Pull x86 boot updates from Ingo Molnar:
"The main changes were:
- Extend the boot protocol to allow future extensions without hitting
the setup_header size limit.
- Add quirk to devicetree systems to disable the RTC unless it's
listed as a supported device.
- Fix ld.lld linker pedantry"
* 'x86-boot-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/boot: Introduce setup_indirect
x86/boot: Introduce kernel_info.setup_type_max
x86/boot: Introduce kernel_info
x86/init: Allow DT configured systems to disable RTC at boot time
x86/realmode: Explicitly set entry point via ENTRY in linker script
The setup_data is a bit awkward to use for extremely large data objects,
both because the setup_data header has to be adjacent to the data object
and because it has a 32-bit length field. However, it is important that
intermediate stages of the boot process have a way to identify which
chunks of memory are occupied by kernel data. Thus introduce an uniform
way to specify such indirect data as setup_indirect struct and
SETUP_INDIRECT type.
And finally bump setup_header version in arch/x86/boot/header.S.
Suggested-by: H. Peter Anvin (Intel) <hpa@zytor.com>
Signed-off-by: Daniel Kiper <daniel.kiper@oracle.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Ross Philipson <ross.philipson@oracle.com>
Reviewed-by: H. Peter Anvin (Intel) <hpa@zytor.com>
Acked-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: ard.biesheuvel@linaro.org
Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Cc: dave.hansen@linux.intel.com
Cc: eric.snowberg@oracle.com
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Juergen Gross <jgross@suse.com>
Cc: kanth.ghatraju@oracle.com
Cc: linux-doc@vger.kernel.org
Cc: linux-efi <linux-efi@vger.kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: rdunlap@infradead.org
Cc: ross.philipson@oracle.com
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: x86-ml <x86@kernel.org>
Cc: xen-devel@lists.xenproject.org
Link: https://lkml.kernel.org/r/20191112134640.16035-4-daniel.kiper@oracle.com
This field contains maximal allowed type for setup_data.
Do not bump setup_header version in arch/x86/boot/header.S because it
will be followed by additional changes coming into the Linux/x86 boot
protocol.
Suggested-by: H. Peter Anvin (Intel) <hpa@zytor.com>
Signed-off-by: Daniel Kiper <daniel.kiper@oracle.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Reviewed-by: Ross Philipson <ross.philipson@oracle.com>
Reviewed-by: H. Peter Anvin (Intel) <hpa@zytor.com>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: ard.biesheuvel@linaro.org
Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Cc: dave.hansen@linux.intel.com
Cc: eric.snowberg@oracle.com
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Juergen Gross <jgross@suse.com>
Cc: kanth.ghatraju@oracle.com
Cc: linux-doc@vger.kernel.org
Cc: linux-efi <linux-efi@vger.kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: rdunlap@infradead.org
Cc: ross.philipson@oracle.com
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: x86-ml <x86@kernel.org>
Cc: xen-devel@lists.xenproject.org
Link: https://lkml.kernel.org/r/20191112134640.16035-3-daniel.kiper@oracle.com
The relationships between the headers are analogous to the various data
sections:
setup_header = .data
boot_params/setup_data = .bss
What is missing from the above list? That's right:
kernel_info = .rodata
We have been (ab)using .data for things that could go into .rodata or .bss for
a long time, for lack of alternatives and -- especially early on -- inertia.
Also, the BIOS stub is responsible for creating boot_params, so it isn't
available to a BIOS-based loader (setup_data is, though).
setup_header is permanently limited to 144 bytes due to the reach of the
2-byte jump field, which doubles as a length field for the structure, combined
with the size of the "hole" in struct boot_params that a protected-mode loader
or the BIOS stub has to copy it into. It is currently 119 bytes long, which
leaves us with 25 very precious bytes. This isn't something that can be fixed
without revising the boot protocol entirely, breaking backwards compatibility.
boot_params proper is limited to 4096 bytes, but can be arbitrarily extended
by adding setup_data entries. It cannot be used to communicate properties of
the kernel image, because it is .bss and has no image-provided content.
kernel_info solves this by providing an extensible place for information about
the kernel image. It is readonly, because the kernel cannot rely on a
bootloader copying its contents anywhere, but that is OK; if it becomes
necessary it can still contain data items that an enabled bootloader would be
expected to copy into a setup_data chunk.
Do not bump setup_header version in arch/x86/boot/header.S because it
will be followed by additional changes coming into the Linux/x86 boot
protocol.
Suggested-by: H. Peter Anvin (Intel) <hpa@zytor.com>
Signed-off-by: Daniel Kiper <daniel.kiper@oracle.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Reviewed-by: Ross Philipson <ross.philipson@oracle.com>
Reviewed-by: H. Peter Anvin (Intel) <hpa@zytor.com>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: ard.biesheuvel@linaro.org
Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Cc: dave.hansen@linux.intel.com
Cc: eric.snowberg@oracle.com
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Juergen Gross <jgross@suse.com>
Cc: kanth.ghatraju@oracle.com
Cc: linux-doc@vger.kernel.org
Cc: linux-efi <linux-efi@vger.kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: rdunlap@infradead.org
Cc: ross.philipson@oracle.com
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: x86-ml <x86@kernel.org>
Cc: xen-devel@lists.xenproject.org
Link: https://lkml.kernel.org/r/20191112134640.16035-2-daniel.kiper@oracle.com
Add the documenation for TSX Async Abort. Include the description of
the issue, how to check the mitigation state, control the mitigation,
guidance for system administrators.
[ bp: Add proper SPDX tags, touch ups by Josh and me. ]
Co-developed-by: Antonio Gomez Iglesias <antonio.gomez.iglesias@intel.com>
Signed-off-by: Pawan Gupta <pawan.kumar.gupta@linux.intel.com>
Signed-off-by: Antonio Gomez Iglesias <antonio.gomez.iglesias@intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Mark Gross <mgross@linux.intel.com>
Reviewed-by: Tony Luck <tony.luck@intel.com>
Reviewed-by: Josh Poimboeuf <jpoimboe@redhat.com>
After commit cf65a0f6f6 ("dma-mapping: move all DMA mapping code to
kernel/dma") some of the files are referring to outdated information,
i.e. old file names of DMA mapping sources. Fix it here.
Note, the lines with "Glue code for..." have been removed completely.
Signed-off-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Now that the latex_documents are handled automatically, we can
remove those extra conf.py files.
Signed-off-by: Mauro Carvalho Chehab <mchehab+samsung@kernel.org>
There are lots of documents that belong to the admin-guide but
are on random places (most under Documentation root dir).
Move them to the admin guide.
Signed-off-by: Mauro Carvalho Chehab <mchehab+samsung@kernel.org>
Acked-by: Alexandre Belloni <alexandre.belloni@bootlin.com>
Acked-by: Bartlomiej Zolnierkiewicz <b.zolnierkie@samsung.com>
Those two docs belong to the x86 architecture:
Documentation/Intel-IOMMU.txt -> Documentation/x86/intel-iommu.rst
Documentation/intel_txt.txt -> Documentation/x86/intel_txt.rst
Signed-off-by: Mauro Carvalho Chehab <mchehab+samsung@kernel.org>
- A fair pile of RST conversions, many from Mauro. These create more
than the usual number of simple but annoying merge conflicts with other
trees, unfortunately. He has a lot more of these waiting on the wings
that, I think, will go to you directly later on.
- A new document on how to use merges and rebases in kernel repos, and one
on Spectre vulnerabilities.
- Various improvements to the build system, including automatic markup of
function() references because some people, for reasons I will never
understand, were of the opinion that :c:func:``function()`` is
unattractive and not fun to type.
- We now recommend using sphinx 1.7, but still support back to 1.4.
- Lots of smaller improvements, warning fixes, typo fixes, etc.
-----BEGIN PGP SIGNATURE-----
iQFDBAABCAAtFiEEIw+MvkEiF49krdp9F0NaE2wMflgFAl0krAEPHGNvcmJldEBs
d24ubmV0AAoJEBdDWhNsDH5Yg98H/AuLqO9LpOgUjF4LhyjxGPdzJkY9RExSJ7km
gznyreLCZgFaJR+AY6YDsd4Jw6OJlPbu1YM/Qo3C3WrZVFVhgL/s2ebvBgCo50A8
raAFd8jTf4/mGCHnAqRotAPQ3mETJUk315B66lBJ6Oc+YdpRhwXWq8ZW2bJxInFF
3HDvoFgMf0KhLuMHUkkL0u3fxH1iA+KvDu8diPbJYFjOdOWENz/CV8wqdVkXRSEW
DJxIq89h/7d+hIG3d1I7Nw+gibGsAdjSjKv4eRKauZs4Aoxd1Gpl62z0JNk6aT3m
dtq4joLdwScydonXROD/Twn2jsu4xYTrPwVzChomElMowW/ZBBY=
=D0eO
-----END PGP SIGNATURE-----
Merge tag 'docs-5.3' of git://git.lwn.net/linux
Pull Documentation updates from Jonathan Corbet:
"It's been a relatively busy cycle for docs:
- A fair pile of RST conversions, many from Mauro. These create more
than the usual number of simple but annoying merge conflicts with
other trees, unfortunately. He has a lot more of these waiting on
the wings that, I think, will go to you directly later on.
- A new document on how to use merges and rebases in kernel repos,
and one on Spectre vulnerabilities.
- Various improvements to the build system, including automatic
markup of function() references because some people, for reasons I
will never understand, were of the opinion that
:c:func:``function()`` is unattractive and not fun to type.
- We now recommend using sphinx 1.7, but still support back to 1.4.
- Lots of smaller improvements, warning fixes, typo fixes, etc"
* tag 'docs-5.3' of git://git.lwn.net/linux: (129 commits)
docs: automarkup.py: ignore exceptions when seeking for xrefs
docs: Move binderfs to admin-guide
Disable Sphinx SmartyPants in HTML output
doc: RCU callback locks need only _bh, not necessarily _irq
docs: format kernel-parameters -- as code
Doc : doc-guide : Fix a typo
platform: x86: get rid of a non-existent document
Add the RCU docs to the core-api manual
Documentation: RCU: Add TOC tree hooks
Documentation: RCU: Rename txt files to rst
Documentation: RCU: Convert RCU UP systems to reST
Documentation: RCU: Convert RCU linked list to reST
Documentation: RCU: Convert RCU basic concepts to reST
docs: filesystems: Remove uneeded .rst extension on toctables
scripts/sphinx-pre-install: fix out-of-tree build
docs: zh_CN: submitting-drivers.rst: Remove a duplicated Documentation/
Documentation: PGP: update for newer HW devices
Documentation: Add section about CPU vulnerabilities for Spectre
Documentation: platform: Delete x86-laptop-drivers.txt
docs: Note that :c:func: should no longer be used
...
Pull cgroup updates from Tejun Heo:
"Documentation updates and the addition of cgroup_parse_float() which
will be used by new controllers including blk-iocost"
* 'for-5.3' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/cgroup:
docs: cgroup-v1: convert docs to ReST and rename to *.rst
cgroup: Move cgroup_parse_float() implementation out of CONFIG_SYSFS
cgroup: add cgroup_parse_float()
Pull x86 topology updates from Ingo Molnar:
"Implement multi-die topology support on Intel CPUs and expose the die
topology to user-space tooling, by Len Brown, Kan Liang and Zhang Rui.
These changes should have no effect on the kernel's existing
understanding of topologies, i.e. there should be no behavioral impact
on cache, NUMA, scheduler, perf and other topologies and overall
system performance"
* 'x86-topology-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
perf/x86/intel/rapl: Cosmetic rename internal variables in response to multi-die/pkg support
perf/x86/intel/uncore: Cosmetic renames in response to multi-die/pkg support
hwmon/coretemp: Cosmetic: Rename internal variables to zones from packages
thermal/x86_pkg_temp_thermal: Cosmetic: Rename internal variables to zones from packages
perf/x86/intel/cstate: Support multi-die/package
perf/x86/intel/rapl: Support multi-die/package
perf/x86/intel/uncore: Support multi-die/package
topology: Create core_cpus and die_cpus sysfs attributes
topology: Create package_cpus sysfs attribute
hwmon/coretemp: Support multi-die/package
powercap/intel_rapl: Update RAPL domain name and debug messages
thermal/x86_pkg_temp_thermal: Support multi-die/package
powercap/intel_rapl: Support multi-die/package
powercap/intel_rapl: Simplify rapl_find_package()
x86/topology: Define topology_logical_die_id()
x86/topology: Define topology_die_id()
cpu/topology: Export die_id
x86/topology: Create topology_max_die_per_package()
x86/topology: Add CPUID.1F multi-die/package support
"If the MBA is specified in MB then user can enter the max b/w in MB"
is a tautology. How can the user know if the schemata takes a percentage
or a MB/s value?
This is referring to whether the software controller is interpreting
the schemata's value. Make this clear.
Signed-off-by: James Morse <james.morse@arm.com>
Signed-off-by: Jonathan Corbet <corbet@lwn.net>
"L2 cache does not support code and data prioritization". This isn't
true, elsewhere the document says it can be enabled with the cdpl2
mount option.
While we're here, these sample strings have lower-case code/data,
which isn't how the kernel exports them.
Signed-off-by: James Morse <james.morse@arm.com>
Signed-off-by: Jonathan Corbet <corbet@lwn.net>
Since commit 4d05bf71f1 ("x86/resctrl: Introduce AMD QOS feature")
resctrl has supported non-contiguous cache bit masks. The interface
for this is currently try-it-and-see.
Update the documentation to say Intel CPUs have this requirement,
instead of X86.
Cc: Babu Moger <Babu.Moger@amd.com>
Signed-off-by: James Morse <james.morse@arm.com>
Signed-off-by: Jonathan Corbet <corbet@lwn.net>
Convert the cgroup-v1 files to ReST format, in order to
allow a later addition to the admin-guide.
The conversion is actually:
- add blank lines and identation in order to identify paragraphs;
- fix tables markups;
- add some lists markups;
- mark literal blocks;
- adjust title markups.
At its new index.rst, let's add a :orphan: while this is not linked to
the main index.rst file, in order to avoid build warnings.
Signed-off-by: Mauro Carvalho Chehab <mchehab+samsung@kernel.org>
Acked-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Tejun Heo <tj@kernel.org>
Mostly due to x86 and acpi conversion, several documentation
links are still pointing to the old file. Fix them.
Signed-off-by: Mauro Carvalho Chehab <mchehab+samsung@kernel.org>
Reviewed-by: Wolfram Sang <wsa@the-dreams.de>
Reviewed-by: Sven Van Asbroeck <TheSven73@gmail.com>
Reviewed-by: Bhupesh Sharma <bhsharma@redhat.com>
Acked-by: Mark Brown <broonie@kernel.org>
Signed-off-by: Jonathan Corbet <corbet@lwn.net>
This document is used by multiple architectures:
$ echo $(git grep -l pkey_mprotect arch|cut -d'/' -f 2|sort|uniq)
alpha arm arm64 ia64 m68k microblaze mips parisc powerpc s390 sh sparc x86 xtensa
So, let's move it to the core book and adjust the links to it
accordingly.
Signed-off-by: Mauro Carvalho Chehab <mchehab+samsung@kernel.org>
Signed-off-by: Jonathan Corbet <corbet@lwn.net>
Some new systems have multiple software-visible die within each package.
