Граф коммитов

63 Коммитов

Автор SHA1 Сообщение Дата
Linus Torvalds 68e3e92620 Revert "mm: compaction: handle incorrect MIGRATE_UNMOVABLE type pageblocks"
This reverts commit 5ceb9ce6fe.

That commit seems to be the cause of the mm compation list corruption
issues that Dave Jones reported.  The locking (or rather, absense
there-of) is dubious, as is the use of the 'page' variable once it has
been found to be outside the pageblock range.

So revert it for now, we can re-visit this for 3.6.  If we even need to:
as Minchan Kim says, "The patch wasn't a bug fix and even test workload
was very theoretical".

Reported-and-tested-by: Dave Jones <davej@redhat.com>
Acked-by: Hugh Dickins <hughd@google.com>
Acked-by: KOSAKI Motohiro <kosaki.motohiro@gmail.com>
Acked-by: Minchan Kim <minchan@kernel.org>
Cc: Bartlomiej Zolnierkiewicz <b.zolnierkie@samsung.com>
Cc: Kyungmin Park <kyungmin.park@samsung.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-06-03 20:05:57 -07:00
Linus Torvalds 1193755ac6 Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs
Pull vfs changes from Al Viro.
 "A lot of misc stuff.  The obvious groups:
   * Miklos' atomic_open series; kills the damn abuse of
     ->d_revalidate() by NFS, which was the major stumbling block for
     all work in that area.
   * ripping security_file_mmap() and dealing with deadlocks in the
     area; sanitizing the neighborhood of vm_mmap()/vm_munmap() in
     general.
   * ->encode_fh() switched to saner API; insane fake dentry in
     mm/cleancache.c gone.
   * assorted annotations in fs (endianness, __user)
   * parts of Artem's ->s_dirty work (jff2 and reiserfs parts)
   * ->update_time() work from Josef.
   * other bits and pieces all over the place.

  Normally it would've been in two or three pull requests, but
  signal.git stuff had eaten a lot of time during this cycle ;-/"

Fix up trivial conflicts in Documentation/filesystems/vfs.txt (the
'truncate_range' inode method was removed by the VM changes, the VFS
update adds an 'update_time()' method), and in fs/btrfs/ulist.[ch] (due
to sparse fix added twice, with other changes nearby).

* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs: (95 commits)
  nfs: don't open in ->d_revalidate
  vfs: retry last component if opening stale dentry
  vfs: nameidata_to_filp(): don't throw away file on error
  vfs: nameidata_to_filp(): inline __dentry_open()
  vfs: do_dentry_open(): don't put filp
  vfs: split __dentry_open()
  vfs: do_last() common post lookup
  vfs: do_last(): add audit_inode before open
  vfs: do_last(): only return EISDIR for O_CREAT
  vfs: do_last(): check LOOKUP_DIRECTORY
  vfs: do_last(): make ENOENT exit RCU safe
  vfs: make follow_link check RCU safe
  vfs: do_last(): use inode variable
  vfs: do_last(): inline walk_component()
  vfs: do_last(): make exit RCU safe
  vfs: split do_lookup()
  Btrfs: move over to use ->update_time
  fs: introduce inode operation ->update_time
  reiserfs: get rid of resierfs_sync_super
  reiserfs: mark the superblock as dirty a bit later
  ...
2012-06-01 10:34:35 -07:00
Al Viro eb36c5873b new helper: vm_mmap_pgoff()
take it to mm/util.c, convert vm_mmap() to use of that one and
take it to mm/util.c as well, convert both sys_mmap_pgoff() to
use of vm_mmap_pgoff()

Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2012-06-01 10:37:18 -04:00
Bartlomiej Zolnierkiewicz 5ceb9ce6fe mm: compaction: handle incorrect MIGRATE_UNMOVABLE type pageblocks
When MIGRATE_UNMOVABLE pages are freed from MIGRATE_UNMOVABLE type
pageblock (and some MIGRATE_MOVABLE pages are left in it) waiting until an
allocation takes ownership of the block may take too long.  The type of
the pageblock remains unchanged so the pageblock cannot be used as a
migration target during compaction.

Fix it by:

* Adding enum compact_mode (COMPACT_ASYNC_[MOVABLE,UNMOVABLE], and
  COMPACT_SYNC) and then converting sync field in struct compact_control
  to use it.

* Adding nr_pageblocks_skipped field to struct compact_control and
  tracking how many destination pageblocks were of MIGRATE_UNMOVABLE type.
   If COMPACT_ASYNC_MOVABLE mode compaction ran fully in
  try_to_compact_pages() (COMPACT_COMPLETE) it implies that there is not a
  suitable page for allocation.  In this case then check how if there were
  enough MIGRATE_UNMOVABLE pageblocks to try a second pass in
  COMPACT_ASYNC_UNMOVABLE mode.

* Scanning the MIGRATE_UNMOVABLE pageblocks (during COMPACT_SYNC and
  COMPACT_ASYNC_UNMOVABLE compaction modes) and building a count based on
  finding PageBuddy pages, page_count(page) == 0 or PageLRU pages.  If all
  pages within the MIGRATE_UNMOVABLE pageblock are in one of those three
  sets change the whole pageblock type to MIGRATE_MOVABLE.

My particular test case (on a ARM EXYNOS4 device with 512 MiB, which means
131072 standard 4KiB pages in 'Normal' zone) is to:

- allocate 120000 pages for kernel's usage
- free every second page (60000 pages) of memory just allocated
- allocate and use 60000 pages from user space
- free remaining 60000 pages of kernel memory
  (now we have fragmented memory occupied mostly by user space pages)
- try to allocate 100 order-9 (2048 KiB) pages for kernel's usage

The results:
- with compaction disabled I get 11 successful allocations
- with compaction enabled - 14 successful allocations
- with this patch I'm able to get all 100 successful allocations

NOTE: If we can make kswapd aware of order-0 request during compaction, we
can enhance kswapd with changing mode to COMPACT_ASYNC_FULL
(COMPACT_ASYNC_MOVABLE + COMPACT_ASYNC_UNMOVABLE).  Please see the
following thread:

	http://marc.info/?l=linux-mm&m=133552069417068&w=2

[minchan@kernel.org: minor cleanups]
Cc: Mel Gorman <mgorman@suse.de>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Marek Szyprowski <m.szyprowski@samsung.com>
Signed-off-by: Bartlomiej Zolnierkiewicz <b.zolnierkie@samsung.com>
Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-05-29 16:22:22 -07:00
Ying Han 096a7cf447 mm: rename is_mlocked_vma() to mlocked_vma_newpage()
Andrew pointed out that the is_mlocked_vma() is misnamed.  A function
with name like that would expect bool return and no side-effects.

Since it is called on the fault path for new page, rename it in this
patch.

Signed-off-by: Ying Han <yinghan@google.com>
Reviewed-by: Rik van Riel <riel@redhat.com>
Acked-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujtisu.com>
Reviewed-by: Minchan Kim <minchan@kernel.org>
[akpm@linux-foundation.org: s/mlock_vma_newpage/mlock_vma_newpage/, per Minchan]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-05-29 16:22:20 -07:00
Michal Nazarewicz ff9543fd32 mm: compaction: export some of the functions
This commit exports some of the functions from compaction.c file
outside of it adding their declaration into internal.h header
file so that other mm related code can use them.

This forced compaction.c to always be compiled (as opposed to being
compiled only if CONFIG_COMPACTION is defined) but as to avoid
introducing code that user did not ask for, part of the compaction.c
is now wrapped in on #ifdef.

Signed-off-by: Michal Nazarewicz <mina86@mina86.com>
Signed-off-by: Marek Szyprowski <m.szyprowski@samsung.com>
Acked-by: Mel Gorman <mel@csn.ul.ie>
Reviewed-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Tested-by: Rob Clark <rob.clark@linaro.org>
Tested-by: Ohad Ben-Cohen <ohad@wizery.com>
Tested-by: Benjamin Gaignard <benjamin.gaignard@linaro.org>
Tested-by: Robert Nelson <robertcnelson@gmail.com>
Tested-by: Barry Song <Baohua.Song@csr.com>
2012-05-21 15:09:30 +02:00
Andrea Arcangeli 70b50f94f1 mm: thp: tail page refcounting fix
Michel while working on the working set estimation code, noticed that
calling get_page_unless_zero() on a random pfn_to_page(random_pfn)
wasn't safe, if the pfn ended up being a tail page of a transparent
hugepage under splitting by __split_huge_page_refcount().

He then found the problem could also theoretically materialize with
page_cache_get_speculative() during the speculative radix tree lookups
that uses get_page_unless_zero() in SMP if the radix tree page is freed
and reallocated and get_user_pages is called on it before
page_cache_get_speculative has a chance to call get_page_unless_zero().

So the best way to fix the problem is to keep page_tail->_count zero at
all times.  This will guarantee that get_page_unless_zero() can never
succeed on any tail page.  page_tail->_mapcount is guaranteed zero and
is unused for all tail pages of a compound page, so we can simply
account the tail page references there and transfer them to
tail_page->_count in __split_huge_page_refcount() (in addition to the
head_page->_mapcount).

While debugging this s/_count/_mapcount/ change I also noticed get_page is
called by direct-io.c on pages returned by get_user_pages.  That wasn't
entirely safe because the two atomic_inc in get_page weren't atomic.  As
opposed to other get_user_page users like secondary-MMU page fault to
establish the shadow pagetables would never call any superflous get_page
after get_user_page returns.  It's safer to make get_page universally safe
for tail pages and to use get_page_foll() within follow_page (inside
get_user_pages()).  get_page_foll() is safe to do the refcounting for tail
pages without taking any locks because it is run within PT lock protected
critical sections (PT lock for pte and page_table_lock for
pmd_trans_huge).

