Having a per-vcpu virtual offset is a pain. It needs to be synchronized
on each update, and expands badly to a setup where different timers can
have different offsets, or have composite offsets (as with NV).
So let's start by replacing the use of the CNTVOFF_EL2 shadow register
(which we want to reclaim for NV anyway), and make the virtual timer
carry a pointer to a VM-wide offset.
This simplifies the code significantly. It also addresses two terrible bugs:
- The use of CNTVOFF_EL2 leads to some nice offset corruption
when the sysreg gets reset, as reported by Joey.
- The kvm mutex is taken from a vcpu ioctl, which goes against
the locking rules...
Reported-by: Joey Gouly <joey.gouly@arm.com>
Reviewed-by: Reiji Watanabe <reijiw@google.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20230224173915.GA17407@e124191.cambridge.arm.com
Tested-by: Joey Gouly <joey.gouly@arm.com>
Link: https://lore.kernel.org/r/20230224191640.3396734-1-maz@kernel.org
Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
- Provide a virtual cache topology to the guest to avoid
inconsistencies with migration on heterogenous systems. Non secure
software has no practical need to traverse the caches by set/way in
the first place.
- Add support for taking stage-2 access faults in parallel. This was an
accidental omission in the original parallel faults implementation,
but should provide a marginal improvement to machines w/o FEAT_HAFDBS
(such as hardware from the fruit company).
- A preamble to adding support for nested virtualization to KVM,
including vEL2 register state, rudimentary nested exception handling
and masking unsupported features for nested guests.
- Fixes to the PSCI relay that avoid an unexpected host SVE trap when
resuming a CPU when running pKVM.
- VGIC maintenance interrupt support for the AIC
- Improvements to the arch timer emulation, primarily aimed at reducing
the trap overhead of running nested.
- Add CONFIG_USERFAULTFD to the KVM selftests config fragment in the
interest of CI systems.
- Avoid VM-wide stop-the-world operations when a vCPU accesses its own
redistributor.
- Serialize when toggling CPACR_EL1.SMEN to avoid unexpected exceptions
in the host.
- Aesthetic and comment/kerneldoc fixes
- Drop the vestiges of the old Columbia mailing list and add [Oliver]
as co-maintainer
This also drags in arm64's 'for-next/sme2' branch, because both it and
the PSCI relay changes touch the EL2 initialization code.
RISC-V:
- Fix wrong usage of PGDIR_SIZE instead of PUD_SIZE
- Correctly place the guest in S-mode after redirecting a trap to the guest
- Redirect illegal instruction traps to guest
- SBI PMU support for guest
s390:
- Two patches sorting out confusion between virtual and physical
addresses, which currently are the same on s390.
- A new ioctl that performs cmpxchg on guest memory
- A few fixes
x86:
- Change tdp_mmu to a read-only parameter
- Separate TDP and shadow MMU page fault paths
- Enable Hyper-V invariant TSC control
- Fix a variety of APICv and AVIC bugs, some of them real-world,
some of them affecting architecurally legal but unlikely to
happen in practice
- Mark APIC timer as expired if its in one-shot mode and the count
underflows while the vCPU task was being migrated
- Advertise support for Intel's new fast REP string features
- Fix a double-shootdown issue in the emergency reboot code
- Ensure GIF=1 and disable SVM during an emergency reboot, i.e. give SVM
similar treatment to VMX
- Update Xen's TSC info CPUID sub-leaves as appropriate
- Add support for Hyper-V's extended hypercalls, where "support" at this
point is just forwarding the hypercalls to userspace
- Clean up the kvm->lock vs. kvm->srcu sequences when updating the PMU and
MSR filters
- One-off fixes and cleanups
- Fix and cleanup the range-based TLB flushing code, used when KVM is
running on Hyper-V
- Add support for filtering PMU events using a mask. If userspace
wants to restrict heavily what events the guest can use, it can now
do so without needing an absurd number of filter entries
- Clean up KVM's handling of "PMU MSRs to save", especially when vPMU
support is disabled
- Add PEBS support for Intel Sapphire Rapids
- Fix a mostly benign overflow bug in SEV's send|receive_update_data()
- Move several SVM-specific flags into vcpu_svm
x86 Intel:
- Handle NMI VM-Exits before leaving the noinstr region
- A few trivial cleanups in the VM-Enter flows
- Stop enabling VMFUNC for L1 purely to document that KVM doesn't support
EPTP switching (or any other VM function) for L1
- Fix a crash when using eVMCS's enlighted MSR bitmaps
Generic:
- Clean up the hardware enable and initialization flow, which was
scattered around multiple arch-specific hooks. Instead, just
let the arch code call into generic code. Both x86 and ARM should
benefit from not having to fight common KVM code's notion of how
to do initialization.
- Account allocations in generic kvm_arch_alloc_vm()
- Fix a memory leak if coalesced MMIO unregistration fails
selftests:
- On x86, cache the CPU vendor (AMD vs. Intel) and use the info to emit
the correct hypercall instruction instead of relying on KVM to patch
in VMMCALL
- Use TAP interface for kvm_binary_stats_test and tsc_msrs_test
-----BEGIN PGP SIGNATURE-----
iQFIBAABCAAyFiEE8TM4V0tmI4mGbHaCv/vSX3jHroMFAmP2YA0UHHBib256aW5p
QHJlZGhhdC5jb20ACgkQv/vSX3jHroPg/Qf+J6nT+TkIa+8Ei+fN1oMTDp4YuIOx
mXvJ9mRK9sQ+tAUVwvDz3qN/fK5mjsYbRHIDlVc5p2Q3bCrVGDDqXPFfCcLx1u+O
9U9xjkO4JxD2LS9pc70FYOyzVNeJ8VMGOBbC2b0lkdYZ4KnUc6e/WWFKJs96bK+H
duo+RIVyaMthnvbTwSv1K3qQb61n6lSJXplywS8KWFK6NZAmBiEFDAWGRYQE9lLs
VcVcG0iDJNL/BQJ5InKCcvXVGskcCm9erDszPo7w4Bypa4S9AMS42DHUaRZrBJwV
/WqdH7ckIz7+OSV0W1j+bKTHAFVTCjXYOM7wQykgjawjICzMSnnG9Gpskw==
=goe1
-----END PGP SIGNATURE-----
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull kvm updates from Paolo Bonzini:
"ARM:
- Provide a virtual cache topology to the guest to avoid
inconsistencies with migration on heterogenous systems. Non secure
software has no practical need to traverse the caches by set/way in
the first place
- Add support for taking stage-2 access faults in parallel. This was
an accidental omission in the original parallel faults
implementation, but should provide a marginal improvement to
machines w/o FEAT_HAFDBS (such as hardware from the fruit company)
- A preamble to adding support for nested virtualization to KVM,
including vEL2 register state, rudimentary nested exception
handling and masking unsupported features for nested guests
- Fixes to the PSCI relay that avoid an unexpected host SVE trap when
