The stage-2 map walker has been made parallel-aware, and as such can be
called while only holding the read side of the MMU lock. Rip out the
conditional locking in user_mem_abort() and instead grab the read lock.
Continue to take the write lock from other callsites to
kvm_pgtable_stage2_map().
Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20221107220033.1895655-1-oliver.upton@linux.dev
stage2_map_walker_try_leaf() and friends now handle stage-2 PTEs
generically, and perform the correct flush when a table PTE is removed.
Additionally, they've been made parallel-aware, using an atomic break
to take ownership of the PTE.
Stop clearing the PTE in the pre-order callback and instead let
stage2_map_walker_try_leaf() deal with it.
Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20221107220006.1895572-1-oliver.upton@linux.dev
Convert stage2_map_walker_try_leaf() to use the new break-before-make
helpers, thereby making the handler parallel-aware. As before, avoid the
break-before-make if recreating the existing mapping. Additionally,
retry execution if another vCPU thread is modifying the same PTE.
Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
Reviewed-by: Ben Gardon <bgardon@google.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20221107215934.1895478-1-oliver.upton@linux.dev
In order to service stage-2 faults in parallel, stage-2 table walkers
must take exclusive ownership of the PTE being worked on. An additional
requirement of the architecture is that software must perform a
'break-before-make' operation when changing the block size used for
mapping memory.
Roll these two concepts together into helpers for performing a
'break-before-make' sequence. Use a special PTE value to indicate a PTE
has been locked by a software walker. Additionally, use an atomic
compare-exchange to 'break' the PTE when the stage-2 page tables are
possibly shared with another software walker. Elide the DSB + TLBI if
the evicted PTE was invalid (and thus not subject to break-before-make).
All of the atomics do nothing for now, as the stage-2 walker isn't fully
ready to perform parallel walks.
Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20221107215855.1895367-1-oliver.upton@linux.dev
Create a helper to initialize a table and directly call
smp_store_release() to install it (for now). Prepare for a subsequent
change that generalizes PTE writes with a helper.
Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20221107215644.1895162-11-oliver.upton@linux.dev
The stage2 attr walker is already used for parallel walks. Since commit
f783ef1c0e ("KVM: arm64: Add fast path to handle permission relaxation
during dirty logging"), KVM acquires the read lock when
write-unprotecting a PTE. However, the walker only uses a simple store
to update the PTE. This is safe as the only possible race is with
hardware updates to the access flag, which is benign.
However, a subsequent change to KVM will allow more changes to the stage
2 page tables to be done in parallel. Prepare the stage 2 attribute
walker by performing atomic updates to the PTE when walking in parallel.
Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20221107215644.1895162-10-oliver.upton@linux.dev
Use RCU to safely walk the stage-2 page tables in parallel. Acquire and
release the RCU read lock when traversing the page tables. Defer the
freeing of table memory to an RCU callback. Indirect the calls into RCU
and provide stubs for hypervisor code, as RCU is not available in such a
context.
The RCU protection doesn't amount to much at the moment, as readers are
already protected by the read-write lock (all walkers that free table
memory take the write lock). Nonetheless, a subsequent change will
futher relax the locking requirements around the stage-2 MMU, thereby
depending on RCU.
Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20221107215644.1895162-9-oliver.upton@linux.dev
The break-before-make sequence is a bit annoying as it opens a window
wherein memory is unmapped from the guest. KVM should replace the PTE
as quickly as possible and avoid unnecessary work in between.
Presently, the stage-2 map walker tears down a removed table before
installing a block mapping when coalescing a table into a block. As the
removed table is no longer visible to hardware walkers after the
DSB+TLBI, it is possible to move the remaining cleanup to happen after
installing the new PTE.
Reshuffle the stage-2 map walker to install the new block entry in
the pre-order callback. Unwire all of the teardown logic and replace
it with a call to kvm_pgtable_stage2_free_removed() after fixing
the PTE. The post-order visitor is now completely unnecessary, so drop
it. Finally, touch up the comments to better represent the now
simplified map walker.
Note that the call to tear down the unlinked stage-2 is indirected
as a subsequent change will use an RCU callback to trigger tear down.
RCU is not available to pKVM, so there is a need to use different
implementations on pKVM and non-pKVM VMs.
Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
Reviewed-by: Ben Gardon <bgardon@google.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20221107215644.1895162-8-oliver.upton@linux.dev
Use an opaque type for pteps and require visitors explicitly dereference
the pointer before using. Protecting page table memory with RCU requires
that KVM dereferences RCU-annotated pointers before using. However, RCU
is not available for use in the nVHE hypervisor and the opaque type can
be conditionally annotated with RCU for the stage-2 MMU.
Call the type a 'pteref' to avoid a naming collision with raw pteps. No
functional change intended.
Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20221107215644.1895162-7-oliver.upton@linux.dev
A subsequent change to KVM will move the tear down of an unlinked
stage-2 subtree out of the critical path of the break-before-make
sequence.
Introduce a new helper for tearing down unlinked stage-2 subtrees.
Leverage the existing stage-2 free walkers to do so, with a deep call
into __kvm_pgtable_walk() as the subtree is no longer reachable from the
root.
Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20221107215644.1895162-6-oliver.upton@linux.dev
In order to tear down page tables from outside the context of
kvm_pgtable (such as an RCU callback), stop passing a pointer through
kvm_pgtable_walk_data.
No functional change intended.
Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
Reviewed-by: Ben Gardon <bgardon@google.com>
Reviewed-by: Gavin Shan <gshan@redhat.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20221107215644.1895162-5-oliver.upton@linux.dev
As a prerequisite for getting visitors off of struct kvm_pgtable, pass
mm_ops through the visitor context.
No functional change intended.
Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
Reviewed-by: Ben Gardon <bgardon@google.com>
Reviewed-by: Gavin Shan <gshan@redhat.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20221107215644.1895162-4-oliver.upton@linux.dev
Rather than reading the ptep all over the shop, read the ptep once from
__kvm_pgtable_visit() and stick it in the visitor context. Reread the
ptep after visiting a leaf in case the callback installed a new table
underneath.
No functional change intended.
Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
Reviewed-by: Ben Gardon <bgardon@google.com>
Reviewed-by: Gavin Shan <gshan@redhat.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20221107215644.1895162-3-oliver.upton@linux.dev
Passing new arguments by value to the visitor callbacks is extremely
inflexible for stuffing new parameters used by only some of the
visitors. Use a context structure instead and pass the pointer through
to the visitor callback.
While at it, redefine the 'flags' parameter to the visitor to contain
the bit indicating the phase of the walk. Pass the entire set of flags
through the context structure such that the walker can communicate
additional state to the visitor callback.
No functional change intended.
Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
Reviewed-by: Ben Gardon <bgardon@google.com>
Reviewed-by: Gavin Shan <gshan@redhat.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20221107215644.1895162-2-oliver.upton@linux.dev
Enable ring-based dirty memory tracking on ARM64:
- Enable CONFIG_HAVE_KVM_DIRTY_RING_ACQ_REL.
- Enable CONFIG_NEED_KVM_DIRTY_RING_WITH_BITMAP.
- Set KVM_DIRTY_LOG_PAGE_OFFSET for the ring buffer's physical page
offset.
- Add ARM64 specific kvm_arch_allow_write_without_running_vcpu() to
keep the site of saving vgic/its tables out of the no-running-vcpu
radar.
Signed-off-by: Gavin Shan <gshan@redhat.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20221110104914.31280-5-gshan@redhat.com
Enable asynchronous unwind table generation for both the core kernel as
well as modules, and emit the resulting .eh_frame sections as init code
so we can use the unwind directives for code patching at boot or module
load time.
This will be used by dynamic shadow call stack support, which will rely
on code patching rather than compiler codegen to emit the shadow call
stack push and pop instructions.
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Reviewed-by: Nick Desaulniers <ndesaulniers@google.com>
Reviewed-by: Sami Tolvanen <samitolvanen@google.com>
Tested-by: Sami Tolvanen <samitolvanen@google.com>
Link: https://lore.kernel.org/r/20221027155908.1940624-2-ardb@kernel.org
Signed-off-by: Will Deacon <will@kernel.org>
virt/kvm/irqchip.c is including "irq.h" from the arch-specific KVM source
directory (i.e. not from arch/*/include) for the sole purpose of retrieving
irqchip_in_kernel.
Making the function inline in a header that is already included,
such as asm/kvm_host.h, is not possible because it needs to look at
struct kvm which is defined after asm/kvm_host.h is included. So add a
kvm_arch_irqchip_in_kernel non-inline function; irqchip_in_kernel() is
only performance critical on arm64 and x86, and the non-inline function
is enough on all other architectures.
irq.h can then be deleted from all architectures except x86.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Add a new "interruptible" flag showing that the caller is willing to be
interrupted by signals during the __gfn_to_pfn_memslot() request. Wire it
up with a FOLL_INTERRUPTIBLE flag that we've just introduced.
This prepares KVM to be able to respond to SIGUSR1 (for QEMU that's the
SIGIPI) even during e.g. handling an userfaultfd page fault.
No functional change intended.
Signed-off-by: Peter Xu <peterx@redhat.com>
Reviewed-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20221011195809.557016-4-peterx@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The trapping of SMPRI_EL1 and TPIDR2_EL0 currently only really
work on nVHE, as only this mode uses the fine-grained trapping
that controls these two registers.
Move the trapping enable/disable code into
__{de,}activate_traps_common(), allowing it to be called when it
actually matters on VHE, and remove the flipping of EL2 control
for TPIDR2_EL0, which only affects the host access of this
register.
Fixes: 861262ab86 ("KVM: arm64: Handle SME host state when running guests")
Reported-by: Mark Brown <broonie@kernel.org>
Reviewed-by: Mark Brown <broonie@kernel.org>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/r/86bkpqer4z.wl-maz@kernel.org
enter_exception64() performs an MTE check, which involves dereferencing
vcpu->kvm. While vcpu has already been fixed up to be a HYP VA pointer,
kvm is still a pointer in the kernel VA space.
This only affects nVHE configurations with MTE enabled, as in other
cases, the pointer is either valid (VHE) or not dereferenced (!MTE).
Fix this by first converting kvm to a HYP VA pointer.
Fixes: ea7fc1bb1c ("KVM: arm64: Introduce MTE VM feature")
Signed-off-by: Ryan Roberts <ryan.roberts@arm.com>
Reviewed-by: Steven Price <steven.price@arm.com>
[maz: commit message tidy-up]
Signed-off-by: Marc Zyngier <maz@kernel.org>
Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/r/20221027120945.29679-1-ryan.roberts@arm.com
hyp_get_page_state() is used with pKVM to retrieve metadata about a page
by parsing a hypervisor stage-1 PTE. However, it incorrectly uses a
helper which parses *stage-2* mappings. Ouch.
Luckily, pkvm_getstate() only looks at the software bits, which happen
to be in the same place for stage-1 and stage-2 PTEs, and this all ends
up working correctly by accident. But clearly, we should do better.
Fix hyp_get_page_state() to use the correct helper.
Fixes: e82edcc75c ("KVM: arm64: Implement do_share() helper for sharing memory")
Signed-off-by: Quentin Perret <qperret@google.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20221025145156.855308-1-qperret@google.com
- Fix a bug preventing restoring an ITS containing mappings
for very large and very sparse device topology
- Work around a relocation handling error when compiling
the nVHE object with profile optimisation
-----BEGIN PGP SIGNATURE-----
iQJDBAABCgAtFiEEn9UcU+C1Yxj9lZw9I9DQutE9ekMFAmNRGjoPHG1hekBrZXJu
ZWwub3JnAAoJECPQ0LrRPXpDVcEP/2zn+J/pAv1FoNKxSiSk/H2hx5PH685mqEwv
I7YPYPOuGJDv/uJFXzMMDpjjs8RHG9yWwPwtFZYGKqtmlkXgM3a0jk5jtsgfSVcp
vsvqgR0kL67x5D/Mc+I/bkVMNEecrucvkewf0Sp7W2gdXnC+rm1EFN5McK5U60tW
+s6fKVkIB0/fxNJCXPdETGiNpoYGEBeVVzoTrXGFm9QBcSDKvqdaPF8koZzOecpS
3UcVYKBaxNf1zowAseNYiS4kndwKuopaYsk4BY/KDgTbPyoFQBwMZYm6DAkb9ugW
sFK6g8FmOJJ5meLWIg4vTdruILL+YP6gbJ0HrzFoxJJEdd2iRzEUgQlBp7G+STSY
npXmeTJh5DJelm1Qd4OdiSBlqwYTIxKEyaV34/xeFh9P3w/LbN9uSiZAybbTw92h
sE1kQpT//s8lTXOnn23YHycZ1Dsy0JSExoJutCt6E5YnTb0wtPQ6ZLoWmyWMnTL/
6Gyj7LTy+trv4l0N2ND+LF7BfN6Cb4eSXMfLLhwo2qfQI2kD/gBrbrTYYdyiVvHD
YnZftvVViOcQVaocXP1SeQ5/yhdj6ASrCiFWie7nJW9Z3IJ9BJuXCxk3gSW5yCde
Rw37+FpVSciyhpEK9f4aVGfAGA8ifO1Gi5yp70ioF8Y3i1CvS238g0knx6v6p8Vm
dAi3i1ga
=C0jb
-----END PGP SIGNATURE-----
Merge tag 'kvmarm-fixes-6.1-2' of git://git.kernel.org/pub/scm/linux/kernel/git/kvmarm/kvmarm into HEAD
KVM/arm64 fixes for 6.1, take #2
- Fix a bug preventing restoring an ITS containing mappings
for very large and very sparse device topology
- Work around a relocation handling error when compiling
the nVHE object with profile optimisation
- Fix for stage-2 invalidation holding the VM MMU lock
for too long by limiting the walk to the largest
block mapping size
- Enable stack protection and branch profiling for VHE
- Two selftest fixes
-----BEGIN PGP SIGNATURE-----
iQJDBAABCgAtFiEEn9UcU+C1Yxj9lZw9I9DQutE9ekMFAmNIEAUPHG1hekBrZXJu
ZWwub3JnAAoJECPQ0LrRPXpDIXcP/AyWlCEJlmc1Jcd9rlaW1Wenr82U+StLVeMy
qP5P02gMWdbGExWIWEi4zkt+pAm7K2WRgXid9z5Vjw7kZY/+WwswTzKHWcQhVuZv
cBHfeOqgtoHVGR8NcwX6xcp406y3WRqYIsyAmbc5qmo75L8Ew1o3m+3eDfFtAq7l
3XuTCv+lQGNSGMhXHN2SVewZ+pCAo3XJmuHfCBXTqRjwqH4Tzh+54IKzo+9mqBWW
7yeIm5qcbIKGuXLuLL7XCf99gWy/3kQ0xQ1yJeXLAyiHswHqEISZXGHnKeATvD+6
RdbmQ9oRmIYfZfoDKZRUJg8TyTvW1rIKokFbe0q2iyuDnI5D/fAJ48epZaLw+kEf
PUzdB3UgPk19SLwgZKQddqY4wOD420ZD5x1TUFUQuLL7sjVv1vUILDvuCLWpq7F7
GyfSB+LEMgexHGsZ1wjslN/ivTbG+dQgaSS9mlV8/WDOLPtD2uOf65vYR3P28hAX
zOHrwm3e2+UV83BsEFEY2FQiiIBD24JmSecMbmAIHY09MCSZ+vJ/WbF4J1PcPP8C
3vjueIYTcjhzLtQrfIkGZcS7+wC9ji/RRmpJjbg79EpwrjhEs9G8h1+HyL9+zBZ4
Xn6X+ZG/cv0/ZYdin0ZRzJMvM0RutbsR77blVCLY97PBuLtBlqJDcxr+lmmjyIZ2
Db8Qd6uW
=IOxM
-----END PGP SIGNATURE-----
Merge tag 'kvmarm-fixes-6.1-1' of git://git.kernel.org/pub/scm/linux/kernel/git/kvmarm/kvmarm into HEAD
KVM/arm64 fixes for 6.1, take #1
- Fix for stage-2 invalidation holding the VM MMU lock
for too long by limiting the walk to the largest
block mapping size
- Enable stack protection and branch profiling for VHE
- Two selftest fixes
With some PCIe topologies, restoring a guest fails while
parsing the ITS device tables.
Reproducer hints:
1. Create ARM virt VM with pxb-pcie bus which adds
extra host bridges, with qemu command like:
```
-device pxb-pcie,bus_nr=8,id=pci.x,numa_node=0,bus=pcie.0 \
-device pcie-root-port,..,bus=pci.x \
...
-device pxb-pcie,bus_nr=37,id=pci.y,numa_node=1,bus=pcie.0 \
-device pcie-root-port,..,bus=pci.y \
...
```
2. Ensure the guest uses 2-level device table
3. Perform VM migration which calls save/restore device tables
In that setup, we get a big "offset" between 2 device_ids,
which makes unsigned "len" round up a big positive number,
causing the scan loop to continue with a bad GPA. For example:
1. L1 table has 2 entries;
2. and we are now scanning at L2 table entry index 2075 (pointed
to by L1 first entry)
3. if next device id is 9472, we will get a big offset: 7397;
4. with unsigned 'len', 'len -= offset * esz', len will underflow to a
positive number, mistakenly into next iteration with a bad GPA;
(It should break out of the current L2 table scanning, and jump
into the next L1 table entry)
5. that bad GPA fails the guest read.
Fix it by stopping the L2 table scan when the next device id is
outside of the current table, allowing the scan to continue from
the next L1 table entry.
Thanks to Eric Auger for the fix suggestion.
Fixes: 920a7a8fa9 ("KVM: arm64: vgic-its: Add infrastructure for tableookup")
Suggested-by: Eric Auger <eric.auger@redhat.com>
Signed-off-by: Eric Ren <renzhengeek@gmail.com>
[maz: commit message tidy-up]
Signed-off-by: Marc Zyngier <maz@kernel.org>
Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/r/d9c3a564af9e2c5bf63f48a7dcbf08cd593c5c0b.1665802985.git.renzhengeek@gmail.com
Kernel build with clang and KCFLAGS=-fprofile-sample-use=<profile> fails with:
error: arch/arm64/kvm/hyp/nvhe/kvm_nvhe.tmp.o: Unexpected SHT_REL
section ".rel.llvm.call-graph-profile"
Starting from 13.0.0 llvm can generate SHT_REL section, see
https://reviews.llvm.org/rGca3bdb57fa1ac98b711a735de048c12b5fdd8086.
gen-hyprel does not support SHT_REL relocation section.
Filter out profile use flags to fix the build with profile optimization.
Signed-off-by: Denis Nikitin <denik@chromium.org>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20221014184532.3153551-1-denik@chromium.org
* Fixes for single-stepping in the presence of an async
exception as well as the preservation of PSTATE.SS
* Better handling of AArch32 ID registers on AArch64-only
systems
* Fixes for the dirty-ring API, allowing it to work on
architectures with relaxed memory ordering
* Advertise the new kvmarm mailing list
* Various minor cleanups and spelling fixes
RISC-V:
* Improved instruction encoding infrastructure for
instructions not yet supported by binutils
* Svinval support for both KVM Host and KVM Guest
* Zihintpause support for KVM Guest
* Zicbom support for KVM Guest
* Record number of signal exits as a VCPU stat
* Use generic guest entry infrastructure
x86:
* Misc PMU fixes and cleanups.
* selftests: fixes for Hyper-V hypercall
* selftests: fix nx_huge_pages_test on TDP-disabled hosts
* selftests: cleanups for fix_hypercall_test
-----BEGIN PGP SIGNATURE-----
iQFIBAABCAAyFiEE8TM4V0tmI4mGbHaCv/vSX3jHroMFAmM7OcMUHHBib256aW5p
QHJlZGhhdC5jb20ACgkQv/vSX3jHroPAFgf/Rqc9hrXZVdbh2OZ+gScSsFsPK1zO
DISUksLcXaYVYYsvQAEg/N2BPz3XbmO4jA+z8bIUrYTA7fC98we2C4jfR+EaX/fO
+/Kzf0lAgu/nQZyFzUya+1jRsZqvVbC/HmDCI2kzN4u78e/LZ7NVcMijdV/ly6ib
cq0b0LLqJHe/fcpJ806JZP3p5sndQhDmlUkZ2AWZf6CUKSEFcufbbYkt+84ZK4PL
N9mEqXYQ3DXClLQmIBv+NZhtGlmADkWDE4BNouw8dVxhaXH7Hw/jfBHdb6SSHMRe
tQ6Src1j8AYOhf5J35SMudgkbGcMelm0yeZ7Sizk+5Ft0EmdbZsnkvsGdQ==
=4RA+
-----END PGP SIGNATURE-----
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull more kvm updates from Paolo Bonzini:
"The main batch of ARM + RISC-V changes, and a few fixes and cleanups
for x86 (PMU virtualization and selftests).
ARM:
- Fixes for single-stepping in the presence of an async exception as
well as the preservation of PSTATE.SS
- Better handling of AArch32 ID registers on AArch64-only systems
- Fixes for the dirty-ring API, allowing it to work on architectures
with relaxed memory ordering
- Advertise the new kvmarm mailing list
- Various minor cleanups and spelling fixes
RISC-V:
- Improved instruction encoding infrastructure for instructions not
yet supported by binutils
- Svinval support for both KVM Host and KVM Guest
- Zihintpause support for KVM Guest
- Zicbom support for KVM Guest
- Record number of signal exits as a VCPU stat
- Use generic guest entry infrastructure
x86:
- Misc PMU fixes and cleanups.
