commit 5b76a3cff0 upstream
When nested virtualization is in use, VMENTER operations from the nested
hypervisor into the nested guest will always be processed by the bare metal
hypervisor, and KVM's "conditional cache flushes" mode in particular does a
flush on nested vmentry. Therefore, include the "skip L1D flush on
vmentry" bit in KVM's suggested ARCH_CAPABILITIES setting.
Add the relevant Documentation.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 5833113613 upstream
Dave reported, that it's not confirmed that Yonah processors are
unaffected. Remove them from the list.
Reported-by: ave Hansen <dave.hansen@intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 1949f9f497 upstream
Fix spelling and other typos
Signed-off-by: Tony Luck <tony.luck@intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 3ec8ce5d86 upstream
Add documentation for the L1TF vulnerability and the mitigation mechanisms:
- Explain the problem and risks
- Document the mitigation mechanisms
- Document the command line controls
- Document the sysfs files
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Reviewed-by: Josh Poimboeuf <jpoimboe@redhat.com>
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Link: https://lkml.kernel.org/r/20180713142323.287429944@linutronix.de
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit d90a7a0ec8 upstream
Introduce the 'l1tf=' kernel command line option to allow for boot-time
switching of mitigation that is used on processors affected by L1TF.
The possible values are:
full
Provides all available mitigations for the L1TF vulnerability. Disables
SMT and enables all mitigations in the hypervisors. SMT control via
/sys/devices/system/cpu/smt/control is still possible after boot.
Hypervisors will issue a warning when the first VM is started in
a potentially insecure configuration, i.e. SMT enabled or L1D flush
disabled.
full,force
Same as 'full', but disables SMT control. Implies the 'nosmt=force'
command line option. sysfs control of SMT and the hypervisor flush
control is disabled.
flush
Leaves SMT enabled and enables the conditional hypervisor mitigation.
Hypervisors will issue a warning when the first VM is started in a
potentially insecure configuration, i.e. SMT enabled or L1D flush
disabled.
flush,nosmt
Disables SMT and enables the conditional hypervisor mitigation. SMT
control via /sys/devices/system/cpu/smt/control is still possible
after boot. If SMT is reenabled or flushing disabled at runtime
hypervisors will issue a warning.
flush,nowarn
Same as 'flush', but hypervisors will not warn when
a VM is started in a potentially insecure configuration.
off
Disables hypervisor mitigations and doesn't emit any warnings.
Default is 'flush'.
Let KVM adhere to these semantics, which means:
- 'lt1f=full,force' : Performe L1D flushes. No runtime control
possible.
- 'l1tf=full'
- 'l1tf-flush'
- 'l1tf=flush,nosmt' : Perform L1D flushes and warn on VM start if
SMT has been runtime enabled or L1D flushing
has been run-time enabled
- 'l1tf=flush,nowarn' : Perform L1D flushes and no warnings are emitted.
- 'l1tf=off' : L1D flushes are not performed and no warnings
are emitted.
KVM can always override the L1D flushing behavior using its 'vmentry_l1d_flush'
module parameter except when lt1f=full,force is set.
This makes KVM's private 'nosmt' option redundant, and as it is a bit
non-systematic anyway (this is something to control globally, not on
hypervisor level), remove that option.
Add the missing Documentation entry for the l1tf vulnerability sysfs file
while at it.
Signed-off-by: Jiri Kosina <jkosina@suse.cz>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Jiri Kosina <jkosina@suse.cz>
Reviewed-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Reviewed-by: Josh Poimboeuf <jpoimboe@redhat.com>
Link: https://lkml.kernel.org/r/20180713142323.202758176@linutronix.de
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit a399477e52 upstream
Add a mitigation mode parameter "vmentry_l1d_flush" for CVE-2018-3620, aka
L1 terminal fault. The valid arguments are:
- "always" L1D cache flush on every VMENTER.
- "cond" Conditional L1D cache flush, explained below
- "never" Disable the L1D cache flush mitigation
"cond" is trying to avoid L1D cache flushes on VMENTER if the code executed
between VMEXIT and VMENTER is considered safe, i.e. is not bringing any
interesting information into L1D which might exploited.
[ tglx: Split out from a larger patch ]
Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 26acfb666a upstream
If the L1TF CPU bug is present we allow the KVM module to be loaded as the
major of users that use Linux and KVM have trusted guests and do not want a
broken setup.
Cloud vendors are the ones that are uncomfortable with CVE 2018-3620 and as
such they are the ones that should set nosmt to one.
Setting 'nosmt' means that the system administrator also needs to disable
SMT (Hyper-threading) in the BIOS, or via the 'nosmt' command line
parameter, or via the /sys/devices/system/cpu/smt/control. See commit
05736e4ac1 ("cpu/hotplug: Provide knobs to control SMT").
Other mitigations are to use task affinity, cpu sets, interrupt binding,
etc - anything to make sure that _only_ the same guests vCPUs are running
on sibling threads.
Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 506a66f374 upstream
Dave Hansen reported, that it's outright dangerous to keep SMT siblings
disabled completely so they are stuck in the BIOS and wait for SIPI.
The reason is that Machine Check Exceptions are broadcasted to siblings and
the soft disabled sibling has CR4.MCE = 0. If a MCE is delivered to a
logical core with CR4.MCE = 0, it asserts IERR#, which shuts down or
reboots the machine. The MCE chapter in the SDM contains the following
blurb:
Because the logical processors within a physical package are tightly
coupled with respect to shared hardware resources, both logical
processors are notified of machine check errors that occur within a
given physical processor. If machine-check exceptions are enabled when
a fatal error is reported, all the logical processors within a physical
package are dispatched to the machine-check exception handler. If
machine-check exceptions are disabled, the logical processors enter the
shutdown state and assert the IERR# signal. When enabling machine-check
exceptions, the MCE flag in control register CR4 should be set for each
logical processor.
Reverting the commit which ignores siblings at enumeration time solves only
half of the problem. The core cpuhotplug logic needs to be adjusted as
well.
This thoughtful engineered mechanism also turns the boot process on all
Intel HT enabled systems into a MCE lottery. MCE is enabled on the boot CPU
before the secondary CPUs are brought up. Depending on the number of
physical cores the window in which this situation can happen is smaller or
larger. On a HSW-EX it's about 750ms:
MCE is enabled on the boot CPU:
[ 0.244017] mce: CPU supports 22 MCE banks
The corresponding sibling #72 boots:
[ 1.008005] .... node #0, CPUs: #72
That means if an MCE hits on physical core 0 (logical CPUs 0 and 72)
between these two points the machine is going to shutdown. At least it's a
known safe state.
It's obvious that the early boot can be hit by an MCE as well and then runs
into the same situation because MCEs are not yet enabled on the boot CPU.
But after enabling them on the boot CPU, it does not make any sense to
prevent the kernel from recovering.
Adjust the nosmt kernel parameter documentation as well.
Reverts: 2207def700 ("x86/apic: Ignore secondary threads if nosmt=force")
Reported-by: Dave Hansen <dave.hansen@intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Tony Luck <tony.luck@intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 05736e4ac1 upstream
Provide a command line and a sysfs knob to control SMT.
The command line options are:
'nosmt': Enumerate secondary threads, but do not online them
'nosmt=force': Ignore secondary threads completely during enumeration
via MP table and ACPI/MADT.
The sysfs control file has the following states (read/write):
'on': SMT is enabled. Secondary threads can be freely onlined
'off': SMT is disabled. Secondary threads, even if enumerated
cannot be onlined
'forceoff': SMT is permanentely disabled. Writes to the control
file are rejected.