resuming a CPU when running pKVM
- VGIC maintenance interrupt support for the AIC
- Improvements to the arch timer emulation, primarily aimed at
reducing the trap overhead of running nested
- Add CONFIG_USERFAULTFD to the KVM selftests config fragment in the
interest of CI systems
- Avoid VM-wide stop-the-world operations when a vCPU accesses its
own redistributor
- Serialize when toggling CPACR_EL1.SMEN to avoid unexpected
exceptions in the host
- Aesthetic and comment/kerneldoc fixes
- Drop the vestiges of the old Columbia mailing list and add [Oliver]
as co-maintainer
RISC-V:
- Fix wrong usage of PGDIR_SIZE instead of PUD_SIZE
- Correctly place the guest in S-mode after redirecting a trap to the
guest
- Redirect illegal instruction traps to guest
- SBI PMU support for guest
s390:
- Sort out confusion between virtual and physical addresses, which
currently are the same on s390
- A new ioctl that performs cmpxchg on guest memory
- A few fixes
x86:
- Change tdp_mmu to a read-only parameter
- Separate TDP and shadow MMU page fault paths
- Enable Hyper-V invariant TSC control
- Fix a variety of APICv and AVIC bugs, some of them real-world, some
of them affecting architecurally legal but unlikely to happen in
practice
- Mark APIC timer as expired if its in one-shot mode and the count
underflows while the vCPU task was being migrated
- Advertise support for Intel's new fast REP string features
- Fix a double-shootdown issue in the emergency reboot code
- Ensure GIF=1 and disable SVM during an emergency reboot, i.e. give
SVM similar treatment to VMX
- Update Xen's TSC info CPUID sub-leaves as appropriate
- Add support for Hyper-V's extended hypercalls, where "support" at
this point is just forwarding the hypercalls to userspace
- Clean up the kvm->lock vs. kvm->srcu sequences when updating the
PMU and MSR filters
- One-off fixes and cleanups
- Fix and cleanup the range-based TLB flushing code, used when KVM is
running on Hyper-V
- Add support for filtering PMU events using a mask. If userspace
wants to restrict heavily what events the guest can use, it can now
do so without needing an absurd number of filter entries
- Clean up KVM's handling of "PMU MSRs to save", especially when vPMU
support is disabled
- Add PEBS support for Intel Sapphire Rapids
- Fix a mostly benign overflow bug in SEV's
send|receive_update_data()
- Move several SVM-specific flags into vcpu_svm
x86 Intel:
- Handle NMI VM-Exits before leaving the noinstr region
- A few trivial cleanups in the VM-Enter flows
- Stop enabling VMFUNC for L1 purely to document that KVM doesn't
support EPTP switching (or any other VM function) for L1
- Fix a crash when using eVMCS's enlighted MSR bitmaps
Generic:
- Clean up the hardware enable and initialization flow, which was
scattered around multiple arch-specific hooks. Instead, just let
the arch code call into generic code. Both x86 and ARM should
benefit from not having to fight common KVM code's notion of how to
do initialization
- Account allocations in generic kvm_arch_alloc_vm()
- Fix a memory leak if coalesced MMIO unregistration fails
selftests:
- On x86, cache the CPU vendor (AMD vs. Intel) and use the info to
emit the correct hypercall instruction instead of relying on KVM to
patch in VMMCALL
- Use TAP interface for kvm_binary_stats_test and tsc_msrs_test"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (325 commits)
KVM: SVM: hyper-v: placate modpost section mismatch error
KVM: x86/mmu: Make tdp_mmu_allowed static
KVM: arm64: nv: Use reg_to_encoding() to get sysreg ID
KVM: arm64: nv: Only toggle cache for virtual EL2 when SCTLR_EL2 changes
KVM: arm64: nv: Filter out unsupported features from ID regs
KVM: arm64: nv: Emulate EL12 register accesses from the virtual EL2
KVM: arm64: nv: Allow a sysreg to be hidden from userspace only
KVM: arm64: nv: Emulate PSTATE.M for a guest hypervisor
KVM: arm64: nv: Add accessors for SPSR_EL1, ELR_EL1 and VBAR_EL1 from virtual EL2
KVM: arm64: nv: Handle SMCs taken from virtual EL2
KVM: arm64: nv: Handle trapped ERET from virtual EL2
KVM: arm64: nv: Inject HVC exceptions to the virtual EL2
KVM: arm64: nv: Support virtual EL2 exceptions
KVM: arm64: nv: Handle HCR_EL2.NV system register traps
KVM: arm64: nv: Add nested virt VCPU primitives for vEL2 VCPU state
KVM: arm64: nv: Add EL2 system registers to vcpu context
KVM: arm64: nv: Allow userspace to set PSR_MODE_EL2x
KVM: arm64: nv: Reset VCPU to EL2 registers if VCPU nested virt is set
KVM: arm64: nv: Introduce nested virtualization VCPU feature
KVM: arm64: Use the S2 MMU context to iterate over S2 table
...
- Support for arm64 SME 2 and 2.1. SME2 introduces a new 512-bit
architectural register (ZT0, for the look-up table feature) that Linux
needs to save/restore.
- Include TPIDR2 in the signal context and add the corresponding
kselftests.
- Perf updates: Arm SPEv1.2 support, HiSilicon uncore PMU updates, ACPI
support to the Marvell DDR and TAD PMU drivers, reset DTM_PMU_CONFIG
(ARM CMN) at probe time.
- Support for DYNAMIC_FTRACE_WITH_CALL_OPS on arm64.
- Permit EFI boot with MMU and caches on. Instead of cleaning the entire
loaded kernel image to the PoC and disabling the MMU and caches before
branching to the kernel bare metal entry point, leave the MMU and
caches enabled and rely on EFI's cacheable 1:1 mapping of all of
system RAM to populate the initial page tables.
- Expose the AArch32 (compat) ELF_HWCAP features to user in an arm64
kernel (the arm32 kernel only defines the values).
- Harden the arm64 shadow call stack pointer handling: stash the shadow
stack pointer in the task struct on interrupt, load it directly from
this structure.
- Signal handling cleanups to remove redundant validation of size
information and avoid reading the same data from userspace twice.
- Refactor the hwcap macros to make use of the automatically generated
ID registers. It should make new hwcaps writing less error prone.
- Further arm64 sysreg conversion and some fixes.
- arm64 kselftest fixes and improvements.
- Pointer authentication cleanups: don't sign leaf functions, unify
asm-arch manipulation.
- Pseudo-NMI code generation optimisations.
- Minor fixes for SME and TPIDR2 handling.
- Miscellaneous updates: ARCH_FORCE_MAX_ORDER is now selectable, replace
strtobool() to kstrtobool() in the cpufeature.c code, apply dynamic
shadow call stack in two passes, intercept pfn changes in set_pte_at()
without the required break-before-make sequence, attempt to dump all
instructions on unhandled kernel faults.