Update Linux parsing of the Intel CPUID "Extended Topology Leaf" to handle
either CPUID.B, or the new CPUID.1F.
Add cpuinfo_x86.die_id and cpuinfo_x86.max_dies to store the result.
die_id will be non-zero only for multi-die/package systems.
Signed-off-by: Len Brown <len.brown@intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Ingo Molnar <mingo@kernel.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: linux-doc@vger.kernel.org
Link: https://lkml.kernel.org/r/7b23d2d26d717b8e14ba137c94b70943f1ae4b5c.1557769318.git.len.brown@intel.com
On x86_64, all returns to usermode go through
prepare_exit_to_usermode(), with the sole exception of do_nmi().
This even includes machine checks -- this was added several years
ago to support MCE recovery. Update the documentation.
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@suse.de>
Cc: Frederic Weisbecker <frederic@kernel.org>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Jon Masters <jcm@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: stable@vger.kernel.org
Fixes: 04dcbdb805 ("x86/speculation/mds: Clear CPU buffers on exit to user")
Link: http://lkml.kernel.org/r/999fa9e126ba6a48e9d214d2f18dbde5c62ac55c.1557865329.git.luto@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The double fault ESPFIX path doesn't return to user mode at all --
it returns back to the kernel by simulating a #GP fault.
prepare_exit_to_usermode() will run on the way out of
general_protection before running user code.
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@suse.de>
Cc: Frederic Weisbecker <frederic@kernel.org>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Jon Masters <jcm@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: stable@vger.kernel.org
Fixes: 04dcbdb805 ("x86/speculation/mds: Clear CPU buffers on exit to user")
Link: http://lkml.kernel.org/r/ac97612445c0a44ee10374f6ea79c222fe22a5c4.1557865329.git.luto@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Pull x86 MDS mitigations from Thomas Gleixner:
"Microarchitectural Data Sampling (MDS) is a hardware vulnerability
which allows unprivileged speculative access to data which is
available in various CPU internal buffers. This new set of misfeatures
has the following CVEs assigned:
CVE-2018-12126 MSBDS Microarchitectural Store Buffer Data Sampling
CVE-2018-12130 MFBDS Microarchitectural Fill Buffer Data Sampling
CVE-2018-12127 MLPDS Microarchitectural Load Port Data Sampling
CVE-2019-11091 MDSUM Microarchitectural Data Sampling Uncacheable Memory
MDS attacks target microarchitectural buffers which speculatively
forward data under certain conditions. Disclosure gadgets can expose
this data via cache side channels.
Contrary to other speculation based vulnerabilities the MDS
vulnerability does not allow the attacker to control the memory target
address. As a consequence the attacks are purely sampling based, but
as demonstrated with the TLBleed attack samples can be postprocessed
successfully.
The mitigation is to flush the microarchitectural buffers on return to
user space and before entering a VM. It's bolted on the VERW
instruction and requires a microcode update. As some of the attacks
exploit data structures shared between hyperthreads, full protection
requires to disable hyperthreading. The kernel does not do that by
default to avoid breaking unattended updates.
The mitigation set comes with documentation for administrators and a
deeper technical view"
* 'x86-mds-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (23 commits)
x86/speculation/mds: Fix documentation typo
Documentation: Correct the possible MDS sysfs values
x86/mds: Add MDSUM variant to the MDS documentation
x86/speculation/mds: Add 'mitigations=' support for MDS
x86/speculation/mds: Print SMT vulnerable on MSBDS with mitigations off
x86/speculation/mds: Fix comment
x86/speculation/mds: Add SMT warning message
x86/speculation: Move arch_smt_update() call to after mitigation decisions
x86/speculation/mds: Add mds=full,nosmt cmdline option
Documentation: Add MDS vulnerability documentation
Documentation: Move L1TF to separate directory
x86/speculation/mds: Add mitigation mode VMWERV
x86/speculation/mds: Add sysfs reporting for MDS
x86/speculation/mds: Add mitigation control for MDS
x86/speculation/mds: Conditionally clear CPU buffers on idle entry
x86/kvm/vmx: Add MDS protection when L1D Flush is not active
x86/speculation/mds: Clear CPU buffers on exit to user
x86/speculation/mds: Add mds_clear_cpu_buffers()
x86/kvm: Expose X86_FEATURE_MD_CLEAR to guests
x86/speculation/mds: Add BUG_MSBDS_ONLY
...
conversion of the x86 docs to RST, which has been in the works for some
time but needed a couple of final tweaks.
-----BEGIN PGP SIGNATURE-----
iQFDBAABCAAtFiEEIw+MvkEiF49krdp9F0NaE2wMflgFAlzVlVoPHGNvcmJldEBs
d24ubmV0AAoJEBdDWhNsDH5YPWgH/1z+HO4QiLZ72kVxLf2U5r6FAo4CtQYLymL/
GiDabC7Jt7hobXdFQmDXhFnLOR/ibMnawJw2JAgWXDo33KenKGbE2OiW8ecsebSb
hd1F3pU6P3gVTYItcuM8dZ6/0C/F98/J/O3O3sOhZ0Uup2WPxW5XdNOp7LjFQScc
ENkgm2C5trs1wGjVswXWztGxSTcYrF7ehhjpWsFr9MUnUOI6ghvXX1akN3cEo7eo
7D8nvG2/HWOkf9Oq87/1uQxF6lERRqOQE+HN1J80XUsNTV5Hn40RP40FeebVv1rr
1GjUu+mKk/5uV+OlRWFqLbt10cU4+TKKfNTqfEchHyDOMpJD+S0=
=hfly
-----END PGP SIGNATURE-----
Merge tag 'docs-5.2a' of git://git.lwn.net/linux
Pull more documentation updates from Jonathan Corbet:
"Some late arriving documentation changes. In particular, this contains
the conversion of the x86 docs to RST, which has been in the works for
some time but needed a couple of final tweaks"
* tag 'docs-5.2a' of git://git.lwn.net/linux: (29 commits)
Documentation: x86: convert x86_64/machinecheck to reST
Documentation: x86: convert x86_64/cpu-hotplug-spec to reST
Documentation: x86: convert x86_64/fake-numa-for-cpusets to reST
Documentation: x86: convert x86_64/5level-paging.txt to reST
Documentation: x86: convert x86_64/mm.txt to reST
Documentation: x86: convert x86_64/uefi.txt to reST
Documentation: x86: convert x86_64/boot-options.txt to reST
Documentation: x86: convert i386/IO-APIC.txt to reST
Documentation: x86: convert usb-legacy-support.txt to reST
Documentation: x86: convert orc-unwinder.txt to reST
Documentation: x86: convert resctrl_ui.txt to reST
Documentation: x86: convert microcode.txt to reST
Documentation: x86: convert pti.txt to reST
Documentation: x86: convert amd-memory-encryption.txt to reST
Documentation: x86: convert intel_mpx.txt to reST
Documentation: x86: convert protection-keys.txt to reST
Documentation: x86: convert pat.txt to reST
Documentation: x86: convert mtrr.txt to reST
Documentation: x86: convert tlb.txt to reST
Documentation: x86: convert zero-page.txt to reST
...
This converts the plain text documentation to reStructuredText format and
add it to Sphinx TOC tree. No essential content change.
Signed-off-by: Changbin Du <changbin.du@gmail.com>
Reviewed-by: Mauro Carvalho Chehab <mchehab+samsung@kernel.org>
Signed-off-by: Jonathan Corbet <corbet@lwn.net>
This converts the plain text documentation to reStructuredText format and
add it to Sphinx TOC tree. No essential content change.
Signed-off-by: Changbin Du <changbin.du@gmail.com>
Reviewed-by: Mauro Carvalho Chehab <mchehab+samsung@kernel.org>
Signed-off-by: Jonathan Corbet <corbet@lwn.net>
This converts the plain text documentation to reStructuredText format and
add it to Sphinx TOC tree. No essential content change.
Signed-off-by: Changbin Du <changbin.du@gmail.com>
Reviewed-by: Mauro Carvalho Chehab <mchehab+samsung@kernel.org>
Signed-off-by: Jonathan Corbet <corbet@lwn.net>
This converts the plain text documentation to reStructuredText format and
add it to Sphinx TOC tree. No essential content change.
Signed-off-by: Changbin Du <changbin.du@gmail.com>
Reviewed-by: Mauro Carvalho Chehab <mchehab+samsung@kernel.org>
Signed-off-by: Jonathan Corbet <corbet@lwn.net>
This converts the plain text documentation to reStructuredText format and
add it to Sphinx TOC tree. No essential content change.
Signed-off-by: Changbin Du <changbin.du@gmail.com>
Reviewed-by: Mauro Carvalho Chehab <mchehab+samsung@kernel.org>
Signed-off-by: Jonathan Corbet <corbet@lwn.net>
This converts the plain text documentation to reStructuredText format and
add it to Sphinx TOC tree. No essential content change.
Signed-off-by: Changbin Du <changbin.du@gmail.com>
Reviewed-by: Mauro Carvalho Chehab <mchehab+samsung@kernel.org>
Signed-off-by: Jonathan Corbet <corbet@lwn.net>
This converts the plain text documentation to reStructuredText format and
add it to Sphinx TOC tree. No essential content change.
Signed-off-by: Changbin Du <changbin.du@gmail.com>
Reviewed-by: Mauro Carvalho Chehab <mchehab+samsung@kernel.org>
Signed-off-by: Jonathan Corbet <corbet@lwn.net>
This converts the plain text documentation to reStructuredText format and
add it to Sphinx TOC tree. No essential content change.
Signed-off-by: Changbin Du <changbin.du@gmail.com>
Reviewed-by: Mauro Carvalho Chehab <mchehab+samsung@kernel.org>
Signed-off-by: Jonathan Corbet <corbet@lwn.net>
This converts the plain text documentation to reStructuredText format and
add it to Sphinx TOC tree. No essential content change.
Signed-off-by: Changbin Du <changbin.du@gmail.com>
Reviewed-by: Mauro Carvalho Chehab <mchehab+samsung@kernel.org>
Signed-off-by: Jonathan Corbet <corbet@lwn.net>
This converts the plain text documentation to reStructuredText format and
add it to Sphinx TOC tree. No essential content change.
Signed-off-by: Changbin Du <changbin.du@gmail.com>
Reviewed-by: Mauro Carvalho Chehab <mchehab+samsung@kernel.org>
Signed-off-by: Jonathan Corbet <corbet@lwn.net>
This converts the plain text documentation to reStructuredText format and
add it to Sphinx TOC tree. No essential content change.
Signed-off-by: Changbin Du <changbin.du@gmail.com>
Reviewed-by: Mauro Carvalho Chehab <mchehab+samsung@kernel.org>
Signed-off-by: Jonathan Corbet <corbet@lwn.net>
This converts the plain text documentation to reStructuredText format and
add it to Sphinx TOC tree. No essential content change.
Signed-off-by: Changbin Du <changbin.du@gmail.com>
Reviewed-by: Mauro Carvalho Chehab <mchehab+samsung@kernel.org>
Signed-off-by: Jonathan Corbet <corbet@lwn.net>
This converts the plain text documentation to reStructuredText format and
add it to Sphinx TOC tree. No essential content change.
Signed-off-by: Changbin Du <changbin.du@gmail.com>
Reviewed-by: Mauro Carvalho Chehab <mchehab+samsung@kernel.org>
Signed-off-by: Jonathan Corbet <corbet@lwn.net>
This converts the plain text documentation to reStructuredText format and
add it to Sphinx TOC tree. No essential content change.
Signed-off-by: Changbin Du <changbin.du@gmail.com>
Reviewed-by: Mauro Carvalho Chehab <mchehab+samsung@kernel.org>
Signed-off-by: Jonathan Corbet <corbet@lwn.net>
This converts the plain text documentation to reStructuredText format and
add it to Sphinx TOC tree. No essential content change.
Signed-off-by: Changbin Du <changbin.du@gmail.com>
Reviewed-by: Mauro Carvalho Chehab <mchehab+samsung@kernel.org>
Signed-off-by: Jonathan Corbet <corbet@lwn.net>
This converts the plain text documentation to reStructuredText format and
add it to Sphinx TOC tree. No essential content change.
Signed-off-by: Changbin Du <changbin.du@gmail.com>
Reviewed-by: Mauro Carvalho Chehab <mchehab+samsung@kernel.org>
Signed-off-by: Jonathan Corbet <corbet@lwn.net>
This converts the plain text documentation to reStructuredText format and
add it to Sphinx TOC tree. No essential content change.
Signed-off-by: Changbin Du <changbin.du@gmail.com>
Cc: Mauro Carvalho Chehab <mchehab+samsung@kernel.org>
Signed-off-by: Jonathan Corbet <corbet@lwn.net>
This converts the plain text documentation to reStructuredText format and
add it to Sphinx TOC tree. No essential content change.
Signed-off-by: Changbin Du <changbin.du@gmail.com>
Signed-off-by: Jonathan Corbet <corbet@lwn.net>
This converts the plain text documentation to reStructuredText format and
add it to Sphinx TOC tree. No essential content change.
Signed-off-by: Changbin Du <changbin.du@gmail.com>
Reviewed-by: Mauro Carvalho Chehab <mchehab+samsung@kernel.org>
Signed-off-by: Jonathan Corbet <corbet@lwn.net>
This converts the plain text documentation to reStructuredText format and
add it to Sphinx TOC tree. No essential content change.
Signed-off-by: Changbin Du <changbin.du@gmail.com>
Reviewed-by: Mauro Carvalho Chehab <mchehab+samsung@kernel.org>
Signed-off-by: Jonathan Corbet <corbet@lwn.net>
This converts the plain text documentation to reStructuredText format and
add it to Sphinx TOC tree. No essential content change.
Signed-off-by: Changbin Du <changbin.du@gmail.com>
Reviewed-by: Mauro Carvalho Chehab <mchehab+samsung@kernel.org>
Signed-off-by: Jonathan Corbet <corbet@lwn.net>
This converts the plain text documentation to reStructuredText format and
add it to Sphinx TOC tree. No essential content change.
Signed-off-by: Changbin Du <changbin.du@gmail.com>
Reviewed-by: Mauro Carvalho Chehab <mchehab+samsung@kernel.org>
Signed-off-by: Jonathan Corbet <corbet@lwn.net>
This converts the plain text documentation to reStructuredText format and
add it to Sphinx TOC tree. No essential content change.
Signed-off-by: Changbin Du <changbin.du@gmail.com>
Reviewed-by: Mauro Carvalho Chehab <mchehab+samsung@kernel.org>
Signed-off-by: Jonathan Corbet <corbet@lwn.net>
This converts the plain text documentation to reStructuredText format and
add it to Sphinx TOC tree. No essential content change.
Signed-off-by: Changbin Du <changbin.du@gmail.com>
Reviewed-by: Mauro Carvalho Chehab <mchehab+samsung@kernel.org>
Signed-off-by: Jonathan Corbet <corbet@lwn.net>
This converts the plain text documentation to reStructuredText format and
add it to Sphinx TOC tree. No essential content change.
Signed-off-by: Changbin Du <changbin.du@gmail.com>
Reviewed-by: Mauro Carvalho Chehab <mchehab+samsung@kernel.org>
Signed-off-by: Jonathan Corbet <corbet@lwn.net>
This converts the plain text documentation to reStructuredText format and
add it to Sphinx TOC tree. No essential content change.
