The premise of the refault distance is that it can be seen as a deficit of
the inactive list space, so that if the inactive list would have had (R -
E) more slots, the page would not have been evicted but promoted to the
active list instead.
However, the way the code is ordered right now set us to be off by one, so
the real number of slots would be (R - E) + 1. I stumbled upon this when
trying to understand the code and it puzzled me that the comments did not
match what the code did.
This it not an issue at all since evictions and refaults tend to happen in
a number large enough that being off-by-one does not have any impact - and
since the compiler and CPUs are free to rearrange the execution sequence
anyway.
But as Johannes says, it is better to re-arrange the code in the proper
order since otherwise would be misleading to somebody who is actively
reading and trying to understand the logic of the code - like it happened
to me.
Link: https://lkml.kernel.org/r/20210201060651.3781-1-osalvador@suse.de
Signed-off-by: Oscar Salvador <osalvador@suse.de>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
All other references to the function were removed after
commit b910718a94 ("mm: vmscan: detect file thrashing at the reclaim
root").
Link: https://lore.kernel.org/linux-mm/20201207220949.830352-11-yuzhao@google.com/
Link: https://lkml.kernel.org/r/20210122220600.906146-11-yuzhao@google.com
Signed-off-by: Yu Zhao <yuzhao@google.com>
Reviewed-by: Alex Shi <alex.shi@linux.alibaba.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Roman Gushchin <guro@fb.com>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
All other references to the function were removed after commit
a892cb6b97 ("mm/vmscan.c: use update_lru_size() in update_lru_sizes()").
Link: https://lore.kernel.org/linux-mm/20201207220949.830352-10-yuzhao@google.com/
Link: https://lkml.kernel.org/r/20210122220600.906146-10-yuzhao@google.com
Signed-off-by: Yu Zhao <yuzhao@google.com>
Reviewed-by: Alex Shi <alex.shi@linux.alibaba.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Roman Gushchin <guro@fb.com>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
We've removed all other references to this function.
Link: https://lore.kernel.org/linux-mm/20201207220949.830352-9-yuzhao@google.com/
Link: https://lkml.kernel.org/r/20210122220600.906146-9-yuzhao@google.com
Signed-off-by: Yu Zhao <yuzhao@google.com>
Reviewed-by: Alex Shi <alex.shi@linux.alibaba.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Roman Gushchin <guro@fb.com>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Move scattered VM_BUG_ONs to two essential places that cover all
lru list additions and deletions.
Link: https://lore.kernel.org/linux-mm/20201207220949.830352-8-yuzhao@google.com/
Link: https://lkml.kernel.org/r/20210122220600.906146-8-yuzhao@google.com
Signed-off-by: Yu Zhao <yuzhao@google.com>
Cc: Alex Shi <alex.shi@linux.alibaba.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Roman Gushchin <guro@fb.com>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Similar to page_off_lru(), the new function does non-atomic clearing
of PageLRU() in addition to PageActive() and PageUnevictable(), on a
page that has no references left.
If PageActive() and PageUnevictable() are both set, refuse to clear
either and leave them to bad_page(). This is a behavior change that
is meant to help debug.
Link: https://lore.kernel.org/linux-mm/20201207220949.830352-7-yuzhao@google.com/
Link: https://lkml.kernel.org/r/20210122220600.906146-7-yuzhao@google.com
Signed-off-by: Yu Zhao <yuzhao@google.com>
Cc: Alex Shi <alex.shi@linux.alibaba.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Roman Gushchin <guro@fb.com>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The parameter is redundant in the sense that it can be potentially
extracted from the "struct page" parameter by page_lru(). We need to
make sure that existing PageActive() or PageUnevictable() remains
until the function returns. A few places don't conform, and simple
reordering fixes them.
This patch may have left page_off_lru() seemingly odd, and we'll take
care of it in the next patch.
Link: https://lore.kernel.org/linux-mm/20201207220949.830352-6-yuzhao@google.com/
Link: https://lkml.kernel.org/r/20210122220600.906146-6-yuzhao@google.com
Signed-off-by: Yu Zhao <yuzhao@google.com>
Cc: Alex Shi <alex.shi@linux.alibaba.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Roman Gushchin <guro@fb.com>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The parameter is redundant in the sense that it can be extracted
from the "struct page" parameter by page_lru() correctly.