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEE5RElWfyWxS+3PLO2a9axLQDIXvEFAmP0/QsACgkQa9axLQDI
XvG+gA/+JDVEH9wRzAIZvbp9hSuohPc48xgAmIMP1eiVB0/5qeRjYAJwS33H0rXS
BPC2kj9IBy/eQeM9ICg0nFd0zYznSVacITqe6NrqeJ1F+ftS4rrHdfxd+J7kIoCs
V2L8e+BJvmHdhmNV2qMAgJdGlfxfQBA7fv2cy52HKYcouoOh1AUVR/x+yXVXAsCd
qJP3+dlUKccgm/oc5unEC1eZ49u8O+EoasqOyfG6K5udMgzhEX3K6imT9J3hw0WT
UjstYkx5uGS/prUrRCQAX96VCHoZmzEDKtQuHkHvQXEYXsYPF3ldbR2CziNJnHe7
QfSkjJlt8HAtExA+BkwEe9i0MQO/2VF5qsa2e4fA6l7uqGu3LOtS/jJd23C9n9fR
Id8aBMeN6S8+MjqRA9L2uf4t6e4ISEHoG9ZRdc4WOwloxEEiJoIeun+7bHdOSZLj
AFdHFCz4NXiiwC0UP0xPDI2YeCLqt5np7HmnrUqwzRpVO8UUagiJD8TIpcBSjBN9
J68eidenHUW7/SlIeaMKE2lmo8AUEAJs9AorDSugF19/ThJcQdx7vT2UAZjeVB3j
1dbbwajnlDOk/w8PQC4thFp5/MDlfst0htS3WRwa+vgkweE2EAdTU4hUZ8qEP7FQ
smhYtlT1xUSTYDTqoaG/U2OWR6/UU79wP0jgcOsHXTuyYrtPI/Q=
=VmXL
-----END PGP SIGNATURE-----
Merge tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux
Pull arm64 updates from Catalin Marinas:
- Support for arm64 SME 2 and 2.1. SME2 introduces a new 512-bit
architectural register (ZT0, for the look-up table feature) that
Linux needs to save/restore
- Include TPIDR2 in the signal context and add the corresponding
kselftests
- Perf updates: Arm SPEv1.2 support, HiSilicon uncore PMU updates, ACPI
support to the Marvell DDR and TAD PMU drivers, reset DTM_PMU_CONFIG
(ARM CMN) at probe time
- Support for DYNAMIC_FTRACE_WITH_CALL_OPS on arm64
- Permit EFI boot with MMU and caches on. Instead of cleaning the
entire loaded kernel image to the PoC and disabling the MMU and
caches before branching to the kernel bare metal entry point, leave
the MMU and caches enabled and rely on EFI's cacheable 1:1 mapping of
all of system RAM to populate the initial page tables
- Expose the AArch32 (compat) ELF_HWCAP features to user in an arm64
kernel (the arm32 kernel only defines the values)
- Harden the arm64 shadow call stack pointer handling: stash the shadow
stack pointer in the task struct on interrupt, load it directly from
this structure
- Signal handling cleanups to remove redundant validation of size
information and avoid reading the same data from userspace twice
- Refactor the hwcap macros to make use of the automatically generated
ID registers. It should make new hwcaps writing less error prone
- Further arm64 sysreg conversion and some fixes
- arm64 kselftest fixes and improvements
- Pointer authentication cleanups: don't sign leaf functions, unify
asm-arch manipulation
- Pseudo-NMI code generation optimisations
- Minor fixes for SME and TPIDR2 handling
- Miscellaneous updates: ARCH_FORCE_MAX_ORDER is now selectable,
replace strtobool() to kstrtobool() in the cpufeature.c code, apply
dynamic shadow call stack in two passes, intercept pfn changes in
set_pte_at() without the required break-before-make sequence, attempt
to dump all instructions on unhandled kernel faults
* tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux: (130 commits)
arm64: fix .idmap.text assertion for large kernels
kselftest/arm64: Don't require FA64 for streaming SVE+ZA tests
kselftest/arm64: Copy whole EXTRA context
arm64: kprobes: Drop ID map text from kprobes blacklist
perf: arm_spe: Print the version of SPE detected
perf: arm_spe: Add support for SPEv1.2 inverted event filtering
perf: Add perf_event_attr::config3
arm64/sme: Fix __finalise_el2 SMEver check
drivers/perf: fsl_imx8_ddr_perf: Remove set-but-not-used variable
arm64/signal: Only read new data when parsing the ZT context
arm64/signal: Only read new data when parsing the ZA context
arm64/signal: Only read new data when parsing the SVE context
arm64/signal: Avoid rereading context frame sizes
arm64/signal: Make interface for restore_fpsimd_context() consistent
arm64/signal: Remove redundant size validation from parse_user_sigframe()
arm64/signal: Don't redundantly verify FPSIMD magic
arm64/cpufeature: Use helper macros to specify hwcaps
arm64/cpufeature: Always use symbolic name for feature value in hwcaps
arm64/sysreg: Initial unsigned annotations for ID registers
arm64/sysreg: Initial annotation of signed ID registers
...
- Provide a virtual cache topology to the guest to avoid
inconsistencies with migration on heterogenous systems. Non secure
software has no practical need to traverse the caches by set/way in
the first place.
- Add support for taking stage-2 access faults in parallel. This was an
accidental omission in the original parallel faults implementation,
but should provide a marginal improvement to machines w/o FEAT_HAFDBS
(such as hardware from the fruit company).
- A preamble to adding support for nested virtualization to KVM,
including vEL2 register state, rudimentary nested exception handling
and masking unsupported features for nested guests.
- Fixes to the PSCI relay that avoid an unexpected host SVE trap when
resuming a CPU when running pKVM.
- VGIC maintenance interrupt support for the AIC
- Improvements to the arch timer emulation, primarily aimed at reducing
the trap overhead of running nested.
- Add CONFIG_USERFAULTFD to the KVM selftests config fragment in the
interest of CI systems.
- Avoid VM-wide stop-the-world operations when a vCPU accesses its own
redistributor.
- Serialize when toggling CPACR_EL1.SMEN to avoid unexpected exceptions
in the host.
- Aesthetic and comment/kerneldoc fixes
- Drop the vestiges of the old Columbia mailing list and add myself as
co-maintainer
This also drags in a couple of branches to avoid conflicts:
- The shared 'kvm-hw-enable-refactor' branch that reworks
initialization, as it conflicted with the virtual cache topology
changes.
- arm64's 'for-next/sme2' branch, as the PSCI relay changes, as both
touched the EL2 initialization code.
-----BEGIN PGP SIGNATURE-----
iQJDBAABCgAtFiEEn9UcU+C1Yxj9lZw9I9DQutE9ekMFAmPw29cPHG1hekBrZXJu
ZWwub3JnAAoJECPQ0LrRPXpD9doQAIJyMW0odT6JBe15uGCxTuTnJbb8mniajJdX
CuSxPl85WyKLtZbIJLRTQgyt6Nzbu0N38zM0y/qBZT5BvAnWYI8etvnJhYZjooAy
jrf0Me/GM5hnORXN+1dByCmlV+DSuBkax86tgIC7HhU71a2SWpjlmWQi/mYvQmIK
PBAqpFF+w2cWHi0ZvCq96c5EXBdN4FLEA5cdZhekCbgw1oX8+x+HxdpBuGW5lTEr
9oWOzOzJQC1uFnjP3unFuIaG94QIo+NA4aGLMzfb7wm2wdQUnKebtdj/RxsDZOKe
43Q1+MDFWMsxxFu4FULH8fPMwidIm5rfz3pw3JJloqaZp8vk/vjDLID7AYucMIX8
1G/mjqz6E9lYvv57WBmBhT/+apSDAmeHlAT97piH73Nemga91esDKuHSdtA8uB5j
mmzcUYajuB2GH9rsaXJhVKt/HW7l9fbGliCkI99ckq/oOTO9VsKLsnwS/rMRIsPn
y2Y8Lyoe4eqokd1DNn5/bo+3qDnfmzm6iDmZOo+JYuJv9KS95zuw17Wu7la9UAPV
e13+btoijHDvu8RnTecuXljWfAAKVtEjpEIoS5aP2R2iDvhr0d8POlMPaJ40YuRq
D2fKr18b6ngt+aI0TY63/ksEIFexx67HuwQsUZ2lRjyjq5/x+u3YIqUPbKrU4Rnl
uxXjSvyr
=r4s/
-----END PGP SIGNATURE-----
Merge tag 'kvmarm-6.3' of git://git.kernel.org/pub/scm/linux/kernel/git/kvmarm/kvmarm into HEAD
KVM/arm64 updates for 6.3
- Provide a virtual cache topology to the guest to avoid
inconsistencies with migration on heterogenous systems. Non secure
software has no practical need to traverse the caches by set/way in
the first place.
- Add support for taking stage-2 access faults in parallel. This was an
accidental omission in the original parallel faults implementation,
but should provide a marginal improvement to machines w/o FEAT_HAFDBS
(such as hardware from the fruit company).
- A preamble to adding support for nested virtualization to KVM,
including vEL2 register state, rudimentary nested exception handling
and masking unsupported features for nested guests.
- Fixes to the PSCI relay that avoid an unexpected host SVE trap when
resuming a CPU when running pKVM.