The standard get_page() as invoked by direct-io instead will now take
the compound_lock but still only for tail pages.  The direct-io paths
are usually I/O bound and the compound_lock is per THP so very
finegrined, so there's no risk of scalability issues with it.  A simple
direct-io benchmarks with all lockdep prove locking and spinlock
debugging infrastructure enabled shows identical performance and no
overhead.  So it's worth it.  Ideally direct-io should stop calling
get_page() on pages returned by get_user_pages().  The spinlock in
get_page() is already optimized away for no-THP builds but doing
get_page() on tail pages returned by GUP is generally a rare operation
and usually only run in I/O paths.

This new refcounting on page_tail->_mapcount in addition to avoiding new
RCU critical sections will also allow the working set estimation code to
work without any further complexity associated to the tail page
refcounting with THP.

Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Reported-by: Michel Lespinasse <walken@google.com>
Reviewed-by: Michel Lespinasse <walken@google.com>
Reviewed-by: Minchan Kim <minchan.kim@gmail.com>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Hugh Dickins <hughd@google.com>
Cc: Johannes Weiner <jweiner@redhat.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: David Gibson <david@gibson.dropbear.id.au>
Cc: <stable@kernel.org>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-11-02 16:06:57 -07:00
Namhyung Kim 6038def0d1 mm: nommu: sort mm->mmap list properly
When I was reading nommu code, I found that it handles the vma list/tree
in an unusual way.  IIUC, because there can be more than one
identical/overrapped vmas in the list/tree, it sorts the tree more
strictly and does a linear search on the tree.  But it doesn't applied to
the list (i.e.  the list could be constructed in a different order than
the tree so that we can't use the list when finding the first vma in that
order).

Since inserting/sorting a vma in the tree and link is done at the same
time, we can easily construct both of them in the same order.  And linear
searching on the tree could be more costly than doing it on the list, it
can be converted to use the list.

Also, after the commit 297c5eee37 ("mm: make the vma list be doubly
linked") made the list be doubly linked, there were a couple of code need
to be fixed to construct the list properly.

Patch 1/6 is a preparation.  It maintains the list sorted same as the tree
and construct doubly-linked list properly.  Patch 2/6 is a simple
optimization for the vma deletion.  Patch 3/6 and 4/6 convert tree
traversal to list traversal and the rest are simple fixes and cleanups.

This patch:

@vma added into @mm should be sorted by start addr, end addr and VMA
struct addr in that order because we may get identical VMAs in the @mm.
However this was true only for the rbtree, not for the list.

This patch fixes this by remembering 'rb_prev' during the tree traversal
like find_vma_prepare() does and linking the @vma via __vma_link_list().
After this patch, we can iterate the whole VMAs in correct order simply by
using @mm->mmap list.

[akpm@linux-foundation.org: avoid duplicating __vma_link_list()]
Signed-off-by: Namhyung Kim <namhyung@gmail.com>
Acked-by: Greg Ungerer <gerg@uclinux.org>
Cc: David Howells <dhowells@redhat.com>
Cc: Paul Mundt <lethal@linux-sh.org>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-05-25 08:39:05 -07:00
Lucas De Marchi 25985edced Fix common misspellings
Fixes generated by 'codespell' and manually reviewed.

Signed-off-by: Lucas De Marchi <lucas.demarchi@profusion.mobi>
2011-03-31 11:26:23 -03:00
Huang Ying 0014bd990e mm: export __get_user_pages
In most cases, get_user_pages and get_user_pages_fast should be used
to pin user pages in memory.  But sometimes, some special flags except
FOLL_GET, FOLL_WRITE and FOLL_FORCE are needed, for example in
following patch, KVM needs FOLL_HWPOISON.  To support these users,
__get_user_pages is exported directly.

There are some symbol name conflicts in infiniband driver, fixed them too.

Signed-off-by: Huang Ying <ying.huang@intel.com>
CC: Andrew Morton <akpm@linux-foundation.org>
CC: Michel Lespinasse <walken@google.com>
CC: Roland Dreier <roland@kernel.org>
CC: Ralph Campbell <infinipath@qlogic.com>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
2011-03-17 13:08:27 -03:00
Linus Torvalds 7a608572a2 Revert "mm: batch activate_page() to reduce lock contention"
This reverts commit 744ed14427.

Chris Mason ended up chasing down some page allocation errors and pages
stuck waiting on the IO scheduler, and was able to narrow it down to two
commits: commit 744ed14427 ("mm: batch activate_page() to reduce lock
contention") and d8505dee1a ("mm: simplify code of swap.c").

This reverts the first of them.

Reported-and-debugged-by: Chris Mason <chris.mason@oracle.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Jens Axboe <jaxboe@fusionio.com>
Cc: linux-mm <linux-mm@kvack.org>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Shaohua Li <shaohua.li@intel.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-01-17 14:42:19 -08:00
Shaohua Li 744ed14427 mm: batch activate_page() to reduce lock contention
The zone->lru_lock is heavily contented in workload where activate_page()
is frequently used.  We could do batch activate_page() to reduce the lock
contention.  The batched pages will be added into zone list when the pool
is full or page reclaim is trying to drain them.

For example, in a 4 socket 64 CPU system, create a sparse file and 64
processes, processes shared map to the file.  Each process read access the
whole file and then exit.  The process exit will do unmap_vmas() and cause
a lot of activate_page() call.  In such workload, we saw about 58% total
time reduction with below patch.  Other workloads with a lot of
activate_page also benefits a lot too.

I tested some microbenchmarks:
case-anon-cow-rand-mt		0.58%
case-anon-cow-rand		-3.30%
case-anon-cow-seq-mt		-0.51%
case-anon-cow-seq		-5.68%
case-anon-r-rand-mt		0.23%
case-anon-r-rand		0.81%
case-anon-r-seq-mt		-0.71%
case-anon-r-seq			-1.99%
case-anon-rx-rand-mt		2.11%
case-anon-rx-seq-mt		3.46%
case-anon-w-rand-mt		-0.03%
case-anon-w-rand		-0.50%
case-anon-w-seq-mt		-1.08%
case-anon-w-seq			-0.12%
case-anon-wx-rand-mt		-5.02%
case-anon-wx-seq-mt		-1.43%
case-fork			1.65%
case-fork-sleep			-0.07%
case-fork-withmem		1.39%
case-hugetlb			-0.59%
case-lru-file-mmap-read-mt	-0.54%
case-lru-file-mmap-read		0.61%
case-lru-file-mmap-read-rand	-2.24%
case-lru-file-readonce		-0.64%
case-lru-file-readtwice		-11.69%
case-lru-memcg			-1.35%
case-mmap-pread-rand-mt		1.88%
case-mmap-pread-rand		-15.26%
case-mmap-pread-seq-mt		0.89%
case-mmap-pread-seq		-69.72%
case-mmap-xread-rand-mt		0.71%
case-mmap-xread-seq-mt		0.38%

The most significent are:
case-lru-file-readtwice		-11.69%
case-mmap-pread-rand		-15.26%
case-mmap-pread-seq		-69.72%

which use activate_page a lot.  others are basically variations because
each run has slightly difference.

[akpm@linux-foundation.org: coding-style fixes]
Signed-off-by: Shaohua Li <shaohua.li@intel.com>
Cc: Andi Kleen <andi@firstfloor.org>
Cc: Minchan Kim <minchan.kim@gmail.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-01-13 17:32:50 -08:00
Andrea Arcangeli 71e3aac072 thp: transparent hugepage core
Lately I've been working to make KVM use hugepages transparently without
the usual restrictions of hugetlbfs.  Some of the restrictions I'd like to
see removed:

1) hugepages have to be swappable or the guest physical memory remains
   locked in RAM and can't be paged out to swap

2) if a hugepage allocation fails, regular pages should be allocated
   instead and mixed in the same vma without any failure and without
   userland noticing

3) if some task quits and more hugepages become available in the
   buddy, guest physical memory backed by regular pages should be
   relocated on hugepages automatically in regions under
   madvise(MADV_HUGEPAGE) (ideally event driven by waking up the
   kernel deamon if the order=HPAGE_PMD_SHIFT-PAGE_SHIFT list becomes
   not null)

4) avoidance of reservation and maximization of use of hugepages whenever
   possible. Reservation (needed to avoid runtime fatal faliures) may be ok for
   1 machine with 1 database with 1 database cache with 1 database cache size
   known at boot time. It's definitely not feasible with a virtualization
   hypervisor usage like RHEV-H that runs an unknown number of virtual machines
   with an unknown size of each virtual machine with an unknown amount of
   pagecache that could be potentially useful in the host for guest not using
   O_DIRECT (aka cache=off).

hugepages in the virtualization hypervisor (and also in the guest!) are
much more important than in a regular host not using virtualization,
becasue with NPT/EPT they decrease the tlb-miss cacheline accesses from 24
to 19 in case only the hypervisor uses transparent hugepages, and they
decrease the tlb-miss cacheline accesses from 19 to 15 in case both the
linux hypervisor and the linux guest both uses this patch (though the
guest will limit the addition speedup to anonymous regions only for
now...).  Even more important is that the tlb miss handler is much slower
on a NPT/EPT guest than for a regular shadow paging or no-virtualization
scenario.  So maximizing the amount of virtual memory cached by the TLB
pays off significantly more with NPT/EPT than without (even if there would
be no significant speedup in the tlb-miss runtime).

The first (and more tedious) part of this work requires allowing the VM to
handle anonymous hugepages mixed with regular pages transparently on
regular anonymous vmas.  This is what this patch tries to achieve in the
least intrusive possible way.  We want hugepages and hugetlb to be used in
a way so that all applications can benefit without changes (as usual we
leverage the KVM virtualization design: by improving the Linux VM at
large, KVM gets the performance boost too).