Link: https://lore.kernel.org/linux-mm/20201207220949.830352-5-yuzhao@google.com/
Link: https://lkml.kernel.org/r/20210122220600.906146-5-yuzhao@google.com
Signed-off-by: Yu Zhao <yuzhao@google.com>
Reviewed-by: Alex Shi <alex.shi@linux.alibaba.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Roman Gushchin <guro@fb.com>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The "enum lru_list" parameter to add_page_to_lru_list() and
add_page_to_lru_list_tail() is redundant in the sense that it can
be extracted from the "struct page" parameter by page_lru().
A caveat is that we need to make sure PageActive() or
PageUnevictable() is correctly set or cleared before calling
these two functions. And they are indeed.
Link: https://lore.kernel.org/linux-mm/20201207220949.830352-4-yuzhao@google.com/
Link: https://lkml.kernel.org/r/20210122220600.906146-4-yuzhao@google.com
Signed-off-by: Yu Zhao <yuzhao@google.com>
Cc: Alex Shi <alex.shi@linux.alibaba.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Roman Gushchin <guro@fb.com>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
These functions will call page_lru() in the following patches. Move them
below page_lru() to avoid the forward declaration.
Link: https://lore.kernel.org/linux-mm/20201207220949.830352-3-yuzhao@google.com/
Link: https://lkml.kernel.org/r/20210122220600.906146-3-yuzhao@google.com
Signed-off-by: Yu Zhao <yuzhao@google.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Reviewed-by: Miaohe Lin <linmiaohe@huawei.com>
Cc: Alex Shi <alex.shi@linux.alibaba.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Roman Gushchin <guro@fb.com>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Patch series "mm: lru related cleanups", v2.
The cleanups are intended to reduce the verbosity in lru list operations
and make them less error-prone. A typical example would be how the
patches change __activate_page():
static void __activate_page(struct page *page, struct lruvec *lruvec)
{
if (!PageActive(page) && !PageUnevictable(page)) {
- int lru = page_lru_base_type(page);
int nr_pages = thp_nr_pages(page);
- del_page_from_lru_list(page, lruvec, lru);
+ del_page_from_lru_list(page, lruvec);
SetPageActive(page);
- lru += LRU_ACTIVE;
- add_page_to_lru_list(page, lruvec, lru);
+ add_page_to_lru_list(page, lruvec);
trace_mm_lru_activate(page);
There are a few more places like __activate_page() and they are
unnecessarily repetitive in terms of figuring out which list a page should
be added onto or deleted from. And with the duplicated code removed, they
are easier to read, IMO.
Patch 1 to 5 basically cover the above. Patch 6 and 7 make code more
robust by improving bug reporting. Patch 8, 9 and 10 take care of some
dangling helpers left in header files.
This patch (of 10):
There is add_page_to_lru_list(), and move_pages_to_lru() should reuse it,
not duplicate it.
Link: https://lkml.kernel.org/r/20210122220600.906146-1-yuzhao@google.com
Link: https://lore.kernel.org/linux-mm/20201207220949.830352-2-yuzhao@google.com/
Link: https://lkml.kernel.org/r/20210122220600.906146-2-yuzhao@google.com
Signed-off-by: Yu Zhao <yuzhao@google.com>
Reviewed-by: Alex Shi <alex.shi@linux.alibaba.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Reviewed-by: Miaohe Lin <linmiaohe@huawei.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Roman Gushchin <guro@fb.com>
Cc: Matthew Wilcox <willy@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
If list_lru_shrink_count is 0, we always return SHRINK_EMPTY regardless of
the value of max_nodes. So we can return early if nodes == 0 to save some
cpu cycles of approximating a reasonable limit for the nodes.
Link: https://lkml.kernel.org/r/20210123073825.46709-1-linmiaohe@huawei.com
Signed-off-by: Miaohe Lin <linmiaohe@huawei.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The function just returns 2 results, so using a 'switch' to deal with its
result is unnecessary. Also simplify it to a bool func as Vlastimil
suggested.
Also remove 'goto' by reusing list_move(), and take Matthew Wilcox's
suggestion to update comments in function.