Signed-off-by: Changbin Du <changbin.du@gmail.com>
Cc: Mauro Carvalho Chehab <mchehab+samsung@kernel.org>
Reviewed-by: Mauro Carvalho Chehab <mchehab+samsung@kernel.org>
Signed-off-by: Jonathan Corbet <corbet@lwn.net>
Add a index.rst for x86 support. More docs will be added later.
Signed-off-by: Changbin Du <changbin.du@gmail.com>
Reviewed-by: Mauro Carvalho Chehab <mchehab+samsung@kernel.org>
Signed-off-by: Jonathan Corbet <corbet@lwn.net>
- Lots of work on the Chinese and Italian translations
- Some license-rules clarifications from Christoph
- Various build-script fixes
- A new document on memory models
- RST conversion of the live-patching docs
- The usual collection of typo fixes and corrections.
-----BEGIN PGP SIGNATURE-----
iQFDBAABCAAtFiEEIw+MvkEiF49krdp9F0NaE2wMflgFAlzSBFkPHGNvcmJldEBs
d24ubmV0AAoJEBdDWhNsDH5YUDgIAIn+I0Wjv/vkuh5SKwAmz2wZBf46FCICz7Vg
jePmhd1GQ3K9k/xzIKMoaJOipAl+IXT4AnGa9eu+9Xm+D6HejASvtt/uTce4+qPi
9VLu7GmbtQQ0imRi4jjitenrebQXSKudAYbH+/bz7ycH7twWVJWKNLNQ8im9U5Ul
LRXQhRsYc2SwJ4mGOGTrqZkb69qkiOy0dQFGKbSM3ipHs/CQy8XMhlY/7aAh7t9N
SmKyH341s4Z/dRZIpoSx2QOfSp7njwTw7hxrnOq5unB82u2zrYvVFGxp5kzfQIyC
B/q26TG5hVNGH/37/+yOoziyP3Ma8IuF5W0zcg9DbmIi0Gdvg7s=
=4Zhc
-----END PGP SIGNATURE-----
Merge tag 'docs-5.2' of git://git.lwn.net/linux
Pull documentation updates from Jonathan Corbet:
"A reasonably busy cycle for docs, including:
- Lots of work on the Chinese and Italian translations
- Some license-rules clarifications from Christoph
- Various build-script fixes
- A new document on memory models
- RST conversion of the live-patching docs
- The usual collection of typo fixes and corrections"
* tag 'docs-5.2' of git://git.lwn.net/linux: (140 commits)
docs/livepatch: Unify style of livepatch documentation in the ReST format
docs: livepatch: convert docs to ReST and rename to *.rst
scripts/documentation-file-ref-check: detect broken :doc:`foo`
scripts/documentation-file-ref-check: don't parse Next/ dir
LICENSES: Rename other to deprecated
LICENSES: Clearly mark dual license only licenses
docs: Don't reference the ZLib license in license-rules.rst
docs/vm: Minor editorial changes in the THP and hugetlbfs
docs/vm: add documentation of memory models
doc:it_IT: translation alignment
doc: fix typo in PGP guide
dontdiff: update with Kconfig build artifacts
docs/zh_CN: fix typos in 1.Intro.rst file
docs/zh_CN: redirect CoC docs to Chinese version
doc: mm: migration doesn't use FOLL_SPLIT anymore
docs: doc-guide: remove the extension from .rst files
doc: kselftest: Fix KBUILD_OUTPUT usage instructions
docs: trace: fix some Sphinx warnings
docs: speculation.txt: mark example blocks as such
docs: ntb.txt: add blank lines to clean up some Sphinx warnings
...
Fix a minor typo in the MDS documentation: "eanbled" -> "enabled".
Reported-by: Jeff Bastian <jbastian@redhat.com>
Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Updated the documentation for a new CVE-2019-11091 Microarchitectural Data
Sampling Uncacheable Memory (MDSUM) which is a variant of
Microarchitectural Data Sampling (MDS). MDS is a family of side channel
attacks on internal buffers in Intel CPUs.
MDSUM is a special case of MSBDS, MFBDS and MLPDS. An uncacheable load from
memory that takes a fault or assist can leave data in a microarchitectural
structure that may later be observed using one of the same methods used by
MSBDS, MFBDS or MLPDS. There are no new code changes expected for MDSUM.
The existing mitigation for MDS applies to MDSUM as well.
Signed-off-by: Pawan Gupta <pawan.kumar.gupta@linux.intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Tyler Hicks <tyhicks@canonical.com>
Reviewed-by: Jon Masters <jcm@redhat.com>
Pull x86 topology updates from Ingo Molnar:
"Two main changes: preparatory changes for Intel multi-die topology
support, plus a syslog message tweak"
* 'x86-topology-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/topology: Make DEBUG_HOTPLUG_CPU0 pr_info() more descriptive
x86/smpboot: Rename match_die() to match_pkg()
topology: Simplify cputopology.txt formatting and wording
x86/topology: Fix documentation typo
Pull x86 mm updates from Ingo Molnar:
"The changes in here are:
- text_poke() fixes and an extensive set of executability lockdowns,
to (hopefully) eliminate the last residual circumstances under
which we are using W|X mappings even temporarily on x86 kernels.
This required a broad range of surgery in text patching facilities,
module loading, trampoline handling and other bits.
- tweak page fault messages to be more informative and more
structured.
- remove DISCONTIGMEM support on x86-32 and make SPARSEMEM the
default.
- reduce KASLR granularity on 5-level paging kernels from 512 GB to
1 GB.
- misc other changes and updates"
* 'x86-mm-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (36 commits)
x86/mm: Initialize PGD cache during mm initialization
x86/alternatives: Add comment about module removal races
x86/kprobes: Use vmalloc special flag
x86/ftrace: Use vmalloc special flag
bpf: Use vmalloc special flag
modules: Use vmalloc special flag
mm/vmalloc: Add flag for freeing of special permsissions
mm/hibernation: Make hibernation handle unmapped pages
x86/mm/cpa: Add set_direct_map_*() functions
x86/alternatives: Remove the return value of text_poke_*()
x86/jump-label: Remove support for custom text poker
x86/modules: Avoid breaking W^X while loading modules
x86/kprobes: Set instruction page as executable
x86/ftrace: Set trampoline pages as executable
x86/kgdb: Avoid redundant comparison of patched code
x86/alternatives: Use temporary mm for text poking
x86/alternatives: Initialize temporary mm for patching
fork: Provide a function for copying init_mm
uprobes: Initialize uprobes earlier
x86/mm: Save debug registers when loading a temporary mm
...
Syntax only, no functional or semantic change.
reflect actual cpuinfo_x86 field name:
s/logical_id/logical_proc_id/
Signed-off-by: Len Brown <len.brown@intel.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Will Deacon <will.deacon@arm.com>
Cc: linux-doc@vger.kernel.org
Link: http://lkml.kernel.org/r/e2810a5317d3a109a98204e883fd1461f77b9339.1551160674.git.len.brown@intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The debug IST stack is actually two separate debug stacks to handle #DB
recursion. This is required because the CPU starts always at top of stack
on exception entry, which means on #DB recursion the second #DB would
overwrite the stack of the first.
The low level entry code therefore adjusts the top of stack on entry so a
secondary #DB starts from a different stack page. But the stack pages are
adjacent without a guard page between them.
Split the debug stack into 3 stacks which are separated by guard pages. The
3rd stack is never mapped into the cpu_entry_area and is only there to
catch triple #DB nesting:
--- top of DB_stack <- Initial stack
--- end of DB_stack
guard page
--- top of DB1_stack <- Top of stack after entering first #DB
--- end of DB1_stack
guard page
--- top of DB2_stack <- Top of stack after entering second #DB
--- end of DB2_stack
guard page
If DB2 would not act as the final guard hole, a second #DB would point the
top of #DB stack to the stack below #DB1 which would be valid and not catch
the not so desired triple nesting.
The backing store does not allocate any memory for DB2 and its guard page
as it is not going to be mapped into the cpu_entry_area.
- Adjust the low level entry code so it adjusts top of #DB with the offset
between the stacks instead of exception stack size.
- Make the dumpstack code aware of the new stacks.
- Adjust the in_debug_stack() implementation and move it into the NMI code
where it belongs. As this is NMI hotpath code, it just checks the full
area between top of DB_stack and bottom of DB1_stack without checking
for the guard page. That's correct because the NMI cannot hit a
stackpointer pointing to the guard page between DB and DB1 stack. Even
if it would, then the NMI operation still is unaffected, but the resume
of the debug exception on the topmost DB stack will crash by touching
the guard page.
[ bp: Make exception_stack_names static const char * const ]
Suggested-by: Andy Lutomirski <luto@kernel.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Sean Christopherson <sean.j.christopherson@intel.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Baoquan He <bhe@redhat.com>
Cc: "Chang S. Bae" <chang.seok.bae@intel.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Dominik Brodowski <linux@dominikbrodowski.net>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Joerg Roedel <jroedel@suse.de>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Cc: linux-doc@vger.kernel.org
Cc: Masahiro Yamada <yamada.masahiro@socionext.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Qian Cai <cai@lca.pw>
Cc: Sean Christopherson <sean.j.christopherson@intel.com>
Cc: x86-ml <x86@kernel.org>
Link: https://lkml.kernel.org/r/20190414160145.439944544@linutronix.de
The defines for the exception stack (IST) array in the TSS are using the
SDM convention IST1 - IST7. That causes all sorts of code to subtract 1 for
array indices related to IST. That's confusing at best and does not provide
any value.
Make the indices zero based and fixup the usage sites. The only code which
needs to adjust the 0 based index is the interrupt descriptor setup which
needs to add 1 now.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Sean Christopherson <sean.j.christopherson@intel.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Baoquan He <bhe@redhat.com>
Cc: "Chang S. Bae" <chang.seok.bae@intel.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Dominik Brodowski <linux@dominikbrodowski.net>
Cc: Dou Liyang <douly.fnst@cn.fujitsu.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Cc: linux-doc@vger.kernel.org
Cc: Nicolai Stange <nstange@suse.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Qian Cai <cai@lca.pw>
Cc: x86-ml <x86@kernel.org>
Link: https://lkml.kernel.org/r/20190414160144.331772825@linutronix.de
This fixes a PT typo, and the following 56-bit address-space
addresses:
* the hole extends from 0100000000000000 to feffffffffffffff
* the KASAN shadow memory area stops at fffffbffffffffff (see kasan.h)
Signed-off-by: Stephen Kitt <steve@sk2.org>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@surriel.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: alex.popov@linux.com
Cc: bhe@redhat.com
Cc: corbet@lwn.net
Cc: kirill.shutemov@linux.intel.com
Cc: linux-doc@vger.kernel.org
Link: http://lkml.kernel.org/r/20190415150853.10354-1-steve@sk2.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Documentation/x86/boot.txt is missing protocol 2.13 description.
Reported-by: Ross Philipson <ross.philipson@oracle.com>
Signed-off-by: Juergen Gross <jgross@suse.com>
Reviewed-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Reviewed-by: H. Peter Anvin <hpa@zytor.com>
Reviewed-by: Matt Fleming <matt@codeblueprint.co.uk>
Reviewed-by: Daniel Kiper <daniel.kiper@oracle.com>
Signed-off-by: Jonathan Corbet <corbet@lwn.net>
In virtualized environments it can happen that the host has the microcode
update which utilizes the VERW instruction to clear CPU buffers, but the
hypervisor is not yet updated to expose the X86_FEATURE_MD_CLEAR CPUID bit
to guests.
Introduce an internal mitigation mode VMWERV which enables the invocation
of the CPU buffer clearing even if X86_FEATURE_MD_CLEAR is not set. If the
system has no updated microcode this results in a pointless execution of
the VERW instruction wasting a few CPU cycles. If the microcode is updated,
but not exposed to a guest then the CPU buffers will be cleared.
That said: Virtual Machines Will Eventually Receive Vaccine
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Jon Masters <jcm@redhat.com>
Tested-by: Jon Masters <jcm@redhat.com>
Add a static key which controls the invocation of the CPU buffer clear
mechanism on idle entry. This is independent of other MDS mitigations
because the idle entry invocation to mitigate the potential leakage due to
store buffer repartitioning is only necessary on SMT systems.
Add the actual invocations to the different halt/mwait variants which
covers all usage sites. mwaitx is not patched as it's not available on
Intel CPUs.
The buffer clear is only invoked before entering the C-State to prevent
that stale data from the idling CPU is spilled to the Hyper-Thread sibling
after the Store buffer got repartitioned and all entries are available to
the non idle sibling.
When coming out of idle the store buffer is partitioned again so each
sibling has half of it available. Now CPU which returned from idle could be
speculatively exposed to contents of the sibling, but the buffers are
flushed either on exit to user space or on VMENTER.
When later on conditional buffer clearing is implemented on top of this,
then there is no action required either because before returning to user
space the context switch will set the condition flag which causes a flush
on the return to user path.
Note, that the buffer clearing on idle is only sensible on CPUs which are
solely affected by MSBDS and not any other variant of MDS because the other
MDS variants cannot be mitigated when SMT is enabled, so the buffer
clearing on idle would be a window dressing exercise.
This intentionally does not handle the case in the acpi/processor_idle
driver which uses the legacy IO port interface for C-State transitions for
two reasons:
- The acpi/processor_idle driver was replaced by the intel_idle driver
almost a decade ago. Anything Nehalem upwards supports it and defaults
to that new driver.
- The legacy IO port interface is likely to be used on older and therefore
unaffected CPUs or on systems which do not receive microcode updates
anymore, so there is no point in adding that.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Reviewed-by: Frederic Weisbecker <frederic@kernel.org>
Reviewed-by: Jon Masters <jcm@redhat.com>
Tested-by: Jon Masters <jcm@redhat.com>
Add a static key which controls the invocation of the CPU buffer clear
mechanism on exit to user space and add the call into
prepare_exit_to_usermode() and do_nmi() right before actually returning.
Add documentation which kernel to user space transition this covers and
explain why some corner cases are not mitigated.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Reviewed-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Frederic Weisbecker <frederic@kernel.org>
Reviewed-by: Jon Masters <jcm@redhat.com>
Tested-by: Jon Masters <jcm@redhat.com>
The Microarchitectural Data Sampling (MDS) vulernabilities are mitigated by
clearing the affected CPU buffers. The mechanism for clearing the buffers
uses the unused and obsolete VERW instruction in combination with a
microcode update which triggers a CPU buffer clear when VERW is executed.
Provide a inline function with the assembly magic. The argument of the VERW
instruction must be a memory operand as documented:
"MD_CLEAR enumerates that the memory-operand variant of VERW (for
example, VERW m16) has been extended to also overwrite buffers affected
by MDS. This buffer overwriting functionality is not guaranteed for the
register operand variant of VERW."
Documentation also recommends to use a writable data segment selector:
"The buffer overwriting occurs regardless of the result of the VERW
permission check, as well as when the selector is null or causes a
descriptor load segment violation. However, for lowest latency we
recommend using a selector that indicates a valid writable data
segment."
Add x86 specific documentation about MDS and the internal workings of the
mitigation.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Reviewed-by: Frederic Weisbecker <frederic@kernel.org>
Reviewed-by: Jon Masters <jcm@redhat.com>
Tested-by: Jon Masters <jcm@redhat.com>
"Resource Control" is a very broad term for this CPU feature, and a term
that is also associated with containers, cgroups etc. This can easily
cause confusion.