'notsupported': SMT is not supported by the CPU
The command line option 'nosmt' sets the sysfs control to 'off'. This
can be changed to 'on' to reenable SMT during runtime.
The command line option 'nosmt=force' sets the sysfs control to
'forceoff'. This cannot be changed during runtime.
When SMT is 'on' and the control file is changed to 'off' then all online
secondary threads are offlined and attempts to online a secondary thread
later on are rejected.
When SMT is 'off' and the control file is changed to 'on' then secondary
threads can be onlined again. The 'off' -> 'on' transition does not
automatically online the secondary threads.
When the control file is set to 'forceoff', the behaviour is the same as
setting it to 'off', but the operation is irreversible and later writes to
the control file are rejected.
When the control status is 'notsupported' then writes to the control file
are rejected.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Acked-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit a43ae4dfe5 upstream.
On a system where the firmware implements ARCH_WORKAROUND_2,
it may be useful to either permanently enable or disable the
workaround for cases where the user decides that they'd rather
not get a trap overhead, and keep the mitigation permanently
on or off instead of switching it on exception entry/exit.
In any case, default to the mitigation being enabled.
Reviewed-by: Julien Grall <julien.grall@arm.com>
Reviewed-by: Mark Rutland <mark.rutland@arm.com>
Acked-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit f21b53b20c upstream
Unless explicitly opted out of, anything running under seccomp will have
SSB mitigations enabled. Choosing the "prctl" mode will disable this.
[ tglx: Adjusted it to the new arch_seccomp_spec_mitigate() mechanism ]
Signed-off-by: Kees Cook <keescook@chromium.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit a73ec77ee1 upstream
Add prctl based control for Speculative Store Bypass mitigation and make it
the default mitigation for Intel and AMD.
Andi Kleen provided the following rationale (slightly redacted):
There are multiple levels of impact of Speculative Store Bypass:
1) JITed sandbox.
It cannot invoke system calls, but can do PRIME+PROBE and may have call
interfaces to other code
2) Native code process.
No protection inside the process at this level.
3) Kernel.
4) Between processes.
The prctl tries to protect against case (1) doing attacks.
If the untrusted code can do random system calls then control is already
lost in a much worse way. So there needs to be system call protection in
some way (using a JIT not allowing them or seccomp). Or rather if the
process can subvert its environment somehow to do the prctl it can already
execute arbitrary code, which is much worse than SSB.
To put it differently, the point of the prctl is to not allow JITed code
to read data it shouldn't read from its JITed sandbox. If it already has
escaped its sandbox then it can already read everything it wants in its
address space, and do much worse.
The ability to control Speculative Store Bypass allows to enable the
protection selectively without affecting overall system performance.
Based on an initial patch from Tim Chen. Completely rewritten.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 24f7fc83b9 upstream
Contemporary high performance processors use a common industry-wide
optimization known as "Speculative Store Bypass" in which loads from
addresses to which a recent store has occurred may (speculatively) see an
older value. Intel refers to this feature as "Memory Disambiguation" which
is part of their "Smart Memory Access" capability.
Memory Disambiguation can expose a cache side-channel attack against such
speculatively read values. An attacker can create exploit code that allows
them to read memory outside of a sandbox environment (for example,
malicious JavaScript in a web page), or to perform more complex attacks
against code running within the same privilege level, e.g. via the stack.
As a first step to mitigate against such attacks, provide two boot command
line control knobs:
nospec_store_bypass_disable
spec_store_bypass_disable=[off,auto,on]
By default affected x86 processors will power on with Speculative
Store Bypass enabled. Hence the provided kernel parameters are written
from the point of view of whether to enable a mitigation or not.
The parameters are as follows:
- auto - Kernel detects whether your CPU model contains an implementation
of Speculative Store Bypass and picks the most appropriate
mitigation.
- on - disable Speculative Store Bypass
- off - enable Speculative Store Bypass
[ tglx: Reordered the checks so that the whole evaluation is not done
when the CPU does not support RDS ]
Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit 686140a1a9 ]
Implement CPU alternatives, which allows to optionally patch newer
instructions at runtime, based on CPU facilities availability.
A new kernel boot parameter "noaltinstr" disables patching.
Current implementation is derived from x86 alternatives. Although
ideal instructions padding (when altinstr is longer then oldinstr)
is added at compile time, and no oldinstr nops optimization has to be
done at runtime. Also couple of compile time sanity checks are done:
1. oldinstr and altinstr must be <= 254 bytes long,
2. oldinstr and altinstr must not have an odd length.
alternative(oldinstr, altinstr, facility);
alternative_2(oldinstr, altinstr1, facility1, altinstr2, facility2);
Both compile time and runtime padding consists of either 6/4/2 bytes nop
or a jump (brcl) + 2 bytes nop filler if padding is longer then 6 bytes.
.altinstructions and .altinstr_replacement sections are part of
__init_begin : __init_end region and are freed after initialization.
Signed-off-by: Vasily Gorbik <gor@linux.vnet.ibm.com>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 12c69f1e94
The 'noreplace-paravirt' option disables paravirt patching, leaving the
original pv indirect calls in place.
That's highly incompatible with retpolines, unless we want to uglify
paravirt even further and convert the paravirt calls to retpolines.
As far as I can tell, the option doesn't seem to be useful for much
other than introducing surprising corner cases and making the kernel
vulnerable to Spectre v2. It was probably a debug option from the early
paravirt days. So just remove it.
Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Juergen Gross <jgross@suse.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Ashok Raj <ashok.raj@intel.com>
Cc: Greg KH <gregkh@linuxfoundation.org>
Cc: Jun Nakajima <jun.nakajima@intel.com>
Cc: Tim Chen <tim.c.chen@linux.intel.com>
Cc: Rusty Russell <rusty@rustcorp.com.au>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Asit Mallick <asit.k.mallick@intel.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Jason Baron <jbaron@akamai.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Alok Kataria <akataria@vmware.com>
Cc: Arjan Van De Ven <arjan.van.de.ven@intel.com>
Cc: David Woodhouse <dwmw2@infradead.org>
Cc: Dan Williams <dan.j.williams@intel.com>
Link: https://lkml.kernel.org/r/20180131041333.2x6blhxirc2kclrq@treble
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit da28512156 upstream.
Add a spectre_v2= option to select the mitigation used for the indirect
branch speculation vulnerability.
Currently, the only option available is retpoline, in its various forms.
This will be expanded to cover the new IBRS/IBPB microcode features.
The RETPOLINE_AMD feature relies on a serializing LFENCE for speculation
control. For AMD hardware, only set RETPOLINE_AMD if LFENCE is a
serializing instruction, which is indicated by the LFENCE_RDTSC feature.
[ tglx: Folded back the LFENCE/AMD fixes and reworked it so IBRS
integration becomes simple ]
Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: gnomes@lxorguk.ukuu.org.uk
Cc: Rik van Riel <riel@redhat.com>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: thomas.lendacky@amd.com
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Jiri Kosina <jikos@kernel.org>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Kees Cook <keescook@google.com>
Cc: Tim Chen <tim.c.chen@linux.intel.com>
Cc: Greg Kroah-Hartman <gregkh@linux-foundation.org>
Cc: Paul Turner <pjt@google.com>
Link: https://lkml.kernel.org/r/1515707194-20531-5-git-send-email-dwmw@amazon.co.uk
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 01c9b17bf6 upstream.
Add some details about how PTI works, what some of the downsides
are, and how to debug it when things go wrong.