Link: https://lkml.kernel.org/r/728874d7-2d93-4049-68c1-dcc3b2d52ccd@linux.alibaba.com
Signed-off-by: Alex Shi <alex.shi@linux.alibaba.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Hugh Dickins <hughd@google.com>
Cc: Yu Zhao <yuzhao@google.com>
Cc: Michal Hocko <mhocko@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
If hugetlb_cma is enabled, it will skip boot time allocation when
allocating gigantic page, that doesn't means allocation failure, so
suppress this warning info.
Link: https://lkml.kernel.org/r/20210219123909.13130-1-chenwandun@huawei.com
Fixes: cf11e85fc0 ("mm: hugetlb: optionally allocate gigantic hugepages using cma")
Signed-off-by: Chen Wandun <chenwandun@huawei.com>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Roman Gushchin <guro@fb.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
page structs are not guaranteed to be contiguous for gigantic pages. The
routine copy_huge_page_from_user can encounter gigantic pages, yet it
assumes page structs are contiguous when copying pages from user space.
Since page structs for the target gigantic page are not contiguous, the
data copied from user space could overwrite other pages not associated
with the gigantic page and cause data corruption.
Non-contiguous page structs are generally not an issue. However, they can
exist with a specific kernel configuration and hotplug operations. For
example: Configure the kernel with CONFIG_SPARSEMEM and
!CONFIG_SPARSEMEM_VMEMMAP. Then, hotplug add memory for the area where
the gigantic page will be allocated.
Link: https://lkml.kernel.org/r/20210217184926.33567-2-mike.kravetz@oracle.com
Fixes: 8fb5debc5f ("userfaultfd: hugetlbfs: add hugetlb_mcopy_atomic_pte for userfaultfd support")
Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Zi Yan <ziy@nvidia.com>
Cc: Davidlohr Bueso <dbueso@suse.de>
Cc: "Kirill A . Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Joao Martins <joao.m.martins@oracle.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
page structs are not guaranteed to be contiguous for gigantic pages. The
routine update_and_free_page can encounter a gigantic page, yet it assumes
page structs are contiguous when setting page flags in subpages.
If update_and_free_page encounters non-contiguous page structs, we can see
“BUG: Bad page state in process …” errors.
Non-contiguous page structs are generally not an issue. However, they can
exist with a specific kernel configuration and hotplug operations. For
example: Configure the kernel with CONFIG_SPARSEMEM and
!CONFIG_SPARSEMEM_VMEMMAP. Then, hotplug add memory for the area where
the gigantic page will be allocated. Zi Yan outlined steps to reproduce
here [1].
[1] https://lore.kernel.org/linux-mm/16F7C58B-4D79-41C5-9B64-A1A1628F4AF2@nvidia.com/
Link: https://lkml.kernel.org/r/20210217184926.33567-1-mike.kravetz@oracle.com
Fixes: 944d9fec8d ("hugetlb: add support for gigantic page allocation at runtime")
Signed-off-by: Zi Yan <ziy@nvidia.com>
Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Zi Yan <ziy@nvidia.com>
Cc: Davidlohr Bueso <dbueso@suse.de>
Cc: "Kirill A . Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Joao Martins <joao.m.martins@oracle.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
We can use helper huge_page_size() to get the hugepage size directly to
simplify the code slightly.
[linmiaohe@huawei.com: use helper huge_page_size() to get hugepage size]
Link: https://lkml.kernel.org/r/20210209021803.49211-1-linmiaohe@huawei.com
Link: https://lkml.kernel.org/r/20210208082450.15716-1-linmiaohe@huawei.com
Signed-off-by: Miaohe Lin <linmiaohe@huawei.com>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
All callers know they are operating on a hugetlb head page. So this
VM_BUG_ON_PAGE can not catch anything useful.
Link: https://lkml.kernel.org/r/20210209071151.44731-1-linmiaohe@huawei.com
Signed-off-by: Miaohe Lin <linmiaohe@huawei.com>
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
We could use helper function range_in_vma() to check whether the vma is in
the desired range to simplify the code.
Link: https://lkml.kernel.org/r/20210204112949.43051-1-linmiaohe@huawei.com
Signed-off-by: Miaohe Lin <linmiaohe@huawei.com>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
We could use helper function pages_per_huge_page() to get the number of
pages in a hstate to simplify the code slightly.