- VGIC maintenance interrupt support for the AIC
- Improvements to the arch timer emulation, primarily aimed at reducing
the trap overhead of running nested.
- Add CONFIG_USERFAULTFD to the KVM selftests config fragment in the
interest of CI systems.
- Avoid VM-wide stop-the-world operations when a vCPU accesses its own
redistributor.
- Serialize when toggling CPACR_EL1.SMEN to avoid unexpected exceptions
in the host.
- Aesthetic and comment/kerneldoc fixes
- Drop the vestiges of the old Columbia mailing list and add [Oliver]
as co-maintainer
This also drags in arm64's 'for-next/sme2' branch, because both it and
the PSCI relay changes touch the EL2 initialization code.
* kvm-arm64/nv-prefix:
: Preamble to NV support, courtesy of Marc Zyngier.
:
: This brings in a set of prerequisite patches for supporting nested
: virtualization in KVM/arm64. Of course, there is a long way to go until
: NV is actually enabled in KVM.
:
: - Introduce cpucap / vCPU feature flag to pivot the NV code on
:
: - Add support for EL2 vCPU register state
:
: - Basic nested exception handling
:
: - Hide unsupported features from the ID registers for NV-capable VMs
KVM: arm64: nv: Use reg_to_encoding() to get sysreg ID
KVM: arm64: nv: Only toggle cache for virtual EL2 when SCTLR_EL2 changes
KVM: arm64: nv: Filter out unsupported features from ID regs
KVM: arm64: nv: Emulate EL12 register accesses from the virtual EL2
KVM: arm64: nv: Allow a sysreg to be hidden from userspace only
KVM: arm64: nv: Emulate PSTATE.M for a guest hypervisor
KVM: arm64: nv: Add accessors for SPSR_EL1, ELR_EL1 and VBAR_EL1 from virtual EL2
KVM: arm64: nv: Handle SMCs taken from virtual EL2
KVM: arm64: nv: Handle trapped ERET from virtual EL2
KVM: arm64: nv: Inject HVC exceptions to the virtual EL2
KVM: arm64: nv: Support virtual EL2 exceptions
KVM: arm64: nv: Handle HCR_EL2.NV system register traps
KVM: arm64: nv: Add nested virt VCPU primitives for vEL2 VCPU state
KVM: arm64: nv: Add EL2 system registers to vcpu context
KVM: arm64: nv: Allow userspace to set PSR_MODE_EL2x
KVM: arm64: nv: Reset VCPU to EL2 registers if VCPU nested virt is set
KVM: arm64: nv: Introduce nested virtualization VCPU feature
KVM: arm64: Use the S2 MMU context to iterate over S2 table
arm64: Add ARM64_HAS_NESTED_VIRT cpufeature
Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
* kvm-arm64/misc:
: Miscellaneous updates
:
: - Convert CPACR_EL1_TTA to the new, generated system register
: definitions.
:
: - Serialize toggling CPACR_EL1.SMEN to avoid unexpected exceptions when
: accessing SVCR in the host.
:
: - Avoid quiescing the guest if a vCPU accesses its own redistributor's
: SGIs/PPIs, eliminating the need to IPI. Largely an optimization for
: nested virtualization, as the L1 accesses the affected registers
: rather often.
:
: - Conversion to kstrtobool()
:
: - Common definition of INVALID_GPA across architectures
:
: - Enable CONFIG_USERFAULTFD for CI runs of KVM selftests
KVM: arm64: Fix non-kerneldoc comments
KVM: selftests: Enable USERFAULTFD
KVM: selftests: Remove redundant setbuf()
arm64/sysreg: clean up some inconsistent indenting
KVM: MMU: Make the definition of 'INVALID_GPA' common
KVM: arm64: vgic-v3: Use kstrtobool() instead of strtobool()
KVM: arm64: vgic-v3: Limit IPI-ing when accessing GICR_{C,S}ACTIVER0
KVM: arm64: Synchronize SMEN on vcpu schedule out
KVM: arm64: Kill CPACR_EL1_TTA definition
Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
* kvm-arm64/apple-vgic-mi:
: VGIC maintenance interrupt support for the AIC, courtesy of Marc Zyngier.
:
: The AIC provides a non-maskable VGIC maintenance interrupt, which until
: now was not supported by KVM. This series (1) allows the registration of
: a non-maskable maintenance interrupt and (2) wires in support for this
: with the AIC driver.
irqchip/apple-aic: Correctly map the vgic maintenance interrupt
irqchip/apple-aic: Register vgic maintenance interrupt with KVM
KVM: arm64: vgic: Allow registration of a non-maskable maintenance interrupt
Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
* kvm-arm64/psci-relay-fixes:
: Fixes for CPU on/resume with pKVM, courtesy Quentin Perret.
:
: A consequence of deprivileging the host is that pKVM relays PSCI calls
: on behalf of the host. pKVM's CPU initialization failed to fully
: initialize the CPU's EL2 state, which notably led to unexpected SVE
: traps resulting in a hyp panic.
:
: The issue is addressed by reusing parts of __finalise_el2 to restore CPU
: state in the PSCI relay.
KVM: arm64: Finalise EL2 state from pKVM PSCI relay
KVM: arm64: Use sanitized values in __check_override in nVHE
KVM: arm64: Introduce finalise_el2_state macro
KVM: arm64: Provide sanitized SYS_ID_AA64SMFR0_EL1 to nVHE
* kvm-arm64/nv-timer-improvements:
: Timer emulation improvements, courtesy of Marc Zyngier.
:
: - Avoid re-arming an hrtimer for a guest timer that is already pending
:
: - Only reload the affected timer context when emulating a sysreg access
: instead of both the virtual/physical timers.
KVM: arm64: timers: Don't BUG() on unhandled timer trap
KVM: arm64: Reduce overhead of trapped timer sysreg accesses
KVM: arm64: Don't arm a hrtimer for an already pending timer
Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
* kvm-arm64/parallel-access-faults:
: Parallel stage-2 access fault handling
:
: The parallel faults changes that went in to 6.2 covered most stage-2
: aborts, with the exception of stage-2 access faults. Building on top of
: the new infrastructure, this series adds support for handling access
: faults (i.e. updating the access flag) in parallel.
:
: This is expected to provide a performance uplift for cores that do not
: implement FEAT_HAFDBS, such as those from the fruit company.
KVM: arm64: Condition HW AF updates on config option
KVM: arm64: Handle access faults behind the read lock
KVM: arm64: Don't serialize if the access flag isn't set
KVM: arm64: Return EAGAIN for invalid PTE in attr walker
KVM: arm64: Ignore EAGAIN for walks outside of a fault
KVM: arm64: Use KVM's pte type/helpers in handle_access_fault()
Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
* kvm-arm64/virtual-cache-geometry:
: Virtualized cache geometry for KVM guests, courtesy of Akihiko Odaki.
:
: KVM/arm64 has always exposed the host cache geometry directly to the
: guest, even though non-secure software should never perform CMOs by
: Set/Way. This was slightly wrong, as the cache geometry was derived from
: the PE on which the vCPU thread was running and not a sanitized value.
:
: All together this leads to issues migrating VMs on heterogeneous
: systems, as the cache geometry saved/restored could be inconsistent.
:
: KVM/arm64 now presents 1 level of cache with 1 set and 1 way. The cache
: geometry is entirely controlled by userspace, such that migrations from
: older kernels continue to work.
KVM: arm64: Mark some VM-scoped allocations as __GFP_ACCOUNT
KVM: arm64: Normalize cache configuration
KVM: arm64: Mask FEAT_CCIDX
KVM: arm64: Always set HCR_TID2
arm64/cache: Move CLIDR macro definitions
arm64/sysreg: Add CCSIDR2_EL1
arm64/sysreg: Convert CCSIDR_EL1 to automatic generation
arm64: Allow the definition of UNKNOWN system register fields
Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
Avoid open-coding and just use the helper to encode the ID from the
sysreg table entry.