Also document the kernel parameter: 'pti/nopti'.
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Randy Dunlap <rdunlap@infradead.org>
Reviewed-by: Kees Cook <keescook@chromium.org>
Cc: Moritz Lipp <moritz.lipp@iaik.tugraz.at>
Cc: Daniel Gruss <daniel.gruss@iaik.tugraz.at>
Cc: Michael Schwarz <michael.schwarz@iaik.tugraz.at>
Cc: Richard Fellner <richard.fellner@student.tugraz.at>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Hugh Dickins <hughd@google.com>
Cc: Andi Lutomirsky <luto@kernel.org>
Link: https://lkml.kernel.org/r/20180105174436.1BC6FA2B@viggo.jf.intel.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-----BEGIN PGP SIGNATURE-----
iQJIBAABCAAyFiEEcQCq365ubpQNLgrWVeRaWujKfIoFAlmoS/wUHHBhdWxAcGF1
bC1tb29yZS5jb20ACgkQVeRaWujKfIqubxAAhkcmOgf+bh881VOWjkrl0MpO6n30
LAyLHNpa95xYw7AuxSrx+XP21hZHVWOSPEZdDjC+BOTToqv025XyYUAh+vvhm1pc
HgT7oNOyfEnGdXG8VtluC2zhSunw/gDz7uoUh7+dHpVqa+NayRqaopNY+4tgtVjT
6/DMwfvonTD5GWaNxraFZLaOENXAjbdVBcqoHhnY9cp4w5uGQ3rt6dFpLpW/gW7n
/fUzsjnLTztrsRx3nyEkwJuo/pxugbmZU5sjVgCFd7P729CfBVKqoToIh0CqJfj6
s4RIb//XmRxxiTF1EO7N1suPaqnESjT+Ua3moIuEixs4QjiEu25TNZy8K0b2zLsL
sTt40F5KAbKYXH/WyZxEtPf0HOUwL68oFZ+c4VYcCK6LwJmBLnfhan4BSZgH0/EO
rBIlb5O1znyfuGmLnjUfn+BlPuP35PhRpZVWP2eLZtOC4lY+yaVqzauFIEY/wY96
dYM6YwtJYuZ3C8sQxjT6UWuOYyj/02EgPbvlS7nv4zp1pZNnZ0dx8sfEu6FNeakY
QZAaI4oDvkpj7x4a0biNinacCYIUacRDF63jcKQnaNp3F3Nf1Vh4DKQWbFLfMidN
luWsEsVrPfLynUMZLq3KVUg825bTQw1MapqzlADmOyX6Dq/87/a+nY9IXWOH9TSm
fJjuSsMAtnui1/k=
=/6oy
-----END PGP SIGNATURE-----
Merge tag 'selinux-pr-20170831' of git://git.kernel.org/pub/scm/linux/kernel/git/pcmoore/selinux
Pull selinux updates from Paul Moore:
"A relatively quiet period for SELinux, 11 patches with only two/three
having any substantive changes.
These noteworthy changes include another tweak to the NNP/nosuid
handling, per-file labeling for cgroups, and an object class fix for
AF_UNIX/SOCK_RAW sockets; the rest of the changes are minor tweaks or
administrative updates (Stephen's email update explains the file
explosion in the diffstat).
Everything passes the selinux-testsuite"
[ Also a couple of small patches from the security tree from Tetsuo
Handa for Tomoyo and LSM cleanup. The separation of security policy
updates wasn't all that clean - Linus ]
* tag 'selinux-pr-20170831' of git://git.kernel.org/pub/scm/linux/kernel/git/pcmoore/selinux:
selinux: constify nf_hook_ops
selinux: allow per-file labeling for cgroupfs
lsm_audit: update my email address
selinux: update my email address
MAINTAINERS: update the NetLabel and Labeled Networking information
selinux: use GFP_NOWAIT in the AVC kmem_caches
selinux: Generalize support for NNP/nosuid SELinux domain transitions
selinux: genheaders should fail if too many permissions are defined
selinux: update the selinux info in MAINTAINERS
credits: update Paul Moore's info
selinux: Assign proper class to PF_UNIX/SOCK_RAW sockets
tomoyo: Update URLs in Documentation/admin-guide/LSM/tomoyo.rst
LSM: Remove security_task_create() hook.
- support for HSDK board hosting a Quad core HS38x4 based SoC running @ 1 GHz
(and some prerrquisite changes such as ability to scoot the kernel code/data
from start of memory map etc)
- Quite a few updates for EZChip (Mellanox) platform
- Fixes to fault/exception printing
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQIcBAABAgAGBQJZstaxAAoJEGnX8d3iisJe5I0QAIExIdU5/V/bgJ7EJJaa6qW4
VxB5HXzbwOuIx/3i/uv4AwBIoeZIzuRQnjwf2dzTJms5vjT2zR08DGYIBmtSAA23
ZUmpZVd865IItLCRM7WOerP6B6gaHaObzNlZoo2d8rVnz0fruc5Td4PDC1Esfs7D
vA4aITbiG6FsJMYFeYR6IKJbM8D1CmB2Gm1gEPIifniJ9dy/V9Xi5ttvISpVJSNx
QMb6PDHVEpkOBypUEJKeoClFZlkeqscejjXmZ3QrhoeHM//3hX8MdvyvFBmoCY4t
YpmmrfmoCupwFFn7+XDwYqDyYvJk/H84n64tUcpM7PLqCuw4BaMhd3KTjkTwvsnN
H5NAhqbHIW3r4a9esn53yvgY8zk9i6U7qmhKpEwkUQTtUZ7XrdfL1H1t08cqtxPX
/eFBkeKNshJy8EU02MewtxvWXON3RoJC3qgHoLkrj+iq5HTQjaDEahbQNm+rnXFI
EdRMBwPX2sXOvB/m/jQYjz6QM1QTl6zHy+tXbBpATIqgRxsp6SIInqGmq7fC032a
K7zPWo2Vf2LLl4ifhFJaYwbrQotqDGe/F72K1C5RcWKLnhMPdLgZ4Lwf0NcJTeDt
DjmqUFXwNdQ2Ydw0B9JxeTddVCzdLHPQqxOOvvBI0vvgsF8AFmAmx2QhMdQTsZJr
73mD3udrQN48yYzAIZQf
=w8CJ
-----END PGP SIGNATURE-----
Merge tag 'arc-4.14-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/vgupta/arc
Pull ARC updates from Vineet Gupta:
- Support for HSDK board hosting a Quad core HS38x4 based SoC running
@1GHz (and some prerrquisite changes such as ability to scoot the
kernel code/data from start of memory map etc)
- Quite a few updates for EZChip (Mellanox) platform
- Fixes to fault/exception printing
* tag 'arc-4.14-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/vgupta/arc: (26 commits)
ARC: Re-enable MMU upon Machine Check exception
ARC: Show fault information passed to show_kernel_fault_diag()
ARC: [plat-hsdk] initial port for HSDK board
ARC: mm: Decouple RAM base address from kernel link address
ARCv2: IOC: Tighten up the contraints (specifically base / size alignment)
ARC: [plat-axs103] refactor the DT fudging code
ARC: [plat-axs103] use clk driver #2: Add core pll node to DT to manage cpu clk
ARC: [plat-axs103] use clk driver #1: Get rid of platform specific cpu clk setting
ARCv2: SLC: provide a line based flush routine for debugging
ARC: Hardcode ARCH_DMA_MINALIGN to max line length we may have
ARC: [plat-eznps] handle extra aux regs #2: kernel/entry exit
ARC: [plat-eznps] handle extra aux regs #1: save/restore on context switch
ARC: [plat-eznps] avoid toggling of DPC register
ARC: [plat-eznps] Update the init sequence of aux regs per cpu.