Make the user prompt more specific. Match the config symbol name.
[ bp: In the future, the corresponding ARM arch-specific code will be
under ARM_CPU_RESCTRL and the arch-agnostic bits will be carved out
under the CPU_RESCTRL umbrella symbol. ]
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: Babu Moger <Babu.Moger@amd.com>
Cc: Fenghua Yu <fenghua.yu@intel.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: James Morse <james.morse@arm.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: linux-doc@vger.kernel.org
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Pu Wen <puwen@hygon.cn>
Cc: Reinette Chatre <reinette.chatre@intel.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tony Luck <tony.luck@intel.com>
Cc: x86-ml <x86@kernel.org>
Link: https://lkml.kernel.org/r/20190130195621.GA30653@cmpxchg.org
CONFIG_RESCTRL is too generic. The final goal is to have a generic
option called like this which is selected by the arch-specific ones
CONFIG_X86_RESCTRL and CONFIG_ARM64_RESCTRL. The generic one will
cover the resctrl filesystem and other generic and shared bits of
functionality.
Signed-off-by: Borislav Petkov <bp@suse.de>
Suggested-by: Ingo Molnar <mingo@kernel.org>
Requested-by: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Babu Moger <babu.moger@amd.com>
Cc: Fenghua Yu <fenghua.yu@intel.com>
Cc: James Morse <james.morse@arm.com>
Cc: Reinette Chatre <reinette.chatre@intel.com>
Cc: Tony Luck <tony.luck@intel.com>
Cc: x86@kernel.org
Link: http://lkml.kernel.org/r/20190108171401.GC12235@zn.tnic
document on perf security, more Italian translations, more
improvements to the memory-management docs, improvements to the
pathname lookup documentation, and the usual array of smaller
fixes.
-----BEGIN PGP SIGNATURE-----
iQFDBAABCAAtFiEEIw+MvkEiF49krdp9F0NaE2wMflgFAlwmSPkPHGNvcmJldEBs
d24ubmV0AAoJEBdDWhNsDH5Y9ZoH/joPnMFykOxS0SmdfI7Z+F4EiJct/ZwF9bHx
T673T0RC30IgnUXGmBl5OtktfWqVh9aGqHOGwgh65ybp2QvzemdP0k6Lu6RtwNk9
6LfkpvuUb8FzaQmCHnSMzMSDmXtZUw3Z/mOjCBcQtfGAsUULNT08xl+Dr+gwWIWt
H+gPEEP+MCXTOQO1jm2dHOHW8NGm6XOijMTpOxp/pkoEY5tUxkVB1T//8EeX7LVh
c1QHzFrufE3bmmubCLtIuyVqZbm/V5l6rHREDQ46fnH/G9fM4gojzsrAL/Y2m4bt
E4y0XJHycjLMRDimAnYhbPm1ryTFAX1lNzHP3M/EF6Heqx8YHAk=
=vtwu
-----END PGP SIGNATURE-----
Merge tag 'docs-5.0' of git://git.lwn.net/linux
Pull documentation update from Jonathan Corbet:
"A fairly normal cycle for documentation stuff. We have a new document
on perf security, more Italian translations, more improvements to the
memory-management docs, improvements to the pathname lookup
documentation, and the usual array of smaller fixes.
As is often the case, there are a few reaches outside of
Documentation/ to adjust kerneldoc comments"
* tag 'docs-5.0' of git://git.lwn.net/linux: (38 commits)
docs: improve pathname-lookup document structure
configfs: fix wrong name of struct in documentation
docs/mm-api: link slab_common.c to "The Slab Cache" section
slab: make kmem_cache_create{_usercopy} description proper kernel-doc
doc:process: add links where missing
docs/core-api: make mm-api.rst more structured
x86, boot: documentation whitespace fixup
Documentation: devres: note checking needs when converting
doc🇮🇹 add some process/* translations
doc🇮🇹 fixes in process/1.Intro
Documentation: convert path-lookup from markdown to resturctured text
Documentation/admin-guide: update admin-guide index.rst
Documentation/admin-guide: introduce perf-security.rst file
scripts/kernel-doc: Fix struct and struct field attribute processing
Documentation: dev-tools: Fix typos in index.rst
Correct gen_init_cpio tool's documentation
Document /proc/pid PID reuse behavior
Documentation: update path-lookup.md for parallel lookups
Documentation: Use "while" instead of "whilst"
dmaengine: Add mailing list address to the documentation
...
A huge update this time, but a lot of that is just consolidating or
removing code:
- provide a common DMA_MAPPING_ERROR definition and avoid indirect
calls for dma_map_* error checking
- use direct calls for the DMA direct mapping case, avoiding huge
retpoline overhead for high performance workloads
- merge the swiotlb dma_map_ops into dma-direct
- provide a generic remapping DMA consistent allocator for architectures
that have devices that perform DMA that is not cache coherent. Based
on the existing arm64 implementation and also used for csky now.
- improve the dma-debug infrastructure, including dynamic allocation
of entries (Robin Murphy)
- default to providing chaining scatterlist everywhere, with opt-outs
for the few architectures (alpha, parisc, most arm32 variants) that
can't cope with it
- misc sparc32 dma-related cleanups
- remove the dma_mark_clean arch hook used by swiotlb on ia64 and
replace it with the generic noncoherent infrastructure
- fix the return type of dma_set_max_seg_size (Niklas Söderlund)
- move the dummy dma ops for not DMA capable devices from arm64 to
common code (Robin Murphy)
- ensure dma_alloc_coherent returns zeroed memory to avoid kernel data
leaks through userspace. We already did this for most common
architectures, but this ensures we do it everywhere.
dma_zalloc_coherent has been deprecated and can hopefully be
removed after -rc1 with a coccinelle script.
-----BEGIN PGP SIGNATURE-----
iQI/BAABCgApFiEEgdbnc3r/njty3Iq9D55TZVIEUYMFAlwctQgLHGhjaEBsc3Qu
ZGUACgkQD55TZVIEUYMxgQ//dBpAfS4/J76CdAbYry2zqgcOUU9hIrD6NHiEMWov
ltJxyvEl3LsUmIdEj3aCrYL9jZN0qsnCzn5BVj2c3jDIVgD64fAr7HDf/PbEEfKb
j6/GgEnVLPZV+sQMvhNA5jOzHrkseaqPa4/pNLFZ/l8jnuZ2d+btusDWJpMoVDer
TXVwtIfgeIu0gTygYOShLYXd5qptWKWsZEpbTZOO2sE6+x+ZJX7yQYUxYDTlcOIj
JWVO2l5QNHPc5T9o2at+6L5aNUvnZOxT79sWgyZLn0Kc+FagKAVwfLqUEl0v7foG
8k/xca5/8p3afB1DfrIrtplJqis7cVgdyGxriwuuoO8X4F0nPyWwpGmxsBhrWwwl
xTqC4UorEJ7QwoP6Azopk/vYI2QXIUBLjuCJCuFXZj9+2BGf4IfvBY1S2cLM9qLs
HMcxQonuXJii044KEFS96ePEuiT+igVINweIFBKWcgNCEG0UQtyL6RQ1U5297ipF
JiWZAqD+p9X52UdKS+oKfAiZEekMXn6Xyo97+YCiNpfOo0GP5eEcwhL+JpY4AiRq
apPXtsRy2o1s8yfjdraUIM2Mc2n62vFKb35oUbGCd/QO9piPrFQHl6T0HHcHk4YR
XrUXcHieFZBCYqh7ZVa4RL8Msq1wvGuTL4Dxl43mXdsMoUFRR6eSNWLoAV4IpOLZ
WgA=
=in72
-----END PGP SIGNATURE-----
Merge tag 'dma-mapping-4.21' of git://git.infradead.org/users/hch/dma-mapping
Pull DMA mapping updates from Christoph Hellwig:
"A huge update this time, but a lot of that is just consolidating or
removing code:
- provide a common DMA_MAPPING_ERROR definition and avoid indirect
calls for dma_map_* error checking
- use direct calls for the DMA direct mapping case, avoiding huge
retpoline overhead for high performance workloads
- merge the swiotlb dma_map_ops into dma-direct
- provide a generic remapping DMA consistent allocator for
architectures that have devices that perform DMA that is not cache
coherent. Based on the existing arm64 implementation and also used
for csky now.
- improve the dma-debug infrastructure, including dynamic allocation
of entries (Robin Murphy)
- default to providing chaining scatterlist everywhere, with opt-outs
for the few architectures (alpha, parisc, most arm32 variants) that
can't cope with it
- misc sparc32 dma-related cleanups
- remove the dma_mark_clean arch hook used by swiotlb on ia64 and
replace it with the generic noncoherent infrastructure
- fix the return type of dma_set_max_seg_size (Niklas Söderlund)
- move the dummy dma ops for not DMA capable devices from arm64 to
common code (Robin Murphy)
- ensure dma_alloc_coherent returns zeroed memory to avoid kernel
data leaks through userspace. We already did this for most common
architectures, but this ensures we do it everywhere.
dma_zalloc_coherent has been deprecated and can hopefully be
removed after -rc1 with a coccinelle script"
* tag 'dma-mapping-4.21' of git://git.infradead.org/users/hch/dma-mapping: (73 commits)
dma-mapping: fix inverted logic in dma_supported
dma-mapping: deprecate dma_zalloc_coherent
dma-mapping: zero memory returned from dma_alloc_*
sparc/iommu: fix ->map_sg return value
sparc/io-unit: fix ->map_sg return value
arm64: default to the direct mapping in get_arch_dma_ops
PCI: Remove unused attr variable in pci_dma_configure
ia64: only select ARCH_HAS_DMA_COHERENT_TO_PFN if swiotlb is enabled
dma-mapping: bypass indirect calls for dma-direct
vmd: use the proper dma_* APIs instead of direct methods calls
dma-direct: merge swiotlb_dma_ops into the dma_direct code
dma-direct: use dma_direct_map_page to implement dma_direct_map_sg
dma-direct: improve addressability error reporting
swiotlb: remove dma_mark_clean
swiotlb: remove SWIOTLB_MAP_ERROR
ACPI / scan: Refactor _CCA enforcement
dma-mapping: factor out dummy DMA ops
dma-mapping: always build the direct mapping code
dma-mapping: move dma_cache_sync out of line
dma-mapping: move various slow path functions out of line
...
Pull x86 cache control updates from Borislav Petkov:
- The generalization of the RDT code to accommodate the addition of
AMD's very similar implementation of the cache monitoring feature.
This entails a subsystem move into a separate and generic
arch/x86/kernel/cpu/resctrl/ directory along with adding
vendor-specific initialization and feature detection helpers.
Ontop of that is the unification of user-visible strings, both in the
resctrl filesystem error handling and Kconfig.
Provided by Babu Moger and Sherry Hurwitz.
- Code simplifications and error handling improvements by Reinette
Chatre.
* 'x86-cache-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/resctrl: Fix rdt_find_domain() return value and checks
x86/resctrl: Remove unnecessary check for cbm_validate()
x86/resctrl: Use rdt_last_cmd_puts() where possible
MAINTAINERS: Update resctrl filename patterns
Documentation: Rename and update intel_rdt_ui.txt to resctrl_ui.txt
x86/resctrl: Introduce AMD QOS feature
x86/resctrl: Fixup the user-visible strings
x86/resctrl: Add AMD's X86_FEATURE_MBA to the scattered CPUID features
x86/resctrl: Rename the config option INTEL_RDT to RESCTRL
x86/resctrl: Add vendor check for the MBA software controller
x86/resctrl: Bring cbm_validate() into the resource structure
x86/resctrl: Initialize the vendor-specific resource functions
x86/resctrl: Move all the macros to resctrl/internal.h
x86/resctrl: Re-arrange the RDT init code
x86/resctrl: Rename the RDT functions and definitions
x86/resctrl: Rename and move rdt files to a separate directory
dma-debug is now capable of adding new entries to its pool on-demand if
the initial preallocation was insufficient, so the IOMMU_LEAK logic no
longer needs to explicitly change the pool size. This does lose it the
ability to save a couple of megabytes of RAM by reducing the pool size
below its default, but it seems unlikely that that is a realistic
concern these days (or indeed that anyone is actively debugging AGP
drivers' DMA usage any more). Getting rid of dma_debug_resize_entries()
will make room for further streamlining in the dma-debug code itself.
Removing the call reveals quite a lot of cruft which has been useless
for nearly a decade since commit 19c1a6f576 ("x86 gart: reimplement
IOMMU_LEAK feature by using DMA_API_DEBUG"), including the entire
'iommu=leak' parameter, which controlled nothing except whether
dma_debug_resize_entries() was called or not.
Signed-off-by: Robin Murphy <robin.murphy@arm.com>
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Qian Cai <cai@lca.pw>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Fix an extra space that sneaked in with commit 09c205afd "(x86, boot:
Define the 2.12 bzImage boot protocol").
Signed-off-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Jonathan Corbet <corbet@lwn.net>
Peter Anvin pointed out that commit:
ae7e1238e6 ("x86/boot: Add ACPI RSDP address to setup_header")
should be reverted as setup_header should only contain items set by the
legacy BIOS.
So revert said commit. Instead of fully reverting the dependent commit
of:
e7b66d16fe ("x86/acpi, x86/boot: Take RSDP address for boot params if available")
just remove the setup_header reference in order to replace it by
a boot_params in a followup patch.
Suggested-by: "H. Peter Anvin" <hpa@zytor.com>
Signed-off-by: Juergen Gross <jgross@suse.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: boris.ostrovsky@oracle.com
Cc: bp@alien8.de
Cc: daniel.kiper@oracle.com
Cc: sstabellini@kernel.org
Cc: xen-devel@lists.xenproject.org
Link: http://lkml.kernel.org/r/20181120072529.5489-2-jgross@suse.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
On 5-level paging the LDT remap area is placed in the middle of the KASLR
randomization region and it can overlap with the direct mapping, the
vmalloc or the vmap area.
The LDT mapping is per mm, so it cannot be moved into the P4D page table
next to the CPU_ENTRY_AREA without complicating PGD table allocation for
5-level paging.
The 4 PGD slot gap just before the direct mapping is reserved for
hypervisors, so it cannot be used.
Move the direct mapping one slot deeper and use the resulting gap for the
LDT remap area. The resulting layout is the same for 4 and 5 level paging.
[ tglx: Massaged changelog ]
Fixes: f55f0501cb ("x86/pti: Put the LDT in its own PGD if PTI is on")
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Andy Lutomirski <luto@kernel.org>
Cc: bp@alien8.de
Cc: hpa@zytor.com
Cc: dave.hansen@linux.intel.com
Cc: peterz@infradead.org
Cc: boris.ostrovsky@oracle.com
Cc: jgross@suse.com
Cc: bhe@redhat.com
Cc: willy@infradead.org
Cc: linux-mm@kvack.org
Cc: stable@vger.kernel.org
Link: https://lkml.kernel.org/r/20181026122856.66224-2-kirill.shutemov@linux.intel.com
- Introduces the stackleak gcc plugin ported from grsecurity by Alexander
Popov, with x86 and arm64 support.