No functional change intended.
Acked-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20230211190742.49843-1-oliver.upton@linux.dev
Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
As there is a number of features that we either can't support,
or don't want to support right away with NV, let's add some
basic filtering so that we don't advertize silly things to the
EL2 guest.
Whilst we are at it, advertize FEAT_TTL as well as FEAT_GTG, which
the NV implementation will implement.
Reviewed-by: Ganapatrao Kulkarni <gankulkarni@os.amperecomputing.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20230209175820.1939006-18-maz@kernel.org
Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
With HCR_EL2.NV bit set, accesses to EL12 registers in the virtual EL2
trap to EL2. Handle those traps just like we do for EL1 registers.
One exception is CNTKCTL_EL12. We don't trap on CNTKCTL_EL1 for non-VHE
virtual EL2 because we don't have to. However, accessing CNTKCTL_EL12
will trap since it's one of the EL12 registers controlled by HCR_EL2.NV
bit. Therefore, add a handler for it and don't treat it as a
non-trap-registers when preparing a shadow context.
These registers, being only a view on their EL1 counterpart, are
permanently hidden from userspace.
Reviewed-by: Alexandru Elisei <alexandru.elisei@arm.com>
Signed-off-by: Jintack Lim <jintack.lim@linaro.org>
[maz: EL12_REG(), register visibility]
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20230209175820.1939006-17-maz@kernel.org
Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
So far, we never needed to distinguish between registers hidden
from userspace and being hidden from a guest (they are always
either visible to both, or hidden from both).
With NV, we have the ugly case of the EL02 and EL12 registers,
which are only a view on the EL0 and EL1 registers. It makes
absolutely no sense to expose them to userspace, since it
already has the canonical view.
Add a new visibility flag (REG_HIDDEN_USER) and a new helper that
checks for it and REG_HIDDEN when checking whether to expose
a sysreg to userspace. Subsequent patches will make use of it.
Reviewed-by: Alexandru Elisei <alexandru.elisei@arm.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20230209175820.1939006-16-maz@kernel.org
Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
We can no longer blindly copy the VCPU's PSTATE into SPSR_EL2 and return
to the guest and vice versa when taking an exception to the hypervisor,
because we emulate virtual EL2 in EL1 and therefore have to translate
the mode field from EL2 to EL1 and vice versa.
This requires keeping track of the state we enter the guest, for which
we transiently use a dedicated flag.
Reviewed-by: Russell King (Oracle) <rmk+kernel@armlinux.org.uk>
Reviewed-by: Alexandru Elisei <alexandru.elisei@arm.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20230209175820.1939006-15-maz@kernel.org
Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
For the same reason we trap virtual memory register accesses at virtual
EL2, we need to trap SPSR_EL1, ELR_EL1 and VBAR_EL1 accesses. ARM v8.3
introduces the HCR_EL2.NV1 bit to be able to trap on those register
accesses in EL1. Do not set this bit until the whole nesting support is
completed, which happens further down the line...
Reviewed-by: Russell King (Oracle) <rmk+kernel@armlinux.org.uk>
Signed-off-by: Jintack Lim <jintack.lim@linaro.org>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20230209175820.1939006-14-maz@kernel.org
Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
Non-nested guests have used the hvc instruction to initiate SMCCC
calls into KVM. This is quite a poor fit for NV as hvc exceptions are
always taken to EL2. In other words, KVM needs to unconditionally
forward the hvc exception back into vEL2 to uphold the architecture.
Instead, treat the smc instruction from vEL2 as we would a guest
hypercall, thereby allowing the vEL2 to interact with KVM's hypercall
surface. Note that on NV-capable hardware HCR_EL2.TSC causes smc
instructions executed in non-secure EL1 to trap to EL2, even if EL3 is
not implemented.
Reviewed-by: Alexandru Elisei <alexandru.elisei@arm.com>
Signed-off-by: Jintack Lim <jintack.lim@linaro.org>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20230209175820.1939006-13-maz@kernel.org
[Oliver: redo commit message, only handle smc from vEL2]
Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
When a guest hypervisor running virtual EL2 in EL1 executes an ERET
instruction, we will have set HCR_EL2.NV which traps ERET to EL2, so
that we can emulate the exception return in software.
Reviewed-by: Russell King (Oracle) <rmk+kernel@armlinux.org.uk>
Reviewed-by: Alexandru Elisei <alexandru.elisei@arm.com>
Signed-off-by: Christoffer Dall <christoffer.dall@arm.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20230209175820.1939006-12-maz@kernel.org
Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
As we expect all PSCI calls from the L1 hypervisor to be performed
using SMC when nested virtualization is enabled, it is clear that
all HVC instruction from the VM (including from the virtual EL2)
are supposed to handled in the virtual EL2.
Forward these to EL2 as required.
Reviewed-by: Russell King (Oracle) <rmk+kernel@armlinux.org.uk>
Reviewed-by: Alexandru Elisei <alexandru.elisei@arm.com>
Signed-off-by: Jintack Lim <jintack.lim@linaro.org>
[maz: add handling of HCR_EL2.HCD]
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20230209175820.1939006-11-maz@kernel.org
Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
Support injecting exceptions and performing exception returns to and
from virtual EL2. This must be done entirely in software except when
taking an exception from vEL0 to vEL2 when the virtual HCR_EL2.{E2H,TGE}
== {1,1} (a VHE guest hypervisor).
[maz: switch to common exception injection framework, illegal exeption
return handling]
Reviewed-by: Ganapatrao Kulkarni <gankulkarni@os.amperecomputing.com>
Signed-off-by: Jintack Lim <jintack.lim@linaro.org>
Signed-off-by: Christoffer Dall <christoffer.dall@arm.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20230209175820.1939006-10-maz@kernel.org
Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
ARM v8.3 introduces a new bit in the HCR_EL2, which is the NV bit. When
this bit is set, accessing EL2 registers in EL1 traps to EL2. In
addition, executing the following instructions in EL1 will trap to EL2:
tlbi, at, eret, and msr/mrs instructions to access SP_EL1. Most of the
instructions that trap to EL2 with the NV bit were undef at EL1 prior to
ARM v8.3. The only instruction that was not undef is eret.
This patch sets up a handler for EL2 registers and SP_EL1 register
accesses at EL1. The host hypervisor keeps those register values in
memory, and will emulate their behavior.
This patch doesn't set the NV bit yet. It will be set in a later patch
once nested virtualization support is completed.
Reviewed-by: Russell King (Oracle) <rmk+kernel@armlinux.org.uk>
Signed-off-by: Jintack Lim <jintack.lim@linaro.org>
[maz: EL2_REG() macros]
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20230209175820.1939006-9-maz@kernel.org
Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
We were not allowing userspace to set a more privileged mode for the VCPU
than EL1, but we should allow this when nested virtualization is enabled
for the VCPU.
Reviewed-by: Russell King (Oracle) <rmk+kernel@armlinux.org.uk>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20230209175820.1939006-6-maz@kernel.org
Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
Reset the VCPU with PSTATE.M = EL2h when the nested virtualization
feature is enabled on the VCPU.
Reviewed-by: Russell King (Oracle) <rmk+kernel@armlinux.org.uk>
Reviewed-by: Alexandru Elisei <alexandru.elisei@arm.com>
Signed-off-by: Christoffer Dall <christoffer.dall@arm.com>
[maz: rework register reset not to use empty data structures]
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20230209175820.1939006-5-maz@kernel.org
Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
Most of our S2 helpers take a kvm_s2_mmu pointer, but quickly
revert back to using the kvm structure. By doing so, we lose
track of which S2 MMU context we were initially using, and fallback
to the "canonical" context.