ARC: [plat-eznps] new command line argument for HW scheduler at MTM
ARC: set boot print log level to PR_INFO
ARC: [plat-eznps] Handle user memory error same in simulation and silicon
ARC: [plat-eznps] use schd.wft instruction instead of sleep at idle task
ARC: create cpu specific version of arch_cpu_idle()
ARC: [plat-eznps] spinlock aware for MTM
...
Patch series "cleanup zonelists initialization", v1.
This is aimed at cleaning up the zonelists initialization code we have
but the primary motivation was bug report [2] which got resolved but the
usage of stop_machine is just too ugly to live. Most patches are
straightforward but 3 of them need a special consideration.
Patch 1 removes zone ordered zonelists completely. I am CCing linux-api
because this is a user visible change. As I argue in the patch
description I do not think we have a strong usecase for it these days.
I have kept sysctl in place and warn into the log if somebody tries to
configure zone lists ordering. If somebody has a real usecase for it we
can revert this patch but I do not expect anybody will actually notice
runtime differences. This patch is not strictly needed for the rest but
it made patch 6 easier to implement.
Patch 7 removes stop_machine from build_all_zonelists without adding any
special synchronization between iterators and updater which I _believe_
is acceptable as explained in the changelog. I hope I am not missing
anything.
Patch 8 then removes zonelists_mutex which is kind of ugly as well and
not really needed AFAICS but a care should be taken when double checking
my thinking.
This patch (of 9):
Supporting zone ordered zonelists costs us just a lot of code while the
usefulness is arguable if existent at all. Mel has already made node
ordering default on 64b systems. 32b systems are still using
ZONELIST_ORDER_ZONE because it is considered better to fallback to a
different NUMA node rather than consume precious lowmem zones.
This argument is, however, weaken by the fact that the memory reclaim
has been reworked to be node rather than zone oriented. This means that
lowmem requests have to skip over all highmem pages on LRUs already and
so zone ordering doesn't save the reclaim time much. So the only
advantage of the zone ordering is under a light memory pressure when
highmem requests do not ever hit into lowmem zones and the lowmem
pressure doesn't need to reclaim.
Considering that 32b NUMA systems are rather suboptimal already and it
is generally advisable to use 64b kernel on such a HW I believe we
should rather care about the code maintainability and just get rid of
ZONELIST_ORDER_ZONE altogether. Keep systcl in place and warn if
somebody tries to set zone ordering either from kernel command line or
the sysctl.
[mhocko@suse.com: reading vm.numa_zonelist_order will never terminate]
Link: http://lkml.kernel.org/r/20170721143915.14161-2-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Acked-by: Mel Gorman <mgorman@suse.de>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Joonsoo Kim <js1304@gmail.com>
Cc: Shaohua Li <shaohua.li@intel.com>
Cc: Toshi Kani <toshi.kani@hpe.com>
Cc: Abdul Haleem <abdhalee@linux.vnet.ibm.com>
Cc: <linux-api@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
- Drop the P-state selection algorithm based on a PID controller
from intel_pstate and make it use the same P-state selection
method (based on the CPU load) for all types of systems in the
active mode (Rafael Wysocki, Srinivas Pandruvada).
- Rework the cpufreq core and governors to make it possible to
take cross-CPU utilization updates into account and modify the
schedutil governor to actually do so (Viresh Kumar).
- Clean up the handling of transition latency information in the
cpufreq core and untangle it from the information on which drivers
cannot do dynamic frequency switching (Viresh Kumar).
- Add support for new SoCs (MT2701/MT7623 and MT7622) to the
mediatek cpufreq driver and update its DT bindings (Sean Wang).
- Modify the cpufreq dt-platdev driver to autimatically create
cpufreq devices for the new (v2) Operating Performance Points
(OPP) DT bindings and update its whitelist of supported systems
(Viresh Kumar, Shubhrajyoti Datta, Marc Gonzalez, Khiem Nguyen,
Finley Xiao).
- Add support for Ux500 to the cpufreq-dt driver and drop the
obsolete dbx500 cpufreq driver (Linus Walleij, Arnd Bergmann).
- Add new SoC (R8A7795) support to the cpufreq rcar driver (Khiem
Nguyen).
- Fix and clean up assorted issues in the cpufreq drivers and core
(Arvind Yadav, Christophe Jaillet, Colin Ian King, Gustavo Silva,
Julia Lawall, Leonard Crestez, Rob Herring, Sudeep Holla).
- Update the IO-wait boost handling in the schedutil governor to
make it less aggressive (Joel Fernandes).
- Rework system suspend diagnostics to make it print fewer messages
to the kernel log by default, add a sysfs knob to allow more
suspend-related messages to be printed and add Low Power S0 Idle
constraints checks to the ACPI suspend-to-idle code (Rafael
Wysocki, Srinivas Pandruvada).
- Prefer suspend-to-idle over S3 on ACPI-based systems with the
ACPI_FADT_LOW_POWER_S0 flag set and the Low Power Idle S0 _DSM
interface present in the ACPI tables (Rafael Wysocki).
- Update documentation related to system sleep and rename a number
of items in the code to make it cleare that they are related to
suspend-to-idle (Rafael Wysocki).
- Export a variable allowing device drivers to check the target
system sleep state from the core system suspend code (Florian
Fainelli).
- Clean up the cpuidle subsystem to handle the polling state on
x86 in a more straightforward way and to use %pOF instead of
full_name (Rafael Wysocki, Rob Herring).
- Update the devfreq framework to fix and clean up a few minor
issues (Chanwoo Choi, Rob Herring).
- Extend diagnostics in the generic power domains (genpd) framework
and clean it up slightly (Thara Gopinath, Rob Herring).
- Fix and clean up a couple of issues in the operating performance
points (OPP) framework (Viresh Kumar, Waldemar Rymarkiewicz).
- Add support for RV1108 to the rockchip-io Adaptive Voltage Scaling
(AVS) driver (David Wu).
- Fix the usage of notifiers in CPU power management on some
platforms (Alex Shi).
- Update the pm-graph system suspend/hibernation and boot profiling
utility (Todd Brandt).
- Make it possible to run the cpupower utility without CPU0 (Prarit
Bhargava).
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v2
iQIcBAABCAAGBQJZrcDJAAoJEILEb/54YlRx9FUQAIUKvWBAARc61ZIZXjbqZF1v
aEMOBuksFns0CMekdptSic6n4wc81E/XYMS8yDhOOMpyDzfAZsTWjmu+gKwN7w3l
E/yf/NVlhob9JZ7MqGgqD4EUFfFIaKBXPlWFdDi2rdCUXE2L8xJ7rla8i7zyZlc5
pYHfAppBbF4qUcEY4OoOVOOGRZCfMdiLXj0iZOhMX8Y6yLBRk/AjnVADYsF33hoj
gBEfomU+H0K5V8nQEp0ZFKDArPwL+oElHQj6i+nxBpGfPM5evvLXhHOyR6AsldJ5
J4YI1kMuQNSCmvHMqOTxTYyJf8Jcf3Fj4wcjwaVMVGceY1lz6McAKknnFnCqCvz+
mskn84gFCBCM8EoJDqRf0b9MQHcuRyQKM+yw4tjnR9r8yd32erb85ZWFHcPWYhCT
fZatNOwFFv2MU+2vo5J3yeUNSWIKT+uBjy+tKPbrDkUwpKZVRj3Oj+hP3Mq9NE8U
YBqltsj7tmrdA634zI8C7jfS6wF221S0fId/iPszwmPJaVn/lq8Ror7pWL5YI8U7
SCJFjiqDiGmAcQEkuWwFAQnscZkyHpO+Y3A+jfXl/izoaZETaI5+ceIHBaocm3+5
XrOOpHS3ik8EHf9ji0KFCKZ/pYDwllday3cBQPWo3sMIzpQ2lrjbqdnE1cVnBrld
OtHZAeD/jLUXuY6XW2jN
=mAiV
-----END PGP SIGNATURE-----
Merge tag 'pm-4.14-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm
Pull power management updates from Rafael Wysocki:
"This time (again) cpufreq gets the majority of changes which mostly
are driver updates (including a major consolidation of intel_pstate),
some schedutil governor modifications and core cleanups.