-----BEGIN PGP SIGNATURE-----
Comment: Kees Cook <kees@outflux.net>
iQJKBAABCgA0FiEEpcP2jyKd1g9yPm4TiXL039xtwCYFAlvQvn4WHGtlZXNjb29r
QGNocm9taXVtLm9yZwAKCRCJcvTf3G3AJpSfD/sErFreuPT1beSw994Lr9Zx4k9v
ERsuXxWBENaJOJXbOOHMfVEcEeG/1uhPSp7hlw/dpHfh0anATTrcYqm8RNKbfK+k
o06+JK14OJfpm5Ghq/7OizhdNLCMT8wMU3XZtWfy65VSJGjEFx8Y48vMeQtpWtUK
ylSzi9JV6j2iUBF9oibtiT53+yqsqAtX80X1G7HRCgv9kxuKMhZr+Q5oGV6+ViyQ
Azj8mNn06iRnhHKd17WxDJr0GjSibzz4weS/9XgP3t3EcNWJo1EgBlD2KV3tOfP5
nzmqfqTqrcjxs/tyjdh6vVCSlYucNtyCQGn63qyShQYSg6mZwclR2fY8YSTw6PWw
GfYWFOWru9z+qyQmwFkQ9bSQS2R+JIT0oBCj9VmtF9XmPCy7K2neJsQclzSPBiCW
wPgXVQS4IA4684O5CmDOVMwmDpGvhdBNUR6cqSzGLxQOHY1csyXubMNUsqU3g9xk
Ob4pEy/xrrIw4WpwHcLHSEW5gV1/OLhsT0fGRJJiC947L3cN5s9EZp7FLbIS0zlk
qzaXUcLmn6AgcfkYwg5cI3RMLaN2V0eDCMVTWZJ1wbrmUV9chAaOnTPTjNqLOTht
v3b1TTxXG4iCpMmOFf59F8pqgAwbBDlfyNSbySZ/Pq5QH69udz3Z9pIUlYQnSJHk
u6q++2ReDpJXF81rBw==
=Ks6B
-----END PGP SIGNATURE-----
Merge tag 'stackleak-v4.20-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/kees/linux
Pull stackleak gcc plugin from Kees Cook:
"Please pull this new GCC plugin, stackleak, for v4.20-rc1. This plugin
was ported from grsecurity by Alexander Popov. It provides efficient
stack content poisoning at syscall exit. This creates a defense
against at least two classes of flaws:
- Uninitialized stack usage. (We continue to work on improving the
compiler to do this in other ways: e.g. unconditional zero init was
proposed to GCC and Clang, and more plugin work has started too).
- Stack content exposure. By greatly reducing the lifetime of valid
stack contents, exposures via either direct read bugs or unknown
cache side-channels become much more difficult to exploit. This
complements the existing buddy and heap poisoning options, but
provides the coverage for stacks.
The x86 hooks are included in this series (which have been reviewed by
Ingo, Dave Hansen, and Thomas Gleixner). The arm64 hooks have already
been merged through the arm64 tree (written by Laura Abbott and
reviewed by Mark Rutland and Will Deacon).
With VLAs having been removed this release, there is no need for
alloca() protection, so it has been removed from the plugin"
* tag 'stackleak-v4.20-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/kees/linux:
arm64: Drop unneeded stackleak_check_alloca()
stackleak: Allow runtime disabling of kernel stack erasing
doc: self-protection: Add information about STACKLEAK feature
fs/proc: Show STACKLEAK metrics in the /proc file system
lkdtm: Add a test for STACKLEAK
gcc-plugins: Add STACKLEAK plugin for tracking the kernel stack
x86/entry: Add STACKLEAK erasing the kernel stack at the end of syscalls
readability improvements for the formatted output, some LICENSES updates
including the addition of the ISC license, the removal of the unloved and
unmaintained 00-INDEX files, the deprecated APIs document from Kees, more
MM docs from Mike Rapoport, and the usual pile of typo fixes and
corrections.
-----BEGIN PGP SIGNATURE-----
iQIcBAABAgAGBQJbztcuAAoJEI3ONVYwIuV6nTAP/0Be+5dNPGJmSnb/RbkwBuBV
zAFVUj2sx4lZlRmWRZ0r7AOef2eSw3IvwBix/vnmllYCVahjp+BdRbhXQAijjyeb
FWWjOH50/J+BaxSthAINiLRLvuoe0D/M08OpmXQfRl5q0S8RufeV3BDtEABx9j2n
IICPGTl8LpPUgSMA4cw8zPhHdauhZpbmL2mGE9LXZ27SJT4S8lcHMwyPU1n5S+Jd
ChEz5g9dYr3GNxFp712pkI5GcVL3tP2nfoVwK7EuGf1tvSnEnn2kzac8QgMqorIh
xB2+Sh4XIUCbHYpGHpxIniD+WI4voNr/E7STQioJK5o2G4HTuxLjktvTezNF8paa
hgNHWjPQBq0OOCdM/rsffONFF2J/v/r7E3B+kaRg8pE0uZWTFaDMs6MVaL2fL4Ls
DrFhi90NJI/Fs7uB4sriiviShAhwboiSIRXJi4VlY/5oFJKHFgqes+R7miU+zTX3
2qv0k4mWZXWDV9w1piPxSCZSdRzaoYSoxEihX+tnYpCyEcYd9ovW/X1Uhl/wCWPl
Ft+Op6rkHXRXVfZzTLuF6PspZ4Udpw2PUcnA5zj5FRDDBsjSMFR31c19IFbCeiNY
kbTIcqejJG1WbVrAK4LCcFyVSGxbrr281eth4rE06cYmmsz3kJy1DB6Lhyg/2vI0
I8K9ZJ99n1RhPJIcburB
=C0wt
-----END PGP SIGNATURE-----
Merge tag 'docs-4.20' of git://git.lwn.net/linux
Pull documentation updates from Jonathan Corbet:
"This is a fairly typical cycle for documentation. There's some welcome
readability improvements for the formatted output, some LICENSES
updates including the addition of the ISC license, the removal of the
unloved and unmaintained 00-INDEX files, the deprecated APIs document
from Kees, more MM docs from Mike Rapoport, and the usual pile of typo
fixes and corrections"
* tag 'docs-4.20' of git://git.lwn.net/linux: (41 commits)
docs: Fix typos in histogram.rst
docs: Introduce deprecated APIs list
kernel-doc: fix declaration type determination
doc: fix a typo in adding-syscalls.rst
docs/admin-guide: memory-hotplug: remove table of contents
doc: printk-formats: Remove bogus kobject references for device nodes
Documentation: preempt-locking: Use better example
dm flakey: Document "error_writes" feature
docs/completion.txt: Fix a couple of punctuation nits
LICENSES: Add ISC license text
LICENSES: Add note to CDDL-1.0 license that it should not be used
docs/core-api: memory-hotplug: add some details about locking internals
docs/core-api: rename memory-hotplug-notifier to memory-hotplug
docs: improve readability for people with poorer eyesight
yama: clarify ptrace_scope=2 in Yama documentation
docs/vm: split memory hotplug notifier description to Documentation/core-api
docs: move memory hotplug description into admin-guide/mm
doc: Fix acronym "FEKEK" in ecryptfs
docs: fix some broken documentation references
iommu: Fix passthrough option documentation
...
Pull x86 mm updates from Ingo Molnar:
"Lots of changes in this cycle:
- Lots of CPA (change page attribute) optimizations and related
cleanups (Thomas Gleixner, Peter Zijstra)
- Make lazy TLB mode even lazier (Rik van Riel)
- Fault handler cleanups and improvements (Dave Hansen)
- kdump, vmcore: Enable kdumping encrypted memory with AMD SME
enabled (Lianbo Jiang)
- Clean up VM layout documentation (Baoquan He, Ingo Molnar)
- ... plus misc other fixes and enhancements"
* 'x86-mm-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (51 commits)
x86/stackprotector: Remove the call to boot_init_stack_canary() from cpu_startup_entry()
x86/mm: Kill stray kernel fault handling comment
x86/mm: Do not warn about PCI BIOS W+X mappings
resource: Clean it up a bit
resource: Fix find_next_iomem_res() iteration issue
resource: Include resource end in walk_*() interfaces
x86/kexec: Correct KEXEC_BACKUP_SRC_END off-by-one error
x86/mm: Remove spurious fault pkey check
x86/mm/vsyscall: Consider vsyscall page part of user address space
x86/mm: Add vsyscall address helper
x86/mm: Fix exception table comments
x86/mm: Add clarifying comments for user addr space
x86/mm: Break out user address space handling
x86/mm: Break out kernel address space handling
x86/mm: Clarify hardware vs. software "error_code"
x86/mm/tlb: Make lazy TLB mode lazier
x86/mm/tlb: Add freed_tables element to flush_tlb_info
x86/mm/tlb: Add freed_tables argument to flush_tlb_mm_range
smp,cpumask: introduce on_each_cpu_cond_mask
smp: use __cpumask_set_cpu in on_each_cpu_cond
...
Pull x86 grub2 updates from Ingo Molnar:
"This extends the x86 boot protocol to include an address for the RSDP
table - utilized by Xen currently.
Matching Grub2 patches are pending as well. (Juergen Gross)"
* 'x86-grub2-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/acpi, x86/boot: Take RSDP address for boot params if available
x86/boot: Add ACPI RSDP address to setup_header
x86/xen: Fix boot loader version reported for PVH guests
Xen PVH guests receive the address of the RSDP table from Xen. In order
to support booting a Xen PVH guest via Grub2 using the standard x86
boot entry we need a way for Grub2 to pass the RSDP address to the
kernel.
For this purpose expand the struct setup_header to hold the physical
address of the RSDP address. Being zero means it isn't specified and
has to be located the legacy way (searching through low memory or
EBDA).
While documenting the new setup_header layout and protocol version
2.14 add the missing documentation of protocol version 2.13.
There are Grub2 versions in several distros with a downstream patch
violating the boot protocol by writing past the end of setup_header.
This requires another update of the boot protocol to enable the kernel
to distinguish between a specified RSDP address and one filled with
garbage by such a broken Grub2.
From protocol 2.14 on Grub2 will write the version it is supporting
(but never a higher value than found to be supported by the kernel)
ored with 0x8000 to the version field of setup_header. This enables
the kernel to know up to which field Grub2 has written information
to. All fields after that are supposed to be clobbered.
Signed-off-by: Juergen Gross <jgross@suse.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: boris.ostrovsky@oracle.com
Cc: bp@alien8.de
Cc: corbet@lwn.net
Cc: linux-doc@vger.kernel.org
Cc: xen-devel@lists.xenproject.org
Link: http://lkml.kernel.org/r/20181010061456.22238-3-jgross@suse.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
After the cleanups from Baoquan He, make it even more readable:
- Remove the 'bits' area size column: it's pretty pointless and was even
wrong for some of the entries. Given that MB, GB, TB, PT are 10, 20,
30 and 40 bits, a "8 TB" size description makes it obvious that it's
43 bits.
- Introduce an "offset" column:
--------------------------------------------------------------------------------
start addr | offset | end addr | size | VM area description
-----------------|------------|------------------|---------|--------------------
...
ffff880000000000 | -120 TB | ffffc7ffffffffff | 64 TB | direct mapping of all physical memory (page_offset_base),
this is what limits max physical memory supported.
The -120 TB notation makes it obvious where this particular virtual memory
region starts: 120 TB down from the top of the 64-bit virtual memory space.
Especially the layout of the kernel mappings is a *lot* more obvious when
written this way, plus it's much easier to compare it with the size column
and understand/check/validate and modify the kernel's layout in the future.
- Mark the part from where the 47-bit and 56-bit kernel layouts are 100% identical,
this starts at the -512 GB offset and the EFI region.
- Re-shuffle the size desciptions to be continous blocks of sizes, instead of the
often mixed size. I.e. write "0.5 TB" instead of "512 GB" if we are still in
the TB-granular region of the map.
- Make the 47-bit and 56-bit descriptions use the *exact* same layout and wording,
and only differ where there's a material difference. This makes it easy to compare
the two tables side by side by switching between two terminal tabs.
- Plus enhance a lot of other stylistic/typographical details: make the tables
explicitly tabular, add headers, enhance certain entries, etc. etc.
Note that there are some apparent errors in the tables as well, but I'll fix
them in a separate patch to make it easier to review/validate.
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Baoquan He <bhe@redhat.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@surriel.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: corbet@lwn.net
Cc: linux-doc@vger.kernel.org
Cc: linux-kernel@vger.kernel.org
Cc: thgarnie@google.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
In Documentation/x86/x86_64/mm.txt, the description of the x86-64 virtual
memory layout has become a confusing hodgepodge of inconsistencies:
- there's a hard to read mixture of 'TB' and 'bits' notation
- the entries sometimes mention a size in the description and sometimes not
- sometimes they list holes by address, sometimes only as an 'unused hole' line
So make it all a coherent, readable, well organized description.
Signed-off-by: Baoquan He <bhe@redhat.com>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@surriel.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: corbet@lwn.net
Cc: linux-doc@vger.kernel.org
Cc: thgarnie@google.com
Link: http://lkml.kernel.org/r/20181006084327.27467-3-bhe@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The success of a cache pseudo-locked region is measured using
performance monitoring events that are programmed directly at the time
the user requests a measurement.
Modifying the performance event registers directly is not appropriate
since it circumvents the in-kernel perf infrastructure that exists to
manage these resources and provide resource arbitration to the
performance monitoring hardware.
The cache pseudo-locking measurements are modified to use the in-kernel
perf infrastructure. Performance events are created and validated with
the appropriate perf API. The performance counters are still read as
directly as possible to avoid the additional cache hits. This is
done safely by first ensuring with the perf API that the counters have
been programmed correctly and only accessing the counters in an
interrupt disabled section where they are not able to be moved.
As part of the transition to the in-kernel perf infrastructure the L2
and L3 measurements are split into two separate measurements that can
be triggered independently. This separation prevents additional cache
misses incurred during the extra testing code used to decide if a
L2 and/or L3 measurement should be made.
Signed-off-by: Reinette Chatre <reinette.chatre@intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: fenghua.yu@intel.com
Cc: tony.luck@intel.com
Cc: peterz@infradead.org
Cc: acme@kernel.org
Cc: gavin.hindman@intel.com
Cc: jithu.joseph@intel.com
Cc: dave.hansen@intel.com
Cc: hpa@zytor.com
Link: https://lkml.kernel.org/r/fc24e728b446404f42c78573c506e98cd0599873.1537468643.git.reinette.chatre@intel.com
Fix a few issues in Documentation/x86/earlyprintk.txt:
- correct typos, punctuation, missing word, wrong word
- change product name from Netchip to NetChip
- expand where to add "earlyprintk=dbg"
Signed-off-by: Randy Dunlap <rdunlap@infradead.org>
Cc: Eric W. Biederman <ebiederm@xmission.com>
Cc: Jason Wessel <jason.wessel@windriver.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Yinghai Lu <yinghai@kernel.org>
Cc: linux-doc@vger.kernel.org
Cc: linux-usb@vger.kernel.org
Link: http://lkml.kernel.org/r/d0c40ac3-7659-6374-dbda-23d3d2577f30@infradead.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
This is a respin with a wider audience (all that get_maintainer returned)
and I know this spams a *lot* of people. Not sure what would be the correct
way, so my apologies for ruining your inbox.