- selftests: fixes for Hyper-V hypercall
- selftests: fix nx_huge_pages_test on TDP-disabled hosts
- selftests: cleanups for fix_hypercall_test"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (57 commits)
riscv: select HAVE_POSIX_CPU_TIMERS_TASK_WORK
RISC-V: KVM: Use generic guest entry infrastructure
RISC-V: KVM: Record number of signal exits as a vCPU stat
RISC-V: KVM: add __init annotation to riscv_kvm_init()
RISC-V: KVM: Expose Zicbom to the guest
RISC-V: KVM: Provide UAPI for Zicbom block size
RISC-V: KVM: Make ISA ext mappings explicit
RISC-V: KVM: Allow Guest use Zihintpause extension
RISC-V: KVM: Allow Guest use Svinval extension
RISC-V: KVM: Use Svinval for local TLB maintenance when available
RISC-V: Probe Svinval extension form ISA string
RISC-V: KVM: Change the SBI specification version to v1.0
riscv: KVM: Apply insn-def to hlv encodings
riscv: KVM: Apply insn-def to hfence encodings
riscv: Introduce support for defining instructions
riscv: Add X register names to gpr-nums
KVM: arm64: Advertise new kvmarm mailing list
kvm: vmx: keep constant definition format consistent
kvm: mmu: fix typos in struct kvm_arch
KVM: selftests: Fix nx_huge_pages_test on TDP-disabled hosts
...
am sending out early due to me travelling next week. There is a
lone mm patch for which Andrew gave an informal ack at
https://lore.kernel.org/linux-mm/20220817102500.440c6d0a3fce296fdf91bea6@linux-foundation.org.
I will send the bulk of ARM work, as well as other
architectures, at the end of next week.
ARM:
* Account stage2 page table allocations in memory stats.
x86:
* Account EPT/NPT arm64 page table allocations in memory stats.
* Tracepoint cleanups/fixes for nested VM-Enter and emulated MSR accesses.
* Drop eVMCS controls filtering for KVM on Hyper-V, all known versions of
Hyper-V now support eVMCS fields associated with features that are
enumerated to the guest.
* Use KVM's sanitized VMCS config as the basis for the values of nested VMX
capabilities MSRs.
* A myriad event/exception fixes and cleanups. Most notably, pending
exceptions morph into VM-Exits earlier, as soon as the exception is
queued, instead of waiting until the next vmentry. This fixed
a longstanding issue where the exceptions would incorrecly become
double-faults instead of triggering a vmexit; the common case of
page-fault vmexits had a special workaround, but now it's fixed
for good.
* A handful of fixes for memory leaks in error paths.
* Cleanups for VMREAD trampoline and VMX's VM-Exit assembly flow.
* Never write to memory from non-sleepable kvm_vcpu_check_block()
* Selftests refinements and cleanups.
* Misc typo cleanups.
Generic:
* remove KVM_REQ_UNHALT
-----BEGIN PGP SIGNATURE-----
iQFIBAABCAAyFiEE8TM4V0tmI4mGbHaCv/vSX3jHroMFAmM2zwcUHHBib256aW5p
QHJlZGhhdC5jb20ACgkQv/vSX3jHroNpbwf+MlVeOlzE5SBdrJ0TEnLmKUel1lSz
QnZzP5+D65oD0zhCilUZHcg6G4mzZ5SdVVOvrGJvA0eXh25ruLNMF6jbaABkMLk/
FfI1ybN7A82hwJn/aXMI/sUurWv4Jteaad20JC2DytBCnsW8jUqc49gtXHS2QWy4
3uMsFdpdTAg4zdJKgEUfXBmQviweVpjjl3ziRyZZ7yaeo1oP7XZ8LaE1nR2l5m0J
mfjzneNm5QAnueypOh5KhSwIvqf6WHIVm/rIHDJ1HIFbgfOU0dT27nhb1tmPwAcE
+cJnnMUHjZqtCXteHkAxMClyRq0zsEoKk0OGvSOOMoq3Q0DavSXUNANOig==
=/hqX
-----END PGP SIGNATURE-----
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull kvm updates from Paolo Bonzini:
"The first batch of KVM patches, mostly covering x86.
ARM:
- Account stage2 page table allocations in memory stats
x86:
- Account EPT/NPT arm64 page table allocations in memory stats
- Tracepoint cleanups/fixes for nested VM-Enter and emulated MSR
accesses
- Drop eVMCS controls filtering for KVM on Hyper-V, all known
versions of Hyper-V now support eVMCS fields associated with
features that are enumerated to the guest
- Use KVM's sanitized VMCS config as the basis for the values of
nested VMX capabilities MSRs
- A myriad event/exception fixes and cleanups. Most notably, pending
exceptions morph into VM-Exits earlier, as soon as the exception is
queued, instead of waiting until the next vmentry. This fixed a
longstanding issue where the exceptions would incorrecly become
double-faults instead of triggering a vmexit; the common case of
page-fault vmexits had a special workaround, but now it's fixed for
good
- A handful of fixes for memory leaks in error paths
- Cleanups for VMREAD trampoline and VMX's VM-Exit assembly flow
- Never write to memory from non-sleepable kvm_vcpu_check_block()
- Selftests refinements and cleanups
- Misc typo cleanups
Generic:
- remove KVM_REQ_UNHALT"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (94 commits)
KVM: remove KVM_REQ_UNHALT
KVM: mips, x86: do not rely on KVM_REQ_UNHALT
KVM: x86: never write to memory from kvm_vcpu_check_block()
KVM: x86: Don't snapshot pending INIT/SIPI prior to checking nested events
KVM: nVMX: Make event request on VMXOFF iff INIT/SIPI is pending
KVM: nVMX: Make an event request if INIT or SIPI is pending on VM-Enter
KVM: SVM: Make an event request if INIT or SIPI is pending when GIF is set
KVM: x86: lapic does not have to process INIT if it is blocked
KVM: x86: Rename kvm_apic_has_events() to make it INIT/SIPI specific
KVM: x86: Rename and expose helper to detect if INIT/SIPI are allowed
KVM: nVMX: Make an event request when pending an MTF nested VM-Exit
KVM: x86: make vendor code check for all nested events
mailmap: Update Oliver's email address
KVM: x86: Allow force_emulation_prefix to be written without a reload
KVM: selftests: Add an x86-only test to verify nested exception queueing
KVM: selftests: Use uapi header to get VMX and SVM exit reasons/codes
KVM: x86: Rename inject_pending_events() to kvm_check_and_inject_events()
KVM: VMX: Update MTF and ICEBP comments to document KVM's subtle behavior
KVM: x86: Treat pending TRIPLE_FAULT requests as pending exceptions
KVM: x86: Morph pending exceptions to pending VM-Exits at queue time
...
For historical reasons, the VHE code inherited the build configuration from
nVHE. Now those two parts have their own folder and makefile, we can
enable stack protection and branch profiling for VHE.
Signed-off-by: Vincent Donnefort <vdonnefort@google.com>
Reviewed-by: Quentin Perret <qperret@google.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20221004154216.2833636-1-vdonnefort@google.com
Presently stage2_apply_range() works on a batch of memory addressed by a
stage 2 root table entry for the VM. Depending on the IPA limit of the
VM and PAGE_SIZE of the host, this could address a massive range of
memory. Some examples:
4 level, 4K paging -> 512 GB batch size
3 level, 64K paging -> 4TB batch size
Unsurprisingly, working on such a large range of memory can lead to soft
lockups. When running dirty_log_perf_test:
./dirty_log_perf_test -m -2 -s anonymous_thp -b 4G -v 48
watchdog: BUG: soft lockup - CPU#0 stuck for 45s! [dirty_log_perf_:16703]
Modules linked in: vfat fat cdc_ether usbnet mii xhci_pci xhci_hcd sha3_generic gq(O)
CPU: 0 PID: 16703 Comm: dirty_log_perf_ Tainted: G O 6.0.0-smp-DEV #1
pstate: 80400009 (Nzcv daif +PAN -UAO -TCO -DIT -SSBS BTYPE=--)
pc : dcache_clean_inval_poc+0x24/0x38
lr : clean_dcache_guest_page+0x28/0x4c
sp : ffff800021763990
pmr_save: 000000e0
x29: ffff800021763990 x28: 0000000000000005 x27: 0000000000000de0
x26: 0000000000000001 x25: 00400830b13bc77f x24: ffffad4f91ead9c0
x23: 0000000000000000 x22: ffff8000082ad9c8 x21: 0000fffafa7bc000
x20: ffffad4f9066ce50 x19: 0000000000000003 x18: ffffad4f92402000
x17: 000000000000011b x16: 000000000000011b x15: 0000000000000124
x14: ffff07ff8301d280 x13: 0000000000000000 x12: 00000000ffffffff
x11: 0000000000010001 x10: fffffc0000000000 x9 : ffffad4f9069e580
x8 : 000000000000000c x7 : 0000000000000000 x6 : 000000000000003f
x5 : ffff07ffa2076980 x4 : 0000000000000001 x3 : 000000000000003f
x2 : 0000000000000040 x1 : ffff0830313bd000 x0 : ffff0830313bcc40
Call trace:
dcache_clean_inval_poc+0x24/0x38
stage2_unmap_walker+0x138/0x1ec
__kvm_pgtable_walk+0x130/0x1d4
__kvm_pgtable_walk+0x170/0x1d4
__kvm_pgtable_walk+0x170/0x1d4
__kvm_pgtable_walk+0x170/0x1d4
kvm_pgtable_stage2_unmap+0xc4/0xf8
kvm_arch_flush_shadow_memslot+0xa4/0x10c
kvm_set_memslot+0xb8/0x454
__kvm_set_memory_region+0x194/0x244
kvm_vm_ioctl_set_memory_region+0x58/0x7c
kvm_vm_ioctl+0x49c/0x560
__arm64_sys_ioctl+0x9c/0xd4
invoke_syscall+0x4c/0x124
el0_svc_common+0xc8/0x194
do_el0_svc+0x38/0xc0
el0_svc+0x2c/0xa4
el0t_64_sync_handler+0x84/0xf0
el0t_64_sync+0x1a0/0x1a4
Use the largest supported block mapping for the configured page size as
the batch granularity. In so doing the walker is guaranteed to visit a
leaf only once.
Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20221007234151.461779-3-oliver.upton@linux.dev
- arm64 perf: DDR PMU driver for Alibaba's T-Head Yitian 710 SoC, SVE
vector granule register added to the user regs together with SVE perf
extensions documentation.
- SVE updates: add HWCAP for SVE EBF16, update the SVE ABI documentation
to match the actual kernel behaviour (zeroing the registers on syscall
rather than "zeroed or preserved" previously).
- More conversions to automatic system registers generation.
- vDSO: use self-synchronising virtual counter access in gettimeofday()
if the architecture supports it.
- arm64 stacktrace cleanups and improvements.
- arm64 atomics improvements: always inline assembly, remove LL/SC
trampolines.
- Improve the reporting of EL1 exceptions: rework BTI and FPAC exception
handling, better EL1 undefs reporting.
- Cortex-A510 erratum 2658417: remove BF16 support due to incorrect
result.
- arm64 defconfig updates: build CoreSight as a module, enable options
necessary for docker, memory hotplug/hotremove, enable all PMUs
provided by Arm.
- arm64 ptrace() support for TPIDR2_EL0 (register provided with the SME
extensions).
- arm64 ftraces updates/fixes: fix module PLTs with mcount, remove
unused function.
- kselftest updates for arm64: simple HWCAP validation, FP stress test
improvements, validation of ZA regs in signal handlers, include larger
SVE and SME vector lengths in signal tests, various cleanups.
- arm64 alternatives (code patching) improvements to robustness and
consistency: replace cpucap static branches with equivalent
alternatives, associate callback alternatives with a cpucap.
- Miscellaneous updates: optimise kprobe performance of patching
single-step slots, simplify uaccess_mask_ptr(), move MTE registers
initialisation to C, support huge vmalloc() mappings, run softirqs on
the per-CPU IRQ stack, compat (arm32) misalignment fixups for
multiword accesses.
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEE5RElWfyWxS+3PLO2a9axLQDIXvEFAmM9W4cACgkQa9axLQDI
XvEy3w/+LJ3KCFowWiz5gTAWikjv+UVssHjLMJixn47V7hsEFQ26Xnam/438rTMI
kE95u6DHUpw2SMIxKzFRO7oI5cQtP+cWGwTtOUnjVO+U1oN+HqDOIbO9DbylWDcU
eeeqMMmawMfTPuZrYklpOhXscsorbrKIvYBg7wHYOcwBYV3EPhWr89lwMvTVRuyJ
qpX628KlkGMaBcONNhv3nS3qZcAOs0oHQCAVS4C8czLDL+vtJlumXUS3xr1Mqm72
xtFe7sje8Djr2kZ8mzh0GbFiZEBoBD3F/l7ayq8gVRaVpToUt8sk36Stjs4LojF1
6imuAfji/5TItkScq5KhGqj6MIugwp/eUVbRN74OLNTYx7msF1ZADNFQ+Q0UuY0H
SYK13KvmOji0xjS8qAfhqrwNB79sk3fb+zF9LjETbdz4ZJCgg9gcFbSUTY0DvMfS
MXZk/jVeB07olA8xYbjh0BRt4UV9xU628FPQzK5k7e4Nzl4jSvgtJZCZanfuVtjy
/ZS1vbN8o7tQLBAlVnw+Exi/VedkKxkkMgm8tPKsMgERTFDx0Pc4Gs72hRpDnPWT
MRbeCCGleAf3JQ5vF0coBDNOCEVvweQgShHOyHTz0GyhWXLCFx3RJICo5I4EIpps
LLUk4JK0fO3LVrf1AEpu5ZP4+Sact0zfsH3gB7qyLPYFDmjDXD8=
=jl3Z
-----END PGP SIGNATURE-----
Merge tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux
Pull arm64 updates from Catalin Marinas:
- arm64 perf: DDR PMU driver for Alibaba's T-Head Yitian 710 SoC, SVE
vector granule register added to the user regs together with SVE perf
extensions documentation.
- SVE updates: add HWCAP for SVE EBF16, update the SVE ABI
documentation to match the actual kernel behaviour (zeroing the
registers on syscall rather than "zeroed or preserved" previously).
- More conversions to automatic system registers generation.
- vDSO: use self-synchronising virtual counter access in gettimeofday()
if the architecture supports it.
- arm64 stacktrace cleanups and improvements.
- arm64 atomics improvements: always inline assembly, remove LL/SC
trampolines.
- Improve the reporting of EL1 exceptions: rework BTI and FPAC
exception handling, better EL1 undefs reporting.
- Cortex-A510 erratum 2658417: remove BF16 support due to incorrect
result.
- arm64 defconfig updates: build CoreSight as a module, enable options
necessary for docker, memory hotplug/hotremove, enable all PMUs
provided by Arm.
- arm64 ptrace() support for TPIDR2_EL0 (register provided with the SME
extensions).
- arm64 ftraces updates/fixes: fix module PLTs with mcount, remove
unused function.
- kselftest updates for arm64: simple HWCAP validation, FP stress test
improvements, validation of ZA regs in signal handlers, include
larger SVE and SME vector lengths in signal tests, various cleanups.
- arm64 alternatives (code patching) improvements to robustness and
consistency: replace cpucap static branches with equivalent
alternatives, associate callback alternatives with a cpucap.
- Miscellaneous updates: optimise kprobe performance of patching
single-step slots, simplify uaccess_mask_ptr(), move MTE registers
initialisation to C, support huge vmalloc() mappings, run softirqs on
the per-CPU IRQ stack, compat (arm32) misalignment fixups for
multiword accesses.
* tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux: (126 commits)
arm64: alternatives: Use vdso/bits.h instead of linux/bits.h
arm64/kprobe: Optimize the performance of patching single-step slot
arm64: defconfig: Add Coresight as module
kselftest/arm64: Handle EINTR while reading data from children
kselftest/arm64: Flag fp-stress as exiting when we begin finishing up
kselftest/arm64: Don't repeat termination handler for fp-stress
ARM64: reloc_test: add __init/__exit annotations to module init/exit funcs
arm64/mm: fold check for KFENCE into can_set_direct_map()
arm64: ftrace: fix module PLTs with mcount
arm64: module: Remove unused plt_entry_is_initialized()
arm64: module: Make plt_equals_entry() static
arm64: fix the build with binutils 2.27
kselftest/arm64: Don't enable v8.5 for MTE selftest builds
arm64: uaccess: simplify uaccess_mask_ptr()
arm64: asm/perf_regs.h: Avoid C++-style comment in UAPI header
kselftest/arm64: Fix typo in hwcap check
arm64: mte: move register initialization to C
arm64: mm: handle ARM64_KERNEL_USES_PMD_MAPS in vmemmap_populate()
arm64: dma: Drop cache invalidation from arch_dma_prep_coherent()
arm64/sve: Add Perf extensions documentation
...
- Fixes for single-stepping in the presence of an async
exception as well as the preservation of PSTATE.SS
- Better handling of AArch32 ID registers on AArch64-only
systems
- Fixes for the dirty-ring API, allowing it to work on
architectures with relaxed memory ordering
- Advertise the new kvmarm mailing list
- Various minor cleanups and spelling fixes
-----BEGIN PGP SIGNATURE-----
iQJDBAABCgAtFiEEn9UcU+C1Yxj9lZw9I9DQutE9ekMFAmM5hQcPHG1hekBrZXJu
ZWwub3JnAAoJECPQ0LrRPXpDoMUP/jra4HSmujLUB5G7Op8HxuurEecOc6xtw0Af
AbDLlVc2Vs4rrdVh8GMc8D80atUAVitp8IFjdp/PzI2GTBTzWz43Gav2AbhgIJbJ
xoFVHL8LkdHKyMbq10359DqGMqhIf41OFzGwhbzcx2V4pKNkSpjbCpu3bi/+Ybjg
006ZpZc7NAU0rZgw9Flb/dhn0jw7RMc3orhoDQ4tBp1P/VhvqvgFt5bWipkvvBP7
+lQK28ujG3ghST/hKRhg6ozgy5+6NEEHMuhErMYP8nIivRchX+pWF2Lb0qGH1e+U
v2MZIZnIIUjyTV1vbYlxtltzfYmPuQ2MFNUBawI9tmlIOU9vJSCzeJS64uWK4KLV
kbmk57OfC7rQoSNJH4jaKQp0YpIktrB9Vei97t4I7NwEmkjQj6cLTgg4tQrNqTiQ
cFGeC9mE+lhFC8z1lCbna2eG631FxpPrB1SJ1/CU9wboam9dUfXGIvBPh+i2pvMZ
vcxzUZJ11y+/uhp4k8i2PBwNno0iwRXd5MinwRUs2CR5vhs8qa5y7FVWKyqKpgI2
xqr4lYTixJZL3mWkYyOQuClrTbT1zkoaPldLq6M7wvO08+QV8ryMeyKT+9s/gNQU
dcYSwBCWZaOZm2nN8/zjxRb7VqZVu3cwyXi9XXUWNTCgIe/Q/SDPbXU/Hwbgzf8X
UsQF7e9A
=aNPK
-----END PGP SIGNATURE-----
Merge tag 'kvmarm-6.1' of git://git.kernel.org/pub/scm/linux/kernel/git/kvmarm/kvmarm into HEAD
KVM/arm64 updates for v6.1
- Fixes for single-stepping in the presence of an async
exception as well as the preservation of PSTATE.SS
- Better handling of AArch32 ID registers on AArch64-only
systems
- Fixes for the dirty-ring API, allowing it to work on
architectures with relaxed memory ordering
- Advertise the new kvmarm mailing list
- Various minor cleanups and spelling fixes
* kvm-arm64/misc-6.1:
: .
: Misc KVM/arm64 fixes and improvement for v6.1
:
: - Simplify the affinity check when moving a GICv3 collection
:
: - Tone down the shouting when kvm-arm.mode=protected is passed
: to a guest
:
: - Fix various comments
:
: - Advertise the new kvmarm@lists.linux.dev and deprecate the
: old Columbia list
: .
KVM: arm64: Advertise new kvmarm mailing list
KVM: arm64: Fix comment typo in nvhe/switch.c
KVM: selftests: Update top-of-file comment in psci_test
KVM: arm64: Ignore kvm-arm.mode if !is_hyp_mode_available()
KVM: arm64: vgic: Remove duplicate check in update_affinity_collection()
Signed-off-by: Marc Zyngier <maz@kernel.org>
* for-next/alternatives:
: Alternatives (code patching) improvements
arm64: fix the build with binutils 2.27
arm64: avoid BUILD_BUG_ON() in alternative-macros
arm64: alternatives: add shared NOP callback
arm64: alternatives: add alternative_has_feature_*()
arm64: alternatives: have callbacks take a cap
arm64: alternatives: make alt_region const
arm64: alternatives: hoist print out of __apply_alternatives()
arm64: alternatives: proton-pack: prepare for cap changes
arm64: alternatives: kvm: prepare for cap changes
arm64: cpufeature: make cpus_have_cap() noinstr-safe
Fix the comment of __hyp_vgic_restore_state() from saying VEH to VHE,
also change the underscore to a dash to match the comment
above __hyp_vgic_save_state().
Signed-off-by: Wei-Lin Chang <r09922117@csie.ntu.edu.tw>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20220929042839.24277-1-r09922117@csie.ntu.edu.tw
KVM_REQ_UNHALT is now unnecessary because it is replaced by the return
value of kvm_vcpu_block/kvm_vcpu_halt. Remove it.