The most important design choice is: always fallback to 4k allocation if
the hugepage allocation fails!  This is the _very_ opposite of some large
pagecache patches that failed with -EIO back then if a 64k (or similar)
allocation failed...

Second important decision (to reduce the impact of the feature on the
existing pagetable handling code) is that at any time we can split an
hugepage into 512 regular pages and it has to be done with an operation
that can't fail.  This way the reliability of the swapping isn't decreased
(no need to allocate memory when we are short on memory to swap) and it's
trivial to plug a split_huge_page* one-liner where needed without
polluting the VM.  Over time we can teach mprotect, mremap and friends to
handle pmd_trans_huge natively without calling split_huge_page*.  The fact
it can't fail isn't just for swap: if split_huge_page would return -ENOMEM
(instead of the current void) we'd need to rollback the mprotect from the
middle of it (ideally including undoing the split_vma) which would be a
big change and in the very wrong direction (it'd likely be simpler not to
call split_huge_page at all and to teach mprotect and friends to handle
hugepages instead of rolling them back from the middle).  In short the
very value of split_huge_page is that it can't fail.

The collapsing and madvise(MADV_HUGEPAGE) part will remain separated and
incremental and it'll just be an "harmless" addition later if this initial
part is agreed upon.  It also should be noted that locking-wise replacing
regular pages with hugepages is going to be very easy if compared to what
I'm doing below in split_huge_page, as it will only happen when
page_count(page) matches page_mapcount(page) if we can take the PG_lock
and mmap_sem in write mode.  collapse_huge_page will be a "best effort"
that (unlike split_huge_page) can fail at the minimal sign of trouble and
we can try again later.  collapse_huge_page will be similar to how KSM
works and the madvise(MADV_HUGEPAGE) will work similar to
madvise(MADV_MERGEABLE).

The default I like is that transparent hugepages are used at page fault
time.  This can be changed with
/sys/kernel/mm/transparent_hugepage/enabled.  The control knob can be set
to three values "always", "madvise", "never" which mean respectively that
hugepages are always used, or only inside madvise(MADV_HUGEPAGE) regions,
or never used.  /sys/kernel/mm/transparent_hugepage/defrag instead
controls if the hugepage allocation should defrag memory aggressively
"always", only inside "madvise" regions, or "never".

The pmd_trans_splitting/pmd_trans_huge locking is very solid.  The
put_page (from get_user_page users that can't use mmu notifier like
O_DIRECT) that runs against a __split_huge_page_refcount instead was a
pain to serialize in a way that would result always in a coherent page
count for both tail and head.  I think my locking solution with a
compound_lock taken only after the page_first is valid and is still a
PageHead should be safe but it surely needs review from SMP race point of
view.  In short there is no current existing way to serialize the O_DIRECT
final put_page against split_huge_page_refcount so I had to invent a new
one (O_DIRECT loses knowledge on the mapping status by the time gup_fast
returns so...).  And I didn't want to impact all gup/gup_fast users for
now, maybe if we change the gup interface substantially we can avoid this
locking, I admit I didn't think too much about it because changing the gup
unpinning interface would be invasive.

If we ignored O_DIRECT we could stick to the existing compound refcounting
code, by simply adding a get_user_pages_fast_flags(foll_flags) where KVM
(and any other mmu notifier user) would call it without FOLL_GET (and if
FOLL_GET isn't set we'd just BUG_ON if nobody registered itself in the
current task mmu notifier list yet).  But O_DIRECT is fundamental for
decent performance of virtualized I/O on fast storage so we can't avoid it
to solve the race of put_page against split_huge_page_refcount to achieve
a complete hugepage feature for KVM.

Swap and oom works fine (well just like with regular pages ;).  MMU
notifier is handled transparently too, with the exception of the young bit
on the pmd, that didn't have a range check but I think KVM will be fine
because the whole point of hugepages is that EPT/NPT will also use a huge
pmd when they notice gup returns pages with PageCompound set, so they
won't care of a range and there's just the pmd young bit to check in that
case.

NOTE: in some cases if the L2 cache is small, this may slowdown and waste
memory during COWs because 4M of memory are accessed in a single fault
instead of 8k (the payoff is that after COW the program can run faster).
So we might want to switch the copy_huge_page (and clear_huge_page too) to
not temporal stores.  I also extensively researched ways to avoid this
cache trashing with a full prefault logic that would cow in 8k/16k/32k/64k
up to 1M (I can send those patches that fully implemented prefault) but I
concluded they're not worth it and they add an huge additional complexity
and they remove all tlb benefits until the full hugepage has been faulted
in, to save a little bit of memory and some cache during app startup, but
they still don't improve substantially the cache-trashing during startup
if the prefault happens in >4k chunks.  One reason is that those 4k pte
entries copied are still mapped on a perfectly cache-colored hugepage, so
the trashing is the worst one can generate in those copies (cow of 4k page
copies aren't so well colored so they trashes less, but again this results
in software running faster after the page fault).  Those prefault patches
allowed things like a pte where post-cow pages were local 4k regular anon
pages and the not-yet-cowed pte entries were pointing in the middle of
some hugepage mapped read-only.  If it doesn't payoff substantially with
todays hardware it will payoff even less in the future with larger l2
caches, and the prefault logic would blot the VM a lot.  If one is
emebdded transparent_hugepage can be disabled during boot with sysfs or
with the boot commandline parameter transparent_hugepage=0 (or
transparent_hugepage=2 to restrict hugepages inside madvise regions) that
will ensure not a single hugepage is allocated at boot time.  It is simple
enough to just disable transparent hugepage globally and let transparent
hugepages be allocated selectively by applications in the MADV_HUGEPAGE
region (both at page fault time, and if enabled with the
collapse_huge_page too through the kernel daemon).

This patch supports only hugepages mapped in the pmd, archs that have
smaller hugepages will not fit in this patch alone.  Also some archs like
power have certain tlb limits that prevents mixing different page size in
the same regions so they will not fit in this framework that requires
"graceful fallback" to basic PAGE_SIZE in case of physical memory
fragmentation.  hugetlbfs remains a perfect fit for those because its
software limits happen to match the hardware limits.  hugetlbfs also
remains a perfect fit for hugepage sizes like 1GByte that cannot be hoped
to be found not fragmented after a certain system uptime and that would be
very expensive to defragment with relocation, so requiring reservation.
hugetlbfs is the "reservation way", the point of transparent hugepages is
not to have any reservation at all and maximizing the use of cache and
hugepages at all times automatically.

Some performance result:

vmx andrea # LD_PRELOAD=/usr/lib64/libhugetlbfs.so HUGETLB_MORECORE=yes HUGETLB_PATH=/mnt/huge/ ./largep
ages3
memset page fault 1566023
memset tlb miss 453854
memset second tlb miss 453321
random access tlb miss 41635
random access second tlb miss 41658
vmx andrea # LD_PRELOAD=/usr/lib64/libhugetlbfs.so HUGETLB_MORECORE=yes HUGETLB_PATH=/mnt/huge/ ./largepages3
memset page fault 1566471
memset tlb miss 453375
memset second tlb miss 453320
random access tlb miss 41636
random access second tlb miss 41637
vmx andrea # ./largepages3
memset page fault 1566642
memset tlb miss 453417
memset second tlb miss 453313
random access tlb miss 41630
random access second tlb miss 41647
vmx andrea # ./largepages3
memset page fault 1566872
memset tlb miss 453418
memset second tlb miss 453315
random access tlb miss 41618
random access second tlb miss 41659
vmx andrea # echo 0 > /proc/sys/vm/transparent_hugepage
vmx andrea # ./largepages3
memset page fault 2182476
memset tlb miss 460305
memset second tlb miss 460179
random access tlb miss 44483
random access second tlb miss 44186
vmx andrea # ./largepages3
memset page fault 2182791
memset tlb miss 460742
memset second tlb miss 459962
random access tlb miss 43981
random access second tlb miss 43988

============
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/time.h>

#define SIZE (3UL*1024*1024*1024)

int main()
{
	char *p = malloc(SIZE), *p2;
	struct timeval before, after;

	gettimeofday(&before, NULL);
	memset(p, 0, SIZE);
	gettimeofday(&after, NULL);
	printf("memset page fault %Lu\n",
	       (after.tv_sec-before.tv_sec)*1000000UL +
	       after.tv_usec-before.tv_usec);

	gettimeofday(&before, NULL);
	memset(p, 0, SIZE);
	gettimeofday(&after, NULL);
	printf("memset tlb miss %Lu\n",
	       (after.tv_sec-before.tv_sec)*1000000UL +
	       after.tv_usec-before.tv_usec);

	gettimeofday(&before, NULL);
	memset(p, 0, SIZE);
	gettimeofday(&after, NULL);
	printf("memset second tlb miss %Lu\n",
	       (after.tv_sec-before.tv_sec)*1000000UL +
	       after.tv_usec-before.tv_usec);

	gettimeofday(&before, NULL);
	for (p2 = p; p2 < p+SIZE; p2 += 4096)
		*p2 = 0;
	gettimeofday(&after, NULL);
	printf("random access tlb miss %Lu\n",
	       (after.tv_sec-before.tv_sec)*1000000UL +
	       after.tv_usec-before.tv_usec);

	gettimeofday(&before, NULL);
	for (p2 = p; p2 < p+SIZE; p2 += 4096)
		*p2 = 0;
	gettimeofday(&after, NULL);
	printf("random access second tlb miss %Lu\n",
	       (after.tv_sec-before.tv_sec)*1000000UL +
	       after.tv_usec-before.tv_usec);

	return 0;
}
============

Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Acked-by: Rik van Riel <riel@redhat.com>
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-01-13 17:32:42 -08:00
Michel Lespinasse 53a7706d5e mlock: do not hold mmap_sem for extended periods of time
__get_user_pages gets a new 'nonblocking' parameter to signal that the
caller is prepared to re-acquire mmap_sem and retry the operation if
needed.  This is used to split off long operations if they are going to
block on a disk transfer, or when we detect contention on the mmap_sem.