The 00-INDEX files are supposed to give a summary of all files present
in a directory, but these files are horribly out of date and their
usefulness is brought into question. Often a simple "ls" would reveal
the same information as the filenames are generally quite descriptive as
a short introduction to what the file covers (it should not surprise
anyone what Documentation/sched/sched-design-CFS.txt covers)
A few years back it was mentioned that these files were no longer really
needed, and they have since then grown further out of date, so perhaps
it is time to just throw them out.
A short status yields the following _outdated_ 00-INDEX files, first
counter is files listed in 00-INDEX but missing in the directory, last
is files present but not listed in 00-INDEX.
List of outdated 00-INDEX:
Documentation: (4/10)
Documentation/sysctl: (0/1)
Documentation/timers: (1/0)
Documentation/blockdev: (3/1)
Documentation/w1/slaves: (0/1)
Documentation/locking: (0/1)
Documentation/devicetree: (0/5)
Documentation/power: (1/1)
Documentation/powerpc: (0/5)
Documentation/arm: (1/0)
Documentation/x86: (0/9)
Documentation/x86/x86_64: (1/1)
Documentation/scsi: (4/4)
Documentation/filesystems: (2/9)
Documentation/filesystems/nfs: (0/2)
Documentation/cgroup-v1: (0/2)
Documentation/kbuild: (0/4)
Documentation/spi: (1/0)
Documentation/virtual/kvm: (1/0)
Documentation/scheduler: (0/2)
Documentation/fb: (0/1)
Documentation/block: (0/1)
Documentation/networking: (6/37)
Documentation/vm: (1/3)
Then there are 364 subdirectories in Documentation/ with several files that
are missing 00-INDEX alltogether (and another 120 with a single file and no
00-INDEX).
I don't really have an opinion to whether or not we /should/ have 00-INDEX,
but the above 00-INDEX should either be removed or be kept up to date. If
we should keep the files, I can try to keep them updated, but I rather not
if we just want to delete them anyway.
As a starting point, remove all index-files and references to 00-INDEX and
see where the discussion is going.
Signed-off-by: Henrik Austad <henrik@austad.us>
Acked-by: "Paul E. McKenney" <paulmck@linux.vnet.ibm.com>
Just-do-it-by: Steven Rostedt <rostedt@goodmis.org>
Reviewed-by: Jens Axboe <axboe@kernel.dk>
Acked-by: Paul Moore <paul@paul-moore.com>
Acked-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Acked-by: Mark Brown <broonie@kernel.org>
Acked-by: Mike Rapoport <rppt@linux.vnet.ibm.com>
Cc: [Almost everybody else]
Signed-off-by: Jonathan Corbet <corbet@lwn.net>
The STACKLEAK feature (initially developed by PaX Team) has the following
benefits:
1. Reduces the information that can be revealed through kernel stack leak
bugs. The idea of erasing the thread stack at the end of syscalls is
similar to CONFIG_PAGE_POISONING and memzero_explicit() in kernel
crypto, which all comply with FDP_RIP.2 (Full Residual Information
Protection) of the Common Criteria standard.
2. Blocks some uninitialized stack variable attacks (e.g. CVE-2017-17712,
CVE-2010-2963). That kind of bugs should be killed by improving C
compilers in future, which might take a long time.
This commit introduces the code filling the used part of the kernel
stack with a poison value before returning to userspace. Full
STACKLEAK feature also contains the gcc plugin which comes in a
separate commit.
The STACKLEAK feature is ported from grsecurity/PaX. More information at:
https://grsecurity.net/https://pax.grsecurity.net/
This code is modified from Brad Spengler/PaX Team's code in the last
public patch of grsecurity/PaX based on our understanding of the code.
Changes or omissions from the original code are ours and don't reflect
the original grsecurity/PaX code.
Performance impact:
Hardware: Intel Core i7-4770, 16 GB RAM
Test #1: building the Linux kernel on a single core
0.91% slowdown
Test #2: hackbench -s 4096 -l 2000 -g 15 -f 25 -P
4.2% slowdown
So the STACKLEAK description in Kconfig includes: "The tradeoff is the
performance impact: on a single CPU system kernel compilation sees a 1%
slowdown, other systems and workloads may vary and you are advised to
test this feature on your expected workload before deploying it".
Signed-off-by: Alexander Popov <alex.popov@linux.com>
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Dave Hansen <dave.hansen@linux.intel.com>
Acked-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Kees Cook <keescook@chromium.org>
Pull x86 timer updates from Thomas Gleixner:
"Early TSC based time stamping to allow better boot time analysis.
This comes with a general cleanup of the TSC calibration code which
grew warts and duct taping over the years and removes 250 lines of
code. Initiated and mostly implemented by Pavel with help from various
folks"
* 'x86-timers-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (37 commits)
x86/kvmclock: Mark kvm_get_preset_lpj() as __init
x86/tsc: Consolidate init code
sched/clock: Disable interrupts when calling generic_sched_clock_init()
timekeeping: Prevent false warning when persistent clock is not available
sched/clock: Close a hole in sched_clock_init()
x86/tsc: Make use of tsc_calibrate_cpu_early()
x86/tsc: Split native_calibrate_cpu() into early and late parts
sched/clock: Use static key for sched_clock_running
sched/clock: Enable sched clock early
sched/clock: Move sched clock initialization and merge with generic clock
x86/tsc: Use TSC as sched clock early
x86/tsc: Initialize cyc2ns when tsc frequency is determined
x86/tsc: Calibrate tsc only once
ARM/time: Remove read_boot_clock64()
s390/time: Remove read_boot_clock64()
timekeeping: Default boot time offset to local_clock()
timekeeping: Replace read_boot_clock64() with read_persistent_wall_and_boot_offset()
s390/time: Add read_persistent_wall_and_boot_offset()
x86/xen/time: Output xen sched_clock time from 0
x86/xen/time: Initialize pv xen time in init_hypervisor_platform()
...
Pull x86 cache QoS (RDT/CAR) updates from Thomas Gleixner:
"Add support for pseudo-locked cache regions.
Cache Allocation Technology (CAT) allows on certain CPUs to isolate a
region of cache and 'lock' it. Cache pseudo-locking builds on the fact
that a CPU can still read and write data pre-allocated outside its
current allocated area on cache hit. With cache pseudo-locking data
can be preloaded into a reserved portion of cache that no application
can fill, and from that point on will only serve cache hits. The cache
pseudo-locked memory is made accessible to user space where an
application can map it into its virtual address space and thus have a
region of memory with reduced average read latency.
The locking is not perfect and gets totally screwed by WBINDV and
similar mechanisms, but it provides a reasonable enhancement for
certain types of latency sensitive applications.
The implementation extends the current CAT mechanism and provides a
generally useful exclusive CAT mode on which it builds the extra
pseude-locked regions"
* 'x86-cache-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (45 commits)
x86/intel_rdt: Disable PMU access
x86/intel_rdt: Fix possible circular lock dependency
x86/intel_rdt: Make CPU information accessible for pseudo-locked regions
x86/intel_rdt: Support restoration of subset of permissions
x86/intel_rdt: Fix cleanup of plr structure on error
x86/intel_rdt: Move pseudo_lock_region_clear()
x86/intel_rdt: Limit C-states dynamically when pseudo-locking active
x86/intel_rdt: Support L3 cache performance event of Broadwell
x86/intel_rdt: More precise L2 hit/miss measurements
x86/intel_rdt: Create character device exposing pseudo-locked region
x86/intel_rdt: Create debugfs files for pseudo-locking testing
x86/intel_rdt: Create resctrl debug area
x86/intel_rdt: Ensure RDT cleanup on exit
x86/intel_rdt: Resctrl files reflect pseudo-locked information
x86/intel_rdt: Support creation/removal of pseudo-locked region
x86/intel_rdt: Pseudo-lock region creation/removal core
x86/intel_rdt: Discover supported platforms via prefetch disable bits
x86/intel_rdt: Add utilities to test pseudo-locked region possibility
x86/intel_rdt: Split resource group removal in two
x86/intel_rdt: Enable entering of pseudo-locksetup mode
...
When a resource group enters pseudo-locksetup mode it reflects that the
platform supports cache pseudo-locking and the resource group is unused,
ready to be used for a pseudo-locked region. Until it is set up as a
pseudo-locked region the resource group is "locked down" such that no new
tasks or cpus can be assigned to it. This is accomplished in a user visible
way by making the cpus, cpus_list, and tasks resctrl files inaccassible
(user cannot read from or write to these files).
When the resource group changes to pseudo-locked mode it represents a cache
pseudo-locked region. While not appropriate to make any changes to the cpus
assigned to this region it is useful to make it easy for the user to see
which cpus are associated with the pseudo-locked region.
Modify the permissions of the cpus/cpus_list file when the resource group
changes to pseudo-locked mode to support reading (not writing). The
information presented to the user when reading the file are the cpus
associated with the pseudo-locked region.
Signed-off-by: Reinette Chatre <reinette.chatre@intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: fenghua.yu@intel.com
Cc: tony.luck@intel.com
Cc: vikas.shivappa@linux.intel.com
Cc: gavin.hindman@intel.com
Cc: jithu.joseph@intel.com
Cc: dave.hansen@intel.com
Cc: hpa@zytor.com
Link: https://lkml.kernel.org/r/12756b7963b6abc1bffe8fb560b87b75da827bd1.1530421961.git.reinette.chatre@intel.com
By default resource groups allow sharing of their cache allocations. There
is nothing that prevents a resource group from configuring a cache
allocation that overlaps with that of an existing resource group.
To enable resource groups to specify that their cache allocations cannot be
shared a resource group "mode" is introduced to support two possible modes:
"shareable" and "exclusive". A "shareable" resource group allows sharing of
its cache allocations, an "exclusive" resource group does not. A new
resctrl file "mode" associated with each resource group is used to
communicate its (the associated resource group's) mode setting and allow
the mode to be changed. The new "mode" file as well as two other resctrl
files, "bit_usage" and "size", are introduced in this series.
Add documentation for the three new resctrl files as well as one example
demonstrating their use.
Signed-off-by: Reinette Chatre <reinette.chatre@intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: fenghua.yu@intel.com
Cc: tony.luck@intel.com
Cc: vikas.shivappa@linux.intel.com
Cc: gavin.hindman@intel.com
Cc: jithu.joseph@intel.com
Cc: dave.hansen@intel.com
Cc: hpa@zytor.com
Link: https://lkml.kernel.org/r/f03a3059ec40ae719be6f3fba9f446bb055e0064.1529706536.git.reinette.chatre@intel.com
Pull x86 cache resource controller updates from Thomas Gleixner:
"An update for the Intel Resource Director Technolgy (RDT) which adds a
feedback driven software controller to runtime adjust the bandwidth
allocation MSRs.
This makes the allocations more accurate and allows to use bandwidth
values in understandable units (MB/s) instead of using percentage
based allocations as the original, still available, interface.
The software controller can be enabled with a new mount option for the
resctrl filesystem"
* 'x86-cache-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/intel_rdt/mba_sc: Feedback loop to dynamically update mem bandwidth
x86/intel_rdt/mba_sc: Prepare for feedback loop
x86/intel_rdt/mba_sc: Add schemata support
x86/intel_rdt/mba_sc: Add initialization support
x86/intel_rdt/mba_sc: Enable/disable MBA software controller
x86/intel_rdt/mba_sc: Documentation for MBA software controller(mba_sc)
This is something drivers should decide (modulo chipset quirks like
for VIA), which as far as I can tell is how things have been handled
for the last 15 years.
Note that we keep the usedac option for now, as it is used in the wild
to override the too generic VIA quirk.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Limiting the dma mask to avoid PCI (pre-PCIe) DAC cycles while paying
the huge overhead of an IOMMU is rather pointless, and this seriously
gets in the way of dma mapping work.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
This is just the minimal workaround. The file is mostly either stale
and/or duplicative of Documentation/admin-guide/kernel-parameters.txt,
but that is much more work than I'm willing to do right now.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Pull x86 fixes from Thomas Gleixner:
"A set of fixes and updates for x86:
- Address a swiotlb regression which was caused by the recent DMA
rework and made driver fail because dma_direct_supported() returned
false
- Fix a signedness bug in the APIC ID validation which caused invalid
APIC IDs to be detected as valid thereby bloating the CPU possible
space.
- Fix inconsisten config dependcy/select magic for the MFD_CS5535
driver.
- Fix a corruption of the physical address space bits when encryption
has reduced the address space and late cpuinfo updates overwrite
the reduced bit information with the original value.
- Dominiks syscall rework which consolidates the architecture
specific syscall functions so all syscalls can be wrapped with the
same macros. This allows to switch x86/64 to struct pt_regs based
syscalls. Extend the clearing of user space controlled registers in
the entry patch to the lower registers"
* 'x86-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/apic: Fix signedness bug in APIC ID validity checks
x86/cpu: Prevent cpuinfo_x86::x86_phys_bits adjustment corruption
x86/olpc: Fix inconsistent MFD_CS5535 configuration
swiotlb: Use dma_direct_supported() for swiotlb_ops
syscalls/x86: Adapt syscall_wrapper.h to the new syscall stub naming convention
syscalls/core, syscalls/x86: Rename struct pt_regs-based sys_*() to __x64_sys_*()
syscalls/core, syscalls/x86: Clean up compat syscall stub naming convention
syscalls/core, syscalls/x86: Clean up syscall stub naming convention
syscalls/x86: Extend register clearing on syscall entry to lower registers
syscalls/x86: Unconditionally enable 'struct pt_regs' based syscalls on x86_64
syscalls/x86: Use 'struct pt_regs' based syscall calling for IA32_EMULATION and x32
syscalls/core: Prepare CONFIG_ARCH_HAS_SYSCALL_WRAPPER=y for compat syscalls
syscalls/x86: Use 'struct pt_regs' based syscall calling convention for 64-bit syscalls
syscalls/core: Introduce CONFIG_ARCH_HAS_SYSCALL_WRAPPER=y
x86/syscalls: Don't pointlessly reload the system call number
x86/mm: Fix documentation of module mapping range with 4-level paging
x86/cpuid: Switch to 'static const' specifier
Pull trivial tree updates from Jiri Kosina.
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/jikos/trivial:
kfifo: fix inaccurate comment
tools/thermal: tmon: fix for segfault
net: Spelling s/stucture/structure/
edd: don't spam log if no EDD information is present
Documentation: Fix early-microcode.txt references after file rename
tracing: Block comments should align the * on each line
treewide: Fix typos in printk
GenWQE: Fix a typo in two comments
treewide: Align function definition open/close braces
Commit:
f5a40711fa ("x86/mm: Set MODULES_END to 0xffffffffff000000")
changed MODULES_END back to a fixed value, but didn't update the documentation
of memory layout for 4-level paging.
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Acked-by: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Fixes: f5a40711fa ("x86/mm: Set MODULES_END to 0xffffffffff000000")
Link: http://lkml.kernel.org/r/20180402121025.10244-1-kirill.shutemov@linux.intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The file Documentation/x86/early-microcode.txt was renamed to
Documentation/x86/microcode.txt in 0e3258753f, but it was still
referenced by its old name in a three places:
* Documentation/x86/00-INDEX
* arch/x86/Kconfig
* arch/x86/kernel/cpu/microcode/amd.c
This commit updates these references accordingly.