Link: https://lkml.kernel.org/r/20210205084513.29624-1-linmiaohe@huawei.com
Signed-off-by: Miaohe Lin <linmiaohe@huawei.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Differentiate between hardware not supporting hugepages and user disabling
THP via 'echo never > /sys/kernel/mm/transparent_hugepage/enabled'
For the devdax namespace, the kernel handles the above via the
supported_alignment attribute and failing to initialize the namespace if
the namespace align value is not supported on the platform.
For the fsdax namespace, the kernel will continue to initialize the
namespace. This can result in the kernel creating a huge pte entry even
though the hardware don't support the same.
We do want hugepage support with pmem even if the end-user disabled THP
via sysfs file (/sys/kernel/mm/transparent_hugepage/enabled). Hence
differentiate between hardware/firmware lacking support vs user-controlled
disable of THP and prevent a huge fault if the hardware lacks hugepage
support.
Link: https://lkml.kernel.org/r/20210205023956.417587-1-aneesh.kumar@linux.ibm.com
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com>
Reviewed-by: Dan Williams <dan.j.williams@intel.com>
Cc: "Kirill A . Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Jan Kara <jack@suse.cz>
Cc: David Hildenbrand <david@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The return value of set_huge_zero_page() is always ignored. So we should
drop such return value.
Link: https://lkml.kernel.org/r/20210203084816.46307-1-linmiaohe@huawei.com
Signed-off-by: Miaohe Lin <linmiaohe@huawei.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Gigantic page is a compound page and its order is more than 1. Thus it
must be available for hpage_pincount. Let's remove the redundant check
for gigantic page.
Link: https://lkml.kernel.org/r/20210202112002.73170-1-yanfei.xu@windriver.com
Signed-off-by: Yanfei Xu <yanfei.xu@windriver.com>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Fix typos sasitfy to satisfy, reservtion to reservation, hugegpage to
hugepage and uniprocesor to uniprocessor in comments.
Link: https://lkml.kernel.org/r/20210128112028.64831-1-linmiaohe@huawei.com
Signed-off-by: Miaohe Lin <linmiaohe@huawei.com>
Reviewed-by: Souptick Joarder <jrdr.linux@gmail.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
For a given hugepage backing a VA, there's a rather ineficient loop which
is solely responsible for storing subpages in GUP @pages/@vmas array. For
each subpage we check whether it's within range or size of @pages and keep
increment @pfn_offset and a couple other variables per subpage iteration.
Simplify this logic and minimize the cost of each iteration to just store
the output page/vma. Instead of incrementing number of @refs iteratively,
we do it through pre-calculation of @refs and only with a tight loop for
storing pinned subpages/vmas.
Additionally, retain existing behaviour with using mem_map_offset() when
recording the subpages for configurations that don't have a contiguous
mem_map.
pinning consequently improves bringing us close to
{pin,get}_user_pages_fast:
- 16G with 1G huge page size
gup_test -f /mnt/huge/file -m 16384 -r 30 -L -S -n 512 -w
PIN_LONGTERM_BENCHMARK: ~12.8k us -> ~5.8k us
PIN_FAST_BENCHMARK: ~3.7k us
Link: https://lkml.kernel.org/r/20210128182632.24562-3-joao.m.martins@oracle.com
Signed-off-by: Joao Martins <joao.m.martins@oracle.com>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Patch series "mm/hugetlb: follow_hugetlb_page() improvements", v2.
While looking at ZONE_DEVICE struct page reuse particularly the last
patch[0], I found two possible improvements for follow_hugetlb_page()
which is solely used for get_user_pages()/pin_user_pages().
The first patch batches page refcount updates while the second tidies up
storing the subpages/vmas. Both together bring the cost of slow variant
of gup() cost from ~87.6k usecs to ~5.8k usecs.
libhugetlbfs tests seem to pass as well gup_test benchmarks with hugetlbfs
vmas.
This patch (of 2):
follow_hugetlb_page() once it locks the pmd/pud, checks all its N subpages
in a huge page and grabs a reference for each one. Similar to gup-fast,
have follow_hugetlb_page() grab the head page refcount only after counting
all its subpages that are part of the just faulted huge page.