[akpm@linux-foundation.org: remove ref to rwsem_is_contended()]
Signed-off-by: Michel Lespinasse <walken@google.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Nick Piggin <npiggin@kernel.dk>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: David Howells <dhowells@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-01-13 17:32:36 -08:00
KAMEZAWA Hiroyuki 572438f9b5 mm: fix is_mem_section_removable() page_order BUG_ON check
page_order() is called by memory hotplug's user interface to check the
section is removable or not.  (is_mem_section_removable())

It calls page_order() withoug holding zone->lock.
So, even if the caller does

	if (PageBuddy(page))
		ret = page_order(page) ...
The caller may hit BUG_ON().

For fixing this, there are 2 choices.
  1. add zone->lock.
  2. remove BUG_ON().

is_mem_section_removable() is used for some "advice" and doesn't need to
be 100% accurate.  This is_removable() can be called via user program..
We don't want to take this important lock for long by user's request.  So,
this patch removes BUG_ON().

Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Acked-by: Wu Fengguang <fengguang.wu@intel.com>
Acked-by: Michal Hocko <mhocko@suse.cz>
Acked-by: Mel Gorman <mel@csn.ul.ie>
Cc: <stable@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-10-26 16:52:11 -07:00
Haicheng Li 1bfe5febe3 HWPOISON: add an interface to switch off/on all the page filters
In some use cases, user doesn't need extra filtering. E.g. user program
can inject errors through madvise syscall to its own pages, however it
might not know what the page state exactly is or which inode the page
belongs to.

So introduce an one-off interface "corrupt-filter-enable".

Echo 0 to switch off page filters, and echo 1 to switch on the filters.
[AK: changed default to 0]

Signed-off-by: Haicheng Li <haicheng.li@linux.intel.com>
Signed-off-by: Wu Fengguang <fengguang.wu@intel.com>
Signed-off-by: Andi Kleen <ak@linux.intel.com>
2009-12-16 12:19:59 +01:00
Andi Kleen 4fd466eb46 HWPOISON: add memory cgroup filter
The hwpoison test suite need to inject hwpoison to a collection of
selected task pages, and must not touch pages not owned by them and
thus kill important system processes such as init. (But it's OK to
mis-hwpoison free/unowned pages as well as shared clean pages.
Mis-hwpoison of shared dirty pages will kill all tasks, so the test
suite will target all or non of such tasks in the first place.)

The memory cgroup serves this purpose well. We can put the target
processes under the control of a memory cgroup, and tell the hwpoison
injection code to only kill pages associated with some active memory
cgroup.

The prerequisite for doing hwpoison stress tests with mem_cgroup is,
the mem_cgroup code tracks task pages _accurately_ (unless page is
locked).  Which we believe is/should be true.

The benefits are simplification of hwpoison injector code. Also the
mem_cgroup code will automatically be tested by hwpoison test cases.

The alternative interfaces pin-pfn/unpin-pfn can also delegate the
(process and page flags) filtering functions reliably to user space.
However prototype implementation shows that this scheme adds more
complexity than we wanted.

Example test case:

	mkdir /cgroup/hwpoison

	usemem -m 100 -s 1000 &
	echo `jobs -p` > /cgroup/hwpoison/tasks

	memcg_ino=$(ls -id /cgroup/hwpoison | cut -f1 -d' ')
	echo $memcg_ino > /debug/hwpoison/corrupt-filter-memcg

	page-types -p `pidof init`   --hwpoison  # shall do nothing
	page-types -p `pidof usemem` --hwpoison  # poison its pages

[AK: Fix documentation]
[Add fix for problem noticed by Li Zefan <lizf@cn.fujitsu.com>;
dentry in the css could be NULL]

CC: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
CC: Hugh Dickins <hugh.dickins@tiscali.co.uk>
CC: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
CC: Balbir Singh <balbir@linux.vnet.ibm.com>
CC: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
CC: Li Zefan <lizf@cn.fujitsu.com>
CC: Paul Menage <menage@google.com>
CC: Nick Piggin <npiggin@suse.de>
CC: Andi Kleen <andi@firstfloor.org>
Signed-off-by: Wu Fengguang <fengguang.wu@intel.com>
Signed-off-by: Andi Kleen <ak@linux.intel.com>
2009-12-16 12:19:59 +01:00
Wu Fengguang 478c5ffc0b HWPOISON: add page flags filter
When specified, only poison pages if ((page_flags & mask) == value).

-       corrupt-filter-flags-mask
-       corrupt-filter-flags-value

This allows stress testing of many kinds of pages.

Strictly speaking, the buddy pages requires taking zone lock, to avoid
setting PG_hwpoison on a "was buddy but now allocated to someone" page.
However we can just do nothing because we set PG_locked in the beginning,
this prevents the page allocator from allocating it to someone. (It will
BUG() on the unexpected PG_locked, which is fine for hwpoison testing.)

[AK: Add select PROC_PAGE_MONITOR to satisfy dependency]

CC: Nick Piggin <npiggin@suse.de>
Signed-off-by: Wu Fengguang <fengguang.wu@intel.com>
Signed-off-by: Andi Kleen <ak@linux.intel.com>
2009-12-16 12:19:59 +01:00
Wu Fengguang 31d3d3484f HWPOISON: limit hwpoison injector to known page types
__memory_failure()'s workflow is

	set PG_hwpoison
	//...
	unset PG_hwpoison if didn't pass hwpoison filter

That could kill unrelated process if it happens to page fault on the
page with the (temporary) PG_hwpoison. The race should be big enough to
appear in stress tests.

Fix it by grabbing the page and checking filter at inject time.  This
also avoids the very noisy "Injecting memory failure..." messages.

- we don't touch madvise() based injection, because the filters are
  generally not necessary for it.
- if we want to apply the filters to h/w aided injection, we'd better to
  rearrange the logic in __memory_failure() instead of this patch.

AK: fix documentation, use drain all, cleanups

CC: Haicheng Li <haicheng.li@intel.com>
Signed-off-by: Wu Fengguang <fengguang.wu@intel.com>
Signed-off-by: Andi Kleen <ak@linux.intel.com>
2009-12-16 12:19:59 +01:00
Wu Fengguang 7c116f2b0d HWPOISON: add fs/device filters
Filesystem data/metadata present the most tricky-to-isolate pages.
It requires careful code review and stress testing to get them right.

The fs/device filter helps to target the stress tests to some specific
filesystem pages. The filter condition is block device's major/minor
numbers:
        - corrupt-filter-dev-major
        - corrupt-filter-dev-minor
When specified (non -1), only page cache pages that belong to that
device will be poisoned.

The filters are checked reliably on the locked and refcounted page.

Haicheng: clear PG_hwpoison and drop bad page count if filter not OK
AK: Add documentation

CC: Haicheng Li <haicheng.li@intel.com>
CC: Nick Piggin <npiggin@suse.de>
Signed-off-by: Wu Fengguang <fengguang.wu@intel.com>
Signed-off-by: Andi Kleen <ak@linux.intel.com>
2009-12-16 12:19:59 +01:00
Wu Fengguang 8d22ba1b74 HWPOISON: detect free buddy pages explicitly
Most free pages in the buddy system have no PG_buddy set.
Introduce is_free_buddy_page() for detecting them reliably.

CC: Nick Piggin <npiggin@suse.de>
CC: Mel Gorman <mel@linux.vnet.ibm.com>
Signed-off-by: Wu Fengguang <fengguang.wu@intel.com>
Signed-off-by: Andi Kleen <ak@linux.intel.com>
2009-12-16 12:19:58 +01:00
Lee Schermerhorn 418b27ef50 mm: remove unevictable_migrate_page function
unevictable_migrate_page() in mm/internal.h is a relic of the since
removed UNEVICTABLE_LRU Kconfig option.  This patch removes the function
and open codes the test in migrate_page_copy().

Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com>
Reviewed-by: Christoph Lameter <cl@linux-foundation.org>
Acked-by: Hugh Dickins <hugh.dickins@tiscali.co.uk>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-12-15 08:53:23 -08:00
Hugh Dickins 73848b4684 ksm: fix mlockfreed to munlocked
When KSM merges an mlocked page, it has been forgetting to munlock it:
that's been left to free_page_mlock(), which reports it in /proc/vmstat as
unevictable_pgs_mlockfreed instead of unevictable_pgs_munlocked (and
whinges "Page flag mlocked set for process" in mmotm, whereas mainline is
silently forgiving).  Call munlock_vma_page() to fix that.

Signed-off-by: Hugh Dickins <hugh.dickins@tiscali.co.uk>
Cc: Izik Eidus <ieidus@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Chris Wright <chrisw@redhat.com>
Acked-by: Rik van Riel <riel@redhat.com>
Acked-by: Mel Gorman <mel@csn.ul.ie>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-12-15 08:53:19 -08:00
Hugh Dickins af8e3354b4 mm: CONFIG_MMU for PG_mlocked
Remove three degrees of obfuscation, left over from when we had
CONFIG_UNEVICTABLE_LRU.  MLOCK_PAGES is CONFIG_HAVE_MLOCKED_PAGE_BIT is
CONFIG_HAVE_MLOCK is CONFIG_MMU.  rmap.o (and memory-failure.o) are only
built when CONFIG_MMU, so don't need such conditions at all.

