isn't often actually a problem which is why this issue has
existed for a while and nobody noticed. Specifically we only get into
this situation when we unexpectedly found that we weren't going to do
any work. Code that later receives new work kicks the queues. All
good, right?
The problem shows up, however, if timing is just wrong and we hit a
race. To see this race let's think about the case where we only have
a budget of 1 (only one thread can hold budget). Now imagine that a
thread got budget and then decided not to dispatch work. It's about
to call put_budget() but then the thread gets context switched out for
a long, long time. While in this state, any and all kicks of the
queue (like the when we received new work) will be no-ops because
nobody can get budget. Finally the thread holding budget gets to run
again and returns. All the normal kicks will have been no-ops and we
have an I/O stall.
As you can see from the above, you need just the right timing to see
the race. To start with, the only case it happens if we thought we
had work, actually managed to get the budget, but then actually didn't
have work. That's pretty rare to start with. Even then, there's
usually a very small amount of time between realizing that there's no
work and putting the budget. During this small amount of time new
work has to come in and the queue kick has to make it all the way to
trying to get the budget and fail. It's pretty unlikely.
One case where this could have failed is illustrated by an example of
threads running blk_mq_do_dispatch_sched():
* Threads A and B both run has_work() at the same time with the same
"hctx". Imagine has_work() is exact. There's no lock, so it's OK
if Thread A and B both get back true.
* Thread B gets interrupted for a long time right after it decides
that there is work. Maybe its CPU gets an interrupt and the
interrupt handler is slow.
* Thread A runs, get budget, dispatches work.
* Thread A's work finishes and budget is released.
* Thread B finally runs again and gets budget.
* Since Thread A already took care of the work and no new work has
come in, Thread B will get NULL from dispatch_request(). I believe
this is specifically why dispatch_request() is allowed to return
NULL in the first place if has_work() must be exact.
* Thread B will now be holding the budget and is about to call
put_budget(), but hasn't called it yet.
* Thread B gets interrupted for a long time (again). Dang interrupts.
* Now Thread C (maybe with a different "hctx" but the same queue)
comes along and runs blk_mq_do_dispatch_sched().
* Thread C won't do anything because it can't get budget.
* Finally Thread B will run again and put the budget without kicking
any queues.
Even though the example above is with blk_mq_do_dispatch_sched() I
believe the race is possible any time someone is holding budget but
doesn't do work.
Unfortunately, the unlikely has become more likely if you happen to be
using the BFQ I/O scheduler. BFQ, by design, sometimes returns "true"
for has_work() but then NULL for dispatch_request() and stays in this
state for a while (currently up to 9 ms). Suddenly you only need one
race to hit, not two races in a row. With my current setup this is
easy to reproduce in reboot tests and traces have actually shown that
we hit a race similar to the one described above.
Note that we only need to fix blk_mq_do_dispatch_sched() and
blk_mq_do_dispatch_ctx() and not the other places that put budget. In
other cases we know that we have work to do on at least one "hctx" and
code already exists to kick that "hctx"'s queue. When that work
finally finishes all the queues will be kicked using the normal flow.
One last note is that (at least in the SCSI case) budget is shared by
all "hctx"s that have the same queue. Thus we need to make sure to
kick the whole queue, not just re-run dispatching on a single "hctx".
Signed-off-by: Douglas Anderson <dianders@chromium.org>
Reviewed-by: Ming Lei <ming.lei@redhat.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
We have:
* blk_mq_run_hw_queue()
* blk_mq_delay_run_hw_queue()
* blk_mq_run_hw_queues()
...but not blk_mq_delay_run_hw_queues(), presumably because nobody
needed it before now. Since we need it for a later patch in this
series, add it.
Signed-off-by: Douglas Anderson <dianders@chromium.org>
Reviewed-by: Ming Lei <ming.lei@redhat.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
In blk_mq_dispatch_rq_list(), if blk_mq_sched_needs_restart() returns
true and the driver returns BLK_STS_RESOURCE then we'll kick the
queue. However, there's another case where we might need to kick it.
If we were unable to get budget we can be in much the same state as
when the driver returns BLK_STS_RESOURCE, so we should treat it the
same.
It should be noted that even if we add a whole bunch of extra kicking
to the queue in other patches this patch is still important.
Specifically any kicking that happened before we re-spliced leftover
requests into 'hctx->dispatch' wouldn't have found any work, so we
really need to make sure we kick ourselves after we've done the
splicing.
Signed-off-by: Douglas Anderson <dianders@chromium.org>
Reviewed-by: Ming Lei <ming.lei@redhat.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
While trying to "dd" to the block device for a USB stick, I
encountered a hung task warning (blocked for > 120 seconds). I
managed to come up with an easy way to reproduce this on my system
(where /dev/sdb is the block device for my USB stick) with:
while true; do dd if=/dev/zero of=/dev/sdb bs=4M; done
With my reproduction here are the relevant bits from the hung task
detector:
INFO: task udevd:294 blocked for more than 122 seconds.
...
udevd D 0 294 1 0x00400008
Call trace:
...
mutex_lock_nested+0x40/0x50
__blkdev_get+0x7c/0x3d4
blkdev_get+0x118/0x138
blkdev_open+0x94/0xa8
do_dentry_open+0x268/0x3a0
vfs_open+0x34/0x40
path_openat+0x39c/0xdf4
do_filp_open+0x90/0x10c
do_sys_open+0x150/0x3c8
...
...
Showing all locks held in the system:
...
1 lock held by dd/2798:
#0: ffffff814ac1a3b8 (&bdev->bd_mutex){+.+.}, at: __blkdev_put+0x50/0x204
...
dd D 0 2798 2764 0x00400208
Call trace:
...
schedule+0x8c/0xbc
io_schedule+0x1c/0x40
wait_on_page_bit_common+0x238/0x338
__lock_page+0x5c/0x68
write_cache_pages+0x194/0x500
generic_writepages+0x64/0xa4
blkdev_writepages+0x24/0x30
do_writepages+0x48/0xa8
__filemap_fdatawrite_range+0xac/0xd8
filemap_write_and_wait+0x30/0x84
__blkdev_put+0x88/0x204
blkdev_put+0xc4/0xe4
blkdev_close+0x28/0x38
__fput+0xe0/0x238
____fput+0x1c/0x28
task_work_run+0xb0/0xe4
do_notify_resume+0xfc0/0x14bc
work_pending+0x8/0x14
The problem appears related to the fact that my USB disk is terribly
slow and that I have a lot of RAM in my system to cache things.
Specifically my writes seem to be happening at ~15 MB/s and I've got
~4 GB of RAM in my system that can be used for buffering. To write 4
GB of buffer to disk thus takes ~4000 MB / ~15 MB/s = ~267 seconds.
The 267 second number is a problem because in __blkdev_put() we call
sync_blockdev() while holding the bd_mutex. Any other callers who
want the bd_mutex will be blocked for the whole time.
The problem is made worse because I believe blkdev_put() specifically
tells other tasks (namely udev) to go try to access the device at right
around the same time we're going to hold the mutex for a long time.