Consequently we reduce the number of atomics necessary to pin said huge
page, which improves non-fast gup() considerably:
- 16G with 1G huge page size
gup_test -f /mnt/huge/file -m 16384 -r 10 -L -S -n 512 -w
PIN_LONGTERM_BENCHMARK: ~87.6k us -> ~12.8k us
Link: https://lkml.kernel.org/r/20210128182632.24562-1-joao.m.martins@oracle.com
Link: https://lkml.kernel.org/r/20210128182632.24562-2-joao.m.martins@oracle.com
Signed-off-by: Joao Martins <joao.m.martins@oracle.com>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Fix the following coccicheck warnings:
mm/hugetlb.c:3372:20-22: WARNING !A || A && B is equivalent to !A || B.
Link: https://lkml.kernel.org/r/1611643468-52233-1-git-send-email-abaci-bugfix@linux.alibaba.com
Signed-off-by: Jiapeng Zhong <abaci-bugfix@linux.alibaba.com>
Reported-by: Abaci Robot <abaci@linux.alibaba.com>
Reviewed-by: Miaohe Lin <linmiaohe@huawei.com>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
If a hugetlbfs filesystem is created with the min_size option and
without the size option, used_hpages is always 0 and might lead to
release subpool prematurely because it indicates no pages are used now
while there might be.
In order to fix this issue, we should check used_hpages == 0 iff
max_hpages accounting is enabled. As max_hpages accounting should be
enabled in most common case, this is not worth a Cc stable.
[mike.kravetz@oracle.com: new changelog]
Link: https://lkml.kernel.org/r/20210126115510.53374-1-linmiaohe@huawei.com
Signed-off-by: Hongxiang Lou <louhongxiang@huawei.com>
Signed-off-by: Miaohe Lin <linmiaohe@huawei.com>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Since commit a551643895 ("hugetlb: modular state for hugetlb page
size"), we can use huge_page_order to access hstate->order and
pages_per_huge_page to fetch the pages per huge page. But
gather_bootmem_prealloc() forgot to use it.
Link: https://lkml.kernel.org/r/20210114114435.40075-1-linmiaohe@huawei.com
Signed-off-by: Miaohe Lin <linmiaohe@huawei.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When reservation accounting remains unchanged, hugetlb_acct_memory() will
do nothing except holding and releasing hugetlb_lock. We should avoid
this unnecessary hugetlb_lock lock/unlock cycle which is happening on
'most' hugetlb munmap operations by check delta against 0 at the beginning
of hugetlb_acct_memory.
Link: https://lkml.kernel.org/r/20210115092013.61012-1-linmiaohe@huawei.com
Signed-off-by: Miaohe Lin <linmiaohe@huawei.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The current code would unnecessarily expand the address range. Consider
one example, (start, end) = (1G-2M, 3G+2M), and (vm_start, vm_end) =
(1G-4M, 3G+4M), the expected adjustment should be keep (1G-2M, 3G+2M)
without expand. But the current result will be (1G-4M, 3G+4M). Actually,
the range (1G-4M, 1G) and (3G, 3G+4M) would never been involved in pmd
sharing.
After this patch, we will check that the vma span at least one PUD aligned
size and the start,end range overlap the aligned range of vma.
With above example, the aligned vma range is (1G, 3G), so if (start, end)
range is within (1G-4M, 1G), or within (3G, 3G+4M), then no adjustment to
both start and end. Otherwise, we will have chance to adjust start
downwards or end upwards without exceeding (vm_start, vm_end).
Mike:
: The 'adjusted range' is used for calls to mmu notifiers and cache(tlb)
: flushing. Since the current code unnecessarily expands the range in some
: cases, more entries than necessary would be flushed. This would/could
: result in performance degradation. However, this is highly dependent on
: the user runtime. Is there a combination of vma layout and calls to
: actually hit this issue? If the issue is hit, will those entries
: unnecessarily flushed be used again and need to be unnecessarily reloaded?
Link: https://lkml.kernel.org/r/20210104081631.2921415-1-lixinhai.lxh@gmail.com
Fixes: 75802ca663 ("mm/hugetlb: fix calculation of adjust_range_if_pmd_sharing_possible")
Signed-off-by: Li Xinhai <lixinhai.lxh@gmail.com>
Suggested-by: Mike Kravetz <mike.kravetz@oracle.com>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Peter Xu <peterx@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
In hugetlb_sysfs_add_hstate(), we would do kobject_put() on hstate_kobjs
when failed to create sysfs group but forget to set hstate_kobjs to NULL.