There also are some changes in the system suspend area, mostly related
to diagnostics and debug messages plus some renames of things related
to suspend-to-idle. One major change here is that suspend-to-idle is
now going to be preferred over S3 on systems where the ACPI tables
indicate to do so and provide requsite support (the Low Power Idle S0
_DSM in particular). The system sleep documentation and the tools
related to it are updated too.
The rest is a few cpuidle changes (nothing major), devfreq updates,
generic power domains (genpd) framework updates and a few assorted
modifications elsewhere.
Specifics:
- Drop the P-state selection algorithm based on a PID controller from
intel_pstate and make it use the same P-state selection method
(based on the CPU load) for all types of systems in the active mode
(Rafael Wysocki, Srinivas Pandruvada).
- Rework the cpufreq core and governors to make it possible to take
cross-CPU utilization updates into account and modify the schedutil
governor to actually do so (Viresh Kumar).
- Clean up the handling of transition latency information in the
cpufreq core and untangle it from the information on which drivers
cannot do dynamic frequency switching (Viresh Kumar).
- Add support for new SoCs (MT2701/MT7623 and MT7622) to the mediatek
cpufreq driver and update its DT bindings (Sean Wang).
- Modify the cpufreq dt-platdev driver to autimatically create
cpufreq devices for the new (v2) Operating Performance Points (OPP)
DT bindings and update its whitelist of supported systems (Viresh
Kumar, Shubhrajyoti Datta, Marc Gonzalez, Khiem Nguyen, Finley
Xiao).
- Add support for Ux500 to the cpufreq-dt driver and drop the
obsolete dbx500 cpufreq driver (Linus Walleij, Arnd Bergmann).
- Add new SoC (R8A7795) support to the cpufreq rcar driver (Khiem
Nguyen).
- Fix and clean up assorted issues in the cpufreq drivers and core
(Arvind Yadav, Christophe Jaillet, Colin Ian King, Gustavo Silva,
Julia Lawall, Leonard Crestez, Rob Herring, Sudeep Holla).
- Update the IO-wait boost handling in the schedutil governor to make
it less aggressive (Joel Fernandes).
- Rework system suspend diagnostics to make it print fewer messages
to the kernel log by default, add a sysfs knob to allow more
suspend-related messages to be printed and add Low Power S0 Idle
constraints checks to the ACPI suspend-to-idle code (Rafael
Wysocki, Srinivas Pandruvada).
- Prefer suspend-to-idle over S3 on ACPI-based systems with the
ACPI_FADT_LOW_POWER_S0 flag set and the Low Power Idle S0 _DSM
interface present in the ACPI tables (Rafael Wysocki).
- Update documentation related to system sleep and rename a number of
items in the code to make it cleare that they are related to
suspend-to-idle (Rafael Wysocki).
- Export a variable allowing device drivers to check the target
system sleep state from the core system suspend code (Florian
Fainelli).
- Clean up the cpuidle subsystem to handle the polling state on x86
in a more straightforward way and to use %pOF instead of full_name
(Rafael Wysocki, Rob Herring).
- Update the devfreq framework to fix and clean up a few minor issues
(Chanwoo Choi, Rob Herring).
- Extend diagnostics in the generic power domains (genpd) framework
and clean it up slightly (Thara Gopinath, Rob Herring).
- Fix and clean up a couple of issues in the operating performance
points (OPP) framework (Viresh Kumar, Waldemar Rymarkiewicz).
- Add support for RV1108 to the rockchip-io Adaptive Voltage Scaling
(AVS) driver (David Wu).
- Fix the usage of notifiers in CPU power management on some
platforms (Alex Shi).
- Update the pm-graph system suspend/hibernation and boot profiling
utility (Todd Brandt).
- Make it possible to run the cpupower utility without CPU0 (Prarit
Bhargava)"
* tag 'pm-4.14-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm: (87 commits)
cpuidle: Make drivers initialize polling state
cpuidle: Move polling state initialization code to separate file
cpuidle: Eliminate the CPUIDLE_DRIVER_STATE_START symbol
cpufreq: imx6q: Fix imx6sx low frequency support
cpufreq: speedstep-lib: make several arrays static, makes code smaller
PM: docs: Delete the obsolete states.txt document
PM: docs: Describe high-level PM strategies and sleep states
PM / devfreq: Fix memory leak when fail to register device
PM / devfreq: Add dependency on PM_OPP
PM / devfreq: Move private devfreq_update_stats() into devfreq
PM / devfreq: Convert to using %pOF instead of full_name
PM / AVS: rockchip-io: add io selectors and supplies for RV1108
cpufreq: ti: Fix 'of_node_put' being called twice in error handling path
cpufreq: dt-platdev: Drop few entries from whitelist
cpufreq: dt-platdev: Automatically create cpufreq device with OPP v2
ARM: ux500: don't select CPUFREQ_DT
cpuidle: Convert to using %pOF instead of full_name
cpufreq: Convert to using %pOF instead of full_name
PM / Domains: Convert to using %pOF instead of full_name
cpufreq: Cap the default transition delay value to 10 ms
...
Here is the big char/misc driver update for 4.14-rc1.
Lots of different stuff in here, it's been an active development cycle
for some reason. Highlights are:
- updated binder driver, this brings binder up to date with what
shipped in the Android O release, plus some more changes that
happened since then that are in the Android development trees.
- coresight updates and fixes
- mux driver file renames to be a bit "nicer"
- intel_th driver updates
- normal set of hyper-v updates and changes
- small fpga subsystem and driver updates
- lots of const code changes all over the driver trees
- extcon driver updates
- fmc driver subsystem upadates
- w1 subsystem minor reworks and new features and drivers added
- spmi driver updates
Plus a smattering of other minor driver updates and fixes.
All of these have been in linux-next with no reported issues for a
while.
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-----BEGIN PGP SIGNATURE-----
iG0EABECAC0WIQT0tgzFv3jCIUoxPcsxR9QN2y37KQUCWa1+Ew8cZ3JlZ0Brcm9h
aC5jb20ACgkQMUfUDdst+yl26wCgquufNylfhxr65NbJrovduJYzRnUAniCivXg8
bePIh/JI5WxWoHK+wEbY
=hYWx
-----END PGP SIGNATURE-----
Merge tag 'char-misc-4.14-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/char-misc
Pull char/misc driver updates from Greg KH:
"Here is the big char/misc driver update for 4.14-rc1.
Lots of different stuff in here, it's been an active development cycle
for some reason. Highlights are:
- updated binder driver, this brings binder up to date with what
shipped in the Android O release, plus some more changes that
happened since then that are in the Android development trees.