Putting some traces around this (after disabling the hung task detector),
I could confirm:
dd: 437.608600: __blkdev_put() right before sync_blockdev() for sdb
udevd: 437.623901: blkdev_open() right before blkdev_get() for sdb
dd: 661.468451: __blkdev_put() right after sync_blockdev() for sdb
udevd: 663.820426: blkdev_open() right after blkdev_get() for sdb
A simple fix for this is to realize that sync_blockdev() works fine if
you're not holding the mutex. Also, it's not the end of the world if
you sync a little early (though it can have performance impacts).
Thus we can make a guess that we're going to need to do the sync and
then do it without holding the mutex. We still do one last sync with
the mutex but it should be much, much faster.
With this, my hung task warnings for my test case are gone.
Signed-off-by: Douglas Anderson <dianders@chromium.org>
Reviewed-by: Guenter Roeck <groeck@chromium.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
When remapping a mapping where a portion of a VMA is remapped
into another portion of the VMA it can cause the VMA to become
split. During the copy_vma operation the VMA can actually
be remerged if it's an anonymous VMA whose pages have not yet
been faulted. This isn't normally a problem because at the end
of the remap the original portion is unmapped causing it to
become split again.
However, MREMAP_DONTUNMAP leaves that original portion in place which
means that the VMA which was split and then remerged is not actually
split at the end of the mremap. This patch fixes a bug where
we don't detect that the VMAs got remerged and we end up
putting back VM_ACCOUNT on the next mapping which is completely
unreleated. When that next mapping is unmapped it results in
incorrectly unaccounting for the memory which was never accounted,
and eventually we will underflow on the memory comittment.
There is also another issue which is similar, we're currently
accouting for the number of pages in the new_vma but that's wrong.
We need to account for the length of the remap operation as that's
all that is being added. If there was a mapping already at that
location its comittment would have been adjusted as part of
the munmap at the start of the mremap.
A really simple repro can be seen in:
https://gist.github.com/bgaff/e101ce99da7d9a8c60acc641d07f312c
Fixes: e346b38130 ("mm/mremap: add MREMAP_DONTUNMAP to mremap()")
Reported-by: syzbot <syzkaller@googlegroups.com>
Signed-off-by: Brian Geffon <bgeffon@google.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
clk where we want to keep it on for earlycon.
-----BEGIN PGP SIGNATURE-----
iQJFBAABCAAvFiEE9L57QeeUxqYDyoaDrQKIl8bklSUFAl6cfVgRHHNib3lkQGtl
cm5lbC5vcmcACgkQrQKIl8bklSXNkA/+LRR8Z+BmvpUxuo9YxrzeoQrVTm/3YgzU
0puj9+RC1KGyFrW4McP+dX6izWT049cswt+em1fojkrQW7Ojp20t5P20SK5NTa0j
hS90tIoSpORdcQBpfgBUOfk7oGmRFEGLSEjJVF+MMizFpnNroz57Y7jn0RksQe1A
CDyc5WmgmayoGhnwrKc91ern9qYJW595Bpanv+vsw/wwJvpypQJ1/eT2LIb9MAlR
8GBJWGhhlNqsFsXEPZEnSFYzUZR8jE6uB2hQ70jKSzR2T/YTZO26MUZvj26WfG8O
VHN0zxGqpWad9u+xasDlzPv9l7fxuKViNr5zdLrFUP+0NEgDMaIQNFg88bSov6PE
UpDe9ImGbMrcaWR4QOFICYWHp1C4EPQp9VZjSJN4fSFUxQLu3WVqxVaMi/kly1w0
IH1YNU+7G/q4TRURenqUWxXOAY0ti89pW2IvhYrvAWFErJXw3XfsYFbfUdphtk1f
wxF7YulCO3OnhtZ3P0E2K2gIdF8PYTR//qPwX9MYKKipnNKkeYskmirjRuCK59yF
lu7DgMduprdTNMHVFwT6TmpnPrdn+g5pyEz7OMeDUklk/dwyzofHTd/GeVdj5rRC
eeI8I0zka9klCEdkTWlAlH4RA4Ccn3sBD3O5fAs7ue+7xuUqj3PZqCPFtTlxp63t
tVuDRwrob9A=
=6Qda
-----END PGP SIGNATURE-----
Merge tag 'clk-fixes-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/clk/linux
Pull clk fixes from Stephen Boyd:
"Two build fixes for a couple clk drivers and a fix for the Unisoc
serial clk where we want to keep it on for earlycon"
* tag 'clk-fixes-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/clk/linux:
clk: sprd: don't gate uart console clock
clk: mmp2: fix link error without mmp2
clk: asm9260: fix __clk_hw_register_fixed_rate_with_accuracy typo
objtool:
- Ignore the double UD2 which is emitted in BUG() when CONFIG_UBSAN_TRAP
is enabled.
- Support clang non-section symbols in objtool ORC dump
- Fix switch table detection in .text.unlikely
- Make the BP scratch register warning more robust.
x86:
- Increase microcode maximum patch size for AMD to cope with new CPUs
which have a larger patch size.
- Fix a crash in the resource control filesystem when the removal of the
default resource group is attempted.
- Preserve Code and Data Prioritization enabled state accross CPU
hotplug.
- Update split lock cpu matching to use the new X86_MATCH macros.
- Change the split lock enumeration as Intel finaly decided that the
IA32_CORE_CAPABILITIES bits are not architectural contrary to what
the SDM claims. !@#%$^!
- Add Tremont CPU models to the split lock detection cpu match.
- Add a missing static attribute to make sparse happy.
-----BEGIN PGP SIGNATURE-----
iQJHBAABCgAxFiEEQp8+kY+LLUocC4bMphj1TA10mKEFAl6cWGsTHHRnbHhAbGlu
dXRyb25peC5kZQAKCRCmGPVMDXSYod2jD/4kZqz+nEzAvx8RC/7zfLr1S6mDYcLb
kqWEblLRfPofFNO3W/1Ri7xUs2VCyBcOJeG9JIugI8YV/b/5LY9j2nW30unXi84y
8DHLWgM7OG+EiNDMvdQwgnjNb9Pdl4F1e9yTTD6IRg0bHOjvtHVyq9bNg7f3iaED
ZE4X5Hh5u4qFK/jmcsTF5HA/wIjELdmT32F4RxceAlmvpa5SUGlOfVVo1cSZpCbx
XkrvUvEzyZhbzY+Gy1q3SHTt+fvzx1++LsnJD0Dyfe5Q47PA1Iy6Zo2+Epn3FnCu
XuQKLaiDhidpkPzTGULZUsubavXbrSEu5/yhFJHyUqMy5WNOmvXBN8eVC4j1I9Ga
tnt43s3AS8noz4qIb7bpoVgETFtoCfWfqwhtZmALPzrfutwxe2Ujtsi9FUca6HtA
T5dKuNwc8G+Q5ZiNi+rPjcV/QGGncZFwtwwRwUl/YKgQ2VgrTgfsPc431tfSl3Q8
hVQIOhQNHCKqe3uGhiCsI29pNMDXVijZcI8w2SSmxnPyrMRXD7bTfLWnPav7SGFO
aSSi9HWtghkU/MsmRgRcZc9PI5bNs6w5IkfQqfXjd/lJwea2yQg1cn1KdmGi3Q33
BNj9FudNMe4K8ITaNWiLdt5rYCDIvWEzmbwawAhevstbKrjVtrAYgNAjvgJEnXAt
mZwTu+Hpd6d+JA==
=raUm
-----END PGP SIGNATURE-----
Merge tag 'x86-urgent-2020-04-19' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 and objtool fixes from Thomas Gleixner:
"A set of fixes for x86 and objtool:
objtool:
- Ignore the double UD2 which is emitted in BUG() when
CONFIG_UBSAN_TRAP is enabled.