Then in hugetlb_register_node() error path, we may free it again via
hugetlb_unregister_node().
Link: https://lkml.kernel.org/r/20210107123249.36964-1-linmiaohe@huawei.com
Fixes: a343787016 ("hugetlb: new sysfs interface")
Signed-off-by: Miaohe Lin <linmiaohe@huawei.com>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Reviewed-by: Muchun Song <smuchun@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Function set_pmd_at is to set pmd entry, if tlb entry need to be flushed,
there exists pmdp_huge_clear_flush alike function before set_pmd_at is
called. So it is not necessary to call flush_tlb_all in this function.
In these scenarios, tlb for the pmd range needs to be flushed:
- privilege degrade such as wrprotect is set on the pmd entry
- pmd entry is cleared
- there is exception if set_pmd_at is issued by dup_mmap, since
flush_tlb_mm is called for parent process, it is not necessary to
flush tlb in function copy_huge_pmd.
Link: http://lkml.kernel.org/r/1592990792-1923-3-git-send-email-maobibo@loongson.cn
Signed-off-by: Bibo Mao <maobibo@loongson.cn>
Cc: Anshuman Khandual <anshuman.khandual@arm.com>
Cc: Daniel Silsby <dansilsby@gmail.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Mike Rapoport <rppt@linux.ibm.com>
Cc: Paul Burton <paulburton@kernel.org>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When set_pmd_at is called in function do_huge_pmd_anonymous_page, new tlb
entry can be added by software on MIPS platform.
Here add update_mmu_cache_pmd when pmd entry is set, and
update_mmu_cache_pmd is defined as empty excepts arc/mips platform. This
patch has no negative effect on other platforms except arc/mips system.
Link: http://lkml.kernel.org/r/1592990792-1923-2-git-send-email-maobibo@loongson.cn
Signed-off-by: Bibo Mao <maobibo@loongson.cn>
Cc: Anshuman Khandual <anshuman.khandual@arm.com>
Cc: Daniel Silsby <dansilsby@gmail.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Mike Rapoport <rppt@linux.ibm.com>
Cc: Paul Burton <paulburton@kernel.org>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When a memory uncorrected error is triggered by process who accessed the
address with error, It's Action Required Case for only current process
which triggered this; This Action Required case means Action optional to
other process who share the same page. Usually killing current process
will be sufficient, other processes sharing the same page will get be
signaled when they really touch the poisoned page.
But there is another scenario that other processes sharing the same page
want to be signaled early with PF_MCE_EARLY set. In this case, we should
get them into kill list and signal BUS_MCEERR_AO to them.
So in this patch, task_early_kill will check current process if
force_early is set, and if not current,the code will fallback to
find_early_kill_thread() to check if there is PF_MCE_EARLY process who
cares the error.
In kill_proc(), BUS_MCEERR_AR is only send to current, other processes in
kill list will be signaled with BUS_MCEERR_AO.
Link: https://lkml.kernel.org/r/20210122132424.313c8f5f.yaoaili@kingsoft.com
Signed-off-by: Aili Yao <yaoaili@kingsoft.com>
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Acked-by: Naoya Horiguchi <naoya.horiguchi@nec.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
adjust_managed_page_count() as called by free_reserved_page() properly
handles pages in a highmem zone, so we can reuse it for
free_highmem_page().
We can now get rid of totalhigh_pages_inc() and simplify
free_reserved_page().
Link: https://lkml.kernel.org/r/20210126182113.19892-3-david@redhat.com
Signed-off-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Reviewed-by: Anshuman Khandual <anshuman.khandual@arm.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: "Peter Zijlstra (Intel)" <peterz@infradead.org>
Cc: Mike Rapoport <rppt@kernel.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Wei Yang <richard.weiyang@linux.alibaba.com>
Cc: "Gustavo A. R. Silva" <gustavoars@kernel.org>
Cc: Sam Ravnborg <sam@ravnborg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Patch series "mm: simplify free_highmem_page() and free_reserved_page()".
Let's simplify and unify free_highmem_page() and free_reserved_page().