Somehow, I feel no compulsion to remove the CONFIG_HAVE_MLOCK* lines from
169 defconfigs: leave those to evolve in due course.

Signed-off-by: Hugh Dickins <hugh.dickins@tiscali.co.uk>
Cc: Izik Eidus <ieidus@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Nick Piggin <npiggin@suse.de>
Reviewed-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
Cc: Andi Kleen <andi@firstfloor.org>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Wu Fengguang <fengguang.wu@intel.com>
Cc: Minchan Kim <minchan.kim@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-12-15 08:53:17 -08:00
Hugh Dickins 03f6462a3a mm: move highest_memmap_pfn
Move highest_memmap_pfn __read_mostly from page_alloc.c next to zero_pfn
__read_mostly in memory.c: to help them share a cacheline, since they're
very often tested together in vm_normal_page().

Signed-off-by: Hugh Dickins <hugh.dickins@tiscali.co.uk>
Cc: Rik van Riel <riel@redhat.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Nick Piggin <npiggin@suse.de>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Minchan Kim <minchan.kim@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-09-22 07:17:41 -07:00
Hugh Dickins 58fa879e1e mm: FOLL flags for GUP flags
__get_user_pages() has been taking its own GUP flags, then processing
them into FOLL flags for follow_page().  Though oddly named, the FOLL
flags are more widely used, so pass them to __get_user_pages() now.
Sorry, VM flags, VM_FAULT flags and FAULT_FLAGs are still distinct.

(The patch to __get_user_pages() looks peculiar, with both gup_flags
and foll_flags: the gup_flags remain constant; but as before there's
an exceptional case, out of scope of the patch, in which foll_flags
per page have FOLL_WRITE masked off.)

Signed-off-by: Hugh Dickins <hugh.dickins@tiscali.co.uk>
Cc: Rik van Riel <riel@redhat.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Nick Piggin <npiggin@suse.de>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Minchan Kim <minchan.kim@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-09-22 07:17:40 -07:00
Hugh Dickins 8e4b9a6071 mm: FOLL_DUMP replace FOLL_ANON
The "FOLL_ANON optimization" and its use_zero_page() test have caused
confusion and bugs: why does it test VM_SHARED? for the very good but
unsatisfying reason that VMware crashed without.  As we look to maybe
reinstating anonymous use of the ZERO_PAGE, we need to sort this out.

Easily done: it's silly for __get_user_pages() and follow_page() to
be guessing whether it's safe to assume that they're being used for
a coredump (which can take a shortcut snapshot where other uses must
handle a fault) - just tell them with GUP_FLAGS_DUMP and FOLL_DUMP.

get_dump_page() doesn't even want a ZERO_PAGE: an error suits fine.

Signed-off-by: Hugh Dickins <hugh.dickins@tiscali.co.uk>
Acked-by: Rik van Riel <riel@redhat.com>
Acked-by: Mel Gorman <mel@csn.ul.ie>
Reviewed-by: Minchan Kim <minchan.kim@gmail.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Nick Piggin <npiggin@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-09-22 07:17:40 -07:00
Hugh Dickins 1c3aff1cee mm: remove unused GUP flags
GUP_FLAGS_IGNORE_VMA_PERMISSIONS and GUP_FLAGS_IGNORE_SIGKILL were
flags added solely to prevent __get_user_pages() from doing some of
what it usually does, in the munlock case: we can now remove them.

Signed-off-by: Hugh Dickins <hugh.dickins@tiscali.co.uk>
Acked-by: Rik van Riel <riel@redhat.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Nick Piggin <npiggin@suse.de>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Minchan Kim <minchan.kim@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-09-22 07:17:40 -07:00
Mel Gorman fa5e084e43 vmscan: do not unconditionally treat zones that fail zone_reclaim() as full
On NUMA machines, the administrator can configure zone_reclaim_mode that
is a more targetted form of direct reclaim.  On machines with large NUMA
distances for example, a zone_reclaim_mode defaults to 1 meaning that
clean unmapped pages will be reclaimed if the zone watermarks are not
being met.  The problem is that zone_reclaim() failing at all means the
zone gets marked full.

This can cause situations where a zone is usable, but is being skipped
because it has been considered full.  Take a situation where a large tmpfs
mount is occuping a large percentage of memory overall.  The pages do not
get cleaned or reclaimed by zone_reclaim(), but the zone gets marked full
and the zonelist cache considers them not worth trying in the future.

This patch makes zone_reclaim() return more fine-grained information about
what occured when zone_reclaim() failued.  The zone only gets marked full
if it really is unreclaimable.  If it's a case that the scan did not occur
or if enough pages were not reclaimed with the limited reclaim_mode, then
the zone is simply skipped.

There is a side-effect to this patch.  Currently, if zone_reclaim()
successfully reclaimed SWAP_CLUSTER_MAX, an allocation attempt would go
ahead.  With this patch applied, zone watermarks are rechecked after
zone_reclaim() does some work.

This bug was introduced by commit 9276b1bc96
("memory page_alloc zonelist caching speedup") way back in 2.6.19 when the
zonelist_cache was introduced.  It was not intended that zone_reclaim()
aggressively consider the zone to be full when it failed as full direct
reclaim can still be an option.  Due to the age of the bug, it should be
considered a -stable candidate.

Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Reviewed-by: Wu Fengguang <fengguang.wu@intel.com>
Reviewed-by: Rik van Riel <riel@redhat.com>
Reviewed-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Christoph Lameter <cl@linux-foundation.org>
Cc: <stable@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-06-16 19:47:45 -07:00
KOSAKI Motohiro 6837765963 mm: remove CONFIG_UNEVICTABLE_LRU config option
Currently, nobody wants to turn UNEVICTABLE_LRU off.  Thus this
configurability is unnecessary.

Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Andi Kleen <andi@firstfloor.org>
Acked-by: Minchan Kim <minchan.kim@gmail.com>
Cc: David Woodhouse <dwmw2@infradead.org>
Cc: Matt Mackall <mpm@selenic.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Lee Schermerhorn <lee.schermerhorn@hp.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-06-16 19:47:42 -07:00
Wu Fengguang 20a0307c03 mm: introduce PageHuge() for testing huge/gigantic pages
A series of patches to enhance the /proc/pagemap interface and to add a
userspace executable which can be used to present the pagemap data.

Export 10 more flags to end users (and more for kernel developers):

        11. KPF_MMAP            (pseudo flag) memory mapped page
        12. KPF_ANON            (pseudo flag) memory mapped page (anonymous)
        13. KPF_SWAPCACHE       page is in swap cache
        14. KPF_SWAPBACKED      page is swap/RAM backed
        15. KPF_COMPOUND_HEAD   (*)
        16. KPF_COMPOUND_TAIL   (*)
        17. KPF_HUGE		hugeTLB pages
        18. KPF_UNEVICTABLE     page is in the unevictable LRU list
        19. KPF_HWPOISON        hardware detected corruption
        20. KPF_NOPAGE          (pseudo flag) no page frame at the address

        (*) For compound pages, exporting _both_ head/tail info enables
            users to tell where a compound page starts/ends, and its order.

a simple demo of the page-types tool

# ./page-types -h
page-types [options]
            -r|--raw                  Raw mode, for kernel developers
            -a|--addr    addr-spec    Walk a range of pages
            -b|--bits    bits-spec    Walk pages with specified bits
            -l|--list                 Show page details in ranges
            -L|--list-each            Show page details one by one
            -N|--no-summary           Don't show summay info
            -h|--help                 Show this usage message
addr-spec:
            N                         one page at offset N (unit: pages)
            N+M                       pages range from N to N+M-1
            N,M                       pages range from N to M-1
            N,                        pages range from N to end
            ,M                        pages range from 0 to M
bits-spec:
            bit1,bit2                 (flags & (bit1|bit2)) != 0
            bit1,bit2=bit1            (flags & (bit1|bit2)) == bit1
            bit1,~bit2                (flags & (bit1|bit2)) == bit1
            =bit1,bit2                flags == (bit1|bit2)
bit-names:
          locked              error         referenced           uptodate
           dirty                lru             active               slab
       writeback            reclaim              buddy               mmap
       anonymous          swapcache         swapbacked      compound_head
   compound_tail               huge        unevictable           hwpoison
          nopage           reserved(r)         mlocked(r)    mappedtodisk(r)
         private(r)       private_2(r)   owner_private(r)            arch(r)
        uncached(r)       readahead(o)       slob_free(o)     slub_frozen(o)
      slub_debug(o)
                                   (r) raw mode bits  (o) overloaded bits