- coresight updates and fixes
- mux driver file renames to be a bit "nicer"
- intel_th driver updates
- normal set of hyper-v updates and changes
- small fpga subsystem and driver updates
- lots of const code changes all over the driver trees
- extcon driver updates
- fmc driver subsystem upadates
- w1 subsystem minor reworks and new features and drivers added
- spmi driver updates
Plus a smattering of other minor driver updates and fixes.
All of these have been in linux-next with no reported issues for a
while"
* tag 'char-misc-4.14-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/char-misc: (244 commits)
ANDROID: binder: don't queue async transactions to thread.
ANDROID: binder: don't enqueue death notifications to thread todo.
ANDROID: binder: Don't BUG_ON(!spin_is_locked()).
ANDROID: binder: Add BINDER_GET_NODE_DEBUG_INFO ioctl
ANDROID: binder: push new transactions to waiting threads.
ANDROID: binder: remove proc waitqueue
android: binder: Add page usage in binder stats
android: binder: fixup crash introduced by moving buffer hdr
drivers: w1: add hwmon temp support for w1_therm
drivers: w1: refactor w1_slave_show to make the temp reading functionality separate
drivers: w1: add hwmon support structures
eeprom: idt_89hpesx: Support both ACPI and OF probing
mcb: Fix an error handling path in 'chameleon_parse_cells()'
MCB: add support for SC31 to mcb-lpc
mux: make device_type const
char: virtio: constify attribute_group structures.
Documentation/ABI: document the nvmem sysfs files
lkdtm: fix spelling mistake: "incremeted" -> "incremented"
perf: cs-etm: Fix ETMv4 CONFIGR entry in perf.data file
nvmem: include linux/err.h from header
...
Pull s390 updates from Martin Schwidefsky:
"The first part of the s390 updates for 4.14:
- Add machine type 0x3906 for IBM z14
- Add IBM z14 TLB flushing improvements for KVM guests
- Exploit the TOD clock epoch extension to provide a continuous TOD
clock afer 2042/09/17
- Add NIAI spinlock hints for IBM z14
- Rework the vmcp driver and use CMA for the respone buffer of z/VM
CP commands
- Drop some s390 specific asm headers and use the generic version
- Add block discard for DASD-FBA devices under z/VM
- Add average request times to DASD statistics
- A few of those constify patches which seem to be in vogue right now
- Cleanup and bug fixes"
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/s390/linux: (50 commits)
s390/mm: avoid empty zero pages for KVM guests to avoid postcopy hangs
s390/dasd: Add discard support for FBA devices
s390/zcrypt: make CPRBX const
s390/uaccess: avoid mvcos jump label
s390/mm: use generic mm_hooks
s390/facilities: fix typo
s390/vmcp: simplify vmcp_response_free()
s390/topology: Remove the unused parent_node() macro
s390/dasd: Change unsigned long long to unsigned long
s390/smp: convert cpuhp_setup_state() return code to zero on success
s390: fix 'novx' early parameter handling
s390/dasd: add average request times to dasd statistics
s390/scm: use common completion path
s390/pci: log changes to uid checking
s390/vmcp: simplify vmcp_ioctl()
s390/vmcp: return -ENOTTY for unknown ioctl commands
s390/vmcp: split vmcp header file and move to uapi
s390/vmcp: make use of contiguous memory allocator
s390/cpcmd,vmcp: avoid GFP_DMA allocations
s390/vmcp: fix uaccess check and avoid undefined behavior
...
Pull x86 cache quality monitoring update from Thomas Gleixner:
"This update provides a complete rewrite of the Cache Quality
Monitoring (CQM) facility.
The existing CQM support was duct taped into perf with a lot of issues
and the attempts to fix those turned out to be incomplete and
horrible.
After lengthy discussions it was decided to integrate the CQM support
into the Resource Director Technology (RDT) facility, which is the
obvious choise as in hardware CQM is part of RDT. This allowed to add
Memory Bandwidth Monitoring support on top.
As a result the mechanisms for allocating cache/memory bandwidth and
the corresponding monitoring mechanisms are integrated into a single
management facility with a consistent user interface"
* 'x86-cache-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (37 commits)
x86/intel_rdt: Turn off most RDT features on Skylake
x86/intel_rdt: Add command line options for resource director technology
x86/intel_rdt: Move special case code for Haswell to a quirk function
x86/intel_rdt: Remove redundant ternary operator on return
x86/intel_rdt/cqm: Improve limbo list processing
x86/intel_rdt/mbm: Fix MBM overflow handler during CPU hotplug
x86/intel_rdt: Modify the intel_pqr_state for better performance
x86/intel_rdt/cqm: Clear the default RMID during hotcpu
x86/intel_rdt: Show bitmask of shareable resource with other executing units
x86/intel_rdt/mbm: Handle counter overflow
x86/intel_rdt/mbm: Add mbm counter initialization
x86/intel_rdt/mbm: Basic counting of MBM events (total and local)
x86/intel_rdt/cqm: Add CPU hotplug support
x86/intel_rdt/cqm: Add sched_in support
x86/intel_rdt: Introduce rdt_enable_key for scheduling
x86/intel_rdt/cqm: Add mount,umount support
x86/intel_rdt/cqm: Add rmdir support
x86/intel_rdt: Separate the ctrl bits from rmdir
x86/intel_rdt/cqm: Add mon_data
x86/intel_rdt: Prepare for RDT monitor data support
...
Pull x86 mm changes from Ingo Molnar:
"PCID support, 5-level paging support, Secure Memory Encryption support
The main changes in this cycle are support for three new, complex
hardware features of x86 CPUs:
- Add 5-level paging support, which is a new hardware feature on
upcoming Intel CPUs allowing up to 128 PB of virtual address space
and 4 PB of physical RAM space - a 512-fold increase over the old
limits. (Supercomputers of the future forecasting hurricanes on an
ever warming planet can certainly make good use of more RAM.)
Many of the necessary changes went upstream in previous cycles,
v4.14 is the first kernel that can enable 5-level paging.
This feature is activated via CONFIG_X86_5LEVEL=y - disabled by
default.
(By Kirill A. Shutemov)
- Add 'encrypted memory' support, which is a new hardware feature on
upcoming AMD CPUs ('Secure Memory Encryption', SME) allowing system
RAM to be encrypted and decrypted (mostly) transparently by the
CPU, with a little help from the kernel to transition to/from
encrypted RAM. Such RAM should be more secure against various
attacks like RAM access via the memory bus and should make the
radio signature of memory bus traffic harder to intercept (and
decrypt) as well.
This feature is activated via CONFIG_AMD_MEM_ENCRYPT=y - disabled
by default.
(By Tom Lendacky)
- Enable PCID optimized TLB flushing on newer Intel CPUs: PCID is a
hardware feature that attaches an address space tag to TLB entries
and thus allows to skip TLB flushing in many cases, even if we
switch mm's.