This patch (of 2):
This function is never used and it is one of the last remaining user of
__free_reserved_page(). Let's just drop it.
Link: https://lkml.kernel.org/r/20210126182113.19892-1-david@redhat.com
Link: https://lkml.kernel.org/r/20210126182113.19892-2-david@redhat.com
Fixes: ffd29195ed ("drivers/video/acornfb.c: remove dead code")
Signed-off-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Reviewed-by: Anshuman Khandual <anshuman.khandual@arm.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: "Peter Zijlstra (Intel)" <peterz@infradead.org>
Cc: Mike Rapoport <rppt@kernel.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Wei Yang <richard.weiyang@linux.alibaba.com>
Cc: "Gustavo A. R. Silva" <gustavoars@kernel.org>
Cc: Sam Ravnborg <sam@ravnborg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Local variable 'zone_start_pfn' is not needed since there's only one call
site in free_area_init_core(). Let's remove it and pass
zone->zone_start_pfn directly to init_currently_empty_zone().
Link: https://lkml.kernel.org/r/20210122135956.5946-6-bhe@redhat.com
Signed-off-by: Baoquan He <bhe@redhat.com>
Reviewed-by: Mike Rapoport <rppt@linux.ibm.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
As David suggested, simply passing 'struct zone *zone' is enough. We can
get all needed information from 'struct zone*' easily.
Link: https://lkml.kernel.org/r/20210122135956.5946-4-bhe@redhat.com
Signed-off-by: Baoquan He <bhe@redhat.com>
Suggested-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Mike Rapoport <rppt@linux.ibm.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The current memmap_init_zone() only handles memory region inside one zone,
actually memmap_init() does the memmap init of one zone. So rename both
of them accordingly.
Link: https://lkml.kernel.org/r/20210122135956.5946-3-bhe@redhat.com
Signed-off-by: Baoquan He <bhe@redhat.com>
Reviewed-by: Mike Rapoport <rppt@linux.ibm.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Patch series "mm: clean up names and parameters of memmap_init_xxxx functions", v5.
This patchset corrects inappropriate function names of memmap_init_xxx,
and simplify parameters of functions in the code flow. And also fix a
prototype warning reported by lkp.
This patch (of 5);
Kernel test robot calling make with 'W=1' is triggering warning like
below for memmap_init_zone() function.
mm/page_alloc.c:6259:23: warning: no previous prototype for 'memmap_init_zone' [-Wmissing-prototypes]
6259 | void __meminit __weak memmap_init_zone(unsigned long size, int nid,
| ^~~~~~~~~~~~~~~~
Fix it by adding the function declaration in include/linux/mm.h. Since
memmap_init_zone() has a generic version with '__weak', the declaratoin in
ia64 header file can be simply removed.
Link: https://lkml.kernel.org/r/20210122135956.5946-1-bhe@redhat.com
Link: https://lkml.kernel.org/r/20210122135956.5946-2-bhe@redhat.com
Signed-off-by: Baoquan He <bhe@redhat.com>
Reported-by: kernel test robot <lkp@intel.com>
Reviewed-by: Mike Rapoport <rppt@linux.ibm.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Add a test for kmem_cache_alloc/free_bulk to make sure there are no
false-positives when these functions are used.
Link: https://linux-review.googlesource.com/id/I2a8bf797aecf81baeac61380c567308f319e263d
Link: https://lkml.kernel.org/r/418122ebe4600771ac81e9ca6eab6740cf8dcfa1.1610733117.git.andreyknvl@google.com
Signed-off-by: Andrey Konovalov <andreyknvl@google.com>
Reviewed-by: Marco Elver <elver@google.com>
Reviewed-by: Alexander Potapenko <glider@google.com>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Branislav Rankov <Branislav.Rankov@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Evgenii Stepanov <eugenis@google.com>
Cc: Kevin Brodsky <kevin.brodsky@arm.com>
Cc: Peter Collingbourne <pcc@google.com>
Cc: Vincenzo Frascino <vincenzo.frascino@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The currently existing page allocator tests rely on kmalloc fallback
with large sizes that is only present for SLUB. Add proper tests that
use alloc/free_pages().