- Support clang non-section symbols in objtool ORC dump
- Fix switch table detection in .text.unlikely
- Make the BP scratch register warning more robust.
x86:
- Increase microcode maximum patch size for AMD to cope with new CPUs
which have a larger patch size.
- Fix a crash in the resource control filesystem when the removal of
the default resource group is attempted.
- Preserve Code and Data Prioritization enabled state accross CPU
hotplug.
- Update split lock cpu matching to use the new X86_MATCH macros.
- Change the split lock enumeration as Intel finaly decided that the
IA32_CORE_CAPABILITIES bits are not architectural contrary to what
the SDM claims. !@#%$^!
- Add Tremont CPU models to the split lock detection cpu match.
- Add a missing static attribute to make sparse happy"
* tag 'x86-urgent-2020-04-19' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/split_lock: Add Tremont family CPU models
x86/split_lock: Bits in IA32_CORE_CAPABILITIES are not architectural
x86/resctrl: Preserve CDP enable over CPU hotplug
x86/resctrl: Fix invalid attempt at removing the default resource group
x86/split_lock: Update to use X86_MATCH_INTEL_FAM6_MODEL()
x86/umip: Make umip_insns static
x86/microcode/AMD: Increase microcode PATCH_MAX_SIZE
objtool: Make BP scratch register warning more robust
objtool: Fix switch table detection in .text.unlikely
objtool: Support Clang non-section symbols in ORC generation
objtool: Support Clang non-section symbols in ORC dump
objtool: Fix CONFIG_UBSAN_TRAP unreachable warnings
instead of clockid numbers. The usability nuisance of numbers was noticed
by Michael when polishing the man page.
-----BEGIN PGP SIGNATURE-----
iQJHBAABCgAxFiEEQp8+kY+LLUocC4bMphj1TA10mKEFAl6cVQsTHHRnbHhAbGlu
dXRyb25peC5kZQAKCRCmGPVMDXSYoWBjEAC0dCUHKDLoG0FeyG4tb4FEBW2iTqM8
UFirH26K18s8QSePdvfJlaxtN2SdfNZG7UgYN7wz1fDFQy05zTz7Rek8UrDuu3rh
mVph/UZtUJl+6ypW2Lw9x5RWpT5yzay2iowUyBPnNxU9F/0uRKvXQFju3L83Lo/z
Z4ni7gVEw87dQi5E74tEv6iaydgPuCBpGxoMahotnHyclqMjA0QuAK6nhN5ZTcAn
senoorS/VqkSF5qEvIUwe7+F+kkMbwQryT7merJyNwh/F49xTTXRyBmiys1MF8Og
MTEvldXKy2pCh2UfRa/x84WWwOUVNivTXdIXjhalsblczL0j1z9MsQ8b3AOXOiLf
S+/Ntbb2dGo4qE22jekMwZ54Pm4x5NzChCU8+3pvd6IrPWZKi6vue74Kd0RNHQg/
0kWOlZnIP2ArVW0bFqV6jhMYkjmVdK6gm7cUpFV66L2H8zbfFuc4OlxJYEFYivye
9Yck+rFQmMwA15ZXYIpggkd7Rf/5CGF1CiMBAvP/ILubpgbJqnn6/tGByq8tDKdy
mqXX+NHF0M/7rJd5vr7wP6p3E5nQ9l/41rh9ii9EDLXf4jsWVO3EyobJ7fFHwprs
5tTWGxVJymUQLq/LQPXOVVENGK+ZsXXNGn/4n8IOVroeypxADTGyhtSh122kFFhv
jPcVHqpBUd0g4Q==
=slEk
-----END PGP SIGNATURE-----
Merge tag 'timers-urgent-2020-04-19' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull time namespace fix from Thomas Gleixner:
"An update for the proc interface of time namespaces: Use symbolic
names instead of clockid numbers. The usability nuisance of numbers
was noticed by Michael when polishing the man page"
* tag 'timers-urgent-2020-04-19' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
proc, time/namespace: Show clock symbolic names in /proc/pid/timens_offsets
- Fix the header line of perf stat output for '--metric-only --per-socket'
- Fix the python build with clang
- The usual tools UAPI header synchronization
-----BEGIN PGP SIGNATURE-----
iQJHBAABCgAxFiEEQp8+kY+LLUocC4bMphj1TA10mKEFAl6cU84THHRnbHhAbGlu
dXRyb25peC5kZQAKCRCmGPVMDXSYoUs+EAChmubWOQLreEX7shBpxudvfTMP0icb
95QmXGQx2FSPBUb/pDh4FtA5bPi0xcDqK3yM1GskLutUe9fJbHbzg/ph4FuZqiho
C8BwMgxFpBkPgtS55zWHa+HOEhTPFjywHZBWwFdxn4pysQBioeH1iS2+5s7svbRe
bDhAYnGnNAB0zwtofIC+tk600Gz3NzkRIAqI5pUZ621FZl3gsJZhwzWQ/U7nljpX
cM+KiRqtkNf2DjW4UoBU7muBdThfd1vQCkEayREbGuPnIBKC7fiqRarDiUnwHCmu
jyg5jkmlMumc2p3NjMh+M8BhqoY5ySnGuGHRkYwji3WYCIpxy0y3vBP6aMmT6DOg
zpV8/wCAtPV5QLMzwcd1RQQzSSVruyckfMfgScZT66Ik34q6SVSiOjZTcUyVYFaM
pYrxH/wdzx1tLgd8OEDC43+Zh6sEi9wgGLamc0OtfpQvruPSxXNg3gy8BgvYh8MI
fksICVfQT5GmrLZTTsVXoYQSDuaS43EfVa1NVdtObmeWYeN4CmZHMM9nHl/9Nn9F
2qepDgLuBpbwCMOrjzvbkrE65CDZgzz9WlziezSeYSGuGymhHPpSvyXm2/dH5z/5
nGvMW7x2ROKyKEc4+yDhJ8COIOb5TqUiF2vpDCBwWygYZbiaHKjh5PfJxRMppTQg
dw2wq3OmN8CWGQ==
=Dd1H
-----END PGP SIGNATURE-----
Merge tag 'perf-urgent-2020-04-19' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull perf tooling fixes and updates from Thomas Gleixner:
- Fix the header line of perf stat output for '--metric-only --per-socket'
- Fix the python build with clang
- The usual tools UAPI header synchronization
* tag 'perf-urgent-2020-04-19' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
tools headers: Synchronize linux/bits.h with the kernel sources
tools headers: Adopt verbatim copy of compiletime_assert() from kernel sources
tools headers: Update x86's syscall_64.tbl with the kernel sources
tools headers UAPI: Sync drm/i915_drm.h with the kernel sources
tools headers UAPI: Update tools's copy of drm.h headers
tools headers kvm: Sync linux/kvm.h with the kernel sources
tools headers UAPI: Sync linux/fscrypt.h with the kernel sources
tools include UAPI: Sync linux/vhost.h with the kernel sources
tools arch x86: Sync asm/cpufeatures.h with the kernel sources
tools headers UAPI: Sync linux/mman.h with the kernel
tools headers UAPI: Sync sched.h with the kernel
tools headers: Update linux/vdso.h and grab a copy of vdso/const.h
perf stat: Fix no metric header if --per-socket and --metric-only set
perf python: Check if clang supports -fno-semantic-interposition
tools arch x86: Sync the msr-index.h copy with the kernel sources
- Remove setup_irq() and remove_irq(). All users have been converted so
remove them before new users surface.