No functional change intended.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Acked-by: Marc Zyngier <maz@kernel.org>
Message-Id: <20220921003201.1441511-13-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Ignore kvm-arm.mode if !is_hyp_mode_available(). Specifically, we want
to avoid switching kvm_mode to KVM_MODE_PROTECTED if hypervisor mode is
not available. This prevents "Protected KVM" cpu capability being
reported when Linux is booting in EL1 and would not have KVM enabled.
Reasonably though, we should warn if the command line is requesting a
KVM mode at all if KVM isn't actually available. Allow
"kvm-arm.mode=none" to skip the warning since this would disable KVM
anyway.
Signed-off-by: Elliot Berman <quic_eberman@quicinc.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20220920190658.2880184-1-quic_eberman@quicinc.com
The 'coll' parameter to update_affinity_collection() is never NULL,
so comparing it with 'ite->collection' is enough to cover both
the NULL case and the "another collection" case.
Remove the duplicate check in update_affinity_collection().
Signed-off-by: Gavin Shan <gshan@redhat.com>
[maz: repainted commit message]
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20220923065447.323445-1-gshan@redhat.com
With commit 0c24e06119 ("mm: kmemleak: add rbtree and store physical
address for objects allocated with PA"), kmemleak started to put the
objects allocated with physical address onto object_phys_tree_root tree.
The kmemleak_free_part() therefore no longer worked as expected on
physically allocated objects (hyp_mem_base in this case) as it attempted to
search and remove things in object_tree_root tree.
Fix it by using kmemleak_free_part_phys() to unregister hyp_mem_base. This
fixes an immediate crash when booting a KVM host in protected mode with
kmemleak enabled.
Signed-off-by: Zenghui Yu <yuzenghui@huawei.com>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Reviewed-by: Oliver Upton <oliver.upton@linux.dev>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20220908130659.2021-1-yuzenghui@huawei.com
* kvm-arm64/single-step-async-exception:
: .
: Single-step fixes from Reiji Watanabe:
:
: "This series fixes two bugs of single-step execution enabled by
: userspace, and add a test case for KVM_GUESTDBG_SINGLESTEP to
: the debug-exception test to verify the single-step behavior."
: .
KVM: arm64: selftests: Add a test case for KVM_GUESTDBG_SINGLESTEP
KVM: arm64: selftests: Refactor debug-exceptions to make it amenable to new test cases
KVM: arm64: Clear PSTATE.SS when the Software Step state was Active-pending
KVM: arm64: Preserve PSTATE.SS for the guest while single-step is enabled
Signed-off-by: Marc Zyngier <maz@kernel.org>
While userspace enables single-step, if the Software Step state at the
last guest exit was "Active-pending", clear PSTATE.SS on guest entry
to restore the state.
Currently, KVM sets PSTATE.SS to 1 on every guest entry while userspace
enables single-step for the vCPU (with KVM_GUESTDBG_SINGLESTEP).
It means KVM always makes the vCPU's Software Step state
"Active-not-pending" on the guest entry, which lets the VCPU perform
single-step (then Software Step exception is taken). This could cause
extra single-step (without returning to userspace) if the Software Step
state at the last guest exit was "Active-pending" (i.e. the last
exit was triggered by an asynchronous exception after the single-step
is performed, but before the Software Step exception is taken.
See "Figure D2-3 Software step state machine" and "D2.12.7 Behavior
in the active-pending state" in ARM DDI 0487I.a for more info about
this behavior).
Fix this by clearing PSTATE.SS on guest entry if the Software Step state
at the last exit was "Active-pending" so that KVM restore the state (and
the exception is taken before further single-step is performed).
Fixes: 337b99bf7e ("KVM: arm64: guest debug, add support for single-step")
Signed-off-by: Reiji Watanabe <reijiw@google.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20220917010600.532642-3-reijiw@google.com
Preserve the PSTATE.SS value for the guest while userspace enables
single-step (i.e. while KVM manipulates the PSTATE.SS) for the vCPU.
Currently, while userspace enables single-step for the vCPU
(with KVM_GUESTDBG_SINGLESTEP), KVM sets PSTATE.SS to 1 on every
guest entry, not saving its original value.
When userspace disables single-step, KVM doesn't restore the original
value for the subsequent guest entry (use the current value instead).
Exception return instructions copy PSTATE.SS from SPSR_ELx.SS
only in certain cases when single-step is enabled (and set it to 0
in other cases). So, the value matters only when the guest enables
single-step (and when the guest's Software step state isn't affected
by single-step enabled by userspace, practically), though.
Fix this by preserving the original PSTATE.SS value while userspace
enables single-step, and restoring the value once it is disabled.
This fix modifies the behavior of GET_ONE_REG/SET_ONE_REG for the
PSTATE.SS while single-step is enabled by userspace.
Presently, GET_ONE_REG/SET_ONE_REG gets/sets the current PSTATE.SS
value, which KVM will override on the next guest entry (i.e. the
value userspace gets/sets is not used for the next guest entry).
With this patch, GET_ONE_REG/SET_ONE_REG will get/set the guest's
preserved value, which KVM will preserve and try to restore after
single-step is disabled.
Fixes: 337b99bf7e ("KVM: arm64: guest debug, add support for single-step")
Signed-off-by: Reiji Watanabe <reijiw@google.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20220917010600.532642-2-reijiw@google.com
Merge arm64/for-next/sysreg in order to avoid upstream conflicts
due to the never ending sysreg repainting...
Signed-off-by: Marc Zyngier <maz@kernel.org>
Today, callback alternatives are special-cased within
__apply_alternatives(), and are applied alongside patching for system
capabilities as ARM64_NCAPS is not part of the boot_capabilities feature
mask.
This special-casing is less than ideal. Giving special meaning to
ARM64_NCAPS for this requires some structures and loops to use
ARM64_NCAPS + 1 (AKA ARM64_NPATCHABLE), while others use ARM64_NCAPS.
It's also not immediately clear callback alternatives are only applied
when applying alternatives for system-wide features.
To make this a bit clearer, changes the way that callback alternatives
are identified to remove the special-casing of ARM64_NCAPS, and to allow
callback alternatives to be associated with a cpucap as with all other
alternatives.
New cpucaps, ARM64_ALWAYS_BOOT and ARM64_ALWAYS_SYSTEM are added which
are always detected alongside boot cpu capabilities and system
capabilities respectively. All existing callback alternatives are made
to use ARM64_ALWAYS_SYSTEM, and so will be patched at the same point
during the boot flow as before.
Subsequent patches will make more use of these new cpucaps.
There should be no functional change as a result of this patch.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Cc: Ard Biesheuvel <ardb@kernel.org>
Cc: James Morse <james.morse@arm.com>
Cc: Joey Gouly <joey.gouly@arm.com>
Cc: Marc Zyngier <maz@kernel.org>
Cc: Will Deacon <will@kernel.org>
Reviewed-by: Ard Biesheuvel <ardb@kernel.org>
Link: https://lore.kernel.org/r/20220912162210.3626215-7-mark.rutland@arm.com
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
The KVM patching callbacks use cpus_have_final_cap() internally within
has_vhe(), and subsequent patches will make it invalid to call
cpus_have_final_cap() before alternatives patching has completed, and
will mean that cpus_have_const_cap() will always fall back to dynamic
checks prior to alternatives patching.
In preparation for said change, this patch modifies the KVM patching
callbacks to use cpus_have_cap() directly. This is not subject to
patching, and will dynamically check the cpu_hwcaps array, which is
functionally equivalent to the existing behaviour.
There should be no functional change as a result of this patch.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Cc: Ard Biesheuvel <ardb@kernel.org>
Cc: James Morse <james.morse@arm.com>
Cc: Joey Gouly <joey.gouly@arm.com>
Cc: Marc Zyngier <maz@kernel.org>
Cc: Will Deacon <will@kernel.org>
Reviewed-by: Ard Biesheuvel <ardb@kernel.org>
Link: https://lore.kernel.org/r/20220912162210.3626215-3-mark.rutland@arm.com
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Currently the kernel refers to the versions of the PMU and SPE features by
the version of the architecture where those features were updated but the
ARM refers to them using the FEAT_ names for the features. To improve
consistency and help with updating for newer features and since v9 will
make our current naming scheme a bit more confusing update the macros
identfying features to use the FEAT_ based scheme.
Signed-off-by: Mark Brown <broonie@kernel.org>
Link: https://lore.kernel.org/r/20220910163354.860255-4-broonie@kernel.org
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Normally we include the full register name in the defines for fields within
registers but this has not been followed for ID registers. In preparation
for automatic generation of defines add the _EL1s into the defines for
ID_AA64DFR0_EL1 to follow the convention. No functional changes.
Signed-off-by: Mark Brown <broonie@kernel.org>
Link: https://lore.kernel.org/r/20220910163354.860255-3-broonie@kernel.org
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
The naming scheme the architecture uses for the fields in ID_AA64DFR0_EL1
does not align well with kernel conventions, using as it does a lot of
MixedCase in various arrangements. In preparation for automatically
generating the defines for this register rename the defines used to match
what is in the architecture.
Signed-off-by: Mark Brown <broonie@kernel.org>
Link: https://lore.kernel.org/r/20220910163354.860255-2-broonie@kernel.org
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
One of the oddities of the architecture is that the AArch64 views of the
AArch32 ID registers are UNKNOWN if AArch32 isn't implemented at any EL.
Nonetheless, KVM exposes these registers to userspace for the sake of
save/restore. It is possible that the UNKNOWN value could differ between
systems, leading to a rejected write from userspace.
Avoid the issue altogether by handling the AArch32 ID registers as
RAZ/WI when on an AArch64-only system.
Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20220913094441.3957645-7-oliver.upton@linux.dev
We're about to ignore writes to AArch32 ID registers on AArch64-only
systems. Add a bit to indicate a register is handled as write ignore
when accessed from userspace.
Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
Reviewed-by: Reiji Watanabe <reijiw@google.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20220913094441.3957645-6-oliver.upton@linux.dev
There is no longer a need for caller-specified RAZ visibility. Hoist the
call to sysreg_visible_as_raz() into read_id_reg() and drop the
parameter.
No functional change intended.
Suggested-by: Reiji Watanabe <reijiw@google.com>
Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
Reviewed-by: Reiji Watanabe <reijiw@google.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20220913094441.3957645-4-oliver.upton@linux.dev
The internal accessors are only ever called once. Dump out their
contents in the caller.
No functional change intended.
Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
Reviewed-by: Reiji Watanabe <reijiw@google.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20220913094441.3957645-3-oliver.upton@linux.dev
The generic id reg accessors already handle RAZ registers by way of the
visibility hook. Add a visibility hook that returns REG_RAZ
unconditionally and throw out the RAZ specific accessors.
Reviewed-by: Reiji Watanabe <reijiw@google.com>
Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20220913094441.3957645-2-oliver.upton@linux.dev
Currently unwind_next_frame_record() has an optional callback to convert
the address space of the FP. This is necessary for the NVHE unwinder,
which tracks the stacks in the hyp VA space, but accesses the frame
records in the kernel VA space.
This is a bit unfortunate since it clutters unwind_next_frame_record(),
which will get in the way of future rework.
Instead, this patch changes the NVHE unwinder to track the stacks in the
kernel's VA space and translate to FP prior to calling
unwind_next_frame_record(). This removes the need for the translate_fp()
callback, as all unwinders consistently track stacks in the native
address space of the unwinder.
At the same time, this patch consolidates the generation of the stack
addresses behind the stackinfo_get_*() helpers.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Reviewed-by: Kalesh Singh <kaleshsingh@google.com>
Reviewed-by: Madhavan T. Venkataraman <madvenka@linux.microsoft.com>
Reviewed-by: Mark Brown <broonie@kernel.org>
Cc: Fuad Tabba <tabba@google.com>
Cc: Marc Zyngier <maz@kernel.org>
Cc: Will Deacon <will@kernel.org>
Link: https://lore.kernel.org/r/20220901130646.1316937-10-mark.rutland@arm.com
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Currently we call an on_accessible_stack() callback for each step of the
unwinder, requiring redundant work to be performed in the core of the
unwind loop (e.g. disabling preemption around accesses to per-cpu
variables containing stack boundaries). To prevent unwind loops which go
through a stack multiple times, we have to track the set of unwound
stacks, requiring a stack_type enum which needs to cater for all the
stacks of all possible callees. To prevent loops within a stack, we must
track the prior FP values.
This patch reworks the unwinder to minimize the work in the core of the
unwinder, and to remove the need for the stack_type enum. The set of
accessible stacks (and their boundaries) are determined at the start of
the unwind, and the current stack is tracked during the unwind, with
completed stacks removed from the set of accessible stacks. This makes
the boundary checks more accurate (e.g. detecting overlapped frame
records), and removes the need for separate tracking of the prior FP and
visited stacks.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Reviewed-by: Kalesh Singh <kaleshsingh@google.com>
Reviewed-by: Madhavan T. Venkataraman <madvenka@linux.microsoft.com>
Reviewed-by: Mark Brown <broonie@kernel.org>
Cc: Fuad Tabba <tabba@google.com>
Cc: Marc Zyngier <maz@kernel.org>
Cc: Will Deacon <will@kernel.org>
Link: https://lore.kernel.org/r/20220901130646.1316937-9-mark.rutland@arm.com
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
In subsequent patches we'll remove the stack_type enum, and move the FP
translation logic out of the raw FP unwind code.
In preparation for doing so, this patch removes the type parameter from
the FP translation callback, and modifies kvm_nvhe_stack_kern_va() to
determine the relevant stack directly.
So that kvm_nvhe_stack_kern_va() can use the stackinfo_*() helpers,
these are moved earlier in the file, but are not modified in any way.
There should be no functional change as a result of this patch.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Reviewed-by: Kalesh Singh <kaleshsingh@google.com>
Reviewed-by: Madhavan T. Venkataraman <madvenka@linux.microsoft.com>
Reviewed-by: Mark Brown <broonie@kernel.org>
Cc: Fuad Tabba <tabba@google.com>
Cc: Marc Zyngier <maz@kernel.org>
Cc: Will Deacon <will@kernel.org>
Link: https://lore.kernel.org/r/20220901130646.1316937-8-mark.rutland@arm.com
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
In subsequent patches we'll want to acquire the stack boundaries
ahead-of-time, and we'll need to be able to acquire the relevant
stack_info regardless of whether we have an object the happens to be on
the stack.
This patch replaces the on_XXX_stack() helpers with stackinfo_get_XXX()
helpers, with the caller being responsible for the checking whether an
object is on a relevant stack. For the moment this is moved into the
on_accessible_stack() functions, making these slightly larger;
subsequent patches will remove the on_accessible_stack() functions and
simplify the logic.
The on_irq_stack() and on_task_stack() helpers are kept as these are
used by IRQ entry sequences and stackleak respectively. As they're only
used as predicates, the stack_info pointer parameter is removed in both
cases.
As the on_accessible_stack() functions are always passed a non-NULL info
pointer, these now update info unconditionally. When updating the type
to STACK_TYPE_UNKNOWN, the low/high bounds are also modified, but as
these will not be consumed this should have no adverse affect.
There should be no functional change as a result of this patch.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Reviewed-by: Kalesh Singh <kaleshsingh@google.com>
Reviewed-by: Madhavan T. Venkataraman <madvenka@linux.microsoft.com>
Reviewed-by: Mark Brown <broonie@kernel.org>
Cc: Fuad Tabba <tabba@google.com>
Cc: Marc Zyngier <maz@kernel.org>
Cc: Will Deacon <will@kernel.org>
Link: https://lore.kernel.org/r/20220901130646.1316937-7-mark.rutland@arm.com
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
The unwind_next_common() function unwinds a single frame record. There
are other unwind steps (e.g. unwinding through trampolines) which are
handled in the regular kernel unwinder, and in future there may be other
common unwind helpers.
Clarify the purpose of unwind_next_common() by renaming it to
unwind_next_frame_record(). At the same time, add commentary, and delete
the redundant comment at the top of asm/stacktrace/common.h.
There should be no functional change as a result of this patch.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Reviewed-by: Kalesh Singh <kaleshsingh@google.com>
Reviewed-by: Madhavan T. Venkataraman <madvenka@linux.microsoft.com>
Reviewed-by: Mark Brown <broonie@kernel.org>
Cc: Fuad Tabba <tabba@google.com>
Cc: Marc Zyngier <maz@kernel.org>
Cc: Will Deacon <will@kernel.org>
Link: https://lore.kernel.org/r/20220901130646.1316937-4-mark.rutland@arm.com
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Currently unwind_next_common() takes a pointer to a stack_info which is
only ever used within unwind_next_common().
Make it a local variable and simplify callers.
There should be no functional change as a result of this patch.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Reviewed-by: Kalesh Singh <kaleshsingh@google.com>
Reviewed-by: Madhavan T. Venkataraman <madvenka@linux.microsoft.com>
Reviewed-by: Mark Brown <broonie@kernel.org>
Cc: Fuad Tabba <tabba@google.com>
Cc: Marc Zyngier <maz@kernel.org>
Cc: Will Deacon <will@kernel.org>
Link: https://lore.kernel.org/r/20220901130646.1316937-3-mark.rutland@arm.com
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
The architecture refers to the register field identifying advanced SIMD as
AdvSIMD but the kernel refers to it as ASIMD. Use the architecture's
naming. No functional changes.
Signed-off-by: Mark Brown <broonie@kernel.org>
Reviewed-by: Kristina Martsenko <kristina.martsenko@arm.com>
Link: https://lore.kernel.org/r/20220905225425.1871461-15-broonie@kernel.org
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
We generally refer to the baseline feature implemented as _IMP so in
preparation for automatic generation of register defines update those for
ID_AA64PFR0_EL1 to reflect this.
In the case of ASIMD we don't actually use the define so just remove it.
No functional changes.
Signed-off-by: Mark Brown <broonie@kernel.org>
Reviewed-by: Kristina Martsenko <kristina.martsenko@arm.com>
Link: https://lore.kernel.org/r/20220905225425.1871461-14-broonie@kernel.org
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
The kernel refers to ID_AA64MMFR2_EL1.CnP as CNP. In preparation for
automatic generation of defines for the system registers bring the naming
used by the kernel in sync with that of DDI0487H.a. No functional change.
Signed-off-by: Mark Brown <broonie@kernel.org>
Reviewed-by: Kristina Martsenko <kristina.martsenko@arm.com>
Link: https://lore.kernel.org/r/20220905225425.1871461-13-broonie@kernel.org
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
In preparation for converting the ID_AA64MMFR1_EL1 system register
defines to automatic generation, rename them to follow the conventions
used by other automatically generated registers:
* Add _EL1 in the register name.
* Rename fields to match the names in the ARM ARM:
* LOR -> LO
* HPD -> HPDS
* VHE -> VH
* HADBS -> HAFDBS
* SPECSEI -> SpecSEI
* VMIDBITS -> VMIDBits
There should be no functional change as a result of this patch.
Signed-off-by: Kristina Martsenko <kristina.martsenko@arm.com>
Signed-off-by: Mark Brown <broonie@kernel.org>
Reviewed-by: Kristina Martsenko <kristina.martsenko@arm.com>
Link: https://lore.kernel.org/r/20220905225425.1871461-11-broonie@kernel.org
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
For some reason we refer to ID_AA64MMFR0_EL1.ASIDBits as ASID. Add BITS
into the name, bringing the naming into sync with DDI0487H.a. Due to the
large amount of MixedCase in this register which isn't really consistent
with either the kernel style or the majority of the architecture the use of
upper case is preserved. No functional changes.
Signed-off-by: Mark Brown <broonie@kernel.org>
Reviewed-by: Kristina Martsenko <kristina.martsenko@arm.com>
Link: https://lore.kernel.org/r/20220905225425.1871461-10-broonie@kernel.org
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
For some reason we refer to ID_AA64MMFR0_EL1.BigEnd as BIGENDEL. Remove the
EL from the name, bringing the naming into sync with DDI0487H.a. Due to the
large amount of MixedCase in this register which isn't really consistent
with either the kernel style or the majority of the architecture the use of
upper case is preserved. No functional changes.
Signed-off-by: Mark Brown <broonie@kernel.org>
Reviewed-by: Kristina Martsenko <kristina.martsenko@arm.com>
Link: https://lore.kernel.org/r/20220905225425.1871461-9-broonie@kernel.org
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Our standard is to include the _EL1 in the constant names for registers but
we did not do that for ID_AA64PFR1_EL1, update to do so in preparation for
conversion to automatic generation. No functional change.
Signed-off-by: Mark Brown <broonie@kernel.org>
Reviewed-by: Kristina Martsenko <kristina.martsenko@arm.com>
Link: https://lore.kernel.org/r/20220905225425.1871461-8-broonie@kernel.org
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Normally we include the full register name in the defines for fields within
registers but this has not been followed for ID registers. In preparation
for automatic generation of defines add the _EL1s into the defines for
ID_AA64PFR0_EL1 to follow the convention. No functional changes.
Signed-off-by: Mark Brown <broonie@kernel.org>
Reviewed-by: Kristina Martsenko <kristina.martsenko@arm.com>
Link: https://lore.kernel.org/r/20220905225425.1871461-7-broonie@kernel.org
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Normally we include the full register name in the defines for fields within
registers but this has not been followed for ID registers. In preparation
for automatic generation of defines add the _EL1s into the defines for
ID_AA64MMFR2_EL1 to follow the convention. No functional changes.
Signed-off-by: Mark Brown <broonie@kernel.org>
Reviewed-by: Kristina Martsenko <kristina.martsenko@arm.com>
Link: https://lore.kernel.org/r/20220905225425.1871461-6-broonie@kernel.org
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Normally we include the full register name in the defines for fields within
registers but this has not been followed for ID registers. In preparation
for automatic generation of defines add the _EL1s into the defines for
ID_AA64MMFR0_EL1 to follow the convention. No functional changes.