(By Andy Lutomirski)
All three of these features were in the works for a long time, and
it's coincidence of the three independent development paths that they
are all enabled in v4.14 at once"
* 'x86-mm-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (65 commits)
x86/mm: Enable RCU based page table freeing (CONFIG_HAVE_RCU_TABLE_FREE=y)
x86/mm: Use pr_cont() in dump_pagetable()
x86/mm: Fix SME encryption stack ptr handling
kvm/x86: Avoid clearing the C-bit in rsvd_bits()
x86/CPU: Align CR3 defines
x86/mm, mm/hwpoison: Clear PRESENT bit for kernel 1:1 mappings of poison pages
acpi, x86/mm: Remove encryption mask from ACPI page protection type
x86/mm, kexec: Fix memory corruption with SME on successive kexecs
x86/mm/pkeys: Fix typo in Documentation/x86/protection-keys.txt
x86/mm/dump_pagetables: Speed up page tables dump for CONFIG_KASAN=y
x86/mm: Implement PCID based optimization: try to preserve old TLB entries using PCID
x86: Enable 5-level paging support via CONFIG_X86_5LEVEL=y
x86/mm: Allow userspace have mappings above 47-bit
x86/mm: Prepare to expose larger address space to userspace
x86/mpx: Do not allow MPX if we have mappings above 47-bit
x86/mm: Rename tasksize_32bit/64bit to task_size_32bit/64bit()
x86/xen: Redefine XEN_ELFNOTE_INIT_P2M using PUD_SIZE * PTRS_PER_PUD
x86/mm/dump_pagetables: Fix printout of p4d level
x86/mm/dump_pagetables: Generalize address normalization
x86/boot: Fix memremap() related build failure
...
* intel_pstate:
cpufreq: intel_pstate: Shorten a couple of long names
cpufreq: intel_pstate: Simplify intel_pstate_adjust_pstate()
cpufreq: intel_pstate: Improve IO performance with per-core P-states
cpufreq: intel_pstate: Drop INTEL_PSTATE_HWP_SAMPLING_INTERVAL
cpufreq: intel_pstate: Drop ->update_util from pstate_funcs
cpufreq: intel_pstate: Do not use PID-based P-state selection
* pm-cpufreq: (33 commits)
cpufreq: imx6q: Fix imx6sx low frequency support
cpufreq: speedstep-lib: make several arrays static, makes code smaller
cpufreq: ti: Fix 'of_node_put' being called twice in error handling path
cpufreq: dt-platdev: Drop few entries from whitelist
cpufreq: dt-platdev: Automatically create cpufreq device with OPP v2
ARM: ux500: don't select CPUFREQ_DT
cpufreq: Convert to using %pOF instead of full_name
cpufreq: Cap the default transition delay value to 10 ms
cpufreq: dbx500: Delete obsolete driver
mfd: db8500-prcmu: Get rid of cpufreq dependency
cpufreq: enable the DT cpufreq driver on the Ux500
cpufreq: Loongson2: constify platform_device_id
cpufreq: dt: Add r8a7796 support to to use generic cpufreq driver
cpufreq: remove setting of policy->cpu in policy->cpus during init
cpufreq: mediatek: add support of cpufreq to MT7622 SoC
cpufreq: mediatek: add cleanups with the more generic naming
cpufreq: rcar: Add support for R8A7795 SoC
cpufreq: dt: Add rk3328 compatible to use generic cpufreq driver
cpufreq: s5pv210: add missing of_node_put()
cpufreq: Allow dynamic switching with CPUFREQ_ETERNAL latency
...
We add ability for all cores at NPS SoC to control the number of cycles
HW thread can execute before it is replace with another eligible
HW thread within the same core. The replacement is done by the
HW scheduler.
Signed-off-by: Noam Camus <noamca@mellanox.com>
Signed-off-by: Vineet Gupta <vgupta@synopsys.com>
[vgupta: simplified handlign of out of range argument value]
Reorganize the power management part of admin-guide by adding a
description of major power management strategies supported by the
kernel (system-wide and working-state power management) to it and
dividing the rest of the material into the system-wide PM and
working-state PM chapters.
On top of that, add a description of system sleep states to the
system-wide PM chapter.
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Reviewed-by: Lukas Wunner <lukas@wunner.de>
Command line options allow us to ignore features that we don't want.
Also we can re-enable options that have been disabled on a platform
(so long as the underlying h/w actually supports the option).
[ tglx: Marked the option array __initdata and the helper function __init ]
Signed-off-by: Tony Luck <tony.luck@intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Fenghua" <fenghua.yu@intel.com>
Cc: Ravi V" <ravi.v.shankar@intel.com>
Cc: "Peter Zijlstra" <peterz@infradead.org>
Cc: "Stephane Eranian" <eranian@google.com>
Cc: "Andi Kleen" <ak@linux.intel.com>
Cc: "David Carrillo-Cisneros" <davidcc@google.com>
Cc: Vikas Shivappa <vikas.shivappa@linux.intel.com>
Link: http://lkml.kernel.org/r/0c37b0d4dbc30977a3c1cee08b66420f83662694.1503512900.git.tony.luck@intel.com
If memory is fragmented it is unlikely that large order memory
allocations succeed. This has been an issue with the vmcp device
driver since a long time, since it requires large physical contiguous
memory ares for large responses.
To hopefully resolve this issue make use of the contiguous memory
allocator (cma). This patch adds a vmcp specific vmcp cma area with a
default size of 4MB. The size can be changed either via the
VMCP_CMA_SIZE config option at compile time or with the "vmcp_cma"
kernel parameter (e.g. "vmcp_cma=16m").
For any vmcp response buffers larger than 16k memory from the cma area
will be allocated. If such an allocation fails, there is a fallback to
the buddy allocator.
Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Add a description of the cpuinfo_cur_freq policy attribute in sysfs
to the cpufreq documentation under Documentation/admin-guide/pm/ as
it is missing after commit 2a0e492798 (cpufreq: User/admin
documentation update and consolidation) that overlooked it.
Fixes: 2a0e492798 (cpufreq: User/admin documentation update and consolidation)
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
All systems with a defined ACPI preferred profile that are not
"servers" have been using the load-based P-state selection algorithm
in intel_pstate since 4.12-rc1 (mobile systems and laptops have been
using it since 4.10-rc1) and no problems with it have been reported
to date. In particular, no regressions with respect to the PID-based
P-state selection have been reported. Also testing indicates that
the P-state selection algorithm based on CPU load is generally on par
with the PID-based algorithm performance-wise, and for some workloads
it turns out to be better than the other one, while being more
straightforward and easier to understand at the same time.
Moreover, the PID-based P-state selection algorithm in intel_pstate
is known to be unstable in some situation and generally problematic,
the issues with it are hard to address and it has become a
significant maintenance burden.
For these reasons, make intel_pstate use the "powersave" P-state
selection algorithm based on CPU load in the active mode on all
systems and drop the PID-based P-state selection code along with
all things related to it from the driver. Also update the
documentation accordingly.
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
If a CPU is specified in the nohz_full= kernel boot parameter to a
kernel built with CONFIG_NO_HZ_FULL=y, then that CPU's callbacks will
be offloaded, just as if that CPU had also been specified in the
rcu_nocbs= kernel boot parameter. But the current documentation
states that the user must keep these two boot parameters manually
synchronized. This commit therefore updates the documentation to
reflect reality.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
The cpufreq core and governors aren't supposed to set a limit on how
fast we want to try changing the frequency. This is currently done for
the legacy governors with help of min_sampling_rate.
At worst, we may end up setting the sampling rate to a value lower than
the rate at which frequency can be changed and then one of the CPUs in
the policy will be only changing frequency for ever.
But that is something for the user to decide and there is no need to
have special handling for such cases in the core. Leave it for the user
to figure out.
Signed-off-by: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
The SME patches we are about to apply add some E820 logic, so merge in
pending E820 code changes first, to have a single code base.
Signed-off-by: Ingo Molnar <mingo@kernel.org>
We've run into problems with running out of dynamicly assign char
device majors particullarly on automated test systems with
all-yes-configs. Roughly 40 dynamic assignments can be made with such
kernels at this time while space is reserved for only 20.