- A set of bugfixes for various interrupt chip drivers
- Add a few missing static attributes to address sparse warnings.
-----BEGIN PGP SIGNATURE-----
iQJHBAABCgAxFiEEQp8+kY+LLUocC4bMphj1TA10mKEFAl6cUuMTHHRnbHhAbGlu
dXRyb25peC5kZQAKCRCmGPVMDXSYoYi7EACOFPrwdOlKqDdgU1FGReEzhJeNSSyH
yUp1m2nNckz8Y2B+ihnLsfvcktZSXYRuDTZ/u/rmaKqq2wH5Q/h4DNQxEfoMNUep
IVBlvAFcGsvpdSbrlc+nx6sEo0K2b22AQVHdyPECiQYFZJikstAtEfzEv+ZaUr2S
Lcds295BIQylbugQpcVZL73j6iUKQ+P5YU0Wlkd/Vhlnxe9UdMd/N1P3GoRaRlOa
QxYDJCnZJjWkN+cEVRCAZVTat6pd3zaMHvEabI39Lzx4U+nu4vh62TILwk+wdpuA
DzgA+ENFXzv2zLlnF8gB0wKWw3J99No9gfRpuK/vWBQ68UeZsPlM5PKEr93oD4cC
To9D70r71UM+LS+Km8ciFlqeT4N+hIMb/x8rpIf5Tcfn5spXjNEhR4U6/d/D2ZYy
cQiu82th9kSOMGBhlrfkJ0gAT20UfAktDHU1M4JhwI5Y/DLusb6mfg0CRMj8ucOV
0xrKkgHxhX162oRTKzy5OTMWQRGTvIQZg1QE3xxtrT2qCq4ypu0EHQbh3GdfcIVQ
8n+s/Dde6etmbSwDDdEuRi///zM+hvaiXi5KOV28LYgRDbU78cAX8uRgX9sq2pg+
WxK9ulprkW6Ci1yTts9Q6FY+ZBekg7NBKXXDCJdPwXxTLRrdci68pPZip12AaWxP
2HYxWhE8LvmKAw==
=jaX5
-----END PGP SIGNATURE-----
Merge tag 'irq-urgent-2020-04-19' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull irq fixes from Thomas Gleixner:
"A set of fixes/updates for the interrupt subsystem:
- Remove setup_irq() and remove_irq(). All users have been converted
so remove them before new users surface.
- A set of bugfixes for various interrupt chip drivers
- Add a few missing static attributes to address sparse warnings"
* tag 'irq-urgent-2020-04-19' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
irqchip/irq-bcm7038-l1: Make bcm7038_l1_of_init() static
irqchip/irq-mvebu-icu: Make legacy_bindings static
irqchip/meson-gpio: Fix HARDIRQ-safe -> HARDIRQ-unsafe lock order
irqchip/sifive-plic: Fix maximum priority threshold value
irqchip/ti-sci-inta: Fix processing of masked irqs
irqchip/mbigen: Free msi_desc on device teardown
irqchip/gic-v4.1: Update effective affinity of virtual SGIs
irqchip/gic-v4.1: Add support for VPENDBASER's Dirty+Valid signaling
genirq: Remove setup_irq() and remove_irq()
- Work around an uninitializaed variable warning where GCC can't figure it
out.
- Allow 'isolcpus=' to skip unknown subparameters so that older kernels
work with the commandline of a newer kernel. Improve the error output
while at it.
-----BEGIN PGP SIGNATURE-----
iQJHBAABCgAxFiEEQp8+kY+LLUocC4bMphj1TA10mKEFAl6cVFwTHHRnbHhAbGlu
dXRyb25peC5kZQAKCRCmGPVMDXSYoZAaD/9i9QgLuj1Ka59kNPAs68i5Kjar72VS
us1dM2n0Tx6lIUEYsdJsu4GTRi5NEBqLbmwSgsXROnhI6Jd17hHp5JViezk1GZWc
Zg2uARAj9Jsqh2q5IjriNOwzq47PDC4dmSUzaecJff8PqGkk9Lpry6qvx3A02uSn
tVVQAXqwCbPTaQzuhEf/q6mbfRaO90tVqGdseD+1wE0FBFfPLwddegLEGhL1vYsA
55UhpKCGsS9lrfmgkxk1Xb3e0pJBObiV0SXdn2qHqJTpVUaDTZzsWgJHXg+0Fe1V
0ZsuGfmaaisYPBZmqRo4HALbkgnvVECSbp7FAnhvqiQMyNaciiwkkFv9Ap5+aayf
c8wXz/emAmuEMNzipovyFUITCIOs6IL1CkESsbO8Bgx9sTHO+pcgNEYrsX1953UC
45GjhXR3ymnclqsVqfMWIcNRukk0g9W38yp1DgA5IIhVz1rHogEquD9F10qsCGb1
FgSOnyGlU0I0JR5tEfqR0TeCuqLGKB2NvnEgLU4OVpsdEC5ac87uvzWEZuOmR5Z4
vQCkps1z1ABW5fB/kFO83OiA5BZfDGnq5Vvh6XDOv6EeWjhIXrolu6VeTYpBSInq
w0oNpsaA9wsy7WIy1RJ8jtSNsgS8fULCE5lUBtFeSUY/T7IcWd0lwnTlL97A4qzg
GdYVT/UAHLCzCA==
=AKgh
-----END PGP SIGNATURE-----
Merge tag 'sched-urgent-2020-04-19' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull scheduler fixes from Thomas Gleixner:
"Two fixes for the scheduler:
- Work around an uninitialized variable warning where GCC can't
figure it out.