Signed-off-by: Mark Brown <broonie@kernel.org>
Reviewed-by: Kristina Martsenko <kristina.martsenko@arm.com>
Link: https://lore.kernel.org/r/20220905225425.1871461-5-broonie@kernel.org
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Count the pages used by KVM in arm64 for stage2 mmu in memory stats
under secondary pagetable stats (e.g. "SecPageTables" in /proc/meminfo)
to give better visibility into the memory consumption of KVM mmu in a
similar way to how normal user page tables are accounted.
Signed-off-by: Yosry Ahmed <yosryahmed@google.com>
Reviewed-by: Oliver Upton <oliver.upton@linux.dev>
Reviewed-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20220823004639.2387269-5-yosryahmed@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
- Fix unexpected sign extension of KVM_ARM_DEVICE_ID_MASK
- Tidy-up handling of AArch32 on asymmetric systems
-----BEGIN PGP SIGNATURE-----
iQJDBAABCgAtFiEEn9UcU+C1Yxj9lZw9I9DQutE9ekMFAmL+RsgPHG1hekBrZXJu
ZWwub3JnAAoJECPQ0LrRPXpDHrUP/3IYZ0LnYUZBImSU/YTPL5yYzdSVAuMNcdRQ
EgvLQKwP+JSrmd7B7wZ4MhY1LheKjpNmmuSqTRsZOHb/yBmnh3+ao5n2gqusYQeJ
PCuLYjeF7ZU5fGIrPAW6BW0BFlmYMVbTrC6SEMhZsisBhna44jrrWgkBz9mOsXE/
YcDWv8kP15lisuQzMvnYxmZobbVgSJ3KgQY4/Dp6vyKMR8ULujCxziFV5R4RD0xP
Ay8wnxtMUymx9P6sZsd6Vwi5h1MUXOOoI4He7+8ejIfoMOManIMOIq4PDQhINwQv
tGysDmQavftSbUkXJ1VB+8cJ/9KufzwKxFoc5WqGk1y14QulyBNyb/XR3UtORe1n
bitINTTkqibHY6fdQJA7z1sD0jaEAh/xNwO1Gq0BS40o4XVQDv2BjdQir9TEdlZO
tsZKVaFpN3UZe681ru12No8YzQDhpuLH65gDHDjLaftH99WKsrSwMZLoEjqZTlM/
vH/9acd4UB+9zMGTpN2tJ//2cq6g3JoUC7jJIQB1oGStHX0/7AxKMlabR2xHmt9E
4CmJND9RLK6+yEelagxOAYMQfnCdj6pW/3bhvAmsZWh0t3fNxCeBBXFr2I5os+E9
hV0FYx4PG9GtorMSqudCDsP83SDIxCluNZ5iM8t1suSn3dFhk5bDFChS86XGuqQe
XxHQ6JTF
=r5iq
-----END PGP SIGNATURE-----
Merge tag 'kvmarm-fixes-6.0-1' of git://git.kernel.org/pub/scm/linux/kernel/git/kvmarm/kvmarm into HEAD
KVM/arm64 fixes for 6.0, take #1
- Fix unexpected sign extension of KVM_ARM_DEVICE_ID_MASK
- Tidy-up handling of AArch32 on asymmetric systems
The motivation of this renaming is to make these variables and related
helper functions less mmu_notifier bound and can also be used for non
mmu_notifier based page invalidation. mmu_invalidate_* was chosen to
better describe the purpose of 'invalidating' a page that those
variables are used for.
- mmu_notifier_seq/range_start/range_end are renamed to
mmu_invalidate_seq/range_start/range_end.
- mmu_notifier_retry{_hva} helper functions are renamed to
mmu_invalidate_retry{_hva}.
- mmu_notifier_count is renamed to mmu_invalidate_in_progress to
avoid confusion with mn_active_invalidate_count.
- While here, also update kvm_inc/dec_notifier_count() to
kvm_mmu_invalidate_begin/end() to match the change for
mmu_notifier_count.
No functional change intended.
Signed-off-by: Chao Peng <chao.p.peng@linux.intel.com>
Message-Id: <20220816125322.1110439-3-chao.p.peng@linux.intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
KVM does not support AArch32 EL0 on asymmetric systems. To that end,
prevent userspace from configuring a vCPU in such a state through
setting PSTATE.
It is already ABI that KVM rejects such a write on a system where
AArch32 EL0 is unsupported. Though the kernel's definition of a 32bit
system changed in commit 2122a83331 ("arm64: Allow mismatched
32-bit EL0 support"), KVM's did not.
Fixes: 2122a83331 ("arm64: Allow mismatched 32-bit EL0 support")
Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20220816192554.1455559-3-oliver.upton@linux.dev
KVM does not support AArch32 on asymmetric systems. To that end, enforce
AArch64-only behavior on PMCR_EL1.LC when on an asymmetric system.
Fixes: 2122a83331 ("arm64: Allow mismatched 32-bit EL0 support")
Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20220816192554.1455559-2-oliver.upton@linux.dev
There are three independent sets of changes:
- Sai Prakash Ranjan adds tracing support to the asm-generic
version of the MMIO accessors, which is intended to help
understand problems with device drivers and has been part
of Qualcomm's vendor kernels for many years.
- A patch from Sebastian Siewior to rework the handling of
IRQ stacks in softirqs across architectures, which is
needed for enabling PREEMPT_RT.
- The last patch to remove the CONFIG_VIRT_TO_BUS option and
some of the code behind that, after the last users of this
old interface made it in through the netdev, scsi, media and
staging trees.
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEEo6/YBQwIrVS28WGKmmx57+YAGNkFAmLqPPEACgkQmmx57+YA
GNlUbQ/+NpIsiA0JUrCGtySt8KrLHdA2dH9lJOR5/iuxfphscPFfWtpcPvcXQWmt
a8u7wyI8SHW1ku4U0Y5sO0dBSldDnoIqJ5t4X5d7YNU9yVtEtucqQhZf+GkrPlVD
1HkRu05B7y0k2BMn7BLhSvkpafs3f1lNGXjs8oFBdOF1/zwp/GjcrfCK7KFzqjwU
dYrX0SOFlKFd4BZC75VfK+XcKg4LtwIOmJraRRl7alz2Q5Oop2hgjgZxXDPf//vn
SPOhXJN/97i1FUpY2TkfHVH1NxbPfjCV4pUnjmLG0Y4NSy9UQ/ZcXHcywIdeuhfa
0LySOIsAqBeccpYYYdg2ubiMDZOXkBfANu/sB9o/EhoHfB4svrbPRDhBIQZMFXJr
MJYu+IYce2rvydA/nydo4q++pxR8v1ES1ZIo8bDux+q1CI/zbpQV+f98kPVRA0M7
ajc+5GTIqNIsvHzzadq7eYxcj5Bi8Li2JA9sVkAQ+6iq1TVyeYayMc9eYwONlmqw
MD+PFYc651pKtXZCfkLXPIKSwS0uPqBndAibuVhpZ0hxWaCBBdKvY9mrWcPxt0kA
tMR8lrosbbrV2K48BFdWTOHvCs2FhHQxPGVPZ/iWuxTA0hHZ9tUlaEkSX+VM57IU
KCYQLdWzT8J9vrgqSbgYKlb6pSPz6FIjTfut6NZMmshIbavHV/Q=
=aTR0
-----END PGP SIGNATURE-----
Merge tag 'asm-generic-6.0' of git://git.kernel.org/pub/scm/linux/kernel/git/arnd/asm-generic
Pull asm-generic updates from Arnd Bergmann:
"There are three independent sets of changes:
- Sai Prakash Ranjan adds tracing support to the asm-generic version
of the MMIO accessors, which is intended to help understand
problems with device drivers and has been part of Qualcomm's vendor
kernels for many years
- A patch from Sebastian Siewior to rework the handling of IRQ stacks
in softirqs across architectures, which is needed for enabling
PREEMPT_RT
- The last patch to remove the CONFIG_VIRT_TO_BUS option and some of
the code behind that, after the last users of this old interface
made it in through the netdev, scsi, media and staging trees"
* tag 'asm-generic-6.0' of git://git.kernel.org/pub/scm/linux/kernel/git/arnd/asm-generic:
uapi: asm-generic: fcntl: Fix typo 'the the' in comment
arch/*/: remove CONFIG_VIRT_TO_BUS
soc: qcom: geni: Disable MMIO tracing for GENI SE
serial: qcom_geni_serial: Disable MMIO tracing for geni serial
asm-generic/io: Add logging support for MMIO accessors
KVM: arm64: Add a flag to disable MMIO trace for nVHE KVM
lib: Add register read/write tracing support
drm/meson: Fix overflow implicit truncation warnings
irqchip/tegra: Fix overflow implicit truncation warnings
coresight: etm4x: Use asm-generic IO memory barriers
arm64: io: Use asm-generic high level MMIO accessors
arch/*: Disable softirq stacks on PREEMPT_RT.
* Unwinder implementations for both nVHE modes (classic and
protected), complete with an overflow stack
* Rework of the sysreg access from userspace, with a complete
rewrite of the vgic-v3 view to allign with the rest of the
infrastructure
* Disagregation of the vcpu flags in separate sets to better track
their use model.
* A fix for the GICv2-on-v3 selftest
* A small set of cosmetic fixes
RISC-V:
* Track ISA extensions used by Guest using bitmap
* Added system instruction emulation framework
* Added CSR emulation framework
* Added gfp_custom flag in struct kvm_mmu_memory_cache
* Added G-stage ioremap() and iounmap() functions
* Added support for Svpbmt inside Guest
s390:
* add an interface to provide a hypervisor dump for secure guests
* improve selftests to use TAP interface
* enable interpretive execution of zPCI instructions (for PCI passthrough)
* First part of deferred teardown
* CPU Topology
* PV attestation
* Minor fixes
x86:
* Permit guests to ignore single-bit ECC errors
* Intel IPI virtualization
* Allow getting/setting pending triple fault with KVM_GET/SET_VCPU_EVENTS
* PEBS virtualization
* Simplify PMU emulation by just using PERF_TYPE_RAW events
* More accurate event reinjection on SVM (avoid retrying instructions)
* Allow getting/setting the state of the speaker port data bit
* Refuse starting the kvm-intel module if VM-Entry/VM-Exit controls are inconsistent
* "Notify" VM exit (detect microarchitectural hangs) for Intel
* Use try_cmpxchg64 instead of cmpxchg64
* Ignore benign host accesses to PMU MSRs when PMU is disabled
* Allow disabling KVM's "MONITOR/MWAIT are NOPs!" behavior
* Allow NX huge page mitigation to be disabled on a per-vm basis
* Port eager page splitting to shadow MMU as well
* Enable CMCI capability by default and handle injected UCNA errors
* Expose pid of vcpu threads in debugfs
* x2AVIC support for AMD
* cleanup PIO emulation
* Fixes for LLDT/LTR emulation
* Don't require refcounted "struct page" to create huge SPTEs
* Miscellaneous cleanups:
** MCE MSR emulation
** Use separate namespaces for guest PTEs and shadow PTEs bitmasks
** PIO emulation
** Reorganize rmap API, mostly around rmap destruction
** Do not workaround very old KVM bugs for L0 that runs with nesting enabled
** new selftests API for CPUID
Generic:
* Fix races in gfn->pfn cache refresh; do not pin pages tracked by the cache
* new selftests API using struct kvm_vcpu instead of a (vm, id) tuple
-----BEGIN PGP SIGNATURE-----
iQFIBAABCAAyFiEE8TM4V0tmI4mGbHaCv/vSX3jHroMFAmLnyo4UHHBib256aW5p
QHJlZGhhdC5jb20ACgkQv/vSX3jHroMtQQf/XjVWiRcWLPR9dqzRM/vvRXpiG+UL
jU93R7m6ma99aqTtrxV/AE+kHgamBlma3Cwo+AcWk9uCVNbIhFjv2YKg6HptKU0e
oJT3zRYp+XIjEo7Kfw+TwroZbTlG6gN83l1oBLFMqiFmHsMLnXSI2mm8MXyi3dNB
vR2uIcTAl58KIprqNNsYJ2dNn74ogOMiXYx9XzoA9/5Xb6c0h4rreHJa5t+0s9RO
Gz7Io3PxumgsbJngjyL1Ve5oxhlIAcZA8DU0PQmjxo3eS+k6BcmavGFd45gNL5zg
iLpCh4k86spmzh8CWkAAwWPQE4dZknK6jTctJc0OFVad3Z7+X7n0E8TFrA==
=PM8o
-----END PGP SIGNATURE-----
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull kvm updates from Paolo Bonzini:
"Quite a large pull request due to a selftest API overhaul and some
patches that had come in too late for 5.19.
ARM:
- Unwinder implementations for both nVHE modes (classic and
protected), complete with an overflow stack
- Rework of the sysreg access from userspace, with a complete rewrite
of the vgic-v3 view to allign with the rest of the infrastructure
- Disagregation of the vcpu flags in separate sets to better track
their use model.
- A fix for the GICv2-on-v3 selftest
- A small set of cosmetic fixes
RISC-V:
- Track ISA extensions used by Guest using bitmap
- Added system instruction emulation framework
- Added CSR emulation framework
- Added gfp_custom flag in struct kvm_mmu_memory_cache
- Added G-stage ioremap() and iounmap() functions
- Added support for Svpbmt inside Guest
s390:
- add an interface to provide a hypervisor dump for secure guests
- improve selftests to use TAP interface
- enable interpretive execution of zPCI instructions (for PCI
passthrough)
- First part of deferred teardown
- CPU Topology
- PV attestation
- Minor fixes
x86:
- Permit guests to ignore single-bit ECC errors
- Intel IPI virtualization
- Allow getting/setting pending triple fault with
KVM_GET/SET_VCPU_EVENTS
- PEBS virtualization
- Simplify PMU emulation by just using PERF_TYPE_RAW events
- More accurate event reinjection on SVM (avoid retrying
instructions)
- Allow getting/setting the state of the speaker port data bit
- Refuse starting the kvm-intel module if VM-Entry/VM-Exit controls
are inconsistent
- "Notify" VM exit (detect microarchitectural hangs) for Intel
- Use try_cmpxchg64 instead of cmpxchg64
- Ignore benign host accesses to PMU MSRs when PMU is disabled
- Allow disabling KVM's "MONITOR/MWAIT are NOPs!" behavior
- Allow NX huge page mitigation to be disabled on a per-vm basis
- Port eager page splitting to shadow MMU as well
- Enable CMCI capability by default and handle injected UCNA errors
- Expose pid of vcpu threads in debugfs
- x2AVIC support for AMD
- cleanup PIO emulation
- Fixes for LLDT/LTR emulation
- Don't require refcounted "struct page" to create huge SPTEs
- Miscellaneous cleanups:
- MCE MSR emulation
- Use separate namespaces for guest PTEs and shadow PTEs bitmasks
- PIO emulation
- Reorganize rmap API, mostly around rmap destruction
- Do not workaround very old KVM bugs for L0 that runs with nesting enabled
- new selftests API for CPUID
Generic:
- Fix races in gfn->pfn cache refresh; do not pin pages tracked by
the cache
- new selftests API using struct kvm_vcpu instead of a (vm, id)
tuple"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (606 commits)
selftests: kvm: set rax before vmcall
selftests: KVM: Add exponent check for boolean stats
selftests: KVM: Provide descriptive assertions in kvm_binary_stats_test
selftests: KVM: Check stat name before other fields
KVM: x86/mmu: remove unused variable
RISC-V: KVM: Add support for Svpbmt inside Guest/VM
RISC-V: KVM: Use PAGE_KERNEL_IO in kvm_riscv_gstage_ioremap()
RISC-V: KVM: Add G-stage ioremap() and iounmap() functions
KVM: Add gfp_custom flag in struct kvm_mmu_memory_cache
RISC-V: KVM: Add extensible CSR emulation framework
RISC-V: KVM: Add extensible system instruction emulation framework
RISC-V: KVM: Factor-out instruction emulation into separate sources
RISC-V: KVM: move preempt_disable() call in kvm_arch_vcpu_ioctl_run
RISC-V: KVM: Make kvm_riscv_guest_timer_init a void function
RISC-V: KVM: Fix variable spelling mistake
RISC-V: KVM: Improve ISA extension by using a bitmap
KVM, x86/mmu: Fix the comment around kvm_tdp_mmu_zap_leafs()
KVM: SVM: Dump Virtual Machine Save Area (VMSA) to klog
KVM: x86/mmu: Treat NX as a valid SPTE bit for NPT
KVM: x86: Do not block APIC write for non ICR registers
...
- Remove unused generic cpuidle support (replaced by PSCI version)
- Fix documentation describing the kernel virtual address space
- Handling of some new CPU errata in Arm implementations
- Rework of our exception table code in preparation for handling
machine checks (i.e. RAS errors) more gracefully
- Switch over to the generic implementation of ioremap()
- Fix lockdep tracking in NMI context
- Instrument our memory barrier macros for KCSAN
- Rework of the kPTI G->nG page-table repainting so that the MMU remains
enabled and the boot time is no longer slowed to a crawl for systems
which require the late remapping
- Enable support for direct swapping of 2MiB transparent huge-pages on
systems without MTE
- Fix handling of MTE tags with allocating new pages with HW KASAN
- Expose the SMIDR register to userspace via sysfs
- Continued rework of the stack unwinder, particularly improving the
behaviour under KASAN
- More repainting of our system register definitions to match the
architectural terminology
- Improvements to the layout of the vDSO objects
- Support for allocating additional bits of HWCAP2 and exposing
FEAT_EBF16 to userspace on CPUs that support it
- Considerable rework and optimisation of our early boot code to reduce
the need for cache maintenance and avoid jumping in and out of the
kernel when handling relocation under KASLR
- Support for disabling SVE and SME support on the kernel command-line
- Support for the Hisilicon HNS3 PMU
- Miscellanous cleanups, trivial updates and minor fixes
-----BEGIN PGP SIGNATURE-----
iQFEBAABCgAuFiEEPxTL6PPUbjXGY88ct6xw3ITBYzQFAmLeccUQHHdpbGxAa2Vy
bmVsLm9yZwAKCRC3rHDchMFjNCysB/4ml92RJLhVwRAofbtFfVgVz3JLTSsvob9x
Z7FhNDxfM/G32wKtOHU9tHkGJ+PMVWOPajukzxkMhxmilfTyHBbiisNWVRjKQxj4
wrd07DNXPIv3bi8SWzS1y2y8ZqujZWjNJlX8SUCzEoxCVtuNKwrh96kU1jUjrkFZ
kBo4E4wBWK/qW29nClGSCgIHRQNJaB/jvITlQhkqIb0pwNf3sAUzW7QoF1iTZWhs
UswcLh/zC4q79k9poegdCt8chV5OBDLtLPnMxkyQFvsLYRp3qhyCSQQY/BxvO5JS
jT9QR6d+1ewET9BFhqHlIIuOTYBCk3xn/PR9AucUl+ZBQd2tO4B1
=LVH0
-----END PGP SIGNATURE-----
Merge tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux
Pull arm64 updates from Will Deacon:
"Highlights include a major rework of our kPTI page-table rewriting
code (which makes it both more maintainable and considerably faster in
the cases where it is required) as well as significant changes to our
early boot code to reduce the need for data cache maintenance and
greatly simplify the KASLR relocation dance.
Summary:
- Remove unused generic cpuidle support (replaced by PSCI version)
- Fix documentation describing the kernel virtual address space
- Handling of some new CPU errata in Arm implementations
- Rework of our exception table code in preparation for handling
machine checks (i.e. RAS errors) more gracefully
- Switch over to the generic implementation of ioremap()
- Fix lockdep tracking in NMI context
- Instrument our memory barrier macros for KCSAN
- Rework of the kPTI G->nG page-table repainting so that the MMU
remains enabled and the boot time is no longer slowed to a crawl
for systems which require the late remapping
- Enable support for direct swapping of 2MiB transparent huge-pages
on systems without MTE
- Fix handling of MTE tags with allocating new pages with HW KASAN
- Expose the SMIDR register to userspace via sysfs
- Continued rework of the stack unwinder, particularly improving the
behaviour under KASAN
- More repainting of our system register definitions to match the
architectural terminology
- Improvements to the layout of the vDSO objects
- Support for allocating additional bits of HWCAP2 and exposing
FEAT_EBF16 to userspace on CPUs that support it
- Considerable rework and optimisation of our early boot code to
reduce the need for cache maintenance and avoid jumping in and out
of the kernel when handling relocation under KASLR
- Support for disabling SVE and SME support on the kernel
command-line
- Support for the Hisilicon HNS3 PMU
- Miscellanous cleanups, trivial updates and minor fixes"
* tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux: (136 commits)
arm64: Delay initialisation of cpuinfo_arm64::reg_{zcr,smcr}
arm64: fix KASAN_INLINE
arm64/hwcap: Support FEAT_EBF16
arm64/cpufeature: Store elf_hwcaps as a bitmap rather than unsigned long
arm64/hwcap: Document allocation of upper bits of AT_HWCAP
arm64: enable THP_SWAP for arm64
arm64/mm: use GENMASK_ULL for TTBR_BADDR_MASK_52
arm64: errata: Remove AES hwcap for COMPAT tasks
arm64: numa: Don't check node against MAX_NUMNODES
drivers/perf: arm_spe: Fix consistency of SYS_PMSCR_EL1.CX
perf: RISC-V: Add of_node_put() when breaking out of for_each_of_cpu_node()
docs: perf: Include hns3-pmu.rst in toctree to fix 'htmldocs' WARNING
arm64: kasan: Revert "arm64: mte: reset the page tag in page->flags"
mm: kasan: Skip page unpoisoning only if __GFP_SKIP_KASAN_UNPOISON
mm: kasan: Skip unpoisoning of user pages
mm: kasan: Ensure the tags are visible before the tag in page->flags
drivers/perf: hisi: add driver for HNS3 PMU
drivers/perf: hisi: Add description for HNS3 PMU driver
drivers/perf: riscv_pmu_sbi: perf format
perf/arm-cci: Use the bitmap API to allocate bitmaps
...