Currently, the kernel only prints a warning when dynamic allocation
overflows the reserved region. And when this happens drivers that have
fixed assignments can randomly fail depending on the order of
initialization of other drivers. Thus, adding a new char device can cause
unexpected failures in completely unrelated parts of the kernel.
This patch solves the problem by extending dynamic major number
allocations down from 511 once the 234-254 region fills up. Fixed
majors already exist above 255 so the infrastructure to support
high number majors is already in place. The patch reserves an
additional 128 major numbers which should hopefully last us a while.
Kernels that don't require more than 20 dynamic majors assigned (which
is pretty typical) should not be affected by this change.
Signed-off-by: Logan Gunthorpe <logang@deltatee.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Alan Cox <alan@linux.intel.com>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Linus Walleij <linus.walleij@linaro.org>
Link: https://lkml.org/lkml/2017/6/4/107
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Merge misc updates from Andrew Morton:
- a few hotfixes
- various misc updates
- ocfs2 updates
- most of MM
* emailed patches from Andrew Morton <akpm@linux-foundation.org>: (108 commits)
mm, memory_hotplug: move movable_node to the hotplug proper
mm, memory_hotplug: drop CONFIG_MOVABLE_NODE
mm, memory_hotplug: drop artificial restriction on online/offline
mm: memcontrol: account slab stats per lruvec
mm: memcontrol: per-lruvec stats infrastructure
mm: memcontrol: use generic mod_memcg_page_state for kmem pages
mm: memcontrol: use the node-native slab memory counters
mm: vmstat: move slab statistics from zone to node counters
mm/zswap.c: delete an error message for a failed memory allocation in zswap_dstmem_prepare()
mm/zswap.c: improve a size determination in zswap_frontswap_init()
mm/zswap.c: delete an error message for a failed memory allocation in zswap_pool_create()
mm/swapfile.c: sort swap entries before free
mm/oom_kill: count global and memory cgroup oom kills
mm: per-cgroup memory reclaim stats
mm: kmemleak: treat vm_struct as alternative reference to vmalloc'ed objects
mm: kmemleak: factor object reference updating out of scan_block()
mm: kmemleak: slightly reduce the size of some structures on 64-bit architectures
mm, mempolicy: don't check cpuset seqlock where it doesn't matter
mm, cpuset: always use seqlock when changing task's nodemask
mm, mempolicy: simplify rebinding mempolicies when updating cpusets
...
- Better machine check handling for HV KVM
- Ability to support guests with threads=2, 4 or 8 on POWER9
- Fix for a race that could cause delayed recognition of signals
- Fix for a bug where POWER9 guests could sleep with interrupts pending.
ARM:
- VCPU request overhaul
- allow timer and PMU to have their interrupt number selected from userspace
- workaround for Cavium erratum 30115
- handling of memory poisonning
- the usual crop of fixes and cleanups
s390:
- initial machine check forwarding
- migration support for the CMMA page hinting information
- cleanups and fixes
x86:
- nested VMX bugfixes and improvements
- more reliable NMI window detection on AMD
- APIC timer optimizations
Generic:
- VCPU request overhaul + documentation of common code patterns
- kvm_stat improvements
There is a small conflict in arch/s390 due to an arch-wide field rename.
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v2.0.22 (GNU/Linux)
iQEcBAABAgAGBQJZW4XTAAoJEL/70l94x66DkhMH/izpk54KI17PtyQ9VYI2sYeZ
BWK6Kl886g3ij4pFi3pECqjDJzWaa3ai+vFfzzpJJ8OkCJT5Rv4LxC5ERltVVmR8
A3T1I/MRktSC0VJLv34daPC2z4Lco/6SPipUpPnL4bE2HATKed4vzoOjQ3tOeGTy
dwi7TFjKwoVDiM7kPPDRnTHqCe5G5n13sZ49dBe9WeJ7ttJauWqoxhlYosCGNPEj
g8ZX8+cvcAhVnz5uFL8roqZ8ygNEQq2mgkU18W8ZZKuiuwR0gdsG0gSBFNTdwIMK
NoreRKMrw0+oLXTIB8SZsoieU6Qi7w3xMAMabe8AJsvYtoersugbOmdxGCr1lsA=
=OD7H
-----END PGP SIGNATURE-----
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull KVM updates from Paolo Bonzini:
"PPC:
- Better machine check handling for HV KVM
- Ability to support guests with threads=2, 4 or 8 on POWER9
- Fix for a race that could cause delayed recognition of signals
- Fix for a bug where POWER9 guests could sleep with interrupts pending.
ARM:
- VCPU request overhaul
- allow timer and PMU to have their interrupt number selected from userspace
- workaround for Cavium erratum 30115
- handling of memory poisonning
- the usual crop of fixes and cleanups
s390:
- initial machine check forwarding
- migration support for the CMMA page hinting information
- cleanups and fixes
x86:
- nested VMX bugfixes and improvements
- more reliable NMI window detection on AMD
- APIC timer optimizations
Generic:
- VCPU request overhaul + documentation of common code patterns
- kvm_stat improvements"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (124 commits)
Update my email address
kvm: vmx: allow host to access guest MSR_IA32_BNDCFGS
x86: kvm: mmu: use ept a/d in vmcs02 iff used in vmcs12
kvm: x86: mmu: allow A/D bits to be disabled in an mmu
x86: kvm: mmu: make spte mmio mask more explicit
x86: kvm: mmu: dead code thanks to access tracking
KVM: PPC: Book3S: Fix typo in XICS-on-XIVE state saving code
KVM: PPC: Book3S HV: Close race with testing for signals on guest entry
KVM: PPC: Book3S HV: Simplify dynamic micro-threading code
KVM: x86: remove ignored type attribute
KVM: LAPIC: Fix lapic timer injection delay
KVM: lapic: reorganize restart_apic_timer
KVM: lapic: reorganize start_hv_timer
kvm: nVMX: Check memory operand to INVVPID
KVM: s390: Inject machine check into the nested guest
KVM: s390: Inject machine check into the guest
tools/kvm_stat: add new interactive command 'b'
tools/kvm_stat: add new command line switch '-i'
tools/kvm_stat: fix error on interactive command 'g'
KVM: SVM: suppress unnecessary NMI singlestep on GIF=0 and nested exit
...
Commit 20b2f52b73 ("numa: add CONFIG_MOVABLE_NODE for
movable-dedicated node") has introduced CONFIG_MOVABLE_NODE without a
good explanation on why it is actually useful.
It makes a lot of sense to make movable node semantic opt in but we
already have that because the feature has to be explicitly enabled on
the kernel command line. A config option on top only makes the
configuration space larger without a good reason. It also adds an
additional ifdefery that pollutes the code.
Just drop the config option and make it de-facto always enabled. This
shouldn't introduce any change to the semantic.
Link: http://lkml.kernel.org/r/20170529114141.536-3-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Acked-by: Reza Arbab <arbab@linux.vnet.ibm.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Jerome Glisse <jglisse@redhat.com>
Cc: Yasuaki Ishimatsu <yasu.isimatu@gmail.com>
Cc: Xishi Qiu <qiuxishi@huawei.com>
Cc: Kani Toshimitsu <toshi.kani@hpe.com>
Cc: Chen Yucong <slaoub@gmail.com>
Cc: Joonsoo Kim <js1304@gmail.com>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Daniel Kiper <daniel.kiper@oracle.com>
Cc: Igor Mammedov <imammedo@redhat.com>
Cc: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>