- Allow 'isolcpus=' to skip unknown subparameters so that older
kernels work with the commandline of a newer kernel. Improve the
error output while at it"
* tag 'sched-urgent-2020-04-19' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
sched/vtime: Work around an unitialized variable warning
sched/isolation: Allow "isolcpus=" to skip unknown sub-parameters
-----BEGIN PGP SIGNATURE-----
iQJHBAABCgAxFiEEQp8+kY+LLUocC4bMphj1TA10mKEFAl6cUf8THHRnbHhAbGlu
dXRyb25peC5kZQAKCRCmGPVMDXSYofFtD/92Ufh1t+1uSe/txUJ/lTdY98cpcD5i
UZJYdF102VLkhwA3Ors0Udtrnvuyxb5FFSfJZ3/N7tsNaXgcz1QOQsqoZz4SSgLJ
pPj+2v+LNI6rIWDXuwszbLM/nT1mJGAK9NQ6+AhvIyBMPbht4/Lajsv7vkFMTzXw
8o+a5NqLKWDca7/eLcgbcMiSsulRZxRld0D7MSP7RBeEWeylt31q3JIBp7ldzJ77
0KCdQEd3TAkP+hOZW98CNgcLgGtCxiOJ5EgjUOFJyD/+5mj219czKF53HXnn4amk
5lmdzSB0RKV2JTNFKNZQOobgMPp8VIIf6R6QlDp5MdrGYWTIbV0p5Hak2u41Cyma
BfxxkVZJipjC7mgAvZLgy0/Md7n2Eu5uAW0e72AYEmv7IwOGyHh9YL7IYiZQld67
5q8xEgrIIpaCwscVjZqP3+GHc8KGWYuv8puMCeOk1v7UeWsRlc8j/eGWIXnY4E8v
wvqWAB91dHlBh+CHaFtdy97buYinVzW/Tv2NTxLFKgxyGJTg82H2hdTpjRVYi5Z4
DM2NQRLcD1ozvh8tsFzXWP+/uemlE+EUPBZofCjJ0WtzH1GWarf3YNqviFqldRLr
GyEFoyIc3Ra/hTEzD9yCC0UWwJubhAVLWOuu9pJKuaaei8s1aiusABQGbz5sNG9l
AcpB9KFMtsLAXA==
=QjbA
-----END PGP SIGNATURE-----
Merge tag 'core-urgent-2020-04-19' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull RCU fix from Thomas Gleixner:
"A single bugfix for RCU to prevent taking a lock in NMI context"
* tag 'core-urgent-2020-04-19' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
rcu: Don't acquire lock in NMI handler in rcu_nmi_enter_common()
generic/388 in data=journal mode, removing some BUG_ON's, and cleaning
up some compiler warnings.
-----BEGIN PGP SIGNATURE-----
iQEzBAABCAAdFiEEK2m5VNv+CHkogTfJ8vlZVpUNgaMFAl6cj80ACgkQ8vlZVpUN
gaOx5Qf/XY7JUEp1nGgcdZyUd8uho3dKkG4TuUU5PvGsiDb4ozGsyU51q2LnOHWF
uzDJaE03z5uc1i8C9mQRLzjzaOC8B8kQZuKfkcQ/xI4CS3cG4qRdeNdHUz5QyfhK
5THDzr2z1tuWDuhlp+jCPjCz1fJowHxva/7ktf1OrMVEErYlZXT8CPLIRBCeuuCX
/07/8tJ5jJoqpI3kmy1jFotMEhIBE0vixf+sfcp2RWjdb0/1LH2JPWCytX+hhSFR
SadWDvTIvVy/rMahLHgc/VyPP47QwLWzBmLm9CdyxmDeUaM4Qwx8Zfog4+8g78wl
IvSuHRDdTYnOO35Qbzjl2wanhzCiQQ==
=qzEh
-----END PGP SIGNATURE-----
Merge tag 'ext4_for_linus_stable' of git://git.kernel.org/pub/scm/linux/kernel/git/tytso/ext4
Pull ext4 fixes from Ted Ts'o:
"Miscellaneous bug fixes and cleanups for ext4, including a fix for
generic/388 in data=journal mode, removing some BUG_ON's, and cleaning
up some compiler warnings"
* tag 'ext4_for_linus_stable' of git://git.kernel.org/pub/scm/linux/kernel/git/tytso/ext4:
ext4: convert BUG_ON's to WARN_ON's in mballoc.c
ext4: increase wait time needed before reuse of deleted inode numbers
ext4: remove set but not used variable 'es' in ext4_jbd2.c
ext4: remove set but not used variable 'es'
ext4: do not zeroout extents beyond i_disksize
ext4: fix return-value types in several function comments
ext4: use non-movable memory for superblock readahead
ext4: use matching invalidatepage in ext4_writepage
-----BEGIN PGP SIGNATURE-----
iQGzBAABCgAdFiEE6fsu8pdIjtWE/DpLiiy9cAdyT1EFAl6b28kACgkQiiy9cAdy
T1EZ+wwAqHCqrIgelrLFiQwHkMg1KQMBnul3mBuCJ6qxGTyzSVLWBYsfHabLqWmC
Ann71PFygGc+5R195CcMZ/RAHGTTEbwJP5s/wGwm3wUfqImLPOpMr/jd8rv9GvE2
atsthBnFlPE+dY5BD9fr7JIWpZxE3yevCtVifyPjA879zzqIoT9lkFcjCNTqV37l
tRe4JyObxKSrPUUELC30XPFoBGT/Cgcoz+I0JFL+gz8Yt9CEBXL2DKdnZJERbIpm
t+yjKAYC9QN5eF7kew8Fide4LohH7jL2EAmllWKUTRH1pHNEKgyMbSMm3F2RzoXG
0R/70stukgXemlsCD2+BSXDZ3smPHwoKq+FftYanHd1pamOQHJMWcQ/tCk8gg9/Z
Qq0wwBBbVP6HOMwoDOOW53/lwiU/hoR2Re3jy7K0DOGJAFNkxo98oXfT7HJfmKeW
q1LQvKR7ch3iFaOUkg/Tv+8o3inUuYLUgegCPvM6RkGkG0Mqs8SEkA9AyyqFmBnG
kY1K83Ct
=G+Rl
-----END PGP SIGNATURE-----
Merge tag '5.7-rc-smb3-fixes' of git://git.samba.org/sfrench/cifs-2.6
Pull cifs fixes from Steve French:
"Three small smb3 fixes: two debug related (helping network tracing for
SMB2 mounts, and the other removing an unintended debug line on
signing failures), and one fixing a performance problem with 64K
pages"
* tag '5.7-rc-smb3-fixes' of git://git.samba.org/sfrench/cifs-2.6:
smb3: remove overly noisy debug line in signing errors
cifs: improve read performance for page size 64KB & cache=strict & vers=2.1+
cifs: dump the session id and keys also for SMB2 sessions
Hi Linus,
Please, pull the following patches that replace zero-length arrays with
flexible-array members.
The current codebase makes use of the zero-length array language
extension to the C90 standard, but the preferred mechanism to declare
variable-length types such as these ones is a flexible array member[1][2],
introduced in C99:
struct foo {
int stuff;
struct boo array[];
};
By making use of the mechanism above, we will get a compiler warning
in case the flexible array does not occur last in the structure, which
will help us prevent some kind of undefined behavior bugs from being
inadvertently introduced[3] to the codebase from now on.
Also, notice that, dynamic memory allocations won't be affected by
this change:
"Flexible array members have incomplete type, and so the sizeof operator
may not be applied. As a quirk of the original implementation of
zero-length arrays, sizeof evaluates to zero."[1]
sizeof(flexible-array-member) triggers a warning because flexible array
members have incomplete type[1]. There are some instances of code in
which the sizeof operator is being incorrectly/erroneously applied to
zero-length arrays and the result is zero. Such instances may be hiding
some bugs. So, this work (flexible-array member convertions) will also
help to get completely rid of those sorts of issues.
Notice that all of these patches have been baking in linux-next for
quite a while now and, 238 more of these patches have already been
merged into 5.7-rc1.
There are a couple hundred more of these issues waiting to be addressed
in the whole codebase.