# ./page-types
             flags      page-count       MB  symbolic-flags                     long-symbolic-flags
0x0000000000000000          487369     1903  _________________________________
0x0000000000000014               5        0  __R_D____________________________  referenced,dirty
0x0000000000000020               1        0  _____l___________________________  lru
0x0000000000000024              34        0  __R__l___________________________  referenced,lru
0x0000000000000028            3838       14  ___U_l___________________________  uptodate,lru
0x0001000000000028              48        0  ___U_l_______________________I___  uptodate,lru,readahead
0x000000000000002c            6478       25  __RU_l___________________________  referenced,uptodate,lru
0x000100000000002c              47        0  __RU_l_______________________I___  referenced,uptodate,lru,readahead
0x0000000000000040            8344       32  ______A__________________________  active
0x0000000000000060               1        0  _____lA__________________________  lru,active
0x0000000000000068             348        1  ___U_lA__________________________  uptodate,lru,active
0x0001000000000068              12        0  ___U_lA______________________I___  uptodate,lru,active,readahead
0x000000000000006c             988        3  __RU_lA__________________________  referenced,uptodate,lru,active
0x000100000000006c              48        0  __RU_lA______________________I___  referenced,uptodate,lru,active,readahead
0x0000000000004078               1        0  ___UDlA_______b__________________  uptodate,dirty,lru,active,swapbacked
0x000000000000407c              34        0  __RUDlA_______b__________________  referenced,uptodate,dirty,lru,active,swapbacked
0x0000000000000400             503        1  __________B______________________  buddy
0x0000000000000804               1        0  __R________M_____________________  referenced,mmap
0x0000000000000828            1029        4  ___U_l_____M_____________________  uptodate,lru,mmap
0x0001000000000828              43        0  ___U_l_____M_________________I___  uptodate,lru,mmap,readahead
0x000000000000082c             382        1  __RU_l_____M_____________________  referenced,uptodate,lru,mmap
0x000100000000082c              12        0  __RU_l_____M_________________I___  referenced,uptodate,lru,mmap,readahead
0x0000000000000868             192        0  ___U_lA____M_____________________  uptodate,lru,active,mmap
0x0001000000000868              12        0  ___U_lA____M_________________I___  uptodate,lru,active,mmap,readahead
0x000000000000086c             800        3  __RU_lA____M_____________________  referenced,uptodate,lru,active,mmap
0x000100000000086c              31        0  __RU_lA____M_________________I___  referenced,uptodate,lru,active,mmap,readahead
0x0000000000004878               2        0  ___UDlA____M__b__________________  uptodate,dirty,lru,active,mmap,swapbacked
0x0000000000001000             492        1  ____________a____________________  anonymous
0x0000000000005808               4        0  ___U_______Ma_b__________________  uptodate,mmap,anonymous,swapbacked
0x0000000000005868            2839       11  ___U_lA____Ma_b__________________  uptodate,lru,active,mmap,anonymous,swapbacked
0x000000000000586c              30        0  __RU_lA____Ma_b__________________  referenced,uptodate,lru,active,mmap,anonymous,swapbacked
             total          513968     2007

# ./page-types -r
             flags      page-count       MB  symbolic-flags                     long-symbolic-flags
0x0000000000000000          468002     1828  _________________________________
0x0000000100000000           19102       74  _____________________r___________  reserved
0x0000000000008000              41        0  _______________H_________________  compound_head
0x0000000000010000             188        0  ________________T________________  compound_tail
0x0000000000008014               1        0  __R_D__________H_________________  referenced,dirty,compound_head
0x0000000000010014               4        0  __R_D___________T________________  referenced,dirty,compound_tail
0x0000000000000020               1        0  _____l___________________________  lru
0x0000000800000024              34        0  __R__l__________________P________  referenced,lru,private
0x0000000000000028            3794       14  ___U_l___________________________  uptodate,lru
0x0001000000000028              46        0  ___U_l_______________________I___  uptodate,lru,readahead
0x0000000400000028              44        0  ___U_l_________________d_________  uptodate,lru,mappedtodisk
0x0001000400000028               2        0  ___U_l_________________d_____I___  uptodate,lru,mappedtodisk,readahead
0x000000000000002c            6434       25  __RU_l___________________________  referenced,uptodate,lru
0x000100000000002c              47        0  __RU_l_______________________I___  referenced,uptodate,lru,readahead
0x000000040000002c              14        0  __RU_l_________________d_________  referenced,uptodate,lru,mappedtodisk
0x000000080000002c              30        0  __RU_l__________________P________  referenced,uptodate,lru,private
0x0000000800000040            8124       31  ______A_________________P________  active,private
0x0000000000000040             219        0  ______A__________________________  active
0x0000000800000060               1        0  _____lA_________________P________  lru,active,private
0x0000000000000068             322        1  ___U_lA__________________________  uptodate,lru,active
0x0001000000000068              12        0  ___U_lA______________________I___  uptodate,lru,active,readahead
0x0000000400000068              13        0  ___U_lA________________d_________  uptodate,lru,active,mappedtodisk
0x0000000800000068              12        0  ___U_lA_________________P________  uptodate,lru,active,private
0x000000000000006c             977        3  __RU_lA__________________________  referenced,uptodate,lru,active
0x000100000000006c              48        0  __RU_lA______________________I___  referenced,uptodate,lru,active,readahead
0x000000040000006c               5        0  __RU_lA________________d_________  referenced,uptodate,lru,active,mappedtodisk
0x000000080000006c               3        0  __RU_lA_________________P________  referenced,uptodate,lru,active,private
0x0000000c0000006c               3        0  __RU_lA________________dP________  referenced,uptodate,lru,active,mappedtodisk,private
0x0000000c00000068               1        0  ___U_lA________________dP________  uptodate,lru,active,mappedtodisk,private
0x0000000000004078               1        0  ___UDlA_______b__________________  uptodate,dirty,lru,active,swapbacked
0x000000000000407c              34        0  __RUDlA_______b__________________  referenced,uptodate,dirty,lru,active,swapbacked
0x0000000000000400             538        2  __________B______________________  buddy
0x0000000000000804               1        0  __R________M_____________________  referenced,mmap
0x0000000000000828            1029        4  ___U_l_____M_____________________  uptodate,lru,mmap
0x0001000000000828              43        0  ___U_l_____M_________________I___  uptodate,lru,mmap,readahead
0x000000000000082c             382        1  __RU_l_____M_____________________  referenced,uptodate,lru,mmap
0x000100000000082c              12        0  __RU_l_____M_________________I___  referenced,uptodate,lru,mmap,readahead
0x0000000000000868             192        0  ___U_lA____M_____________________  uptodate,lru,active,mmap
0x0001000000000868              12        0  ___U_lA____M_________________I___  uptodate,lru,active,mmap,readahead
0x000000000000086c             800        3  __RU_lA____M_____________________  referenced,uptodate,lru,active,mmap
0x000100000000086c              31        0  __RU_lA____M_________________I___  referenced,uptodate,lru,active,mmap,readahead
0x0000000000004878               2        0  ___UDlA____M__b__________________  uptodate,dirty,lru,active,mmap,swapbacked
0x0000000000001000             492        1  ____________a____________________  anonymous
0x0000000000005008               2        0  ___U________a_b__________________  uptodate,anonymous,swapbacked
0x0000000000005808               4        0  ___U_______Ma_b__________________  uptodate,mmap,anonymous,swapbacked
0x000000000000580c               1        0  __RU_______Ma_b__________________  referenced,uptodate,mmap,anonymous,swapbacked
0x0000000000005868            2839       11  ___U_lA____Ma_b__________________  uptodate,lru,active,mmap,anonymous,swapbacked
0x000000000000586c              29        0  __RU_lA____Ma_b__________________  referenced,uptodate,lru,active,mmap,anonymous,swapbacked
             total          513968     2007

# ./page-types --raw --list --no-summary --bits reserved
offset  count   flags
0       15      _____________________r___________
31      4       _____________________r___________
159     97      _____________________r___________
4096    2067    _____________________r___________
6752    2390    _____________________r___________
9355    3       _____________________r___________
9728    14526   _____________________r___________

This patch:

Introduce PageHuge(), which identifies huge/gigantic pages by their
dedicated compound destructor functions.

Also move prep_compound_gigantic_page() to hugetlb.c and make
__free_pages_ok() non-static.

Signed-off-by: Wu Fengguang <fengguang.wu@intel.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Andi Kleen <andi@firstfloor.org>
Cc: Matt Mackall <mpm@selenic.com>
Cc: Alexey Dobriyan <adobriyan@gmail.com>
Cc: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-06-16 19:47:36 -07:00
KOSAKI Motohiro 092cead617 page allocator: move free_page_mlock() to page_alloc.c
Currently, free_page_mlock() is only called from page_alloc.c.  Thus, we
can move it to page_alloc.c.

Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Christoph Lameter <cl@linux-foundation.org>
Cc: Pekka Enberg <penberg@cs.helsinki.fi>
Cc: Dave Hansen <dave@linux.vnet.ibm.com>
Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-06-16 19:47:35 -07:00
Mel Gorman da456f14d2 page allocator: do not disable interrupts in free_page_mlock()
free_page_mlock() tests and clears PG_mlocked using locked versions of the
bit operations.  If set, it disables interrupts to update counters and
this happens on every page free even though interrupts are disabled very
shortly afterwards a second time.  This is wasteful.

This patch splits what free_page_mlock() does.  The bit check is still
made.  However, the update of counters is delayed until the interrupts are
disabled and the non-lock version for clearing the bit is used.  One
potential weirdness with this split is that the counters do not get
updated if the bad_page() check is triggered but a system showing bad
pages is getting screwed already.

Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Reviewed-by: Christoph Lameter <cl@linux-foundation.org>
Reviewed-by: Pekka Enberg <penberg@cs.helsinki.fi>
Reviewed-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Nick Piggin <nickpiggin@yahoo.com.au>
Cc: Dave Hansen <dave@linux.vnet.ibm.com>
Acked-by: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-06-16 19:47:34 -07:00
David Howells 33925b25d2 nommu: there is no mlock() for NOMMU, so don't provide the bits
The mlock() facility does not exist for NOMMU since all mappings are
effectively locked anyway, so we don't make the bits available when
they're not useful.

Signed-off-by: David Howells <dhowells@redhat.com>
Reviewed-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Greg Ungerer <gerg@snapgear.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Lee Schermerhorn <lee.schermerhorn@hp.com>
Cc: Enrik Berkhan <Enrik.Berkhan@ge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-04-01 08:59:14 -07:00
Ying Han 4779280d1e mm: make get_user_pages() interruptible
The initial implementation of checking TIF_MEMDIE covers the cases of OOM
killing.  If the process has been OOM killed, the TIF_MEMDIE is set and it
return immediately.  This patch includes:

1.  add the case that the SIGKILL is sent by user processes.  The
   process can try to get_user_pages() unlimited memory even if a user
   process has sent a SIGKILL to it(maybe a monitor find the process
   exceed its memory limit and try to kill it).  In the old
   implementation, the SIGKILL won't be handled until the get_user_pages()
   returns.