Link: https://linux-review.googlesource.com/id/Ia173d5a1b215fe6b2548d814ef0f4433cf983570
Link: https://lkml.kernel.org/r/a2648930e55ff75b8e700f2e0d905c2b55a67483.1610733117.git.andreyknvl@google.com
Signed-off-by: Andrey Konovalov <andreyknvl@google.com>
Reviewed-by: Marco Elver <elver@google.com>
Reviewed-by: Alexander Potapenko <glider@google.com>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Branislav Rankov <Branislav.Rankov@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Evgenii Stepanov <eugenis@google.com>
Cc: Kevin Brodsky <kevin.brodsky@arm.com>
Cc: Peter Collingbourne <pcc@google.com>
Cc: Vincenzo Frascino <vincenzo.frascino@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The currently existing kasan_check_read/write() annotations are intended
to be used for kernel modules that have KASAN compiler instrumentation
disabled. Thus, they are only relevant for the software KASAN modes that
rely on compiler instrumentation.
However there's another use case for these annotations: ksize() checks
that the object passed to it is indeed accessible before unpoisoning the
whole object. This is currently done via __kasan_check_read(), which is
compiled away for the hardware tag-based mode that doesn't rely on
compiler instrumentation. This leads to KASAN missing detecting some
memory corruptions.
Provide another annotation called kasan_check_byte() that is available
for all KASAN modes. As the implementation rename and reuse
kasan_check_invalid_free(). Use this new annotation in ksize().
To avoid having ksize() as the top frame in the reported stack trace
pass _RET_IP_ to __kasan_check_byte().
Also add a new ksize_uaf() test that checks that a use-after-free is
detected via ksize() itself, and via plain accesses that happen later.
Link: https://linux-review.googlesource.com/id/Iaabf771881d0f9ce1b969f2a62938e99d3308ec5
Link: https://lkml.kernel.org/r/f32ad74a60b28d8402482a38476f02bb7600f620.1610733117.git.andreyknvl@google.com
Signed-off-by: Andrey Konovalov <andreyknvl@google.com>
Reviewed-by: Marco Elver <elver@google.com>
Reviewed-by: Alexander Potapenko <glider@google.com>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Branislav Rankov <Branislav.Rankov@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Evgenii Stepanov <eugenis@google.com>
Cc: Kevin Brodsky <kevin.brodsky@arm.com>
Cc: Peter Collingbourne <pcc@google.com>
Cc: Vincenzo Frascino <vincenzo.frascino@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Generic mm functions that call KASAN annotations that might report a bug
pass _RET_IP_ to them as an argument. This allows KASAN to include the
name of the function that called the mm function in its report's header.
Now that KASAN has inline wrappers for all of its annotations, move
_RET_IP_ to those wrappers to simplify annotation call sites.
Link: https://linux-review.googlesource.com/id/I8fb3c06d49671305ee184175a39591bc26647a67
Link: https://lkml.kernel.org/r/5c1490eddf20b436b8c4eeea83fce47687d5e4a4.1610733117.git.andreyknvl@google.com
Signed-off-by: Andrey Konovalov <andreyknvl@google.com>
Reviewed-by: Marco Elver <elver@google.com>
Reviewed-by: Alexander Potapenko <glider@google.com>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Branislav Rankov <Branislav.Rankov@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Evgenii Stepanov <eugenis@google.com>
Cc: Kevin Brodsky <kevin.brodsky@arm.com>
Cc: Peter Collingbourne <pcc@google.com>
Cc: Vincenzo Frascino <vincenzo.frascino@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Since the hardware tag-based KASAN mode might not have a redzone that
comes after an allocated object (when kasan.mode=prod is enabled), the
kasan_bitops_tags() test ends up corrupting the next object in memory.
Change the test so it always accesses the redzone that lies within the
allocated object's boundaries.
Link: https://linux-review.googlesource.com/id/I67f51d1ee48f0a8d0fe2658c2a39e4879fe0832a
Link: https://lkml.kernel.org/r/7d452ce4ae35bb1988d2c9244dfea56cf2cc9315.1610733117.git.andreyknvl@google.com
Signed-off-by: Andrey Konovalov <andreyknvl@google.com>
Reviewed-by: Marco Elver <elver@google.com>
Reviewed-by: Alexander Potapenko <glider@google.com>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Branislav Rankov <Branislav.Rankov@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Evgenii Stepanov <eugenis@google.com>
Cc: Kevin Brodsky <kevin.brodsky@arm.com>
Cc: Peter Collingbourne <pcc@google.com>
Cc: Vincenzo Frascino <vincenzo.frascino@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>