Fixes: 0e3258753f ("x86/microcode: Document the three loading methods")
Signed-off-by: Jaak Ristioja <jaak@ristioja.ee>
Signed-off-by: Jiri Kosina <jkosina@suse.cz>
All pieces of the puzzle are in place and we can now allow to boot with
CONFIG_X86_5LEVEL=y on a machine without LA57 support.
Kernel will detect that LA57 is missing and fold p4d at runtime.
Update the documentation and the Kconfig option description to reflect the
change.
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Arjan van de Ven <arjan@linux.intel.com>
Cc: Borislav Petkov <bp@suse.de>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: David Woodhouse <dwmw2@infradead.org>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-mm@kvack.org
Link: http://lkml.kernel.org/r/20180214182542.69302-10-kirill.shutemov@linux.intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Here is the set of "big" driver core patches for 4.16-rc1.
The majority of the work here is in the firmware subsystem, with reworks
to try to attempt to make the code easier to handle in the long run, but
no functional change. There's also some tree-wide sysfs attribute
fixups with lots of acks from the various subsystem maintainers, as well
as a handful of other normal fixes and changes.
And finally, some license cleanups for the driver core and sysfs code.
All have been in linux-next for a while with no reported issues.
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-----BEGIN PGP SIGNATURE-----
iG0EABECAC0WIQT0tgzFv3jCIUoxPcsxR9QN2y37KQUCWnLvPw8cZ3JlZ0Brcm9h
aC5jb20ACgkQMUfUDdst+ynNzACgkzjPoBytJWbpWFt6SR6L33/u4kEAnRFvVCGL
s6ygQPQhZIjKk2Lxa2hC
=Zihy
-----END PGP SIGNATURE-----
Merge tag 'driver-core-4.16-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/driver-core
Pull driver core updates from Greg KH:
"Here is the set of "big" driver core patches for 4.16-rc1.
The majority of the work here is in the firmware subsystem, with
reworks to try to attempt to make the code easier to handle in the
long run, but no functional change. There's also some tree-wide sysfs
attribute fixups with lots of acks from the various subsystem
maintainers, as well as a handful of other normal fixes and changes.
And finally, some license cleanups for the driver core and sysfs code.
All have been in linux-next for a while with no reported issues"
* tag 'driver-core-4.16-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/driver-core: (48 commits)
device property: Define type of PROPERTY_ENRTY_*() macros
device property: Reuse property_entry_free_data()
device property: Move property_entry_free_data() upper
firmware: Fix up docs referring to FIRMWARE_IN_KERNEL
firmware: Drop FIRMWARE_IN_KERNEL Kconfig option
USB: serial: keyspan: Drop firmware Kconfig options
sysfs: remove DEBUG defines
sysfs: use SPDX identifiers
drivers: base: add coredump driver ops
sysfs: add attribute specification for /sysfs/devices/.../coredump
test_firmware: fix missing unlock on error in config_num_requests_store()
test_firmware: make local symbol test_fw_config static
sysfs: turn WARN() into pr_warn()
firmware: Fix a typo in fallback-mechanisms.rst
treewide: Use DEVICE_ATTR_WO
treewide: Use DEVICE_ATTR_RO
treewide: Use DEVICE_ATTR_RW
sysfs.h: Use octal permissions
component: add debugfs support
bus: simple-pm-bus: convert bool SIMPLE_PM_BUS to tristate
...
Pull x86/cache updates from Thomas Gleixner:
"A set of patches which add support for L2 cache partitioning to the
Intel RDT facility"
* 'x86-cache-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/intel_rdt: Add command line parameter to control L2_CDP
x86/intel_rdt: Enable L2 CDP in MSR IA32_L2_QOS_CFG
x86/intel_rdt: Add two new resources for L2 Code and Data Prioritization (CDP)
x86/intel_rdt: Enumerate L2 Code and Data Prioritization (CDP) feature
x86/intel_rdt: Add L2CDP support in documentation
x86/intel_rdt: Update documentation
We've removed the option, so stop talking about it.
Signed-off-by: Benjamin Gilbert <benjamin.gilbert@coreos.com>
Acked-by: Ingo Molnar <mingo@kernel.org>
Cc: Borislav Petkov <bp@suse.de>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: H. Peter Anvin <hpa@zytor.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Pull x86 pti fixes from Thomas Gleixner:
"A small set of fixes for the meltdown/spectre mitigations:
- Make kprobes aware of retpolines to prevent probes in the retpoline
thunks.
- Make the machine check exception speculation protected. MCE used to
issue an indirect call directly from the ASM entry code. Convert
that to a direct call into a C-function and issue the indirect call
from there so the compiler can add the retpoline protection,
- Make the vmexit_fill_RSB() assembly less stupid
- Fix a typo in the PTI documentation"
* 'x86-pti-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/retpoline: Optimize inline assembler for vmexit_fill_RSB
x86/pti: Document fix wrong index
kprobes/x86: Disable optimizing on the function jumps to indirect thunk
kprobes/x86: Blacklist indirect thunk functions for kprobes
retpoline: Introduce start/end markers of indirect thunk
x86/mce: Make machine check speculation protected
L2 and L3 Code and Data Prioritization (CDP) can be enabled separately.
The existing mount parameter "cdp" is only for enabling L3 CDP and will be
kept for backwards compability.
Add a new mount parameter 'cdpl2' for L2 CDP.
[ tglx: Made changelog readable ]
Signed-off-by: Fenghua Yu <fenghua.yu@intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: "Ravi V Shankar" <ravi.v.shankar@intel.com>
Cc: "Tony Luck" <tony.luck@intel.com>
Cc: Vikas" <vikas.shivappa@intel.com>
Cc: Sai Praneeth" <sai.praneeth.prakhya@intel.com>
Cc: Reinette" <reinette.chatre@intel.com>
Link: https://lkml.kernel.org/r/1513810644-78015-3-git-send-email-fenghua.yu@intel.com
With more flag bits in /proc/cpuinfo for RDT, it's better to classify the
bits for readability.
Some previously missing bits are added as well.
Signed-off-by: Fenghua Yu <fenghua.yu@intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: "Ravi V Shankar" <ravi.v.shankar@intel.com>
Cc: "Tony Luck" <tony.luck@intel.com>
Cc: Vikas" <vikas.shivappa@intel.com>
Cc: Sai Praneeth" <sai.praneeth.prakhya@intel.com>
Cc: Reinette" <reinette.chatre@intel.com>
Link: https://lkml.kernel.org/r/1513810644-78015-2-git-send-email-fenghua.yu@intel.com
Pull x86 pti updates from Thomas Gleixner:
"This contains:
- a PTI bugfix to avoid setting reserved CR3 bits when PCID is
disabled. This seems to cause issues on a virtual machine at least
and is incorrect according to the AMD manual.
- a PTI bugfix which disables the perf BTS facility if PTI is
enabled. The BTS AUX buffer is not globally visible and causes the
CPU to fault when the mapping disappears on switching CR3 to user
space. A full fix which restores BTS on PTI is non trivial and will
be worked on.
- PTI bugfixes for EFI and trusted boot which make sure that the user
space visible page table entries have the NX bit cleared
- removal of dead code in the PTI pagetable setup functions
- add PTI documentation
- add a selftest for vsyscall to verify that the kernel actually
implements what it advertises.
- a sysfs interface to expose vulnerability and mitigation
information so there is a coherent way for users to retrieve the
status.
- the initial spectre_v2 mitigations, aka retpoline:
+ The necessary ASM thunk and compiler support
+ The ASM variants of retpoline and the conversion of affected ASM
code
+ Make LFENCE serializing on AMD so it can be used as speculation
trap
+ The RSB fill after vmexit
- initial objtool support for retpoline
As I said in the status mail this is the most of the set of patches
which should go into 4.15 except two straight forward patches still on
hold:
- the retpoline add on of LFENCE which waits for ACKs
- the RSB fill after context switch
Both should be ready to go early next week and with that we'll have
covered the major holes of spectre_v2 and go back to normality"
* 'x86-pti-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (28 commits)
x86,perf: Disable intel_bts when PTI
security/Kconfig: Correct the Documentation reference for PTI
x86/pti: Fix !PCID and sanitize defines
selftests/x86: Add test_vsyscall
x86/retpoline: Fill return stack buffer on vmexit
x86/retpoline/irq32: Convert assembler indirect jumps
x86/retpoline/checksum32: Convert assembler indirect jumps
x86/retpoline/xen: Convert Xen hypercall indirect jumps
x86/retpoline/hyperv: Convert assembler indirect jumps
x86/retpoline/ftrace: Convert ftrace assembler indirect jumps
x86/retpoline/entry: Convert entry assembler indirect jumps
x86/retpoline/crypto: Convert crypto assembler indirect jumps
x86/spectre: Add boot time option to select Spectre v2 mitigation
x86/retpoline: Add initial retpoline support
objtool: Allow alternatives to be ignored
objtool: Detect jumps to retpoline thunks
x86/pti: Make unpoison of pgd for trusted boot work for real
x86/alternatives: Fix optimize_nops() checking
sysfs/cpu: Fix typos in vulnerability documentation
x86/cpu/AMD: Use LFENCE_RDTSC in preference to MFENCE_RDTSC
...
Add some details about how PTI works, what some of the downsides
are, and how to debug it when things go wrong.
Also document the kernel parameter: 'pti/nopti'.
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Randy Dunlap <rdunlap@infradead.org>
Reviewed-by: Kees Cook <keescook@chromium.org>
Cc: Moritz Lipp <moritz.lipp@iaik.tugraz.at>
Cc: Daniel Gruss <daniel.gruss@iaik.tugraz.at>
Cc: Michael Schwarz <michael.schwarz@iaik.tugraz.at>
Cc: Richard Fellner <richard.fellner@student.tugraz.at>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Hugh Dickins <hughd@google.com>
Cc: Andi Lutomirsky <luto@kernel.org>
Cc: stable@vger.kernel.org
Link: https://lkml.kernel.org/r/20180105174436.1BC6FA2B@viggo.jf.intel.com
Pull more x86 pti fixes from Thomas Gleixner:
"Another small stash of fixes for fallout from the PTI work:
- Fix the modules vs. KASAN breakage which was caused by making
MODULES_END depend of the fixmap size. That was done when the cpu
entry area moved into the fixmap, but now that we have a separate
map space for that this is causing more issues than it solves.
- Use the proper cache flush methods for the debugstore buffers as
they are mapped/unmapped during runtime and not statically mapped
at boot time like the rest of the cpu entry area.
- Make the map layout of the cpu_entry_area consistent for 4 and 5
level paging and fix the KASLR vaddr_end wreckage.
- Use PER_CPU_EXPORT for per cpu variable and while at it unbreak
nvidia gfx drivers by dropping the GPL export. The subject line of
the commit tells it the other way around, but I noticed that too
late.
- Fix the ASM alternative macros so they can be used in the middle of
an inline asm block.
- Rename the BUG_CPU_INSECURE flag to BUG_CPU_MELTDOWN so the attack
vector is properly identified. The Spectre mitigations will come
with their own bug bits later"
* 'x86-pti-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/pti: Rename BUG_CPU_INSECURE to BUG_CPU_MELTDOWN
x86/alternatives: Add missing '\n' at end of ALTERNATIVE inline asm
x86/tlb: Drop the _GPL from the cpu_tlbstate export
x86/events/intel/ds: Use the proper cache flush method for mapping ds buffers
x86/kaslr: Fix the vaddr_end mess
x86/mm: Map cpu_entry_area at the same place on 4/5 level
x86/mm: Set MODULES_END to 0xffffffffff000000
vaddr_end for KASLR is only documented in the KASLR code itself and is
adjusted depending on config options. So it's not surprising that a change
of the memory layout causes KASLR to have the wrong vaddr_end. This can map
arbitrary stuff into other areas causing hard to understand problems.
Remove the whole ifdef magic and define the start of the cpu_entry_area to
be the end of the KASLR vaddr range.
Add documentation to that effect.
Fixes: 92a0f81d89 ("x86/cpu_entry_area: Move it out of the fixmap")
Reported-by: Benjamin Gilbert <benjamin.gilbert@coreos.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Benjamin Gilbert <benjamin.gilbert@coreos.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: stable <stable@vger.kernel.org>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Garnier <thgarnie@google.com>,
Cc: Alexander Kuleshov <kuleshovmail@gmail.com>
Link: https://lkml.kernel.org/r/alpine.DEB.2.20.1801041320360.1771@nanos
There is no reason for 4 and 5 level pagetables to have a different
layout. It just makes determining vaddr_end for KASLR harder than
necessary.
Fixes: 92a0f81d89 ("x86/cpu_entry_area: Move it out of the fixmap")
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Benjamin Gilbert <benjamin.gilbert@coreos.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: stable <stable@vger.kernel.org>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Garnier <thgarnie@google.com>,
Cc: Alexander Kuleshov <kuleshovmail@gmail.com>
Link: https://lkml.kernel.org/r/alpine.DEB.2.20.1801041320360.1771@nanos
Since f06bdd4001 ("x86/mm: Adapt MODULES_END based on fixmap section size")
kasan_mem_to_shadow(MODULES_END) could be not aligned to a page boundary.
So passing page unaligned address to kasan_populate_zero_shadow() have two
possible effects:
1) It may leave one page hole in supposed to be populated area. After commit
21506525fb ("x86/kasan/64: Teach KASAN about the cpu_entry_area") that
hole happens to be in the shadow covering fixmap area and leads to crash:
BUG: unable to handle kernel paging request at fffffbffffe8ee04
RIP: 0010:check_memory_region+0x5c/0x190
Call Trace:
<NMI>
memcpy+0x1f/0x50
ghes_copy_tofrom_phys+0xab/0x180
ghes_read_estatus+0xfb/0x280
ghes_notify_nmi+0x2b2/0x410
nmi_handle+0x115/0x2c0
default_do_nmi+0x57/0x110
do_nmi+0xf8/0x150
end_repeat_nmi+0x1a/0x1e
Note, the crash likely disappeared after commit 92a0f81d89, which
changed kasan_populate_zero_shadow() call the way it was before
commit 21506525fb.
2) Attempt to load module near MODULES_END will fail, because
__vmalloc_node_range() called from kasan_module_alloc() will hit the
WARN_ON(!pte_none(*pte)) in the vmap_pte_range() and bail out with error.
To fix this we need to make kasan_mem_to_shadow(MODULES_END) page aligned
which means that MODULES_END should be 8*PAGE_SIZE aligned.
The whole point of commit f06bdd4001 was to move MODULES_END down if
NR_CPUS is big, so the cpu_entry_area takes a lot of space.
But since 92a0f81d89 ("x86/cpu_entry_area: Move it out of the fixmap")
the cpu_entry_area is no longer in fixmap, so we could just set
MODULES_END to a fixed 8*PAGE_SIZE aligned address.
Fixes: f06bdd4001 ("x86/mm: Adapt MODULES_END based on fixmap section size")
Reported-by: Jakub Kicinski <kubakici@wp.pl>
Signed-off-by: Andrey Ryabinin <aryabinin@virtuozzo.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: stable@vger.kernel.org
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Thomas Garnier <thgarnie@google.com>
Link: https://lkml.kernel.org/r/20171228160620.23818-1-aryabinin@virtuozzo.com
Pull x86 page table isolation updates from Thomas Gleixner:
"This is the final set of enabling page table isolation on x86:
- Infrastructure patches for handling the extra page tables.