2.  change the return value to be ERESTARTSYS.  It makes no sense to
   return ENOMEM if the get_user_pages returned by getting a SIGKILL
   signal.  Considering the general convention for a system call
   interrupted by a signal is ERESTARTNOSYS, so the current return value
   is consistant to that.

Lee:

An unfortunate side effect of "make-get_user_pages-interruptible" is that
it prevents a SIGKILL'd task from munlock-ing pages that it had mlocked,
resulting in freeing of mlocked pages.  Freeing of mlocked pages, in
itself, is not so bad.  We just count them now--altho' I had hoped to
remove this stat and add PG_MLOCKED to the free pages flags check.

However, consider pages in shared libraries mapped by more than one task
that a task mlocked--e.g., via mlockall().  If the task that mlocked the
pages exits via SIGKILL, these pages would be left mlocked and
unevictable.

Proposed fix:

Add another GUP flag to ignore sigkill when calling get_user_pages from
munlock()--similar to Kosaki Motohiro's 'IGNORE_VMA_PERMISSIONS flag for
the same purpose.  We are not actually allocating memory in this case,
which "make-get_user_pages-interruptible" intends to avoid.  We're just
munlocking pages that are already resident and mapped, and we're reusing
get_user_pages() to access those pages.

??  Maybe we should combine 'IGNORE_VMA_PERMISSIONS and '_IGNORE_SIGKILL
into a single flag: GUP_FLAGS_MUNLOCK ???

[Lee.Schermerhorn@hp.com: ignore sigkill in get_user_pages during munlock]
Signed-off-by: Paul Menage <menage@google.com>
Signed-off-by: Ying Han <yinghan@google.com>
Reviewed-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Reviewed-by: Pekka Enberg <penberg@cs.helsinki.fi>
Cc: Nick Piggin <nickpiggin@yahoo.com.au>
Cc: Hugh Dickins <hugh@veritas.com>
Cc: Oleg Nesterov <oleg@tv-sign.ru>
Cc: Lee Schermerhorn <lee.schermerhorn@hp.com>
Cc: Rohit Seth <rohitseth@google.com>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-01-06 15:59:08 -08:00
Hugh Dickins 22b31eec63 badpage: vm_normal_page use print_bad_pte
print_bad_pte() is so far being called only when zap_pte_range() finds
negative page_mapcount, or there's a fault on a pte_file where it does not
belong.  That's weak coverage when we suspect pagetable corruption.

Originally, it was called when vm_normal_page() found an invalid pfn: but
pfn_valid is expensive on some architectures and configurations, so 2.6.24
put that under CONFIG_DEBUG_VM (which doesn't help in the field), then
2.6.26 replaced it by a VM_BUG_ON (likewise).

Reinstate the print_bad_pte() in vm_normal_page(), but use a cheaper test
than pfn_valid(): memmap_init_zone() (used in bootup and hotplug) keep a
__read_mostly note of the highest_memmap_pfn, vm_normal_page() then check
pfn against that.  We could call this pfn_plausible() or pfn_sane(), but I
doubt we'll need it elsewhere: of course it's not reliable, but gives much
stronger pagetable validation on many boxes.

Also use print_bad_pte() when the pte_special bit is found outside a
VM_PFNMAP or VM_MIXEDMAP area, instead of VM_BUG_ON.

Signed-off-by: Hugh Dickins <hugh@veritas.com>
Cc: Nick Piggin <nickpiggin@yahoo.com.au>
Cc: Christoph Lameter <cl@linux-foundation.org>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-01-06 15:59:07 -08:00
Andy Whitcroft 18229df5b6 hugetlb: pull gigantic page initialisation out of the default path
As we can determine exactly when a gigantic page is in use we can optimise
the common regular page cases by pulling out gigantic page initialisation
into its own function.  As gigantic pages are never released to buddy we
do not need a destructor.  This effectivly reverts the previous change to
the main buddy allocator.  It also adds a paranoid check to ensure we
never release gigantic pages from hugetlbfs to the main buddy.

Signed-off-by: Andy Whitcroft <apw@shadowen.org>
Cc: Jon Tollefson <kniht@linux.vnet.ibm.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Nick Piggin <nickpiggin@yahoo.com.au>
Cc: Christoph Lameter <cl@linux-foundation.org>
Cc: <stable@kernel.org>		[2.6.27.x]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-11-06 15:41:18 -08:00
Andy Whitcroft 69d177c2fc hugetlbfs: handle pages higher order than MAX_ORDER
When working with hugepages, hugetlbfs assumes that those hugepages are
smaller than MAX_ORDER.  Specifically it assumes that the mem_map is
contigious and uses that to optimise access to the elements of the mem_map
that represent the hugepage.  Gigantic pages (such as 16GB pages on
powerpc) by definition are of greater order than MAX_ORDER (larger than
MAX_ORDER_NR_PAGES in size).  This means that we can no longer make use of
the buddy alloctor guarentees for the contiguity of the mem_map, which
ensures that the mem_map is at least contigious for maximmally aligned
areas of MAX_ORDER_NR_PAGES pages.

This patch adds new mem_map accessors and iterator helpers which handle
any discontiguity at MAX_ORDER_NR_PAGES boundaries.  It then uses these to
implement gigantic page versions of copy_huge_page and clear_huge_page,
and to allow follow_hugetlb_page handle gigantic pages.

Signed-off-by: Andy Whitcroft <apw@shadowen.org>
Cc: Jon Tollefson <kniht@linux.vnet.ibm.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Nick Piggin <nickpiggin@yahoo.com.au>
Cc: Christoph Lameter <cl@linux-foundation.org>
Cc: <stable@kernel.org>		[2.6.27.x]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-11-06 15:41:18 -08:00
Lee Schermerhorn 985737cf2e mlock: count attempts to free mlocked page
Allow free of mlock()ed pages.  This shouldn't happen, but during
developement, it occasionally did.

This patch allows us to survive that condition, while keeping the
statistics and events correct for debug.

Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com>
Signed-off-by: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-10-20 08:52:31 -07:00
Nick Piggin 5344b7e648 vmstat: mlocked pages statistics
Add NR_MLOCK zone page state, which provides a (conservative) count of
mlocked pages (actually, the number of mlocked pages moved off the LRU).

Reworked by lts to fit in with the modified mlock page support in the
Reclaim Scalability series.

[kosaki.motohiro@jp.fujitsu.com: fix incorrect Mlocked field of /proc/meminfo]
[lee.schermerhorn@hp.com: mlocked-pages: add event counting with statistics]
Signed-off-by: Nick Piggin <npiggin@suse.de>
Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com>
Signed-off-by: Rik van Riel <riel@redhat.com>
Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-10-20 08:52:31 -07:00
Rik van Riel ba470de431 mmap: handle mlocked pages during map, remap, unmap
Originally by Nick Piggin <npiggin@suse.de>

Remove mlocked pages from the LRU using "unevictable infrastructure"
during mmap(), munmap(), mremap() and truncate().  Try to move back to
normal LRU lists on munmap() when last mlocked mapping removed.  Remove
PageMlocked() status when page truncated from file.

[akpm@linux-foundation.org: cleanup]
[kamezawa.hiroyu@jp.fujitsu.com: fix double unlock_page()]
[kosaki.motohiro@jp.fujitsu.com: split LRU: munlock rework]
[lee.schermerhorn@hp.com: mlock: fix __mlock_vma_pages_range comment block]
[akpm@linux-foundation.org: remove bogus kerneldoc token]
Signed-off-by: Nick Piggin <npiggin@suse.de>
Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com>
Signed-off-by: Rik van Riel <riel@redhat.com>
Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: KAMEZAWA Hiroyuki <kamewzawa.hiroyu@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-10-20 08:52:31 -07:00
Nick Piggin b291f00039 mlock: mlocked pages are unevictable
Make sure that mlocked pages also live on the unevictable LRU, so kswapd
will not scan them over and over again.

This is achieved through various strategies:

1) add yet another page flag--PG_mlocked--to indicate that
   the page is locked for efficient testing in vmscan and,
   optionally, fault path.  This allows early culling of
   unevictable pages, preventing them from getting to
   page_referenced()/try_to_unmap().  Also allows separate
   accounting of mlock'd pages, as Nick's original patch
   did.

   Note:  Nick's original mlock patch used a PG_mlocked
   flag.  I had removed this in favor of the PG_unevictable
   flag + an mlock_count [new page struct member].  I
   restored the PG_mlocked flag to eliminate the new
   count field.

2) add the mlock/unevictable infrastructure to mm/mlock.c,
   with internal APIs in mm/internal.h.  This is a rework
   of Nick's original patch to these files, taking into
   account that mlocked pages are now kept on unevictable
   LRU list.

3) update vmscan.c:page_evictable() to check PageMlocked()
   and, if vma passed in, the vm_flags.  Note that the vma
   will only be passed in for new pages in the fault path;
   and then only if the "cull unevictable pages in fault
   path" patch is included.

4) add try_to_unlock() to rmap.c to walk a page's rmap and
   ClearPageMlocked() if no other vmas have it mlocked.
   Reuses as much of try_to_unmap() as possible.  This
   effectively replaces the use of one of the lru list links
   as an mlock count.  If this mechanism let's pages in mlocked
   vmas leak through w/o PG_mlocked set [I don't know that it
   does], we should catch them later in try_to_unmap().  One
   hopes this will be rare, as it will be relatively expensive.