[1] https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html
[2] https://github.com/KSPP/linux/issues/21
[3] commit 7649773293 ("cxgb3/l2t: Fix undefined behaviour")
Thanks
-----BEGIN PGP SIGNATURE-----
iQIzBAABCAAdFiEEkmRahXBSurMIg1YvRwW0y0cG2zEFAl6bccgACgkQRwW0y0cG
2zFYvBAAl5tsoZsb6h5o7+XpWetl2BfA8lRelXWg1la9mF+Zqgqz8raubs+EbR8f
65yz1lvoOl3jgeu1pQnx+AaDdG88Yu66BjPpFz/n8WWBjNC0z3M4Xcu+pFUanEzO
QqkCPryj6RlqCYL/WlSCifo+ZOAeM7jlw/2kkX1ILVwjYItFPJIw+5IEPrM0ucN2
tFp9H3iKOlA6PDuj4JO2xCnlUkL5aZk101qKqm41yZLLiS8zE8or4+s8Y7c7yDDP
ajQ+uCzJpt/VCn6Iyri0oZ5hp+gI6jJ8ox1Vo0UCuWQ2RJ7E2FE5qhhctwB4UYsg
+B6c1yckJqUoJ1c7Bbj00gsNMns3A7uLHFDOGBKQTjkRCn5+QV1wVvv5TJx2LJYL
EBt07IfS0YAv0EBIbJyxqzmWCt0unKCu3i1KePp/FYqq291dpr39olUMCa1+Qg98
v1VTGUlOvONy3v41tDx+Bfkt/0ebT8pogyenA51cjsD0bUZ3I/BsGxigXf0myLuy
6yFjx7f6ng2I3uBDSZ+H/KUM51H6yhB9UCQuQCSqHDU3iEHvh7dDdumD3A9OJyLw
nPC2HQhTOHVkbtg/E0KFh/ak1PoELCH3CR1Kgj/NSOG2Mz5tgtBfoxa+GwJTvJha
9m5JrBQcT7qF7pGtZU0NDQICrhhvUEX/Hwo3QAtYInWPsV3S+5U=
=GsIm
-----END PGP SIGNATURE-----
Merge tag 'flexible-array-member-5.7-rc2' of git://git.kernel.org/pub/scm/linux/kernel/git/gustavoars/linux
Pull flexible-array member conversion from Gustavo Silva:
"The current codebase makes use of the zero-length array language
extension to the C90 standard, but the preferred mechanism to declare
variable-length types such as these ones is a flexible array
member[1][2], introduced in C99:
struct foo {
int stuff;
struct boo array[];
};
By making use of the mechanism above, we will get a compiler warning
in case the flexible array does not occur last in the structure, which
will help us prevent some kind of undefined behavior bugs from being
inadvertently introduced[3] to the codebase from now on.
Also, notice that, dynamic memory allocations won't be affected by
this change:
"Flexible array members have incomplete type, and so the sizeof
operator may not be applied. As a quirk of the original
implementation of zero-length arrays, sizeof evaluates to zero."[1]
sizeof(flexible-array-member) triggers a warning because flexible
array members have incomplete type[1]. There are some instances of
code in which the sizeof operator is being incorrectly/erroneously
applied to zero-length arrays and the result is zero. Such instances
may be hiding some bugs. So, this work (flexible-array member
convertions) will also help to get completely rid of those sorts of
issues.
Notice that all of these patches have been baking in linux-next for
quite a while now and, 238 more of these patches have already been
merged into 5.7-rc1.
There are a couple hundred more of these issues waiting to be
addressed in the whole codebase"
[1] https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html
[2] https://github.com/KSPP/linux/issues/21
[3] commit 7649773293 ("cxgb3/l2t: Fix undefined behaviour")
* tag 'flexible-array-member-5.7-rc2' of git://git.kernel.org/pub/scm/linux/kernel/git/gustavoars/linux: (28 commits)
xattr.h: Replace zero-length array with flexible-array member
uapi: linux: fiemap.h: Replace zero-length array with flexible-array member
uapi: linux: dlm_device.h: Replace zero-length array with flexible-array member
tpm_eventlog.h: Replace zero-length array with flexible-array member
ti_wilink_st.h: Replace zero-length array with flexible-array member
swap.h: Replace zero-length array with flexible-array member
skbuff.h: Replace zero-length array with flexible-array member
sched: topology.h: Replace zero-length array with flexible-array member
rslib.h: Replace zero-length array with flexible-array member
rio.h: Replace zero-length array with flexible-array member
posix_acl.h: Replace zero-length array with flexible-array member
platform_data: wilco-ec.h: Replace zero-length array with flexible-array member
memcontrol.h: Replace zero-length array with flexible-array member
list_lru.h: Replace zero-length array with flexible-array member
lib: cpu_rmap: Replace zero-length array with flexible-array member
irq.h: Replace zero-length array with flexible-array member
ihex.h: Replace zero-length array with flexible-array member
igmp.h: Replace zero-length array with flexible-array member
genalloc.h: Replace zero-length array with flexible-array member
ethtool.h: Replace zero-length array with flexible-array member
...
Seven fixes; three in target, one on a sg error leg, two in qla2xxx
fixing warnings introduced in the last merge window and updating
MAINTAINERS and one in hisi_sas fixing a problem introduced by libata.
Signed-off-by: James E.J. Bottomley <jejb@linux.ibm.com>
-----BEGIN PGP SIGNATURE-----
iJwEABMIAEQWIQTnYEDbdso9F2cI+arnQslM7pishQUCXptd+CYcamFtZXMuYm90
dG9tbGV5QGhhbnNlbnBhcnRuZXJzaGlwLmNvbQAKCRDnQslM7pishbngAP46suq5
KFaRycXl1lmznlPmM7gyFfszxDV3hp9SusFrzgEAxV4S6vdgEsF2pd5F6EYZoV0i
eCPKR6qDY4SaiUcGFRA=
=B9UG
-----END PGP SIGNATURE-----
Merge tag 'scsi-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/jejb/scsi
Pull SCSI fixes from James Bottomley:
"Seven fixes: three in target, one on a sg error leg, two in qla2xxx
fixing warnings introduced in the last merge window and updating
MAINTAINERS and one in hisi_sas fixing a problem introduced by libata"
* tag 'scsi-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/jejb/scsi:
scsi: sg: add sg_remove_request in sg_common_write
scsi: target: tcmu: reset_ring should reset TCMU_DEV_BIT_BROKEN
scsi: target: fix PR IN / READ FULL STATUS for FC
scsi: target: Write NULL to *port_nexus_ptr if no ISID
scsi: MAINTAINERS: Update qla2xxx FC-SCSI driver maintainer
scsi: qla2xxx: Fix regression warnings
scsi: hisi_sas: Fix build error without SATA_HOST
The current codebase makes use of the zero-length array language
extension to the C90 standard, but the preferred mechanism to declare
variable-length types such as these ones is a flexible array member[1][2],
introduced in C99:
struct foo {
int stuff;
struct boo array[];
};
By making use of the mechanism above, we will get a compiler warning
in case the flexible array does not occur last in the structure, which
will help us prevent some kind of undefined behavior bugs from being
inadvertently introduced[3] to the codebase from now on.
Also, notice that, dynamic memory allocations won't be affected by
this change:
"Flexible array members have incomplete type, and so the sizeof operator
may not be applied. As a quirk of the original implementation of
zero-length arrays, sizeof evaluates to zero."[1]
This issue was found with the help of Coccinelle.