If we were trying to unmap a S2 context managed by a guest hypervisor,
we end-up parsing the wrong set of page tables, and bad stuff happens
(as this is often happening on the back of a trapped TLBI from the
guest hypervisor).
Instead, make sure we always use the provided MMU context all the way.
This has no impact on non-NV, as we always pass the canonical MMU
context.
Signed-off-by: Marc Zyngier <maz@kernel.org>
Reviewed-by: Andre Przywara <andre.przywara@arm.com>
Link: https://lore.kernel.org/r/20230209175820.1939006-3-maz@kernel.org
Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
Add a new ARM64_HAS_NESTED_VIRT feature to indicate that the
CPU has the ARMv8.3 nested virtualization capability, together
with the 'kvm-arm.mode=nested' command line option.
This will be used to support nested virtualization in KVM.
Reviewed-by: Russell King (Oracle) <rmk+kernel@armlinux.org.uk>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Jintack Lim <jintack.lim@linaro.org>
Signed-off-by: Andre Przywara <andre.przywara@arm.com>
Signed-off-by: Christoffer Dall <christoffer.dall@arm.com>
[maz: moved the command-line option to kvm-arm.mode]
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20230209175820.1939006-2-maz@kernel.org
Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
* arm64/for-next/perf:
perf: arm_spe: Print the version of SPE detected
perf: arm_spe: Add support for SPEv1.2 inverted event filtering
perf: Add perf_event_attr::config3
drivers/perf: fsl_imx8_ddr_perf: Remove set-but-not-used variable
perf: arm_spe: Support new SPEv1.2/v8.7 'not taken' event
perf: arm_spe: Use new PMSIDR_EL1 register enums
perf: arm_spe: Drop BIT() and use FIELD_GET/PREP accessors
arm64/sysreg: Convert SPE registers to automatic generation
arm64: Drop SYS_ from SPE register defines
perf: arm_spe: Use feature numbering for PMSEVFR_EL1 defines
perf/marvell: Add ACPI support to TAD uncore driver
perf/marvell: Add ACPI support to DDR uncore driver
perf/arm-cmn: Reset DTM_PMU_CONFIG at probe
drivers/perf: hisi: Extract initialization of "cpa_pmu->pmu"
drivers/perf: hisi: Simplify the parameters of hisi_pmu_init()
drivers/perf: hisi: Advertise the PERF_PMU_CAP_NO_EXCLUDE capability
* for-next/sysreg:
: arm64 sysreg and cpufeature fixes/updates
KVM: arm64: Use symbolic definition for ISR_EL1.A
arm64/sysreg: Add definition of ISR_EL1
arm64/sysreg: Add definition for ICC_NMIAR1_EL1
arm64/cpufeature: Remove 4 bit assumption in ARM64_FEATURE_MASK()
arm64/sysreg: Fix errors in 32 bit enumeration values
arm64/cpufeature: Fix field sign for DIT hwcap detection
* for-next/sme:
: SME-related updates
arm64/sme: Optimise SME exit on syscall entry
arm64/sme: Don't use streaming mode to probe the maximum SME VL
arm64/ptrace: Use system_supports_tpidr2() to check for TPIDR2 support
* for-next/kselftest: (23 commits)
: arm64 kselftest fixes and improvements
kselftest/arm64: Don't require FA64 for streaming SVE+ZA tests
kselftest/arm64: Copy whole EXTRA context
kselftest/arm64: Fix enumeration of systems without 128 bit SME for SSVE+ZA
kselftest/arm64: Fix enumeration of systems without 128 bit SME
kselftest/arm64: Don't require FA64 for streaming SVE tests
kselftest/arm64: Limit the maximum VL we try to set via ptrace
kselftest/arm64: Correct buffer size for SME ZA storage
kselftest/arm64: Remove the local NUM_VL definition
kselftest/arm64: Verify simultaneous SSVE and ZA context generation
kselftest/arm64: Verify that SSVE signal context has SVE_SIG_FLAG_SM set
kselftest/arm64: Remove spurious comment from MTE test Makefile
kselftest/arm64: Support build of MTE tests with clang
kselftest/arm64: Initialise current at build time in signal tests
kselftest/arm64: Don't pass headers to the compiler as source
kselftest/arm64: Remove redundant _start labels from FP tests
kselftest/arm64: Fix .pushsection for strings in FP tests
kselftest/arm64: Run BTI selftests on systems without BTI
kselftest/arm64: Fix test numbering when skipping tests
kselftest/arm64: Skip non-power of 2 SVE vector lengths in fp-stress
kselftest/arm64: Only enumerate power of two VLs in syscall-abi
...
* for-next/misc:
: Miscellaneous arm64 updates
arm64/mm: Intercept pfn changes in set_pte_at()
Documentation: arm64: correct spelling
arm64: traps: attempt to dump all instructions
arm64: Apply dynamic shadow call stack patching in two passes
arm64: el2_setup.h: fix spelling typo in comments
arm64: Kconfig: fix spelling
arm64: cpufeature: Use kstrtobool() instead of strtobool()
arm64: Avoid repeated AA64MMFR1_EL1 register read on pagefault path
arm64: make ARCH_FORCE_MAX_ORDER selectable
* for-next/sme2: (23 commits)
: Support for arm64 SME 2 and 2.1
arm64/sme: Fix __finalise_el2 SMEver check
kselftest/arm64: Remove redundant _start labels from zt-test
kselftest/arm64: Add coverage of SME 2 and 2.1 hwcaps
kselftest/arm64: Add coverage of the ZT ptrace regset
kselftest/arm64: Add SME2 coverage to syscall-abi
kselftest/arm64: Add test coverage for ZT register signal frames
kselftest/arm64: Teach the generic signal context validation about ZT
kselftest/arm64: Enumerate SME2 in the signal test utility code
kselftest/arm64: Cover ZT in the FP stress test
kselftest/arm64: Add a stress test program for ZT0
arm64/sme: Add hwcaps for SME 2 and 2.1 features
arm64/sme: Implement ZT0 ptrace support
arm64/sme: Implement signal handling for ZT
arm64/sme: Implement context switching for ZT0
arm64/sme: Provide storage for ZT0
arm64/sme: Add basic enumeration for SME2
arm64/sme: Enable host kernel to access ZT0
arm64/sme: Manually encode ZT0 load and store instructions
arm64/esr: Document ISS for ZT0 being disabled
arm64/sme: Document SME 2 and SME 2.1 ABI
...