KVM/arm64 updates for 5.20:
- Unwinder implementations for both nVHE modes (classic and
protected), complete with an overflow stack
- Rework of the sysreg access from userspace, with a complete
rewrite of the vgic-v3 view to allign with the rest of the
infrastructure
- Disagregation of the vcpu flags in separate sets to better track
their use model.
- A fix for the GICv2-on-v3 selftest
- A small set of cosmetic fixes
KVM/s390, KVM/x86 and common infrastructure changes for 5.20
x86:
* Permit guests to ignore single-bit ECC errors
* Fix races in gfn->pfn cache refresh; do not pin pages tracked by the cache
* Intel IPI virtualization
* Allow getting/setting pending triple fault with KVM_GET/SET_VCPU_EVENTS
* PEBS virtualization
* Simplify PMU emulation by just using PERF_TYPE_RAW events
* More accurate event reinjection on SVM (avoid retrying instructions)
* Allow getting/setting the state of the speaker port data bit
* Refuse starting the kvm-intel module if VM-Entry/VM-Exit controls are inconsistent
* "Notify" VM exit (detect microarchitectural hangs) for Intel
* Cleanups for MCE MSR emulation
s390:
* add an interface to provide a hypervisor dump for secure guests
* improve selftests to use TAP interface
* enable interpretive execution of zPCI instructions (for PCI passthrough)
* First part of deferred teardown
* CPU Topology
* PV attestation
* Minor fixes
Generic:
* new selftests API using struct kvm_vcpu instead of a (vm, id) tuple
x86:
* Use try_cmpxchg64 instead of cmpxchg64
* Bugfixes
* Ignore benign host accesses to PMU MSRs when PMU is disabled
* Allow disabling KVM's "MONITOR/MWAIT are NOPs!" behavior
* x86/MMU: Allow NX huge pages to be disabled on a per-vm basis
* Port eager page splitting to shadow MMU as well
* Enable CMCI capability by default and handle injected UCNA errors
* Expose pid of vcpu threads in debugfs
* x2AVIC support for AMD
* cleanup PIO emulation
* Fixes for LLDT/LTR emulation
* Don't require refcounted "struct page" to create huge SPTEs
x86 cleanups:
* Use separate namespaces for guest PTEs and shadow PTEs bitmasks
* PIO emulation
* Reorganize rmap API, mostly around rmap destruction
* Do not workaround very old KVM bugs for L0 that runs with nesting enabled
* new selftests API for CPUID
* kvm-arm64/nvhe-stacktrace: (27 commits)
: .
: Add an overflow stack to the nVHE EL2 code, allowing
: the implementation of an unwinder, courtesy of
: Kalesh Singh. From the cover letter (slightly edited):
:
: "nVHE has two modes of operation: protected (pKVM) and unprotected
: (conventional nVHE). Depending on the mode, a slightly different approach
: is used to dump the hypervisor stacktrace but the core unwinding logic
: remains the same.
:
: * Protected nVHE (pKVM) stacktraces:
:
: In protected nVHE mode, the host cannot directly access hypervisor memory.
:
: The hypervisor stack unwinding happens in EL2 and is made accessible to
: the host via a shared buffer. Symbolizing and printing the stacktrace
: addresses is delegated to the host and happens in EL1.
:
: * Non-protected (Conventional) nVHE stacktraces:
:
: In non-protected mode, the host is able to directly access the hypervisor
: stack pages.
:
: The hypervisor stack unwinding and dumping of the stacktrace is performed
: by the host in EL1, as this avoids the memory overhead of setting up
: shared buffers between the host and hypervisor."
:
: Additional patches from Oliver Upton and Marc Zyngier, tidying up
: the initial series.
: .
arm64: Update 'unwinder howto'
KVM: arm64: Don't open code ARRAY_SIZE()
KVM: arm64: Move nVHE-only helpers into kvm/stacktrace.c
KVM: arm64: Make unwind()/on_accessible_stack() per-unwinder functions
KVM: arm64: Move nVHE stacktrace unwinding into its own compilation unit
KVM: arm64: Move PROTECTED_NVHE_STACKTRACE around
KVM: arm64: Introduce pkvm_dump_backtrace()
KVM: arm64: Implement protected nVHE hyp stack unwinder
KVM: arm64: Save protected-nVHE (pKVM) hyp stacktrace
KVM: arm64: Stub implementation of pKVM HYP stack unwinder
KVM: arm64: Allocate shared pKVM hyp stacktrace buffers
KVM: arm64: Add PROTECTED_NVHE_STACKTRACE Kconfig
KVM: arm64: Introduce hyp_dump_backtrace()
KVM: arm64: Implement non-protected nVHE hyp stack unwinder
KVM: arm64: Prepare non-protected nVHE hypervisor stacktrace
KVM: arm64: Stub implementation of non-protected nVHE HYP stack unwinder
KVM: arm64: On stack overflow switch to hyp overflow_stack
arm64: stacktrace: Add description of stacktrace/common.h
arm64: stacktrace: Factor out common unwind()
arm64: stacktrace: Handle frame pointer from different address spaces
...
Signed-off-by: Marc Zyngier <maz@kernel.org>
Use ARRAY_SIZE() instead of an open-coded version.
Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Reviewed-by: Kalesh Singh <kaleshsingh@google.com>
Tested-by: Kalesh Singh <kaleshsingh@google.com>
Link: https://lore.kernel.org/r/20220727142906.1856759-6-maz@kernel.org
kvm_nvhe_stack_kern_va() only makes sense as part of the nVHE
unwinder, so simply move it there.
Signed-off-by: Marc Zyngier <maz@kernel.org>
Reviewed-by: Kalesh Singh <kaleshsingh@google.com>
Tested-by: Kalesh Singh <kaleshsingh@google.com>
Reviewed-by: Oliver Upton <oliver.upton@linux.dev>
Link: https://lore.kernel.org/r/20220727142906.1856759-5-maz@kernel.org
Having multiple versions of on_accessible_stack() (one per unwinder)
makes it very hard to reason about what is used where due to the
complexity of the various includes, the forward declarations, and
the reliance on everything being 'inline'.
Instead, move the code back where it should be. Each unwinder
implements:
- on_accessible_stack() as well as the helpers it depends on,
- unwind()/unwind_next(), as they pass on_accessible_stack as
a parameter to unwind_next_common() (which is the only common
code here)
This hardly results in any duplication, and makes it much
easier to reason about the code.
Signed-off-by: Marc Zyngier <maz@kernel.org>
Reviewed-by: Kalesh Singh <kaleshsingh@google.com>
Tested-by: Kalesh Singh <kaleshsingh@google.com>
Reviewed-by: Oliver Upton <oliver.upton@linux.dev>
Link: https://lore.kernel.org/r/20220727142906.1856759-4-maz@kernel.org
The unwinding code doesn't really belong to the exit handling
code. Instead, move it to a file (conveniently named stacktrace.c
to confuse the reviewer), and move all the stacktrace-related
stuff there.
It will be joined by more code very soon.
Signed-off-by: Marc Zyngier <maz@kernel.org>
Reviewed-by: Kalesh Singh <kaleshsingh@google.com>
Tested-by: Kalesh Singh <kaleshsingh@google.com>
Reviewed-by: Oliver Upton <oliver.upton@linux.dev>
Link: https://lore.kernel.org/r/20220727142906.1856759-3-maz@kernel.org
Make the dependency with EL2_DEBUG more obvious by moving the
stacktrace configurtion *after* it.
Signed-off-by: Marc Zyngier <maz@kernel.org>
Reviewed-by: Kalesh Singh <kaleshsingh@google.com>
Tested-by: Kalesh Singh <kaleshsingh@google.com>
Reviewed-by: Oliver Upton <oliver.upton@linux.dev>
Link: https://lore.kernel.org/r/20220727142906.1856759-2-maz@kernel.org
In protected nVHE mode, the host cannot access private owned hypervisor
memory. Also the hypervisor aims to remains simple to reduce the attack
surface and does not provide any printk support.
For the above reasons, the approach taken to provide hypervisor stacktraces
in protected mode is:
1) Unwind and save the hyp stack addresses in EL2 to a shared buffer
with the host (done in this patch).
2) Delegate the dumping and symbolization of the addresses to the
host in EL1 (later patch in the series).
On hyp_panic(), the hypervisor prepares the stacktrace before returning to
the host.
Signed-off-by: Kalesh Singh <kaleshsingh@google.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20220726073750.3219117-16-kaleshsingh@google.com
In protected nVHE mode the host cannot directly access
hypervisor memory, so we will dump the hypervisor stacktrace
to a shared buffer with the host.
The minimum size for the buffer required, assuming the min frame
size of [x29, x30] (2 * sizeof(long)), is half the combined size of
the hypervisor and overflow stacks plus an additional entry to
delimit the end of the stacktrace.
The stacktrace buffers are used later in the series to dump the
nVHE hypervisor stacktrace when using protected-mode.
Signed-off-by: Kalesh Singh <kaleshsingh@google.com>
Reviewed-by: Fuad Tabba <tabba@google.com>
Tested-by: Fuad Tabba <tabba@google.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20220726073750.3219117-14-kaleshsingh@google.com
This can be used to disable stacktrace for the protected KVM
nVHE hypervisor, in order to save on the associated memory usage.
This option is disabled by default, since protected KVM is not widely
used on platforms other than Android currently.
Signed-off-by: Kalesh Singh <kaleshsingh@google.com>
Reviewed-by: Fuad Tabba <tabba@google.com>
Tested-by: Fuad Tabba <tabba@google.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20220726073750.3219117-13-kaleshsingh@google.com
Implements the common framework necessary for unwind() to work
for non-protected nVHE mode:
- on_accessible_stack()
- on_overflow_stack()
- unwind_next()
Non-protected nVHE unwind() is used to unwind and dump the hypervisor
stacktrace by the host in EL1
Signed-off-by: Kalesh Singh <kaleshsingh@google.com>
Reviewed-by: Fuad Tabba <tabba@google.com>
Tested-by: Fuad Tabba <tabba@google.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20220726073750.3219117-11-kaleshsingh@google.com
In non-protected nVHE mode (non-pKVM) the host can directly access
hypervisor memory; and unwinding of the hypervisor stacktrace is
done from EL1 to save on memory for shared buffers.
To unwind the hypervisor stack from EL1 the host needs to know the
starting point for the unwind and information that will allow it to
translate hypervisor stack addresses to the corresponding kernel
addresses. This patch sets up this book keeping. It is made use of
later in the series.
Signed-off-by: Kalesh Singh <kaleshsingh@google.com>
Reviewed-by: Fuad Tabba <tabba@google.com>
Tested-by: Fuad Tabba <tabba@google.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20220726073750.3219117-10-kaleshsingh@google.com
On hyp stack overflow switch to 16-byte aligned secondary stack.
This provides us stack space to better handle overflows; and is
used in a subsequent patch to dump the hypervisor stacktrace.
Signed-off-by: Kalesh Singh <kaleshsingh@google.com>
Reviewed-by: Fuad Tabba <tabba@google.com>
Tested-by: Fuad Tabba <tabba@google.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20220726073750.3219117-8-kaleshsingh@google.com
* kvm-arm64/sysreg-cleanup-5.20:
: .
: Long overdue cleanup of the sysreg userspace access,
: with extra scrubbing on the vgic side of things.
: From the cover letter:
:
: "Schspa Shi recently reported[1] that some of the vgic code interacting
: with userspace was reading uninitialised stack memory, and although
: that read wasn't used any further, it prompted me to revisit this part
: of the code.
:
: Needless to say, this area of the kernel is pretty crufty, and shows a
: bunch of issues in other parts of the KVM/arm64 infrastructure. This
: series tries to remedy a bunch of them:
:
: - Sanitise the way we deal with sysregs from userspace: at the moment,
: each and every .set_user/.get_user callback has to implement its own
: userspace accesses (directly or indirectly). It'd be much better if
: that was centralised so that we can reason about it.
:
: - Enforce that all AArch64 sysregs are 64bit. Always. This was sort of
: implied by the code, but it took some effort to convince myself that
: this was actually the case.
:
: - Move the vgic-v3 sysreg userspace accessors to the userspace
: callbacks instead of hijacking the vcpu trap callback. This allows
: us to reuse the sysreg infrastructure.
:
: - Consolidate userspace accesses for both GICv2, GICv3 and common code
: as much as possible.
:
: - Cleanup a bunch of not-very-useful helpers, tidy up some of the code
: as we touch it.
:
: [1] https://lore.kernel.org/r/m2h740zz1i.fsf@gmail.com"
: .
KVM: arm64: Get rid or outdated comments
KVM: arm64: Descope kvm_arm_sys_reg_{get,set}_reg()
KVM: arm64: Get rid of find_reg_by_id()
KVM: arm64: vgic: Tidy-up calls to vgic_{get,set}_common_attr()
KVM: arm64: vgic: Consolidate userspace access for base address setting
KVM: arm64: vgic-v2: Add helper for legacy dist/cpuif base address setting
KVM: arm64: vgic: Use {get,put}_user() instead of copy_{from.to}_user
KVM: arm64: vgic-v2: Consolidate userspace access for MMIO registers
KVM: arm64: vgic-v3: Consolidate userspace access for MMIO registers
KVM: arm64: vgic-v3: Use u32 to manage the line level from userspace
KVM: arm64: vgic-v3: Convert userspace accessors over to FIELD_GET/FIELD_PREP
KVM: arm64: vgic-v3: Make the userspace accessors use sysreg API
KVM: arm64: vgic-v3: Push user access into vgic_v3_cpu_sysregs_uaccess()
KVM: arm64: vgic-v3: Simplify vgic_v3_has_cpu_sysregs_attr()
KVM: arm64: Get rid of reg_from/to_user()
KVM: arm64: Consolidate sysreg userspace accesses
KVM: arm64: Rely on index_to_param() for size checks on userspace access
KVM: arm64: Introduce generic get_user/set_user helpers for system registers
KVM: arm64: Reorder handling of invariant sysregs from userspace
KVM: arm64: Add get_reg_by_id() as a sys_reg_desc retrieving helper
Signed-off-by: Marc Zyngier <maz@kernel.org>
Once apon a time, the 32bit KVM/arm port was the reference, while
the arm64 version was the new kid on the block, without a clear
future... This was a long time ago.
"The times, they are a-changing."
Signed-off-by: Marc Zyngier <maz@kernel.org>
Having kvm_arm_sys_reg_get_reg and co in kvm_host.h gives the
impression that these functions are free to be called from
anywhere.
Not quite. They really are tied to out internal sysreg handling,
and they would be better off in the sys_regs.h header, which is
private. kvm_host.h could also get a bit of a diet, so let's
just do that.
Signed-off-by: Marc Zyngier <maz@kernel.org>
The userspace accessors have an early call to vgic_{get,set}_common_attr()
that makes the code hard to follow. Move it to the default: clause of
the decoding switch statement, which results in a nice cleanup.
This requires us to move the handling of the pending table into the
common handling, even if it is strictly a GICv3 feature (it has the
benefit of keeping the whole control group handling in the same
function).
Also cleanup vgic_v3_{get,set}_attr() while we're at it, deduplicating
the calls to vgic_v3_attr_regs_access().
Suggested-by: Reiji Watanabe <reijiw@google.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Align kvm_vgic_addr() with the rest of the code by moving the
userspace accesses into it. kvm_vgic_addr() is also made static.
Signed-off-by: Marc Zyngier <maz@kernel.org>
We carry a legacy interface to set the base addresses for GICv2.
As this is currently plumbed into the same handling code as
the modern interface, it limits the evolution we can make there.
Add a helper dedicated to this handling, with a view of maybe
removing this in the future.
Signed-off-by: Marc Zyngier <maz@kernel.org>
Tidy-up vgic_get_common_attr() and vgic_set_common_attr() to use
{get,put}_user() instead of the more complex (and less type-safe)
copy_{from,to}_user().
Reviewed-by: Reiji Watanabe <reijiw@google.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Align the GICv2 MMIO accesses from userspace with the way the GICv3
code is now structured.
Reviewed-by: Reiji Watanabe <reijiw@google.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
For userspace accesses to GICv3 MMIO registers (and related data),
vgic_v3_{get,set}_attr are littered with {get,put}_user() calls,
making it hard to audit and reason about.
Consolidate all userspace accesses in vgic_v3_attr_regs_access(),
making the code far simpler to audit.
Reviewed-by: Reiji Watanabe <reijiw@google.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Despite the userspace ABI clearly defining the bits dealt with by
KVM_DEV_ARM_VGIC_GRP_LEVEL_INFO as a __u32, the kernel uses a u64.
Use a u32 to match the userspace ABI, which will subsequently lead
to some simplifications.
Reviewed-by: Reiji Watanabe <reijiw@google.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
The GICv3 userspace accessors are all about dealing with conversion
between fields from architectural registers and internal representations.
However, and owing to the age of this code, the accessors use
a combination of shift/mask that is hard to read. It is nonetheless
easy to make it better by using the FIELD_{GET,PREP} macros that solely
rely on a mask.
This results in somewhat nicer looking code, and is probably easier
to maintain.
Reviewed-by: Reiji Watanabe <reijiw@google.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
The vgic-v3 sysreg accessors have been ignored as the rest of the
sysreg internal API was evolving, and are stuck with the .access
method (which is normally reserved to the guest's own access)
for the userspace accesses (which should use the .set/.get_user()
methods).
Catch up with the program and repaint all the accessors so that
they fit into the normal userspace model, and plug the result into
the helpers that have been introduced earlier.
Reviewed-by: Reiji Watanabe <reijiw@google.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
In order to start making the vgic sysreg access from userspace
similar to all the other sysregs, push the userspace memory
access one level down into vgic_v3_cpu_sysregs_uaccess().
The next step will be to rely on the sysreg infrastructure
to perform this task.
Reviewed-by: Reiji Watanabe <reijiw@google.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Finding out whether a sysreg exists has little to do with that
register being accessed, so drop the is_write parameter.
Also, the reg pointer is completely unused, and we're better off
just passing the attr pointer to the function.
This result in a small cleanup of the calling site, with a new
helper converting the vGIC view of a sysreg into the canonical
one (this is purely cosmetic, as the encoding is the same).
Reviewed-by: Reiji Watanabe <reijiw@google.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
These helpers are only used by the invariant stuff now, and while
they pretend to support non-64bit registers, this only serves as
a way to scare the casual reviewer...
Replace these helpers with our good friends get/put_user(), and
don't look back.
Reviewed-by: Reiji Watanabe <reijiw@google.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Until now, the .set_user and .get_user callbacks have to implement
(directly or not) the userspace memory accesses. Although this gives
us maximem flexibility, this is also a maintenance burden, making it
hard to audit, and I'd feel much better if it was all located in
a single place.
So let's do just that, simplifying most of the function signatures
in the process (the callbacks are now only concerned with the
data itself, and not with userspace).
Reviewed-by: Reiji Watanabe <reijiw@google.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
index_to_param() already checks that we use 64bit accesses for all
registers accessed from userspace.
However, we have extra checks in other places (such as index_to_params),
which is pretty confusing. Get rid off these redundant checks.
Reviewed-by: Reiji Watanabe <reijiw@google.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
The userspace access to the system registers is done using helpers
that hardcode the table that is looked up. extract some generic
helpers from this, moving the handling of hidden sysregs into
the core code.
Reviewed-by: Reiji Watanabe <reijiw@google.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
In order to allow some further refactor of the sysreg helpers,
move the handling of invariant sysreg to occur before we handle
all the other ones.
Reviewed-by: Reiji Watanabe <reijiw@google.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
find_reg_by_id() requires a sys_reg_param as input, which most
users provide as a on-stack variable, but don't make any use of
the result.
Provide a helper that doesn't have this requirement and simplify
the callers (all but one).
Reviewed-by: Reiji Watanabe <reijiw@google.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
With CONFIG_RANDOMIZE_BASE=y vmlinux addresses will resolve incorrectly
from kallsyms. Fix this by adding the KASLR offset before printing the
symbols.
Fixes: 6ccf9cb557 ("KVM: arm64: Symbolize the nVHE HYP addresses")
Reported-by: Fuad Tabba <tabba@google.com>
Signed-off-by: Kalesh Singh <kaleshsingh@google.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20220715235824.2549012-1-kaleshsingh@google.com
Although harmless, the return statement in kvm_unexpected_el2_exception
is rather confusing as the function itself has a void return type. The
C standard is also pretty clear that "A return statement with an
expression shall not appear in a function whose return type is void".
Given that this return statement does not seem to add any actual value,
let's not pointlessly violate the standard.
Build-tested with GCC 10 and CLANG 13 for good measure, the disassembled
code is identical with or without the return statement.
Fixes: e9ee186bb7 ("KVM: arm64: Add kvm_extable for vaxorcism code")
Signed-off-by: Quentin Perret <qperret@google.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20220705142310.3847918-1-qperret@google.com
Normally we include the full register name in the defines for fields within
registers but this has not been followed for ID registers. In preparation
for automatic generation of defines add the _EL1s into the defines for
ID_AA64ISAR2_EL1 to follow the convention. No functional changes.