[1] https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html
[2] https://github.com/KSPP/linux/issues/21
[3] commit 7649773293 ("cxgb3/l2t: Fix undefined behaviour")
Signed-off-by: Gustavo A. R. Silva <gustavo@embeddedor.com>
The current codebase makes use of the zero-length array language
extension to the C90 standard, but the preferred mechanism to declare
variable-length types such as these ones is a flexible array member[1][2],
introduced in C99:
struct foo {
int stuff;
struct boo array[];
};
By making use of the mechanism above, we will get a compiler warning
in case the flexible array does not occur last in the structure, which
will help us prevent some kind of undefined behavior bugs from being
inadvertently introduced[3] to the codebase from now on.
Also, notice that, dynamic memory allocations won't be affected by
this change:
"Flexible array members have incomplete type, and so the sizeof operator
may not be applied. As a quirk of the original implementation of
zero-length arrays, sizeof evaluates to zero."[1]
This issue was found with the help of Coccinelle.
[1] https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html
[2] https://github.com/KSPP/linux/issues/21
[3] commit 7649773293 ("cxgb3/l2t: Fix undefined behaviour")
Signed-off-by: Gustavo A. R. Silva <gustavo@embeddedor.com>
The current codebase makes use of the zero-length array language
extension to the C90 standard, but the preferred mechanism to declare
variable-length types such as these ones is a flexible array member[1][2],
introduced in C99:
struct foo {
int stuff;
struct boo array[];
};
By making use of the mechanism above, we will get a compiler warning
in case the flexible array does not occur last in the structure, which
will help us prevent some kind of undefined behavior bugs from being
inadvertently introduced[3] to the codebase from now on.
Also, notice that, dynamic memory allocations won't be affected by
this change:
"Flexible array members have incomplete type, and so the sizeof operator
may not be applied. As a quirk of the original implementation of
zero-length arrays, sizeof evaluates to zero."[1]
This issue was found with the help of Coccinelle.
[1] https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html
[2] https://github.com/KSPP/linux/issues/21
[3] commit 7649773293 ("cxgb3/l2t: Fix undefined behaviour")
Signed-off-by: Gustavo A. R. Silva <gustavo@embeddedor.com>
The current codebase makes use of the zero-length array language
extension to the C90 standard, but the preferred mechanism to declare
variable-length types such as these ones is a flexible array member[1][2],
introduced in C99:
struct foo {
int stuff;
struct boo array[];
};
By making use of the mechanism above, we will get a compiler warning
in case the flexible array does not occur last in the structure, which
will help us prevent some kind of undefined behavior bugs from being
inadvertently introduced[3] to the codebase from now on.
Also, notice that, dynamic memory allocations won't be affected by
this change:
"Flexible array members have incomplete type, and so the sizeof operator
may not be applied. As a quirk of the original implementation of
zero-length arrays, sizeof evaluates to zero."[1]
This issue was found with the help of Coccinelle.
[1] https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html
[2] https://github.com/KSPP/linux/issues/21
[3] commit 7649773293 ("cxgb3/l2t: Fix undefined behaviour")
Signed-off-by: Gustavo A. R. Silva <gustavo@embeddedor.com>
The current codebase makes use of the zero-length array language
extension to the C90 standard, but the preferred mechanism to declare
variable-length types such as these ones is a flexible array member[1][2],
introduced in C99:
struct foo {
int stuff;
struct boo array[];
};
By making use of the mechanism above, we will get a compiler warning
in case the flexible array does not occur last in the structure, which
will help us prevent some kind of undefined behavior bugs from being
inadvertently introduced[3] to the codebase from now on.
Also, notice that, dynamic memory allocations won't be affected by
this change:
"Flexible array members have incomplete type, and so the sizeof operator
may not be applied. As a quirk of the original implementation of
zero-length arrays, sizeof evaluates to zero."[1]
This issue was found with the help of Coccinelle.
[1] https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html
[2] https://github.com/KSPP/linux/issues/21
[3] commit 7649773293 ("cxgb3/l2t: Fix undefined behaviour")
Signed-off-by: Gustavo A. R. Silva <gustavo@embeddedor.com>
The current codebase makes use of the zero-length array language
extension to the C90 standard, but the preferred mechanism to declare
variable-length types such as these ones is a flexible array member[1][2],
introduced in C99:
struct foo {
int stuff;
struct boo array[];
};
By making use of the mechanism above, we will get a compiler warning
in case the flexible array does not occur last in the structure, which
will help us prevent some kind of undefined behavior bugs from being
inadvertently introduced[3] to the codebase from now on.
Also, notice that, dynamic memory allocations won't be affected by
this change:
"Flexible array members have incomplete type, and so the sizeof operator
may not be applied. As a quirk of the original implementation of
zero-length arrays, sizeof evaluates to zero."[1]
This issue was found with the help of Coccinelle.
[1] https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html
[2] https://github.com/KSPP/linux/issues/21
[3] commit 7649773293 ("cxgb3/l2t: Fix undefined behaviour")
Signed-off-by: Gustavo A. R. Silva <gustavo@embeddedor.com>
The current codebase makes use of the zero-length array language
extension to the C90 standard, but the preferred mechanism to declare
variable-length types such as these ones is a flexible array member[1][2],
introduced in C99:
struct foo {
int stuff;
struct boo array[];
};
By making use of the mechanism above, we will get a compiler warning
in case the flexible array does not occur last in the structure, which
will help us prevent some kind of undefined behavior bugs from being
inadvertently introduced[3] to the codebase from now on.
Also, notice that, dynamic memory allocations won't be affected by
this change:
"Flexible array members have incomplete type, and so the sizeof operator
may not be applied. As a quirk of the original implementation of
zero-length arrays, sizeof evaluates to zero."[1]
This issue was found with the help of Coccinelle.
[1] https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html
[2] https://github.com/KSPP/linux/issues/21
[3] commit 7649773293 ("cxgb3/l2t: Fix undefined behaviour")
Signed-off-by: Gustavo A. R. Silva <gustavo@embeddedor.com>
The current codebase makes use of the zero-length array language
extension to the C90 standard, but the preferred mechanism to declare
variable-length types such as these ones is a flexible array member[1][2],
introduced in C99:
struct foo {
int stuff;
struct boo array[];
};
By making use of the mechanism above, we will get a compiler warning
in case the flexible array does not occur last in the structure, which
will help us prevent some kind of undefined behavior bugs from being
inadvertently introduced[3] to the codebase from now on.
Also, notice that, dynamic memory allocations won't be affected by
this change:
"Flexible array members have incomplete type, and so the sizeof operator
may not be applied. As a quirk of the original implementation of
zero-length arrays, sizeof evaluates to zero."[1]
This issue was found with the help of Coccinelle.
[1] https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html
[2] https://github.com/KSPP/linux/issues/21
[3] commit 7649773293 ("cxgb3/l2t: Fix undefined behaviour")
Signed-off-by: Gustavo A. R. Silva <gustavo@embeddedor.com>
The current codebase makes use of the zero-length array language
extension to the C90 standard, but the preferred mechanism to declare
variable-length types such as these ones is a flexible array member[1][2],
introduced in C99:
struct foo {
int stuff;
struct boo array[];
};
By making use of the mechanism above, we will get a compiler warning
in case the flexible array does not occur last in the structure, which
will help us prevent some kind of undefined behavior bugs from being
inadvertently introduced[3] to the codebase from now on.