* for-next/tpidr2:
: Include TPIDR2 in the signal context
kselftest/arm64: Add test case for TPIDR2 signal frame records
kselftest/arm64: Add TPIDR2 to the set of known signal context records
arm64/signal: Include TPIDR2 in the signal context
arm64/sme: Document ABI for TPIDR2 signal information
* for-next/scs:
: arm64: harden shadow call stack pointer handling
arm64: Stash shadow stack pointer in the task struct on interrupt
arm64: Always load shadow stack pointer directly from the task struct
* for-next/compat-hwcap:
: arm64: Expose compat ARMv8 AArch32 features (HWCAPs)
arm64: Add compat hwcap SSBS
arm64: Add compat hwcap SB
arm64: Add compat hwcap I8MM
arm64: Add compat hwcap ASIMDBF16
arm64: Add compat hwcap ASIMDFHM
arm64: Add compat hwcap ASIMDDP
arm64: Add compat hwcap FPHP and ASIMDHP
* for-next/ftrace:
: Add arm64 support for DYNAMICE_FTRACE_WITH_CALL_OPS
arm64: avoid executing padding bytes during kexec / hibernation
arm64: Implement HAVE_DYNAMIC_FTRACE_WITH_CALL_OPS
arm64: ftrace: Update stale comment
arm64: patching: Add aarch64_insn_write_literal_u64()
arm64: insn: Add helpers for BTI
arm64: Extend support for CONFIG_FUNCTION_ALIGNMENT
ACPI: Don't build ACPICA with '-Os'
Compiler attributes: GCC cold function alignment workarounds
ftrace: Add DYNAMIC_FTRACE_WITH_CALL_OPS
* for-next/efi-boot-mmu-on:
: Permit arm64 EFI boot with MMU and caches on
arm64: kprobes: Drop ID map text from kprobes blacklist
arm64: head: Switch endianness before populating the ID map
efi: arm64: enter with MMU and caches enabled
arm64: head: Clean the ID map and the HYP text to the PoC if needed
arm64: head: avoid cache invalidation when entering with the MMU on
arm64: head: record the MMU state at primary entry
arm64: kernel: move identity map out of .text mapping
arm64: head: Move all finalise_el2 calls to after __enable_mmu
* for-next/ptrauth:
: arm64 pointer authentication cleanup
arm64: pauth: don't sign leaf functions
arm64: unify asm-arch manipulation
* for-next/pseudo-nmi:
: Pseudo-NMI code generation optimisations
arm64: irqflags: use alternative branches for pseudo-NMI logic
arm64: add ARM64_HAS_GIC_PRIO_RELAXED_SYNC cpucap
arm64: make ARM64_HAS_GIC_PRIO_MASKING depend on ARM64_HAS_GIC_CPUIF_SYSREGS
arm64: rename ARM64_HAS_IRQ_PRIO_MASKING to ARM64_HAS_GIC_PRIO_MASKING
arm64: rename ARM64_HAS_SYSREG_GIC_CPUIF to ARM64_HAS_GIC_CPUIF_SYSREGS
Generally speaking, any memory allocations that can be associated with a
particular VM should be charged to the cgroup of its process.
Nonetheless, there are a couple spots in KVM/arm64 that aren't currently
accounted:
- the ccsidr array containing the virtualized cache hierarchy
- the cpumask of supported cpus, for use of the vPMU on heterogeneous
systems
Go ahead and set __GFP_ACCOUNT for these allocations.
Reviewed-by: Marc Zyngier <maz@kernel.org>
Reviewed-by: Akihiko Odaki <akihiko.odaki@daynix.com>
Reviewed-by: Gavin Shan <gshan@redhat.com>
Link: https://lore.kernel.org/r/20230206235229.4174711-1-oliver.upton@linux.dev
Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
The robots amongts us have started spitting out irritating emails about
random errors such as:
<quote>
arch/arm64/kvm/arm.c:2207: warning: expecting prototype for Initialize Hyp().
Prototype was for kvm_arm_init() instead
</quote>
which makes little sense until you finally grok what they are on about:
comments that look like a kerneldoc, but that aren't.
Let's address this before I get even more irritated... ;-)
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/63e139e1.J5AHO6vmxaALh7xv%25lkp@intel.com
Link: https://lore.kernel.org/r/20230207094321.1238600-1-maz@kernel.org
Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
The EL2 state is not initialised correctly when a CPU comes out of
CPU_{SUSPEND,OFF} as the finalise_el2 function is not being called.
Let's directly call finalise_el2_state from this path to solve the
issue.
Fixes: 504ee23611 ("arm64: Add the arm64.nosve command line option")
Signed-off-by: Quentin Perret <qperret@google.com>
Link: https://lore.kernel.org/r/20230201103755.1398086-5-qperret@google.com
Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
We will need a sanitized copy of SYS_ID_AA64SMFR0_EL1 from the nVHE EL2
code shortly, so make sure to provide it with a copy.
Signed-off-by: Quentin Perret <qperret@google.com>
Acked-by: Mark Brown <broonie@kernel.org>
Link: https://lore.kernel.org/r/20230201103755.1398086-2-qperret@google.com
Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
We don't have a running VCPU context to save vgic3 pending table due
to KVM_DEV_ARM_VGIC_{GRP_CTRL, SAVE_PENDING_TABLES} command on KVM
device "kvm-arm-vgic-v3". The unknown case is caught by kvm-unit-tests.
# ./kvm-unit-tests/tests/its-pending-migration
WARNING: CPU: 120 PID: 7973 at arch/arm64/kvm/../../../virt/kvm/kvm_main.c:3325 \
mark_page_dirty_in_slot+0x60/0xe0
:
mark_page_dirty_in_slot+0x60/0xe0
__kvm_write_guest_page+0xcc/0x100
kvm_write_guest+0x7c/0xb0
vgic_v3_save_pending_tables+0x148/0x2a0
vgic_set_common_attr+0x158/0x240
vgic_v3_set_attr+0x4c/0x5c
kvm_device_ioctl+0x100/0x160
__arm64_sys_ioctl+0xa8/0xf0
invoke_syscall.constprop.0+0x7c/0xd0
el0_svc_common.constprop.0+0x144/0x160
do_el0_svc+0x34/0x60
el0_svc+0x3c/0x1a0
el0t_64_sync_handler+0xb4/0x130
el0t_64_sync+0x178/0x17c
Use vgic_write_guest_lock() to save vgic3 pending table.
Reported-by: Zenghui Yu <yuzenghui@huawei.com>
Signed-off-by: Gavin Shan <gshan@redhat.com>
Reviewed-by: Oliver Upton <oliver.upton@linux.dev>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20230126235451.469087-5-gshan@redhat.com
We don't have a running VCPU context to restore vgic3 LPI pending status
due to command KVM_DEV_ARM_{VGIC_GRP_CTRL, ITS_RESTORE_TABLES} on KVM
device "kvm-arm-vgic-its".
Use vgic_write_guest_lock() to restore vgic3 LPI pending status.
Signed-off-by: Gavin Shan <gshan@redhat.com>
Reviewed-by: Oliver Upton <oliver.upton@linux.dev>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20230126235451.469087-4-gshan@redhat.com
Currently, the unknown no-running-vcpu sites are reported when a
dirty page is tracked by mark_page_dirty_in_slot(). Until now, the
only known no-running-vcpu site is saving vgic/its tables through
KVM_DEV_ARM_{VGIC_GRP_CTRL, ITS_SAVE_TABLES} command on KVM device
"kvm-arm-vgic-its". Unfortunately, there are more unknown sites to
be handled and no-running-vcpu context will be allowed in these
sites: (1) KVM_DEV_ARM_{VGIC_GRP_CTRL, ITS_RESTORE_TABLES} command
on KVM device "kvm-arm-vgic-its" to restore vgic/its tables. The
vgic3 LPI pending status could be restored. (2) Save vgic3 pending
table through KVM_DEV_ARM_{VGIC_GRP_CTRL, VGIC_SAVE_PENDING_TABLES}
command on KVM device "kvm-arm-vgic-v3".
In order to handle those unknown cases, we need a unified helper
vgic_write_guest_lock(). struct vgic_dist::save_its_tables_in_progress
is also renamed to struct vgic_dist::save_tables_in_progress.
No functional change intended.
Suggested-by: Oliver Upton <oliver.upton@linux.dev>
Signed-off-by: Gavin Shan <gshan@redhat.com>
Reviewed-by: Oliver Upton <oliver.upton@linux.dev>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20230126235451.469087-3-gshan@redhat.com
Although not handling a trap is a pretty bad situation to be in,
panicing the kernel isn't useful and provides no valuable
information to help debugging the situation.
Instead, dump the encoding of the unhandled sysreg, and inject
an UNDEF in the guest. At least, this gives a user an opportunity
to report the issue with some information to help debugging it.
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20230112123829.458912-4-maz@kernel.org
Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
Each read/write to a trapped timer system register results
in a whole kvm_timer_vcpu_put/load() cycle which affects all
of the timers, and a bit more.