Original mm/internal.h, mm/rmap.c and mm/mlock.c changes:
Signed-off-by: Nick Piggin <npiggin@suse.de>

splitlru: introduce __get_user_pages():

  New munlock processing need to GUP_FLAGS_IGNORE_VMA_PERMISSIONS.
  because current get_user_pages() can't grab PROT_NONE pages theresore it
  cause PROT_NONE pages can't munlock.

[akpm@linux-foundation.org: fix this for pagemap-pass-mm-into-pagewalkers.patch]
[akpm@linux-foundation.org: untangle patch interdependencies]
[akpm@linux-foundation.org: fix things after out-of-order merging]
[hugh@veritas.com: fix page-flags mess]
[lee.schermerhorn@hp.com: fix munlock page table walk - now requires 'mm']
[kosaki.motohiro@jp.fujitsu.com: build fix]
[kosaki.motohiro@jp.fujitsu.com: fix truncate race and sevaral comments]
[kosaki.motohiro@jp.fujitsu.com: splitlru: introduce __get_user_pages()]
Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Rik van Riel <riel@redhat.com>
Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com>
Cc: Nick Piggin <npiggin@suse.de>
Cc: Dave Hansen <dave@linux.vnet.ibm.com>
Cc: Matt Mackall <mpm@selenic.com>
Signed-off-by: Hugh Dickins <hugh@veritas.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-10-20 08:52:30 -07:00
Lee Schermerhorn 894bc31041 Unevictable LRU Infrastructure
When the system contains lots of mlocked or otherwise unevictable pages,
the pageout code (kswapd) can spend lots of time scanning over these
pages.  Worse still, the presence of lots of unevictable pages can confuse
kswapd into thinking that more aggressive pageout modes are required,
resulting in all kinds of bad behaviour.

Infrastructure to manage pages excluded from reclaim--i.e., hidden from
vmscan.  Based on a patch by Larry Woodman of Red Hat.  Reworked to
maintain "unevictable" pages on a separate per-zone LRU list, to "hide"
them from vmscan.

Kosaki Motohiro added the support for the memory controller unevictable
lru list.

Pages on the unevictable list have both PG_unevictable and PG_lru set.
Thus, PG_unevictable is analogous to and mutually exclusive with
PG_active--it specifies which LRU list the page is on.

The unevictable infrastructure is enabled by a new mm Kconfig option
[CONFIG_]UNEVICTABLE_LRU.

A new function 'page_evictable(page, vma)' in vmscan.c tests whether or
not a page may be evictable.  Subsequent patches will add the various
!evictable tests.  We'll want to keep these tests light-weight for use in
shrink_active_list() and, possibly, the fault path.

To avoid races between tasks putting pages [back] onto an LRU list and
tasks that might be moving the page from non-evictable to evictable state,
the new function 'putback_lru_page()' -- inverse to 'isolate_lru_page()'
-- tests the "evictability" of a page after placing it on the LRU, before
dropping the reference.  If the page has become unevictable,
putback_lru_page() will redo the 'putback', thus moving the page to the
unevictable list.  This way, we avoid "stranding" evictable pages on the
unevictable list.

[akpm@linux-foundation.org: fix fallout from out-of-order merge]
[riel@redhat.com: fix UNEVICTABLE_LRU and !PROC_PAGE_MONITOR build]
[nishimura@mxp.nes.nec.co.jp: remove redundant mapping check]
[kosaki.motohiro@jp.fujitsu.com: unevictable-lru-infrastructure: putback_lru_page()/unevictable page handling rework]
[kosaki.motohiro@jp.fujitsu.com: kill unnecessary lock_page() in vmscan.c]
[kosaki.motohiro@jp.fujitsu.com: revert migration change of unevictable lru infrastructure]
[kosaki.motohiro@jp.fujitsu.com: revert to unevictable-lru-infrastructure-kconfig-fix.patch]
[kosaki.motohiro@jp.fujitsu.com: restore patch failure of vmstat-unevictable-and-mlocked-pages-vm-events.patch]
Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com>
Signed-off-by: Rik van Riel <riel@redhat.com>
Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Debugged-by: Benjamin Kidwell <benjkidwell@yahoo.com>
Signed-off-by: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-10-20 08:50:26 -07:00
Nick Piggin 62695a84eb vmscan: move isolate_lru_page() to vmscan.c
On large memory systems, the VM can spend way too much time scanning
through pages that it cannot (or should not) evict from memory.  Not only
does it use up CPU time, but it also provokes lock contention and can
leave large systems under memory presure in a catatonic state.

This patch series improves VM scalability by:

1) putting filesystem backed, swap backed and unevictable pages
   onto their own LRUs, so the system only scans the pages that it
   can/should evict from memory

2) switching to two handed clock replacement for the anonymous LRUs,
   so the number of pages that need to be scanned when the system
   starts swapping is bound to a reasonable number

3) keeping unevictable pages off the LRU completely, so the
   VM does not waste CPU time scanning them. ramfs, ramdisk,
   SHM_LOCKED shared memory segments and mlock()ed VMA pages
   are keept on the unevictable list.

This patch:

isolate_lru_page logically belongs to be in vmscan.c than migrate.c.

It is tough, because we don't need that function without memory migration
so there is a valid argument to have it in migrate.c.  However a
subsequent patch needs to make use of it in the core mm, so we can happily
move it to vmscan.c.

Also, make the function a little more generic by not requiring that it
adds an isolated page to a given list.  Callers can do that.

	Note that we now have '__isolate_lru_page()', that does
	something quite different, visible outside of vmscan.c
	for use with memory controller.  Methinks we need to
	rationalize these names/purposes.	--lts

[akpm@linux-foundation.org: fix mm/memory_hotplug.c build]
Signed-off-by: Nick Piggin <npiggin@suse.de>
Signed-off-by: Rik van Riel <riel@redhat.com>
Signed-off-by: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-10-20 08:50:25 -07:00
Andi Kleen 01ad1c0827 mm: export prep_compound_page to mm
hugetlb will need to get compound pages from bootmem to handle the case of
them being greater than or equal to MAX_ORDER.  Export the constructor
function needed for this.

Acked-by: Adam Litke <agl@us.ibm.com>
Signed-off-by: Andi Kleen <ak@suse.de>
Signed-off-by: Nick Piggin <npiggin@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-24 10:47:17 -07:00
Jan Beulich 42b7772812 mm: remove double indirection on tlb parameter to free_pgd_range() & Co
The double indirection here is not needed anywhere and hence (at least)
confusing.

Signed-off-by: Jan Beulich <jbeulich@novell.com>
Cc: Hugh Dickins <hugh@veritas.com>
Cc: Nick Piggin <npiggin@suse.de>
Cc: Christoph Lameter <cl@linux-foundation.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: "Luck, Tony" <tony.luck@intel.com>
Cc: Paul Mundt <lethal@linux-sh.org>
Cc: "David S. Miller" <davem@davemloft.net>
Acked-by: Jeremy Fitzhardinge <jeremy@goop.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-24 10:47:15 -07:00
Mel Gorman 68ad8df42e mm: print out the zonelists on request for manual verification
This patch prints out the zonelists during boot for manual verification by the
user if the mminit_loglevel is MMINIT_VERIFY or higher.

Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Cc: Christoph Lameter <cl@linux-foundation.org>
Cc: Andy Whitcroft <apw@shadowen.org>
Cc: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-24 10:47:14 -07:00
Mel Gorman 2dbb51c49f mm: make defensive checks around PFN values registered for memory usage
There are a number of different views to how much memory is currently active.
There is the arch-independent zone-sizing view, the bootmem allocator and
memory models view.

Architectures register this information at different times and is not
necessarily in sync particularly with respect to some SPARSEMEM limitations.

This patch introduces mminit_validate_memmodel_limits() which is able to
validate and correct PFN ranges with respect to the memory model.  It is only
SPARSEMEM that currently validates itself.

Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Cc: Christoph Lameter <cl@linux-foundation.org>
Cc: Andy Whitcroft <apw@shadowen.org>
Cc: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-24 10:47:13 -07:00
Mel Gorman 708614e618 mm: verify the page links and memory model
Print out information on how the page flags are being used if mminit_loglevel
is MMINIT_VERIFY or higher and unconditionally performs sanity checks on the
flags regardless of loglevel.

When the page flags are updated with section, node and zone information, a
check are made to ensure the values can be retrieved correctly.  Finally we
confirm that pfn_to_page and page_to_pfn are the correct inverse functions.

[akpm@linux-foundation.org: fix printk warnings]
Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Cc: Christoph Lameter <cl@linux-foundation.org>
Cc: Andy Whitcroft <apw@shadowen.org>
Cc: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-24 10:47:13 -07:00
Mel Gorman 6b74ab97bc mm: add a basic debugging framework for memory initialisation
Boot initialisation is very complex, with significant numbers of
architecture-specific routines, hooks and code ordering.  While significant
amounts of the initialisation is architecture-independent, it trusts the data
received from the architecture layer.  This is a mistake, and has resulted in
a number of difficult-to-diagnose bugs.

This patchset adds some validation and tracing to memory initialisation.  It
also introduces a few basic defensive measures.  The validation code can be
explicitly disabled for embedded systems.

This patch:

Add additional debugging and verification code for memory initialisation.

Once enabled, the verification checks are always run and when required
additional debugging information may be outputted via a mminit_loglevel=
command-line parameter.

The verification code is placed in a new file mm/mm_init.c.  Ideally other mm
initialisation code will be moved here over time.

Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Cc: Christoph Lameter <cl@linux-foundation.org>
Cc: Andy Whitcroft <apw@shadowen.org>
Cc: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-24 10:47:13 -07:00