Signed-off-by: Mark Brown <broonie@kernel.org>
Link: https://lore.kernel.org/r/20220704170302.2609529-17-broonie@kernel.org
Signed-off-by: Will Deacon <will@kernel.org>
Normally we include the full register name in the defines for fields within
registers but this has not been followed for ID registers. In preparation
for automatic generation of defines add the _EL1s into the defines for
ID_AA64ISAR1_EL1 to follow the convention. No functional changes.
Signed-off-by: Mark Brown <broonie@kernel.org>
Link: https://lore.kernel.org/r/20220704170302.2609529-16-broonie@kernel.org
Signed-off-by: Will Deacon <will@kernel.org>
The defines for WFxT refer to the feature as WFXT and use SUPPORTED rather
than IMP. In preparation for automatic generation of defines update these
to be more standard. No functional changes.
Signed-off-by: Mark Brown <broonie@kernel.org>
Link: https://lore.kernel.org/r/20220704170302.2609529-12-broonie@kernel.org
Signed-off-by: Will Deacon <will@kernel.org>
This Makefile appends several objects to obj-y from line 15, but none
of them is linked to vmlinux in an ordinary way.
obj-y is overwritten at line 30:
obj-y := kvm_nvhe.o
So, kvm_nvhe.o is the only object directly linked to vmlinux.
Replace the abused obj-y with hyp-obj-y.
Signed-off-by: Masahiro Yamada <masahiroy@kernel.org>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20220613092026.1705630-1-masahiroy@kernel.org
* kvm-arm64/burn-the-flags:
: .
: Rework the per-vcpu flags to make them more manageable,
: splitting them in different sets that have specific
: uses:
:
: - configuration flags
: - input to the world-switch
: - state bookkeeping for the kernel itself
:
: The FP tracking is also simplified and tracked outside
: of the flags as a separate state.
: .
KVM: arm64: Move the handling of !FP outside of the fast path
KVM: arm64: Document why pause cannot be turned into a flag
KVM: arm64: Reduce the size of the vcpu flag members
KVM: arm64: Add build-time sanity checks for flags
KVM: arm64: Warn when PENDING_EXCEPTION and INCREMENT_PC are set together
KVM: arm64: Convert vcpu sysregs_loaded_on_cpu to a state flag
KVM: arm64: Kill unused vcpu flags field
KVM: arm64: Move vcpu WFIT flag to the state flag set
KVM: arm64: Move vcpu ON_UNSUPPORTED_CPU flag to the state flag set
KVM: arm64: Move vcpu SVE/SME flags to the state flag set
KVM: arm64: Move vcpu debug/SPE/TRBE flags to the input flag set
KVM: arm64: Move vcpu PC/Exception flags to the input flag set
KVM: arm64: Move vcpu configuration flags into their own set
KVM: arm64: Add three sets of flags to the vcpu state
KVM: arm64: Add helpers to manipulate vcpu flags among a set
KVM: arm64: Move FP state ownership from flag to a tristate
KVM: arm64: Drop FP_FOREIGN_STATE from the hypervisor code
Signed-off-by: Marc Zyngier <maz@kernel.org>
We currently start by assuming that the host owns the FP unit
at load time, then check again whether this is the case as
we are about to run. Only at this point do we account for the
fact that there is a (vanishingly small) chance that we're running
on a system without a FPSIMD unit (yes, this is madness).
We can actually move this FPSIMD check as early as load-time,
and drop the check at run time.
No intended change in behaviour.
Suggested-by: Reiji Watanabe <reijiw@google.com>
Reviewed-by: Reiji Watanabe <reijiw@google.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
The aptly named boolean 'sysregs_loaded_on_cpu' tracks whether
some of the vcpu system registers are resident on the physical
CPU when running in VHE mode.
This is obviously a flag in hidding, so let's convert it to
a state flag, since this is solely a host concern (the hypervisor
itself always knows which state we're in).
Reviewed-by: Fuad Tabba <tabba@google.com>
Reviewed-by: Reiji Watanabe <reijiw@google.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
The host kernel uses the WFIT flag to remember that a vcpu has used
this instruction and wake it up as required. Move it to the state
set, as nothing in the hypervisor uses this information.
Reviewed-by: Fuad Tabba <tabba@google.com>
Reviewed-by: Reiji Watanabe <reijiw@google.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
The two HOST_{SVE,SME}_ENABLED are only used for the host kernel
to track its own state across a vcpu run so that it can be fully
restored.
Move these flags to the so called state set.
Reviewed-by: Fuad Tabba <tabba@google.com>
Reviewed-by: Reiji Watanabe <reijiw@google.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
The three debug flags (which deal with the debug registers, SPE and
TRBE) all are input flags to the hypervisor code.
Move them into the input set and convert them to the new accessors.
Reviewed-by: Fuad Tabba <tabba@google.com>
Reviewed-by: Reiji Watanabe <reijiw@google.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Allow the capacity of the kvm_mmu_memory_cache struct to be chosen at
declaration time rather than being fixed for all declarations. This will
be used in a follow-up commit to declare an cache in x86 with a capacity
of 512+ objects without having to increase the capacity of all caches in
KVM.
This change requires each cache now specify its capacity at runtime,
since the cache struct itself no longer has a fixed capacity known at
compile time. To protect against someone accidentally defining a
kvm_mmu_memory_cache struct directly (without the extra storage), this
commit includes a WARN_ON() in kvm_mmu_topup_memory_cache().
In order to support different capacities, this commit changes the
objects pointer array to be dynamically allocated the first time the
cache is topped-up.
While here, opportunistically clean up the stack-allocated
kvm_mmu_memory_cache structs in riscv and arm64 to use designated
initializers.
No functional change intended.
Reviewed-by: Marc Zyngier <maz@kernel.org>
Signed-off-by: David Matlack <dmatlack@google.com>
Message-Id: <20220516232138.1783324-22-dmatlack@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Add a generic flag (__DISABLE_TRACE_MMIO__) to disable MMIO
tracing in nVHE KVM as the tracepoint and MMIO logging symbols
should not be visible at nVHE KVM as there is no way to execute
them. It can also be used to disable MMIO tracing for specific
drivers.
Signed-off-by: Sai Prakash Ranjan <quic_saipraka@quicinc.com>
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
The PC update flags (which also deal with exception injection)
is one of the most complicated use of the flag we have. Make it
more fool prof by:
- moving it over to the new accessors and assign it to the
input flag set
- turn the combination of generic ELx flags with another flag
indicating the target EL itself into an explicit set of
flags for each EL and vector combination
- add a new accessor to pend the exception
This is otherwise a pretty straightformward conversion.
Reviewed-by: Fuad Tabba <tabba@google.com>
Reviewed-by: Reiji Watanabe <reijiw@google.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
The KVM_ARM64_{GUEST_HAS_SVE,VCPU_SVE_FINALIZED,GUEST_HAS_PTRAUTH}
flags are purely configuration flags. Once set, they are never cleared,
but evaluated all over the code base.
Move these three flags into the configuration set in one go, using
the new accessors, and take this opportunity to drop the KVM_ARM64_
prefix which doesn't provide any help.
Reviewed-by: Fuad Tabba <tabba@google.com>
Reviewed-by: Reiji Watanabe <reijiw@google.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
host_stage2_try() asserts that the KVM host lock is held, so there's no
need to duplicate the assertion in its wrappers.
Signed-off-by: Will Deacon <will@kernel.org>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20220609121223.2551-6-will@kernel.org
Ignore 'kvm-arm.mode=protected' when using VHE so that kvm_get_mode()
only returns KVM_MODE_PROTECTED on systems where the feature is available.
Cc: David Brazdil <dbrazdil@google.com>
Acked-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Will Deacon <will@kernel.org>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20220609121223.2551-4-will@kernel.org
A protected VM accessing ID_AA64ISAR2_EL1 gets punished with an UNDEF,
while it really should only get a zero back if the register is not
handled by the hypervisor emulation (as mandated by the architecture).
Introduce all the missing ID registers (including the unallocated ones),
and have them to return 0.
Reported-by: Will Deacon <will@kernel.org>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20220609121223.2551-3-will@kernel.org
If we fail to allocate the 'supported_cpus' cpumask in kvm_arch_init_vm()
then be sure to return -ENOMEM instead of success (0) on the failure
path.
Reviewed-by: Alexandru Elisei <alexandru.elisei@arm.com>
Signed-off-by: Will Deacon <will@kernel.org>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20220609121223.2551-2-will@kernel.org
The KVM FP code uses a pair of flags to denote three states:
- FP_ENABLED set: the guest owns the FP state
- FP_HOST set: the host owns the FP state
- FP_ENABLED and FP_HOST clear: nobody owns the FP state at all
and both flags set is an illegal state, which nothing ever checks
for...
As it turns out, this isn't really a good match for flags, and
we'd be better off if this was a simpler tristate, each state
having a name that actually reflect the state:
- FP_STATE_FREE
- FP_STATE_HOST_OWNED
- FP_STATE_GUEST_OWNED
Kill the two flags, and move over to an enum encoding these
three states. This results in less confusing code, and less risk of
ending up in the uncharted territory of a 4th state if we forget
to clear one of the two flags.
Signed-off-by: Marc Zyngier <maz@kernel.org>
Reviewed-by: Mark Brown <broonie@kernel.org>
Reviewed-by: Reiji Watanabe <reijiw@google.com>
The vcpu KVM_ARM64_FP_FOREIGN_FPSTATE flag tracks the thread's own
TIF_FOREIGN_FPSTATE so that we can evaluate just before running
the vcpu whether it the FP regs contain something that is owned
by the vcpu or not by updating the rest of the FP flags.
We do this in the hypervisor code in order to make sure we're
in a context where we are not interruptible. But we already
have a hook in the run loop to generate this flag. We may as
well update the FP flags directly and save the pointless flag
tracking.
Whilst we're at it, rename update_fp_enabled() to guest_owns_fp_regs()
to indicate what the leftover of this helper actually do.
Signed-off-by: Marc Zyngier <maz@kernel.org>
Reviewed-by: Reiji Watanabe <reijiw@google.com>
Reviewed-by: Mark Brown <broonie@kernel.org>
A recurrent bug in the KVM/arm64 code base consists in trying to
access the timer pending state outside of the vcpu context, which
makes zero sense (the pending state only exists when the vcpu
is loaded).
In order to avoid more embarassing crashes and catch the offenders
red-handed, add a warning to kvm_arch_timer_get_input_level() and
return the state as non-pending. This avoids taking the system down,
and still helps tracking down silly bugs.
Reviewed-by: Eric Auger <eric.auger@redhat.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20220607131427.1164881-4-maz@kernel.org
Now that GICv2 has a proper userspace accessor for the pending state,
switch GICv3 over to it, dropping the local version, moving over the
specific behaviours that CGIv3 requires (such as the distinction
between pending latch and line level which were never enforced
with GICv2).
We also gain extra locking that isn't really necessary for userspace,
but that's a small price to pay for getting rid of superfluous code.
Signed-off-by: Marc Zyngier <maz@kernel.org>
Reviewed-by: Eric Auger <eric.auger@redhat.com>
Link: https://lore.kernel.org/r/20220607131427.1164881-3-maz@kernel.org
Since 5bfa685e62 ("KVM: arm64: vgic: Read HW interrupt pending state
from the HW"), we're able to source the pending bit for an interrupt
that is stored either on the physical distributor or on a device.
However, this state is only available when the vcpu is loaded,
and is not intended to be accessed from userspace. Unfortunately,
the GICv2 emulation doesn't provide specific userspace accessors,
and we fallback with the ones that are intended for the guest,
with fatal consequences.
Add a new vgic_uaccess_read_pending() accessor for userspace
to use, build on top of the existing vgic_mmio_read_pending().
Reported-by: Eric Auger <eric.auger@redhat.com>
Reviewed-by: Eric Auger <eric.auger@redhat.com>
Tested-by: Eric Auger <eric.auger@redhat.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Fixes: 5bfa685e62 ("KVM: arm64: vgic: Read HW interrupt pending state from the HW")
Link: https://lore.kernel.org/r/20220607131427.1164881-2-maz@kernel.org
Cc: stable@vger.kernel.org
On each vcpu load, we set the KVM_ARM64_HOST_SME_ENABLED
flag if SME is enabled for EL0 on the host. This is used to
restore the correct state on vpcu put.
However, it appears that nothing ever clears this flag. Once
set, it will stick until the vcpu is destroyed, which has the
potential to spuriously enable SME for userspace. As it turns
out, this is due to the SME code being more or less copied from
SVE, and inheriting the same shortcomings.
We never saw the issue because nothing uses SME, and the amount
of testing is probably still pretty low.
Fixes: 861262ab86 ("KVM: arm64: Handle SME host state when running guests")
Signed-off-by: Marc Zyngier <maz@kernel.org>
Reviwed-by: Mark Brown <broonie@kernel.org>
Link: https://lore.kernel.org/r/20220528113829.1043361-3-maz@kernel.org
On each vcpu load, we set the KVM_ARM64_HOST_SVE_ENABLED
flag if SVE is enabled for EL0 on the host. This is used to restore
the correct state on vpcu put.
However, it appears that nothing ever clears this flag. Once
set, it will stick until the vcpu is destroyed, which has the
potential to spuriously enable SVE for userspace.
We probably never saw the issue because no VMM uses SVE, but
that's still pretty bad. Unconditionally clearing the flag
on vcpu load addresses the issue.
Fixes: 8383741ab2 ("KVM: arm64: Get rid of host SVE tracking/saving")
Signed-off-by: Marc Zyngier <maz@kernel.org>
Cc: stable@vger.kernel.org
Reviewed-by: Mark Brown <broonie@kernel.org>
Link: https://lore.kernel.org/r/20220528113829.1043361-2-maz@kernel.org
* ultravisor communication device driver
* fix TEID on terminating storage key ops
RISC-V:
* Added Sv57x4 support for G-stage page table
* Added range based local HFENCE functions
* Added remote HFENCE functions based on VCPU requests
* Added ISA extension registers in ONE_REG interface
* Updated KVM RISC-V maintainers entry to cover selftests support
ARM:
* Add support for the ARMv8.6 WFxT extension
* Guard pages for the EL2 stacks
* Trap and emulate AArch32 ID registers to hide unsupported features
* Ability to select and save/restore the set of hypercalls exposed
to the guest
* Support for PSCI-initiated suspend in collaboration with userspace
* GICv3 register-based LPI invalidation support
* Move host PMU event merging into the vcpu data structure
* GICv3 ITS save/restore fixes
* The usual set of small-scale cleanups and fixes
x86:
* New ioctls to get/set TSC frequency for a whole VM
* Allow userspace to opt out of hypercall patching
* Only do MSR filtering for MSRs accessed by rdmsr/wrmsr
AMD SEV improvements:
* Add KVM_EXIT_SHUTDOWN metadata for SEV-ES
* V_TSC_AUX support
Nested virtualization improvements for AMD:
* Support for "nested nested" optimizations (nested vVMLOAD/VMSAVE,
nested vGIF)
* Allow AVIC to co-exist with a nested guest running
* Fixes for LBR virtualizations when a nested guest is running,
and nested LBR virtualization support
* PAUSE filtering for nested hypervisors
Guest support:
* Decoupling of vcpu_is_preempted from PV spinlocks
-----BEGIN PGP SIGNATURE-----
iQFIBAABCAAyFiEE8TM4V0tmI4mGbHaCv/vSX3jHroMFAmKN9M4UHHBib256aW5p
QHJlZGhhdC5jb20ACgkQv/vSX3jHroNLeAf+KizAlQwxEehHHeNyTkZuKyMawrD6
zsqAENR6i1TxiXe7fDfPFbO2NR0ZulQopHbD9mwnHJ+nNw0J4UT7g3ii1IAVcXPu
rQNRGMVWiu54jt+lep8/gDg0JvPGKVVKLhxUaU1kdWT9PhIOC6lwpP3vmeWkUfRi
PFL/TMT0M8Nfryi0zHB0tXeqg41BiXfqO8wMySfBAHUbpv8D53D2eXQL6YlMM0pL
2quB1HxHnpueE5vj3WEPQ3PCdy1M2MTfCDBJAbZGG78Ljx45FxSGoQcmiBpPnhJr
C6UGP4ZDWpml5YULUoA70k5ylCbP+vI61U4vUtzEiOjHugpPV5wFKtx5nw==
=ozWx
-----END PGP SIGNATURE-----
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull kvm updates from Paolo Bonzini:
"S390:
- ultravisor communication device driver
- fix TEID on terminating storage key ops
RISC-V:
- Added Sv57x4 support for G-stage page table
- Added range based local HFENCE functions
- Added remote HFENCE functions based on VCPU requests
- Added ISA extension registers in ONE_REG interface
- Updated KVM RISC-V maintainers entry to cover selftests support
ARM:
- Add support for the ARMv8.6 WFxT extension
- Guard pages for the EL2 stacks
- Trap and emulate AArch32 ID registers to hide unsupported features
- Ability to select and save/restore the set of hypercalls exposed to
the guest
- Support for PSCI-initiated suspend in collaboration with userspace
- GICv3 register-based LPI invalidation support
- Move host PMU event merging into the vcpu data structure
- GICv3 ITS save/restore fixes
- The usual set of small-scale cleanups and fixes
x86:
- New ioctls to get/set TSC frequency for a whole VM
- Allow userspace to opt out of hypercall patching
- Only do MSR filtering for MSRs accessed by rdmsr/wrmsr
AMD SEV improvements:
- Add KVM_EXIT_SHUTDOWN metadata for SEV-ES
- V_TSC_AUX support
Nested virtualization improvements for AMD:
- Support for "nested nested" optimizations (nested vVMLOAD/VMSAVE,
nested vGIF)
- Allow AVIC to co-exist with a nested guest running
- Fixes for LBR virtualizations when a nested guest is running, and
nested LBR virtualization support
- PAUSE filtering for nested hypervisors
Guest support:
- Decoupling of vcpu_is_preempted from PV spinlocks"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (199 commits)
KVM: x86: Fix the intel_pt PMI handling wrongly considered from guest
KVM: selftests: x86: Sync the new name of the test case to .gitignore
Documentation: kvm: reorder ARM-specific section about KVM_SYSTEM_EVENT_SUSPEND
x86, kvm: use correct GFP flags for preemption disabled
KVM: LAPIC: Drop pending LAPIC timer injection when canceling the timer
x86/kvm: Alloc dummy async #PF token outside of raw spinlock
KVM: x86: avoid calling x86 emulator without a decoded instruction
KVM: SVM: Use kzalloc for sev ioctl interfaces to prevent kernel data leak
x86/fpu: KVM: Set the base guest FPU uABI size to sizeof(struct kvm_xsave)
s390/uv_uapi: depend on CONFIG_S390
KVM: selftests: x86: Fix test failure on arch lbr capable platforms
KVM: LAPIC: Trace LAPIC timer expiration on every vmentry
KVM: s390: selftest: Test suppression indication on key prot exception
KVM: s390: Don't indicate suppression on dirtying, failing memop
selftests: drivers/s390x: Add uvdevice tests
drivers/s390/char: Add Ultravisor io device
MAINTAINERS: Update KVM RISC-V entry to cover selftests support
RISC-V: KVM: Introduce ISA extension register
RISC-V: KVM: Cleanup stale TLB entries when host CPU changes
RISC-V: KVM: Add remote HFENCE functions based on VCPU requests
...
- Add support for the ARMv8.6 WFxT extension
- Guard pages for the EL2 stacks
- Trap and emulate AArch32 ID registers to hide unsupported features
- Ability to select and save/restore the set of hypercalls exposed
to the guest
- Support for PSCI-initiated suspend in collaboration with userspace
- GICv3 register-based LPI invalidation support
- Move host PMU event merging into the vcpu data structure
- GICv3 ITS save/restore fixes
- The usual set of small-scale cleanups and fixes
-----BEGIN PGP SIGNATURE-----
iQJDBAABCgAtFiEEn9UcU+C1Yxj9lZw9I9DQutE9ekMFAmKGAGsPHG1hekBrZXJu
ZWwub3JnAAoJECPQ0LrRPXpDB/gQAMhyZ+wCG0OMEZhwFF6iDfxVEX2Kw8L41NtD
a/e6LDWuIOGihItpRkYROc5myG74D7XckF2Bz3G7HJoU4vhwHOV/XulE26GFizoC
O1GVRekeSUY81wgS1yfo0jojLupBkTjiq3SjTHoDP7GmCM0qDPBtA0QlMRzd2bMs
Kx0+UUXZUHFSTXc7Lp4vqNH+tMp7se+yRx7hxm6PCM5zG+XYJjLxnsZ0qpchObgU
7f6YFojsLUs1SexgiUqJ1RChVQ+FkgICh5HyzORvGtHNNzK6D2sIbsW6nqMGAMql
Kr3A5O/VOkCztSYnLxaa76/HqD21mvUrXvr3grhabNc7rOmuzWV0dDgr6c6wHKHb
uNCtH4d7Ra06gUrEOrfsgLOLn0Zqik89y6aIlMsnTudMg9gMNgFHy1jz4LM7vMkY
FS5AVj059heg2uJcfgTvzzcqneyuBLBmF3dS4coowO6oaj8SycpaEmP5e89zkPMI
1kk8d0e6RmXuCh/2AJ8GxxnKvBPgqp2mMKXOCJ8j4AmHEDX/CKpEBBqIWLKkplUU
8DGiOWJUtRZJg398dUeIpiVLoXJthMODjAnkKkuhiFcQbXomlwgg7YSnNAz6TRED
Z7KR2leC247kapHnnagf02q2wED8pBeyrxbQPNdrHtSJ9Usm4nTkY443HgVTJW3s
aTwPZAQ7
=mh7W
-----END PGP SIGNATURE-----
Merge tag 'kvmarm-5.19' of git://git.kernel.org/pub/scm/linux/kernel/git/kvmarm/kvmarm into HEAD
KVM/arm64 updates for 5.19
- Add support for the ARMv8.6 WFxT extension
- Guard pages for the EL2 stacks
- Trap and emulate AArch32 ID registers to hide unsupported features
- Ability to select and save/restore the set of hypercalls exposed
to the guest
- Support for PSCI-initiated suspend in collaboration with userspace
- GICv3 register-based LPI invalidation support
- Move host PMU event merging into the vcpu data structure
- GICv3 ITS save/restore fixes
- The usual set of small-scale cleanups and fixes
[Due to the conflict, KVM_SYSTEM_EVENT_SEV_TERM is relocated
from 4 to 6. - Paolo]
- Initial support for the ARMv9 Scalable Matrix Extension (SME). SME
takes the approach used for vectors in SVE and extends this to provide
architectural support for matrix operations. No KVM support yet, SME
is disabled in guests.