There is no need for such a thing, and we can limit the impact
to the timer being affected, and only this one.
This drastically simplifies the emulated case, and limits the
damage for trapped accesses. This also brings some performance
back for NV.
Whilst we're at it, fix a comment that didn't quite capture why
we always set CNTVOFF_EL2 to 0 when disabling the virtual timer.
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20230112123829.458912-3-maz@kernel.org
Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
When fully emulating a timer, we back it with a hrtimer that is
armver on vcpu_load(). However, we do this even if the timer is
already pending.
This causes spurious interrupts to be taken, though the guest
doesn't observe them (the interrupt is already pending).
Although this is a waste of precious cycles, this isn't the
end of the world with the current state of KVM. However, this
can lead to a situation where a guest doesn't make forward
progress anymore with NV.
Fix it by checking that if the timer is already pending
before arming a new hrtimer. Also drop the hrtimer cancelling,
which is useless, by construction.
Reported-by: D Scott Phillips <scott@os.amperecomputing.com>
Fixes: bee038a674 ("KVM: arm/arm64: Rework the timer code to use a timer_map")
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20230112123829.458912-2-maz@kernel.org
Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
ARM:
* Fix the PMCR_EL0 reset value after the PMU rework
* Correctly handle S2 fault triggered by a S1 page table walk
by not always classifying it as a write, as this breaks on
R/O memslots
* Document why we cannot exit with KVM_EXIT_MMIO when taking
a write fault from a S1 PTW on a R/O memslot
* Put the Apple M2 on the naughty list for not being able to
correctly implement the vgic SEIS feature, just like the M1
before it
* Reviewer updates: Alex is stepping down, replaced by Zenghui
x86:
* Fix various rare locking issues in Xen emulation and teach lockdep
to detect them
* Documentation improvements
* Do not return host topology information from KVM_GET_SUPPORTED_CPUID
Before this change, the cache configuration of the physical CPU was
exposed to vcpus. This is problematic because the cache configuration a
vcpu sees varies when it migrates between vcpus with different cache
configurations.
Fabricate cache configuration from the sanitized value, which holds the
CTR_EL0 value the userspace sees regardless of which physical CPU it
resides on.
CLIDR_EL1 and CCSIDR_EL1 are now writable from the userspace so that
the VMM can restore the values saved with the old kernel.
Suggested-by: Marc Zyngier <maz@kernel.org>
Signed-off-by: Akihiko Odaki <akihiko.odaki@daynix.com>
Link: https://lore.kernel.org/r/20230112023852.42012-8-akihiko.odaki@daynix.com
[ Oliver: Squash Marc's fix for CCSIDR_EL1.LineSize when set from userspace ]
Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
To save the vgic LPI pending state with GICv4.1, the VPEs must all be
unmapped from the ITSs so that the sGIC caches can be flushed.
The opposite is done once the state is saved.
This is all done by using the activate/deactivate irqdomain callbacks
directly from the vgic code. Crutially, this is done without holding
the irqdesc lock for the interrupts that represent the VPE. And these
callbacks are changing the state of the irqdesc. What could possibly
go wrong?
If a doorbell fires while we are messing with the irqdesc state,
it will acquire the lock and change the interrupt state concurrently.
Since we don't hole the lock, curruption occurs in on the interrupt
state. Oh well.
While acquiring the lock would fix this (and this was Shanker's
initial approach), this is still a layering violation we could do
without. A better approach is actually to free the VPE interrupt,
do what we have to do, and re-request it.
It is more work, but this usually happens only once in the lifetime
of the VM and we don't really care about this sort of overhead.
Fixes: f66b7b151e ("KVM: arm64: GICv4.1: Try to save VLPI state in save_pending_tables")
Reported-by: Shanker Donthineni <sdonthineni@nvidia.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/r/20230118022348.4137094-1-sdonthineni@nvidia.com
Commit d77e59a8fc ("arm64: mte: Lock a page for MTE tag
initialisation") added a call to mte_clear_page_tags() in case a
prior mte_copy_tags_from_user() failed in order to avoid stale tags in
the guest page (it should have really been a separate commit).
Unfortunately, the argument passed to this function was the address of
the struct page rather than the actual page address. Fix this function
call.
Fixes: d77e59a8fc ("arm64: mte: Lock a page for MTE tag initialisation")
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Cc: Marc Zyngier <maz@kernel.org>
Reviewed-by: Oliver Upton <oliver.upton@linux.dev>
Reviewed-by: Anshuman Khandual <anshuman.khandual@arm.com>
Reviewed-by: Cornelia Huck <cohuck@redhat.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20230119170902.1574756-1-catalin.marinas@arm.com
In preparation for adding support for storage for ZT0 to the thread_struct
rename za_state to sme_state. Since ZT0 is accessible when PSTATE.ZA is
set just like ZA itself we will extend the allocation done for ZA to
cover it, avoiding the need to further expand task_struct for non-SME
tasks.
No functional changes.
Signed-off-by: Mark Brown <broonie@kernel.org>
Link: https://lore.kernel.org/r/20221208-arm64-sme2-v4-1-f2fa0aef982f@kernel.org
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
KVM already has a 'GPA_INVALID' defined as (~(gpa_t)0) in kvm_types.h,
and it is used by ARM code. We do not need another definition of
'INVALID_GPA' for X86 specifically.
Instead of using the common 'GPA_INVALID' for X86, replace it with
'INVALID_GPA', and change the users of 'GPA_INVALID' so that the diff
can be smaller. Also because the name 'INVALID_GPA' tells the user we
are using an invalid GPA, while the name 'GPA_INVALID' is emphasizing
the GPA is an invalid one.
No functional change intended.
Signed-off-by: Yu Zhang <yu.c.zhang@linux.intel.com>
Reviewed-by: Paul Durrant <paul@xen.org>
Reviewed-by: Sean Christopherson <seanjc@google.com>
Link: https://lore.kernel.org/r/20230105130127.866171-1-yu.c.zhang@linux.intel.com
Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
We currently have a non-standard SYS_ prefix in the constants generated
for the SPE register bitfields. Drop this in preparation for automatic
register definition generation.
The SPE mask defines were unshifted, and the SPE register field
enumerations were shifted. The autogenerated defines are the opposite,
so make the necessary adjustments.
No functional changes.
Tested-by: James Clark <james.clark@arm.com>
Signed-off-by: Rob Herring <robh@kernel.org>
Reviewed-by: Anshuman Khandual <anshuman.khandual@arm.com>
Link: https://lore.kernel.org/r/20220825-arm-spe-v8-7-v4-2-327f860daf28@kernel.org
Signed-off-by: Will Deacon <will@kernel.org>
strtobool() is the same as kstrtobool().
However, the latter is more used within the kernel.
In order to remove strtobool() and slightly simplify kstrtox.h, switch to
the other function name.
While at it, include the corresponding header file (<linux/kstrtox.h>)
Signed-off-by: Christophe JAILLET <christophe.jaillet@wanadoo.fr>
Reviewed-by: Zenghui Yu <yuzenghui@huawei.com>
Link: https://lore.kernel.org/r/f546e636c6d2bbcc0d8c4191ab98ce892fce4584.1673702763.git.christophe.jaillet@wanadoo.fr
Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
When a vcpu is accessing *its own* redistributor's SGIs/PPIs, there
is no point in doing a stop-the-world operation. Instead, we can
just let the access occur as we do with GICv2.
This is a very minor optimisation for a non-nesting guest, but
a potentially major one for a nesting L1 hypervisor which is
likely to access the emulated registers pretty often (on each
vcpu switch, at the very least).
Reported-by: Ganapatrao Kulkarni <gankulkarni@os.amperecomputing.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20230112154840.1808595-1-maz@kernel.org
Signed-off-by: Oliver Upton <oliver.upton@linux.dev>