Also, notice that, dynamic memory allocations won't be affected by
this change:
"Flexible array members have incomplete type, and so the sizeof operator
may not be applied. As a quirk of the original implementation of
zero-length arrays, sizeof evaluates to zero."[1]
This issue was found with the help of Coccinelle.
[1] https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html
[2] https://github.com/KSPP/linux/issues/21
[3] commit 7649773293 ("cxgb3/l2t: Fix undefined behaviour")
Signed-off-by: Gustavo A. R. Silva <gustavo@embeddedor.com>
The current codebase makes use of the zero-length array language
extension to the C90 standard, but the preferred mechanism to declare
variable-length types such as these ones is a flexible array member[1][2],
introduced in C99:
struct foo {
int stuff;
struct boo array[];
};
By making use of the mechanism above, we will get a compiler warning
in case the flexible array does not occur last in the structure, which
will help us prevent some kind of undefined behavior bugs from being
inadvertently introduced[3] to the codebase from now on.
Also, notice that, dynamic memory allocations won't be affected by
this change:
"Flexible array members have incomplete type, and so the sizeof operator
may not be applied. As a quirk of the original implementation of
zero-length arrays, sizeof evaluates to zero."[1]
This issue was found with the help of Coccinelle.
[1] https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html
[2] https://github.com/KSPP/linux/issues/21
[3] commit 7649773293 ("cxgb3/l2t: Fix undefined behaviour")
Signed-off-by: Gustavo A. R. Silva <gustavo@embeddedor.com>
The current codebase makes use of the zero-length array language
extension to the C90 standard, but the preferred mechanism to declare
variable-length types such as these ones is a flexible array member[1][2],
introduced in C99:
struct foo {
int stuff;
struct boo array[];
};
By making use of the mechanism above, we will get a compiler warning
in case the flexible array does not occur last in the structure, which
will help us prevent some kind of undefined behavior bugs from being
inadvertently introduced[3] to the codebase from now on.
Also, notice that, dynamic memory allocations won't be affected by
this change:
"Flexible array members have incomplete type, and so the sizeof operator
may not be applied. As a quirk of the original implementation of
zero-length arrays, sizeof evaluates to zero."[1]
This issue was found with the help of Coccinelle.
[1] https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html
[2] https://github.com/KSPP/linux/issues/21
[3] commit 7649773293 ("cxgb3/l2t: Fix undefined behaviour")
Signed-off-by: Gustavo A. R. Silva <gustavo@embeddedor.com>
The current codebase makes use of the zero-length array language
extension to the C90 standard, but the preferred mechanism to declare
variable-length types such as these ones is a flexible array member[1][2],
introduced in C99:
struct foo {
int stuff;
struct boo array[];
};
By making use of the mechanism above, we will get a compiler warning
in case the flexible array does not occur last in the structure, which
will help us prevent some kind of undefined behavior bugs from being
inadvertently introduced[3] to the codebase from now on.
Also, notice that, dynamic memory allocations won't be affected by
this change:
"Flexible array members have incomplete type, and so the sizeof operator
may not be applied. As a quirk of the original implementation of
zero-length arrays, sizeof evaluates to zero."[1]
This issue was found with the help of Coccinelle.
[1] https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html
[2] https://github.com/KSPP/linux/issues/21
[3] commit 7649773293 ("cxgb3/l2t: Fix undefined behaviour")
Signed-off-by: Gustavo A. R. Silva <gustavo@embeddedor.com>
The current codebase makes use of the zero-length array language
extension to the C90 standard, but the preferred mechanism to declare
variable-length types such as these ones is a flexible array member[1][2],
introduced in C99:
struct foo {
int stuff;
struct boo array[];
};
By making use of the mechanism above, we will get a compiler warning
in case the flexible array does not occur last in the structure, which
will help us prevent some kind of undefined behavior bugs from being
inadvertently introduced[3] to the codebase from now on.
Also, notice that, dynamic memory allocations won't be affected by
this change:
"Flexible array members have incomplete type, and so the sizeof operator
may not be applied. As a quirk of the original implementation of
zero-length arrays, sizeof evaluates to zero."[1]
This issue was found with the help of Coccinelle.
[1] https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html
[2] https://github.com/KSPP/linux/issues/21
[3] commit 7649773293 ("cxgb3/l2t: Fix undefined behaviour")
Signed-off-by: Gustavo A. R. Silva <gustavo@embeddedor.com>
The current codebase makes use of the zero-length array language
extension to the C90 standard, but the preferred mechanism to declare
variable-length types such as these ones is a flexible array member[1][2],
introduced in C99:
struct foo {
int stuff;
struct boo array[];
};
By making use of the mechanism above, we will get a compiler warning
in case the flexible array does not occur last in the structure, which
will help us prevent some kind of undefined behavior bugs from being
inadvertently introduced[3] to the codebase from now on.
Also, notice that, dynamic memory allocations won't be affected by
this change:
"Flexible array members have incomplete type, and so the sizeof operator
may not be applied. As a quirk of the original implementation of
zero-length arrays, sizeof evaluates to zero."[1]
This issue was found with the help of Coccinelle.
[1] https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html
[2] https://github.com/KSPP/linux/issues/21
[3] commit 7649773293 ("cxgb3/l2t: Fix undefined behaviour")
Signed-off-by: Gustavo A. R. Silva <gustavo@embeddedor.com>
The current codebase makes use of the zero-length array language
extension to the C90 standard, but the preferred mechanism to declare
variable-length types such as these ones is a flexible array member[1][2],
introduced in C99:
struct foo {
int stuff;
struct boo array[];
};
By making use of the mechanism above, we will get a compiler warning
in case the flexible array does not occur last in the structure, which
will help us prevent some kind of undefined behavior bugs from being
inadvertently introduced[3] to the codebase from now on.
Also, notice that, dynamic memory allocations won't be affected by
this change:
"Flexible array members have incomplete type, and so the sizeof operator
may not be applied. As a quirk of the original implementation of
zero-length arrays, sizeof evaluates to zero."[1]
This issue was found with the help of Coccinelle.
[1] https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html
[2] https://github.com/KSPP/linux/issues/21
[3] commit 7649773293 ("cxgb3/l2t: Fix undefined behaviour")
Signed-off-by: Gustavo A. R. Silva <gustavo@embeddedor.com>
The current codebase makes use of the zero-length array language
extension to the C90 standard, but the preferred mechanism to declare
variable-length types such as these ones is a flexible array member[1][2],
introduced in C99:
struct foo {
int stuff;
struct boo array[];
};
By making use of the mechanism above, we will get a compiler warning
in case the flexible array does not occur last in the structure, which
will help us prevent some kind of undefined behavior bugs from being
inadvertently introduced[3] to the codebase from now on.
Also, notice that, dynamic memory allocations won't be affected by
this change:
"Flexible array members have incomplete type, and so the sizeof operator
may not be applied. As a quirk of the original implementation of
zero-length arrays, sizeof evaluates to zero."[1]
This issue was found with the help of Coccinelle.
[1] https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html
[2] https://github.com/KSPP/linux/issues/21
[3] commit 7649773293 ("cxgb3/l2t: Fix undefined behaviour")
Signed-off-by: Gustavo A. R. Silva <gustavo@embeddedor.com>