- Support for crashkernel reservations above ZONE_DMA via the
'crashkernel=X,high' command line option.
- btrfs search_ioctl() fix for live-lock with sub-page faults.
- arm64 perf updates: support for the Hisilicon "CPA" PMU for monitoring
coherent I/O traffic, support for Arm's CMN-650 and CMN-700
interconnect PMUs, minor driver fixes, kerneldoc cleanup.
- Kselftest updates for SME, BTI, MTE.
- Automatic generation of the system register macros from a 'sysreg'
file describing the register bitfields.
- Update the type of the function argument holding the ESR_ELx register
value to unsigned long to match the architecture register size
(originally 32-bit but extended since ARMv8.0).
- stacktrace cleanups.
- ftrace cleanups.
- Miscellaneous updates, most notably: arm64-specific huge_ptep_get(),
avoid executable mappings in kexec/hibernate code, drop TLB flushing
from get_clear_flush() (and rename it to get_clear_contig()),
ARCH_NR_GPIO bumped to 2048 for ARCH_APPLE.
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEE5RElWfyWxS+3PLO2a9axLQDIXvEFAmKH19IACgkQa9axLQDI
XvEFWg//bf0p6zjeNaOJmBbyVFsXsVyYiEaLUpFPUs3oB+81s2YZ+9i1rgMrNCft
EIDQ9+/HgScKxJxnzWf68heMdcBDbk76VJtLALExbge6owFsjByQDyfb/b3v/bLd
ezAcGzc6G5/FlI1IP7ct4Z9MnQry4v5AG8lMNAHjnf6GlBS/tYNAqpmj8HpQfgRQ
ZbhfZ8Ayu3TRSLWL39NHVevpmxQm/bGcpP3Q9TtjUqg0r1FQ5sK/LCqOksueIAzT
UOgUVYWSFwTpLEqbYitVqgERQp9LiLoK5RmNYCIEydfGM7+qmgoxofSq5e2hQtH2
SZM1XilzsZctRbBbhMit1qDBqMlr/XAy/R5FO0GauETVKTaBhgtj6mZGyeC9nU/+
RGDljaArbrOzRwMtSuXF+Fp6uVo5spyRn1m8UT/k19lUTdrV9z6EX5Fzuc4Mnhed
oz4iokbl/n8pDObXKauQspPA46QpxUYhrAs10B/ELc3yyp/Qj3jOfzYHKDNFCUOq
HC9mU+YiO9g2TbYgCrrFM6Dah2E8fU6/cR0ZPMeMgWK4tKa+6JMEINYEwak9e7M+
8lZnvu3ntxiJLN+PrPkiPyG+XBh2sux1UfvNQ+nw4Oi9xaydeX7PCbQVWmzTFmHD
q7UPQ8220e2JNCha9pULS8cxDLxiSksce06DQrGXwnHc1Ir7T04=
=0DjE
-----END PGP SIGNATURE-----
Merge tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux
Pull arm64 updates from Catalin Marinas:
- Initial support for the ARMv9 Scalable Matrix Extension (SME).
SME takes the approach used for vectors in SVE and extends this to
provide architectural support for matrix operations. No KVM support
yet, SME is disabled in guests.
- Support for crashkernel reservations above ZONE_DMA via the
'crashkernel=X,high' command line option.
- btrfs search_ioctl() fix for live-lock with sub-page faults.
- arm64 perf updates: support for the Hisilicon "CPA" PMU for
monitoring coherent I/O traffic, support for Arm's CMN-650 and
CMN-700 interconnect PMUs, minor driver fixes, kerneldoc cleanup.
- Kselftest updates for SME, BTI, MTE.
- Automatic generation of the system register macros from a 'sysreg'
file describing the register bitfields.
- Update the type of the function argument holding the ESR_ELx register
value to unsigned long to match the architecture register size
(originally 32-bit but extended since ARMv8.0).
- stacktrace cleanups.
- ftrace cleanups.
- Miscellaneous updates, most notably: arm64-specific huge_ptep_get(),
avoid executable mappings in kexec/hibernate code, drop TLB flushing
from get_clear_flush() (and rename it to get_clear_contig()),
ARCH_NR_GPIO bumped to 2048 for ARCH_APPLE.
* tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux: (145 commits)
arm64/sysreg: Generate definitions for FAR_ELx
arm64/sysreg: Generate definitions for DACR32_EL2
arm64/sysreg: Generate definitions for CSSELR_EL1
arm64/sysreg: Generate definitions for CPACR_ELx
arm64/sysreg: Generate definitions for CONTEXTIDR_ELx
arm64/sysreg: Generate definitions for CLIDR_EL1
arm64/sve: Move sve_free() into SVE code section
arm64: Kconfig.platforms: Add comments
arm64: Kconfig: Fix indentation and add comments
arm64: mm: avoid writable executable mappings in kexec/hibernate code
arm64: lds: move special code sections out of kernel exec segment
arm64/hugetlb: Implement arm64 specific huge_ptep_get()
arm64/hugetlb: Use ptep_get() to get the pte value of a huge page
arm64: kdump: Do not allocate crash low memory if not needed
arm64/sve: Generate ZCR definitions
arm64/sme: Generate defintions for SVCR
arm64/sme: Generate SMPRI_EL1 definitions
arm64/sme: Automatically generate SMPRIMAP_EL2 definitions
arm64/sme: Automatically generate SMIDR_EL1 defines
arm64/sme: Automatically generate defines for SMCR
...
* for-next/esr-elx-64-bit:
: Treat ESR_ELx as a 64-bit register.
KVM: arm64: uapi: Add kvm_debug_exit_arch.hsr_high
KVM: arm64: Treat ESR_EL2 as a 64-bit register
arm64: Treat ESR_ELx as a 64-bit register
arm64: compat: Do not treat syscall number as ESR_ELx for a bad syscall
arm64: Make ESR_ELx_xVC_IMM_MASK compatible with assembly
- Correctly expose GICv3 support even if no irqchip is created
so that userspace doesn't observe it changing pointlessly
(fixing a regression with QEMU)
- Don't issue a hypercall to set the id-mapped vectors when
protected mode is enabled
-----BEGIN PGP SIGNATURE-----
iQJDBAABCgAtFiEEn9UcU+C1Yxj9lZw9I9DQutE9ekMFAmKCKnIPHG1hekBrZXJu
ZWwub3JnAAoJECPQ0LrRPXpDD1IP/2y+6ntgxdwuvHWVMEttGh9dOG/jCiV0B+uZ
R0x6G6i+VvqoBM3vzHl5fMqfRF47edQ17Kofa815Iae9dkoSR3oetA5qn8zZzGac
z9102EYsPkb9qj+hOYpPDT3ST/jYLq3EUoEef/lGwcJ32CPldKIttWdyZvHbfjoP
6sOJYCWUiLiGt98VF/CNDazDInOgQtmRBkslHyNCeTC8w+7vT/2qXgfN2x513h92
CH9yM7dIzS0Qt3U6yMlx39zZ95T0FslonAgtzZfXQ4590aJD+w367HT3WaAOp9Qn
MKIJF9DV9cy2o7pyz9R81x0NWiYmJvTsWBxqLdxDQuObevBayGrGNwEgGuUSwtYj
zez536JOAIShKJZLyWP8t2a3NwIxu3KWOzKqhm+mt/1fikcP3KEhh7CTdJTp2GqX
XBO5wGVW3I3M1s+rjziQues5aampsSo3dJbHU0hx+t4ODVKkVQo19dXfCtwFMLrT
KLTDQLiUzRadv1c6q2rO66L//r6g3gA5DSRiCgOShA6iNcDaf2uVtvfG6p6n10k2
Tss5hvDfSJTSttnNYsCsVYdIGhJizpxVBLfXJHLyBn/DnTUcjkEqpIo0eWZvT2gD
nxgh0lewenVKUYzP01jkph6kLnKU6LwtNKV6ZJbpazJYYcEQ+vVYoTweCu7L3RJa
F7SURWTh
=OGUb
-----END PGP SIGNATURE-----
Merge tag 'kvmarm-fixes-5.18-3' of git://git.kernel.org/pub/scm/linux/kernel/git/kvmarm/kvmarm into HEAD
KVM/arm64 fixes for 5.18, take #3
- Correctly expose GICv3 support even if no irqchip is created
so that userspace doesn't observe it changing pointlessly
(fixing a regression with QEMU)
- Don't issue a hypercall to set the id-mapped vectors when
protected mode is enabled (fix for pKVM in combination with
CPUs affected by Spectre-v3a)
The defines for SVCR call it SVCR_EL0 however the architecture calls the
register SVCR with no _EL0 suffix. In preparation for generating the sysreg
definitions rename to match the architecture, no functional change.
Signed-off-by: Mark Brown <broonie@kernel.org>
Link: https://lore.kernel.org/r/20220510161208.631259-6-broonie@kernel.org
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
* for-next/sme: (29 commits)
: Scalable Matrix Extensions support.
arm64/sve: Make kernel FPU protection RT friendly
arm64/sve: Delay freeing memory in fpsimd_flush_thread()
arm64/sme: More sensibly define the size for the ZA register set
arm64/sme: Fix NULL check after kzalloc
arm64/sme: Add ID_AA64SMFR0_EL1 to __read_sysreg_by_encoding()
arm64/sme: Provide Kconfig for SME
KVM: arm64: Handle SME host state when running guests
KVM: arm64: Trap SME usage in guest
KVM: arm64: Hide SME system registers from guests
arm64/sme: Save and restore streaming mode over EFI runtime calls
arm64/sme: Disable streaming mode and ZA when flushing CPU state
arm64/sme: Add ptrace support for ZA
arm64/sme: Implement ptrace support for streaming mode SVE registers
arm64/sme: Implement ZA signal handling
arm64/sme: Implement streaming SVE signal handling
arm64/sme: Disable ZA and streaming mode when handling signals
arm64/sme: Implement traps and syscall handling for SME
arm64/sme: Implement ZA context switching
arm64/sme: Implement streaming SVE context switching
arm64/sme: Implement SVCR context switching
...
* kvm-arm64/its-save-restore-fixes-5.19:
: .
: Tighten the ITS save/restore infrastructure to fail early rather
: than late. Patches courtesy of Rocardo Koller.
: .
KVM: arm64: vgic: Undo work in failed ITS restores
KVM: arm64: vgic: Do not ignore vgic_its_restore_cte failures
KVM: arm64: vgic: Add more checks when restoring ITS tables
KVM: arm64: vgic: Check that new ITEs could be saved in guest memory
Signed-off-by: Marc Zyngier <maz@kernel.org>
* kvm-arm64/misc-5.19:
: .
: Misc fixes and general improvements for KVMM/arm64:
:
: - Better handle out of sequence sysregs in the global tables
:
: - Remove a couple of unnecessary loads from constant pool
:
: - Drop unnecessary pKVM checks
:
: - Add all known M1 implementations to the SEIS workaround
:
: - Cleanup kerneldoc warnings
: .
KVM: arm64: vgic-v3: List M1 Pro/Max as requiring the SEIS workaround
KVM: arm64: pkvm: Don't mask already zeroed FEAT_SVE
KVM: arm64: pkvm: Drop unnecessary FP/SIMD trap handler
KVM: arm64: nvhe: Eliminate kernel-doc warnings
KVM: arm64: Avoid unnecessary absolute addressing via literals
KVM: arm64: Print emulated register table name when it is unsorted
KVM: arm64: Don't BUG_ON() if emulated register table is unsorted
Signed-off-by: Marc Zyngier <maz@kernel.org>
* kvm-arm64/per-vcpu-host-pmu-data:
: .
: Pass the host PMU state in the vcpu to avoid the use of additional
: shared memory between EL1 and EL2 (this obviously only applies
: to nVHE and Protected setups).
:
: Patches courtesy of Fuad Tabba.
: .
KVM: arm64: pmu: Restore compilation when HW_PERF_EVENTS isn't selected
KVM: arm64: Reenable pmu in Protected Mode
KVM: arm64: Pass pmu events to hyp via vcpu
KVM: arm64: Repack struct kvm_pmu to reduce size
KVM: arm64: Wrapper for getting pmu_events
Signed-off-by: Marc Zyngier <maz@kernel.org>
* kvm-arm64/psci-suspend:
: .
: Add support for PSCI SYSTEM_SUSPEND and allow userspace to
: filter the wake-up events.
:
: Patches courtesy of Oliver.
: .
Documentation: KVM: Fix title level for PSCI_SUSPEND
selftests: KVM: Test SYSTEM_SUSPEND PSCI call
selftests: KVM: Refactor psci_test to make it amenable to new tests
selftests: KVM: Use KVM_SET_MP_STATE to power off vCPU in psci_test
selftests: KVM: Create helper for making SMCCC calls
selftests: KVM: Rename psci_cpu_on_test to psci_test
KVM: arm64: Implement PSCI SYSTEM_SUSPEND
KVM: arm64: Add support for userspace to suspend a vCPU
KVM: arm64: Return a value from check_vcpu_requests()
KVM: arm64: Rename the KVM_REQ_SLEEP handler
KVM: arm64: Track vCPU power state using MP state values
KVM: arm64: Dedupe vCPU power off helpers
KVM: arm64: Don't depend on fallthrough to hide SYSTEM_RESET2
Signed-off-by: Marc Zyngier <maz@kernel.org>
* kvm-arm64/hcall-selection:
: .
: Introduce a new set of virtual sysregs for userspace to
: select the hypercalls it wants to see exposed to the guest.
:
: Patches courtesy of Raghavendra and Oliver.
: .
KVM: arm64: Fix hypercall bitmap writeback when vcpus have already run
KVM: arm64: Hide KVM_REG_ARM_*_BMAP_BIT_COUNT from userspace
Documentation: Fix index.rst after psci.rst renaming
selftests: KVM: aarch64: Add the bitmap firmware registers to get-reg-list
selftests: KVM: aarch64: Introduce hypercall ABI test
selftests: KVM: Create helper for making SMCCC calls
selftests: KVM: Rename psci_cpu_on_test to psci_test
tools: Import ARM SMCCC definitions
Docs: KVM: Add doc for the bitmap firmware registers
Docs: KVM: Rename psci.rst to hypercalls.rst
KVM: arm64: Add vendor hypervisor firmware register
KVM: arm64: Add standard hypervisor firmware register
KVM: arm64: Setup a framework for hypercall bitmap firmware registers
KVM: arm64: Factor out firmware register handling from psci.c
Signed-off-by: Marc Zyngier <maz@kernel.org>
We generally want to disallow hypercall bitmaps being changed
once vcpus have already run. But we must allow the write if
the written value is unchanged so that userspace can rewrite
the register file on reboot, for example.
Without this, a QEMU-based VM will fail to reboot correctly.
The original code was correct, and it is me that introduced
the regression.
Fixes: 05714cab7d ("KVM: arm64: Setup a framework for hypercall bitmap firmware registers")
Signed-off-by: Marc Zyngier <maz@kernel.org>
Failed ITS restores should clean up all state restored until the
failure. There is some cleanup already present when failing to restore
some tables, but it's not complete. Add the missing cleanup.
Note that this changes the behavior in case of a failed restore of the
device tables.
restore ioctl:
1. restore collection tables
2. restore device tables
With this commit, failures in 2. clean up everything created so far,
including state created by 1.
Reviewed-by: Eric Auger <eric.auger@redhat.com>
Signed-off-by: Ricardo Koller <ricarkol@google.com>
Reviewed-by: Oliver Upton <oupton@google.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20220510001633.552496-5-ricarkol@google.com
Restoring a corrupted collection entry (like an out of range ID) is
being ignored and treated as success. More specifically, a
vgic_its_restore_cte failure is treated as success by
vgic_its_restore_collection_table. vgic_its_restore_cte uses positive
and negative numbers to return error, and +1 to return success. The
caller then uses "ret > 0" to check for success.
Fix this by having vgic_its_restore_cte only return negative numbers on
error. Do this by changing alloc_collection return codes to only return
negative numbers on error.
Signed-off-by: Ricardo Koller <ricarkol@google.com>
Reviewed-by: Oliver Upton <oupton@google.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20220510001633.552496-4-ricarkol@google.com
Try to improve the predictability of ITS save/restores (and debuggability
of failed ITS saves) by failing early on restore when trying to read
corrupted tables.
Restoring the ITS tables does some checks for corrupted tables, but not as
many as in a save: an overflowing device ID will be detected on save but
not on restore. The consequence is that restoring a corrupted table won't
be detected until the next save; including the ITS not working as expected
after the restore. As an example, if the guest sets tables overlapping
each other, which would most likely result in some corrupted table, this is
what we would see from the host point of view:
guest sets base addresses that overlap each other
save ioctl
restore ioctl
save ioctl (fails)
Ideally, we would like the first save to fail, but overlapping tables could
actually be intended by the guest. So, let's at least fail on the restore
with some checks: like checking that device and event IDs don't overflow
their tables.
Signed-off-by: Ricardo Koller <ricarkol@google.com>
Reviewed-by: Oliver Upton <oupton@google.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20220510001633.552496-3-ricarkol@google.com
Try to improve the predictability of ITS save/restores by failing
commands that would lead to failed saves. More specifically, fail any
command that adds an entry into an ITS table that is not in guest
memory, which would otherwise lead to a failed ITS save ioctl. There
are already checks for collection and device entries, but not for
ITEs. Add the corresponding check for the ITT when adding ITEs.
Reviewed-by: Eric Auger <eric.auger@redhat.com>
Signed-off-by: Ricardo Koller <ricarkol@google.com>
Reviewed-by: Oliver Upton <oupton@google.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20220510001633.552496-2-ricarkol@google.com
Moving kvm_pmu_events into the vcpu (and refering to it) broke the
somewhat unusual case where the kernel has no support for a PMU
at all.
In order to solve this, move things around a bit so that we can
easily avoid refering to the pmu structure outside of PMU-aware
code. As a bonus, pmu.c isn't compiled in when HW_PERF_EVENTS
isn't selected.
Reported-by: kernel test robot <lkp@intel.com>
Reviewed-by: Fuad Tabba <tabba@google.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/202205161814.KQHpOzsJ-lkp@intel.com
Will reported the following splat when running with Protected KVM
enabled:
[ 2.427181] ------------[ cut here ]------------
[ 2.427668] WARNING: CPU: 3 PID: 1 at arch/arm64/kvm/mmu.c:489 __create_hyp_private_mapping+0x118/0x1ac
[ 2.428424] Modules linked in:
[ 2.429040] CPU: 3 PID: 1 Comm: swapper/0 Not tainted 5.18.0-rc2-00084-g8635adc4efc7 #1
[ 2.429589] Hardware name: QEMU QEMU Virtual Machine, BIOS 0.0.0 02/06/2015
[ 2.430286] pstate: 80000005 (Nzcv daif -PAN -UAO -TCO -DIT -SSBS BTYPE=--)
[ 2.430734] pc : __create_hyp_private_mapping+0x118/0x1ac
[ 2.431091] lr : create_hyp_exec_mappings+0x40/0x80
[ 2.431377] sp : ffff80000803baf0
[ 2.431597] x29: ffff80000803bb00 x28: 0000000000000000 x27: 0000000000000000
[ 2.432156] x26: 0000000000000000 x25: 0000000000000000 x24: 0000000000000000
[ 2.432561] x23: ffffcd96c343b000 x22: 0000000000000000 x21: ffff80000803bb40
[ 2.433004] x20: 0000000000000004 x19: 0000000000001800 x18: 0000000000000000
[ 2.433343] x17: 0003e68cf7efdd70 x16: 0000000000000004 x15: fffffc81f602a2c8
[ 2.434053] x14: ffffdf8380000000 x13: ffffcd9573200000 x12: ffffcd96c343b000
[ 2.434401] x11: 0000000000000004 x10: ffffcd96c1738000 x9 : 0000000000000004
[ 2.434812] x8 : ffff80000803bb40 x7 : 7f7f7f7f7f7f7f7f x6 : 544f422effff306b
[ 2.435136] x5 : 000000008020001e x4 : ffff207d80a88c00 x3 : 0000000000000005
[ 2.435480] x2 : 0000000000001800 x1 : 000000014f4ab800 x0 : 000000000badca11
[ 2.436149] Call trace:
[ 2.436600] __create_hyp_private_mapping+0x118/0x1ac
[ 2.437576] create_hyp_exec_mappings+0x40/0x80
[ 2.438180] kvm_init_vector_slots+0x180/0x194
[ 2.458941] kvm_arch_init+0x80/0x274
[ 2.459220] kvm_init+0x48/0x354
[ 2.459416] arm_init+0x20/0x2c
[ 2.459601] do_one_initcall+0xbc/0x238
[ 2.459809] do_initcall_level+0x94/0xb4
[ 2.460043] do_initcalls+0x54/0x94
[ 2.460228] do_basic_setup+0x1c/0x28
[ 2.460407] kernel_init_freeable+0x110/0x178
[ 2.460610] kernel_init+0x20/0x1a0
[ 2.460817] ret_from_fork+0x10/0x20
[ 2.461274] ---[ end trace 0000000000000000 ]---
Indeed, the Protected KVM mode promotes __create_hyp_private_mapping()
to a hypercall as EL1 no longer has access to the hypervisor's stage-1
page-table. However, the call from kvm_init_vector_slots() happens after
pKVM has been initialized on the primary CPU, but before it has been
initialized on secondaries. As such, if the KVM initcall procedure is
migrated from one CPU to another in this window, the hypercall may end up
running on a CPU for which EL2 has not been initialized.
Fortunately, the pKVM hypervisor doesn't rely on the host to re-map the
vectors in the private range, so the hypercall in question is in fact
superfluous. Skip it when pKVM is enabled.
Reported-by: Will Deacon <will@kernel.org>
Signed-off-by: Quentin Perret <qperret@google.com>
[maz: simplified the checks slightly]
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20220513092607.35233-1-qperret@google.com
When adding support for the slightly wonky Apple M1, we had to
populate ID_AA64PFR0_EL1.GIC==1 to present something to the guest,
as the HW itself doesn't advertise the feature.
However, we gated this on the in-kernel irqchip being created.
This causes some trouble for QEMU, which snapshots the state of
the registers before creating a virtual GIC, and then tries to
restore these registers once the GIC has been created. Obviously,
between the two stages, ID_AA64PFR0_EL1.GIC has changed value,
and the write fails.
The fix is to actually emulate the HW, and always populate the
field if the HW is capable of it.
Fixes: 562e530fd7 ("KVM: arm64: Force ID_AA64PFR0_EL1.GIC=1 when exposing a virtual GICv3")
Cc: stable@vger.kernel.org
Signed-off-by: Marc Zyngier <maz@kernel.org>
Reported-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Oliver Upton <oupton@google.com>
Link: https://lore.kernel.org/r/20220503211424.3375263-1-maz@kernel.org
Now that the pmu code does not access hyp data, reenable it in
protected mode.
Once fully supported, protected VMs will not have pmu support,
since that could leak information. However, non-protected VMs in
protected mode should have pmu support if available.
Signed-off-by: Fuad Tabba <tabba@google.com>
Reviewed-by: Oliver Upton <oupton@google.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20220510095710.148178-5-tabba@google.com
Instead of the host accessing hyp data directly, pass the pmu
events of the current cpu to hyp via the vcpu.
This adds 64 bits (in two fields) to the vcpu that need to be
synced before every vcpu run in nvhe and protected modes.
However, it isolates the hypervisor from the host, which allows
us to use pmu in protected mode in a subsequent patch.
No visible side effects in behavior intended.
Signed-off-by: Fuad Tabba <tabba@google.com>
Reviewed-by: Oliver Upton <oupton@google.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20220510095710.148178-4-tabba@google.com
Eases migrating away from using hyp data and simplifies the code.
No functional change intended.
Reviewed-by: Oliver Upton <oupton@google.com>
Signed-off-by: Fuad Tabba <tabba@google.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20220510095710.148178-2-tabba@google.com
Unsusprisingly, Apple M1 Pro/Max have the exact same defect as the
original M1 and generate random SErrors in the host when a guest
tickles the GICv3 CPU interface the wrong way.
Add the part numbers for both the CPU types found in these two
new implementations, and add them to the hall of shame. This also
applies to the Ultra version, as it is composed of 2 Max SoCs.
Signed-off-by: Marc Zyngier <maz@kernel.org>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Link: https://lore.kernel.org/r/20220514102524.3188730-1-maz@kernel.org
FEAT_SVE is already masked by the fixed configuration for
ID_AA64PFR0_EL1; don't try and mask it at runtime.
No functional change intended.
Signed-off-by: Oliver Upton <oupton@google.com>
Reviewed-by: Fuad Tabba <tabba@google.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20220509162559.2387784-3-oupton@google.com
The pVM-specific FP/SIMD trap handler just calls straight into the
generic trap handler. Avoid the indirection and just call the hyp
handler directly.
Note that the BUILD_BUG_ON() pattern is repeated in
pvm_init_traps_aa64pfr0(), which is likely a better home for it.
No functional change intended.
Signed-off-by: Oliver Upton <oupton@google.com>
Reviewed-by: Fuad Tabba <tabba@google.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20220509162559.2387784-2-oupton@google.com
Don't use begin-kernel-doc notation (/**) for comments that are not in
kernel-doc format.
This prevents these kernel-doc warnings:
arch/arm64/kvm/hyp/nvhe/switch.c:126: warning: This comment starts with '/**', but isn't a kernel-doc comment. Refer Documentation/doc-guide/kernel-doc.rst
* Disable host events, enable guest events
arch/arm64/kvm/hyp/nvhe/switch.c:146: warning: This comment starts with '/**', but isn't a kernel-doc comment. Refer Documentation/doc-guide/kernel-doc.rst
* Disable guest events, enable host events
arch/arm64/kvm/hyp/nvhe/switch.c:164: warning: This comment starts with '/**', but isn't a kernel-doc comment. Refer Documentation/doc-guide/kernel-doc.rst
* Handler for protected VM restricted exceptions.
arch/arm64/kvm/hyp/nvhe/switch.c:176: warning: This comment starts with '/**', but isn't a kernel-doc comment. Refer Documentation/doc-guide/kernel-doc.rst
* Handler for protected VM MSR, MRS or System instruction execution in AArch64.
arch/arm64/kvm/hyp/nvhe/switch.c:196: warning: Function parameter or member 'vcpu' not described in 'kvm_handle_pvm_fpsimd'
arch/arm64/kvm/hyp/nvhe/switch.c:196: warning: Function parameter or member 'exit_code' not described in 'kvm_handle_pvm_fpsimd'
arch/arm64/kvm/hyp/nvhe/switch.c:196: warning: expecting prototype for Handler for protected floating(). Prototype was for kvm_handle_pvm_fpsimd() instead
Fixes: 09cf57eba3 ("KVM: arm64: Split hyp/switch.c to VHE/nVHE")
Fixes: 1423afcb41 ("KVM: arm64: Trap access to pVM restricted features")
Signed-off-by: Randy Dunlap <rdunlap@infradead.org>
Reported-by: kernel test robot <lkp@intel.com>
Cc: Fuad Tabba <tabba@google.com>
Cc: Marc Zyngier <maz@kernel.org>
Cc: David Brazdil <dbrazdil@google.com>
Cc: James Morse <james.morse@arm.com>
Cc: Alexandru Elisei <alexandru.elisei@arm.com>
Cc: Suzuki K Poulose <suzuki.poulose@arm.com>
Cc: linux-arm-kernel@lists.infradead.org
Cc: kvmarm@lists.cs.columbia.edu
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20220430050123.2844-1-rdunlap@infradead.org
There are a few cases in the nVHE code where we take the absolute
address of a symbol via a literal pool entry, and subsequently translate
it to another address space (PA, kimg VA, kernel linear VA, etc).
Originally, this literal was needed because we relied on a different
translation for absolute references, but this is no longer the case, so
we can simply use relative addressing instead. This removes a couple of
RELA entries pointing into the .text segment.
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20220428140350.3303481-1-ardb@kernel.org
When a sysreg table entry is out-of-order, KVM attempts to print the
address of the table:
[ 0.143911] kvm [1]: sys_reg table (____ptrval____) out of order (1)
Printing the name of the table instead of a pointer is more helpful in this
case. The message has also been slightly tweaked to be point out the
offending entry (and to match the missing reset error message):
[ 0.143891] kvm [1]: sys_reg table sys_reg_descs+0x50/0x7490 entry 1 out of order
Signed-off-by: Alexandru Elisei <alexandru.elisei@arm.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20220428103405.70884-3-alexandru.elisei@arm.com
To emulate a register access, KVM uses a table of registers sorted by
register encoding to speed up queries using binary search.
When Linux boots, KVM checks that the table is sorted and uses a BUG_ON()
statement to let the user know if it's not. The unfortunate side effect is
that an unsorted sysreg table brings down the whole kernel, not just KVM,
even though the rest of the kernel can function just fine without KVM. To
make matters worse, on machines which lack a serial console, the user is
left pondering why the machine is taking so long to boot.
Improve this situation by returning an error from kvm_arch_init() if the
sysreg tables are not in the correct order. The machine is still very much
usable for the user, with the exception of virtualization, who can now
easily determine what went wrong.
A minor typo has also been corrected in the check_sysreg_table() function.
Signed-off-by: Alexandru Elisei <alexandru.elisei@arm.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20220428103405.70884-2-alexandru.elisei@arm.com
The macros for accessing fields in ID_AA64ISAR0_EL1 omit the _EL1 from the
name of the register. In preparation for converting this register to be
automatically generated update the names to include an _EL1, there should
be no functional change.
Signed-off-by: Mark Brown <broonie@kernel.org>
Acked-by: Mark Rutland <mark.rutland@arm.com>
Link: https://lore.kernel.org/r/20220503170233.507788-8-broonie@kernel.org
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
The architecture reference manual refers to the field in bits 23:20 of
ID_AA64ISAR0_EL1 with the name "atomic" but the kernel defines for this
bitfield use the name "atomics". Bring the two into sync to make it easier
to cross reference with the specification.
Signed-off-by: Mark Brown <broonie@kernel.org>
Acked-by: Mark Rutland <mark.rutland@arm.com>
Link: https://lore.kernel.org/r/20220503170233.507788-7-broonie@kernel.org
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Since adversising GICR_CTLR.{IC,CES} is directly observable from
a guest, we need to make it selectable from userspace.
For that, bump the default GICD_IIDR revision and let userspace
downgrade it to the previous default. For GICv2, the two distributor
revisions are strictly equivalent.
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20220405182327.205520-5-maz@kernel.org
Since GICv4.1, it has become legal for an implementation to advertise
GICR_{INVLPIR,INVALLR,SYNCR} while having an ITS, allowing for a more
efficient invalidation scheme (no guest command queue contention when
multiple CPUs are generating invalidations).
Provide the invalidation registers as a primitive to their ITS
counterpart. Note that we don't advertise them to the guest yet
(the architecture allows an implementation to do this).
Signed-off-by: Marc Zyngier <maz@kernel.org>
Reviewed-by: Oliver Upton <oupton@google.com>
Link: https://lore.kernel.org/r/20220405182327.205520-4-maz@kernel.org
When disabling LPIs, a guest needs to poll GICR_CTLR.RWP in order
to be sure that the write has taken effect. We so far reported it
as 0, as we didn't advertise that LPIs could be turned off the
first place.
Start tracking this state during which LPIs are being disabled,
and expose the 'in progress' state via the RWP bit.
We also take this opportunity to disallow enabling LPIs and programming
GICR_{PEND,PROP}BASER while LPI disabling is in progress, as allowed by
the architecture (UNPRED behaviour).
We don't advertise the feature to the guest yet (which is allowed by
the architecture).
Reviewed-by: Oliver Upton <oupton@google.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20220405182327.205520-3-maz@kernel.org
* kvm-arm64/aarch32-idreg-trap:
: .
: Add trapping/sanitising infrastructure for AArch32 systen registers,
: allowing more control over what we actually expose (such as the PMU).
:
: Patches courtesy of Oliver and Alexandru.
: .
KVM: arm64: Fix new instances of 32bit ESRs
KVM: arm64: Hide AArch32 PMU registers when not available
KVM: arm64: Start trapping ID registers for 32 bit guests
KVM: arm64: Plumb cp10 ID traps through the AArch64 sysreg handler
KVM: arm64: Wire up CP15 feature registers to their AArch64 equivalents
KVM: arm64: Don't write to Rt unless sys_reg emulation succeeds
KVM: arm64: Return a bool from emulate_cp()
Signed-off-by: Marc Zyngier <maz@kernel.org>
* kvm-arm64/wfxt:
: .
: Add support for the WFET/WFIT instructions that provide the same
: service as WFE/WFI, only with a timeout.
: .
KVM: arm64: Expose the WFXT feature to guests
KVM: arm64: Offer early resume for non-blocking WFxT instructions
KVM: arm64: Handle blocking WFIT instruction
KVM: arm64: Introduce kvm_counter_compute_delta() helper
KVM: arm64: Simplify kvm_cpu_has_pending_timer()
arm64: Use WFxT for __delay() when possible
arm64: Add wfet()/wfit() helpers
arm64: Add HWCAP advertising FEAT_WFXT
arm64: Add RV and RN fields for ESR_ELx_WFx_ISS
arm64: Expand ESR_ELx_WFx_ISS_TI to match its ARMv8.7 definition
Signed-off-by: Marc Zyngier <maz@kernel.org>
ARM DEN0022D.b 5.19 "SYSTEM_SUSPEND" describes a PSCI call that allows
software to request that a system be placed in the deepest possible
low-power state. Effectively, software can use this to suspend itself to
RAM.
Unfortunately, there really is no good way to implement a system-wide
PSCI call in KVM. Any precondition checks done in the kernel will need
to be repeated by userspace since there is no good way to protect a
critical section that spans an exit to userspace. SYSTEM_RESET and
SYSTEM_OFF are equally plagued by this issue, although no users have
seemingly cared for the relatively long time these calls have been
supported.
The solution is to just make the whole implementation userspace's
problem. Introduce a new system event, KVM_SYSTEM_EVENT_SUSPEND, that
indicates to userspace a calling vCPU has invoked PSCI SYSTEM_SUSPEND.
Additionally, add a CAP to get buy-in from userspace for this new exit
type.
Only advertise the SYSTEM_SUSPEND PSCI call if userspace has opted in.
If a vCPU calls SYSTEM_SUSPEND, punt straight to userspace. Provide
explicit documentation of userspace's responsibilites for the exit and
point to the PSCI specification to describe the actual PSCI call.
Reviewed-by: Reiji Watanabe <reijiw@google.com>
Signed-off-by: Oliver Upton <oupton@google.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20220504032446.4133305-8-oupton@google.com
Introduce a new MP state, KVM_MP_STATE_SUSPENDED, which indicates a vCPU
is in a suspended state. In the suspended state the vCPU will block
until a wakeup event (pending interrupt) is recognized.
Add a new system event type, KVM_SYSTEM_EVENT_WAKEUP, to indicate to
userspace that KVM has recognized one such wakeup event. It is the
responsibility of userspace to then make the vCPU runnable, or leave it
suspended until the next wakeup event.
Signed-off-by: Oliver Upton <oupton@google.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20220504032446.4133305-7-oupton@google.com
A subsequent change to KVM will introduce a vCPU request that could
result in an exit to userspace. Change check_vcpu_requests() to return a
value and document the function. Unconditionally return 1 for now.
Signed-off-by: Oliver Upton <oupton@google.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20220504032446.4133305-6-oupton@google.com
The naming of the kvm_req_sleep function is confusing: the function
itself sleeps the vCPU, it does not request such an event. Rename the
function to make its purpose more clear.
No functional change intended.
Signed-off-by: Oliver Upton <oupton@google.com>
Reviewed-by: Andrew Jones <drjones@redhat.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20220504032446.4133305-5-oupton@google.com
A subsequent change to KVM will add support for additional power states.
Store the MP state by value rather than keeping track of it as a
boolean.
No functional change intended.
Signed-off-by: Oliver Upton <oupton@google.com>
Reviewed-by: Reiji Watanabe <reijiw@google.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20220504032446.4133305-4-oupton@google.com
vcpu_power_off() and kvm_psci_vcpu_off() are equivalent; rename the
former and replace all callsites to the latter.
No functional change intended.
Signed-off-by: Oliver Upton <oupton@google.com>
Reviewed-by: Reiji Watanabe <reijiw@google.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20220504032446.4133305-3-oupton@google.com
Depending on a fallthrough to the default case for hiding SYSTEM_RESET2
requires that any new case statements clean up the failure path for this
PSCI call.
Unhitch SYSTEM_RESET2 from the default case by setting val to
PSCI_RET_NOT_SUPPORTED outside of the switch statement. Apply the
cleanup to both the PSCI_1_1_FN_SYSTEM_RESET2 and
PSCI_1_0_FN_PSCI_FEATURES handlers.
No functional change intended.
Signed-off-by: Oliver Upton <oupton@google.com>
Reviewed-by: Reiji Watanabe <reijiw@google.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20220504032446.4133305-2-oupton@google.com
Fix the new instances of ESR being described as a u32, now that
we consistently are using a u64 for this register.
Signed-off-by: Marc Zyngier <maz@kernel.org>
Introduce the firmware register to hold the vendor specific
hypervisor service calls (owner value 6) as a bitmap. The
bitmap represents the features that'll be enabled for the
guest, as configured by the user-space. Currently, this
includes support for KVM-vendor features along with
reading the UID, represented by bit-0, and Precision Time
Protocol (PTP), represented by bit-1.
Signed-off-by: Raghavendra Rao Ananta <rananta@google.com>
Reviewed-by: Gavin Shan <gshan@redhat.com>
[maz: tidy-up bitmap values]
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20220502233853.1233742-5-rananta@google.com
Introduce the firmware register to hold the standard hypervisor
service calls (owner value 5) as a bitmap. The bitmap represents
the features that'll be enabled for the guest, as configured by
the user-space. Currently, this includes support only for
Paravirtualized time, represented by bit-0.
Signed-off-by: Raghavendra Rao Ananta <rananta@google.com>
Reviewed-by: Gavin Shan <gshan@redhat.com>
[maz: tidy-up bitmap values]
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20220502233853.1233742-4-rananta@google.com
KVM regularly introduces new hypercall services to the guests without
any consent from the userspace. This means, the guests can observe
hypercall services in and out as they migrate across various host
kernel versions. This could be a major problem if the guest
discovered a hypercall, started using it, and after getting migrated
to an older kernel realizes that it's no longer available. Depending
on how the guest handles the change, there's a potential chance that
the guest would just panic.
As a result, there's a need for the userspace to elect the services
that it wishes the guest to discover. It can elect these services
based on the kernels spread across its (migration) fleet. To remedy
this, extend the existing firmware pseudo-registers, such as
KVM_REG_ARM_PSCI_VERSION, but by creating a new COPROC register space
for all the hypercall services available.
These firmware registers are categorized based on the service call
owners, but unlike the existing firmware pseudo-registers, they hold
the features supported in the form of a bitmap.
During the VM initialization, the registers are set to upper-limit of
the features supported by the corresponding registers. It's expected
that the VMMs discover the features provided by each register via
GET_ONE_REG, and write back the desired values using SET_ONE_REG.
KVM allows this modification only until the VM has started.
Some of the standard features are not mapped to any bits of the
registers. But since they can recreate the original problem of
making it available without userspace's consent, they need to
be explicitly added to the case-list in
kvm_hvc_call_default_allowed(). Any function-id that's not enabled
via the bitmap, or not listed in kvm_hvc_call_default_allowed, will
be returned as SMCCC_RET_NOT_SUPPORTED to the guest.
Older userspace code can simply ignore the feature and the
hypercall services will be exposed unconditionally to the guests,
thus ensuring backward compatibility.
In this patch, the framework adds the register only for ARM's standard
secure services (owner value 4). Currently, this includes support only
for ARM True Random Number Generator (TRNG) service, with bit-0 of the
register representing mandatory features of v1.0. Other services are
momentarily added in the upcoming patches.
Signed-off-by: Raghavendra Rao Ananta <rananta@google.com>
Reviewed-by: Gavin Shan <gshan@redhat.com>
[maz: reduced the scope of some helpers, tidy-up bitmap max values,
dropped error-only fast path]
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20220502233853.1233742-3-rananta@google.com
Common hypercall firmware register handing is currently employed
by psci.c. Since the upcoming patches add more of these registers,
it's better to move the generic handling to hypercall.c for a
cleaner presentation.
While we are at it, collect all the firmware registers under
fw_reg_ids[] to help implement kvm_arm_get_fw_num_regs() and
kvm_arm_copy_fw_reg_indices() in a generic way. Also, define
KVM_REG_FEATURE_LEVEL_MASK using a GENMASK instead.
No functional change intended.
Signed-off-by: Raghavendra Rao Ananta <rananta@google.com>
Reviewed-by: Oliver Upton <oupton@google.com>
Reviewed-by: Gavin Shan <gshan@redhat.com>
[maz: fixed KVM_REG_FEATURE_LEVEL_MASK]
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20220502233853.1233742-2-rananta@google.com
commit 11663111cd ("KVM: arm64: Hide PMU registers from userspace when
not available") hid the AArch64 PMU registers from userspace and guest
when the PMU VCPU feature was not set. Do the same when the PMU
registers are accessed by an AArch32 guest. While we're at it, rename
the previously unused AA32_ZEROHIGH to AA32_DIRECT to match the behavior
of get_access_mask().
Now that KVM emulates ID_DFR0 and hides the PMU from the guest when the
feature is not set, it is safe to inject to inject an undefined exception
when the PMU is not present, as that corresponds to the architected
behaviour.
Signed-off-by: Alexandru Elisei <alexandru.elisei@arm.com>
[Oliver - Add AA32_DIRECT to match the zero value of the enum]
Signed-off-by: Oliver Upton <oupton@google.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20220503060205.2823727-7-oupton@google.com