- Patches which map the various bits and pieces which are required to
get in and out of user space into the user space visible page
tables.
- The required changes to have CR3 switching in the entry/exit code.
- Optimizations for the CR3 switching along with documentation how
the ASID/PCID mechanism works.
- Updates to dump pagetables to cover the user space page tables for
W+X scans and extra debugfs files to analyze both the kernel and
the user space visible page tables
The whole functionality is compile time controlled via a config switch
and can be turned on/off on the command line as well"
* 'x86-pti-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (32 commits)
x86/ldt: Make the LDT mapping RO
x86/mm/dump_pagetables: Allow dumping current pagetables
x86/mm/dump_pagetables: Check user space page table for WX pages
x86/mm/dump_pagetables: Add page table directory to the debugfs VFS hierarchy
x86/mm/pti: Add Kconfig
x86/dumpstack: Indicate in Oops whether PTI is configured and enabled
x86/mm: Clarify the whole ASID/kernel PCID/user PCID naming
x86/mm: Use INVPCID for __native_flush_tlb_single()
x86/mm: Optimize RESTORE_CR3
x86/mm: Use/Fix PCID to optimize user/kernel switches
x86/mm: Abstract switching CR3
x86/mm: Allow flushing for future ASID switches
x86/pti: Map the vsyscall page if needed
x86/pti: Put the LDT in its own PGD if PTI is on
x86/mm/64: Make a full PGD-entry size hole in the memory map
x86/events/intel/ds: Map debug buffers in cpu_entry_area
x86/cpu_entry_area: Add debugstore entries to cpu_entry_area
x86/mm/pti: Map ESPFIX into user space
x86/mm/pti: Share entry text PMD
x86/entry: Align entry text section to PMD boundary
...
With PTI enabled, the LDT must be mapped in the usermode tables somewhere.
The LDT is per process, i.e. per mm.
An earlier approach mapped the LDT on context switch into a fixmap area,
but that's a big overhead and exhausted the fixmap space when NR_CPUS got
big.
Take advantage of the fact that there is an address space hole which
provides a completely unused pgd. Use this pgd to manage per-mm LDT
mappings.
This has a down side: the LDT isn't (currently) randomized, and an attack
that can write the LDT is instant root due to call gates (thanks, AMD, for
leaving call gates in AMD64 but designing them wrong so they're only useful
for exploits). This can be mitigated by making the LDT read-only or
randomizing the mapping, either of which is strightforward on top of this
patch.
This will significantly slow down LDT users, but that shouldn't matter for
important workloads -- the LDT is only used by DOSEMU(2), Wine, and very
old libc implementations.
[ tglx: Cleaned it up. ]
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: David Laight <David.Laight@aculab.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: Kirill A. Shutemov <kirill@shutemov.name>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Shrink vmalloc space from 16384TiB to 12800TiB to enlarge the hole starting
at 0xff90000000000000 to be a full PGD entry.
A subsequent patch will use this hole for the pagetable isolation LDT
alias.
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: David Laight <David.Laight@aculab.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: Kirill A. Shutemov <kirill@shutemov.name>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Pull x86 PTI preparatory patches from Thomas Gleixner:
"Todays Advent calendar window contains twentyfour easy to digest
patches. The original plan was to have twenty three matching the date,
but a late fixup made that moot.
- Move the cpu_entry_area mapping out of the fixmap into a separate
address space. That's necessary because the fixmap becomes too big
with NRCPUS=8192 and this caused already subtle and hard to
diagnose failures.
The top most patch is fresh from today and cures a brain slip of
that tall grumpy german greybeard, who ignored the intricacies of
32bit wraparounds.
- Limit the number of CPUs on 32bit to 64. That's insane big already,
but at least it's small enough to prevent address space issues with
the cpu_entry_area map, which have been observed and debugged with
the fixmap code
- A few TLB flush fixes in various places plus documentation which of
the TLB functions should be used for what.
- Rename the SYSENTER stack to CPU_ENTRY_AREA stack as it is used for
more than sysenter now and keeping the name makes backtraces
confusing.
- Prevent LDT inheritance on exec() by moving it to arch_dup_mmap(),
which is only invoked on fork().
- Make vysycall more robust.
- A few fixes and cleanups of the debug_pagetables code. Check
PAGE_PRESENT instead of checking the PTE for 0 and a cleanup of the
C89 initialization of the address hint array which already was out
of sync with the index enums.
- Move the ESPFIX init to a different place to prepare for PTI.
- Several code moves with no functional change to make PTI
integration simpler and header files less convoluted.
- Documentation fixes and clarifications"
* 'x86-pti-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (24 commits)
x86/cpu_entry_area: Prevent wraparound in setup_cpu_entry_area_ptes() on 32bit
init: Invoke init_espfix_bsp() from mm_init()
x86/cpu_entry_area: Move it out of the fixmap
x86/cpu_entry_area: Move it to a separate unit
x86/mm: Create asm/invpcid.h
x86/mm: Put MMU to hardware ASID translation in one place
x86/mm: Remove hard-coded ASID limit checks
x86/mm: Move the CR3 construction functions to tlbflush.h
x86/mm: Add comments to clarify which TLB-flush functions are supposed to flush what
x86/mm: Remove superfluous barriers
x86/mm: Use __flush_tlb_one() for kernel memory
x86/microcode: Dont abuse the TLB-flush interface
x86/uv: Use the right TLB-flush API
x86/entry: Rename SYSENTER_stack to CPU_ENTRY_AREA_entry_stack
x86/doc: Remove obvious weirdnesses from the x86 MM layout documentation
x86/mm/64: Improve the memory map documentation
x86/ldt: Prevent LDT inheritance on exec
x86/ldt: Rework locking
arch, mm: Allow arch_dup_mmap() to fail
x86/vsyscall/64: Warn and fail vsyscall emulation in NATIVE mode
...
Put the cpu_entry_area into a separate P4D entry. The fixmap gets too big
and 0-day already hit a case where the fixmap PTEs were cleared by
cleanup_highmap().
Aside of that the fixmap API is a pain as it's all backwards.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The old docs had the vsyscall range wrong and were missing the fixmap.
Fix both.
There used to be 8 MB reserved for future vsyscalls, but that's long gone.
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: David Laight <David.Laight@aculab.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: Kirill A. Shutemov <kirill@shutemov.name>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Now that CPUs that implement Memory Protection Keys are publicly
available we can be a bit less oblique about where it is available.
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/20171111001228.DC748A10@viggo.jf.intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Pull x86 cache resource updates from Thomas Gleixner:
"This update provides updates to RDT:
- A diagnostic framework for the Resource Director Technology (RDT)
user interface (sysfs). The failure modes of the user interface are
hard to diagnose from the error codes. An extra last command status
file provides now sensible textual information about the failure so
its simpler to use.
- A few minor cleanups and updates in the RDT code"
* 'x86-cache-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/intel_rdt: Fix a silent failure when writing zero value schemata
x86/intel_rdt: Fix potential deadlock during resctrl mount
x86/intel_rdt: Fix potential deadlock during resctrl unmount
x86/intel_rdt: Initialize bitmask of shareable resource if CDP enabled
x86/intel_rdt: Remove redundant assignment
x86/intel_rdt/cqm: Make integer rmid_limbo_count static
x86/intel_rdt: Add documentation for "info/last_cmd_status"
x86/intel_rdt: Add diagnostics when making directories
x86/intel_rdt: Add diagnostics when writing the cpus file
x86/intel_rdt: Add diagnostics when writing the tasks file
x86/intel_rdt: Add diagnostics when writing the schemata file
x86/intel_rdt: Add framework for better RDT UI diagnostics
We are going to support boot-time switching between 4- and 5-level
paging. For KASAN it means we cannot have different KASAN_SHADOW_OFFSET
for different paging modes: the constant is passed to gcc to generate
code and cannot be changed at runtime.
This patch changes KASAN code to use 0xdffffc0000000000 as shadow offset
for both 4- and 5-level paging.
For 5-level paging it means that shadow memory region is not aligned to
PGD boundary anymore and we have to handle unaligned parts of the region
properly.
In addition, we have to exclude paravirt code from KASAN instrumentation
as we now use set_pgd() before KASAN is fully ready.
[kirill.shutemov@linux.intel.com: clenaup, changelog message]
Signed-off-by: Andrey Ryabinin <aryabinin@virtuozzo.com>
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Borislav Petkov <bp@suse.de>
Cc: Cyrill Gorcunov <gorcunov@openvz.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-mm@kvack.org
Link: http://lkml.kernel.org/r/20170929140821.37654-4-kirill.shutemov@linux.intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Rename the unwinder config options from:
CONFIG_ORC_UNWINDER
CONFIG_FRAME_POINTER_UNWINDER
CONFIG_GUESS_UNWINDER
to:
CONFIG_UNWINDER_ORC
CONFIG_UNWINDER_FRAME_POINTER
CONFIG_UNWINDER_GUESS
... in order to give them a more logical config namespace.
Suggested-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/73972fc7e2762e91912c6b9584582703d6f1b8cc.1507924831.git.jpoimboe@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
New file in the "info" directory helps diagnose what went wrong
when using the /sys/fs/resctrl file system
Signed-off-by: Tony Luck <tony.luck@intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Fenghua Yu <fenghua.yu@intel.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Vikas Shivappa <vikas.shivappa@intel.com>
Cc: Boris Petkov <bp@suse.de>
Cc: Reinette Chatre <reinette.chatre@intel.com>
Link: https://lkml.kernel.org/r/387e78e444582403c2454479e576caf5721a363f.1506382469.git.tony.luck@intel.com
Pull x86 cache quality monitoring update from Thomas Gleixner:
"This update provides a complete rewrite of the Cache Quality
Monitoring (CQM) facility.
The existing CQM support was duct taped into perf with a lot of issues
and the attempts to fix those turned out to be incomplete and
horrible.
After lengthy discussions it was decided to integrate the CQM support
into the Resource Director Technology (RDT) facility, which is the
obvious choise as in hardware CQM is part of RDT. This allowed to add
Memory Bandwidth Monitoring support on top.
As a result the mechanisms for allocating cache/memory bandwidth and
the corresponding monitoring mechanisms are integrated into a single
management facility with a consistent user interface"
* 'x86-cache-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (37 commits)
x86/intel_rdt: Turn off most RDT features on Skylake
x86/intel_rdt: Add command line options for resource director technology
x86/intel_rdt: Move special case code for Haswell to a quirk function
x86/intel_rdt: Remove redundant ternary operator on return
x86/intel_rdt/cqm: Improve limbo list processing
x86/intel_rdt/mbm: Fix MBM overflow handler during CPU hotplug
x86/intel_rdt: Modify the intel_pqr_state for better performance
x86/intel_rdt/cqm: Clear the default RMID during hotcpu
x86/intel_rdt: Show bitmask of shareable resource with other executing units
x86/intel_rdt/mbm: Handle counter overflow
x86/intel_rdt/mbm: Add mbm counter initialization
x86/intel_rdt/mbm: Basic counting of MBM events (total and local)
x86/intel_rdt/cqm: Add CPU hotplug support
x86/intel_rdt/cqm: Add sched_in support
x86/intel_rdt: Introduce rdt_enable_key for scheduling
x86/intel_rdt/cqm: Add mount,umount support
x86/intel_rdt/cqm: Add rmdir support
x86/intel_rdt: Separate the ctrl bits from rmdir
x86/intel_rdt/cqm: Add mon_data
x86/intel_rdt: Prepare for RDT monitor data support
...
Pull x86 mm changes from Ingo Molnar:
"PCID support, 5-level paging support, Secure Memory Encryption support
The main changes in this cycle are support for three new, complex
hardware features of x86 CPUs:
- Add 5-level paging support, which is a new hardware feature on
upcoming Intel CPUs allowing up to 128 PB of virtual address space
and 4 PB of physical RAM space - a 512-fold increase over the old
limits. (Supercomputers of the future forecasting hurricanes on an
ever warming planet can certainly make good use of more RAM.)
Many of the necessary changes went upstream in previous cycles,
v4.14 is the first kernel that can enable 5-level paging.
This feature is activated via CONFIG_X86_5LEVEL=y - disabled by
default.
(By Kirill A. Shutemov)
- Add 'encrypted memory' support, which is a new hardware feature on
upcoming AMD CPUs ('Secure Memory Encryption', SME) allowing system
RAM to be encrypted and decrypted (mostly) transparently by the
CPU, with a little help from the kernel to transition to/from
encrypted RAM. Such RAM should be more secure against various
attacks like RAM access via the memory bus and should make the
radio signature of memory bus traffic harder to intercept (and
decrypt) as well.
This feature is activated via CONFIG_AMD_MEM_ENCRYPT=y - disabled
by default.
(By Tom Lendacky)
- Enable PCID optimized TLB flushing on newer Intel CPUs: PCID is a
hardware feature that attaches an address space tag to TLB entries
and thus allows to skip TLB flushing in many cases, even if we
switch mm's.
(By Andy Lutomirski)
All three of these features were in the works for a long time, and
it's coincidence of the three independent development paths that they
are all enabled in v4.14 at once"
* 'x86-mm-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (65 commits)
x86/mm: Enable RCU based page table freeing (CONFIG_HAVE_RCU_TABLE_FREE=y)
x86/mm: Use pr_cont() in dump_pagetable()
x86/mm: Fix SME encryption stack ptr handling
kvm/x86: Avoid clearing the C-bit in rsvd_bits()
x86/CPU: Align CR3 defines
x86/mm, mm/hwpoison: Clear PRESENT bit for kernel 1:1 mappings of poison pages
acpi, x86/mm: Remove encryption mask from ACPI page protection type
x86/mm, kexec: Fix memory corruption with SME on successive kexecs
x86/mm/pkeys: Fix typo in Documentation/x86/protection-keys.txt
x86/mm/dump_pagetables: Speed up page tables dump for CONFIG_KASAN=y
x86/mm: Implement PCID based optimization: try to preserve old TLB entries using PCID
x86: Enable 5-level paging support via CONFIG_X86_5LEVEL=y
x86/mm: Allow userspace have mappings above 47-bit
x86/mm: Prepare to expose larger address space to userspace
x86/mpx: Do not allow MPX if we have mappings above 47-bit
x86/mm: Rename tasksize_32bit/64bit to task_size_32bit/64bit()
x86/xen: Redefine XEN_ELFNOTE_INIT_P2M using PUD_SIZE * PTRS_PER_PUD
x86/mm/dump_pagetables: Fix printout of p4d level
x86/mm/dump_pagetables: Generalize address normalization
x86/boot: Fix memremap() related build failure
...
Pull x86 microcode loading updates from Ingo Molnar:
"Update documentation, improve robustness and fix a memory leak"
* 'x86-microcode-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/microcode/intel: Improve microcode patches saving flow
x86/microcode: Document the three loading methods
x86/microcode/AMD: Free unneeded patch before exit from update_cache()
CPUID.(EAX=0x10, ECX=res#):EBX[31:0] reports a bit mask for a resource.
Each set bit within the length of the CBM indicates the corresponding
unit of the resource allocation may be used by other entities in the
platform (e.g. an integrated graphics engine or hardware units outside
the processor core and have direct access to the resource). Each
cleared bit within the length of the CBM indicates the corresponding
allocation unit can be configured to implement a priority-based
allocation scheme without interference with other hardware agents in
the system. Bits outside the length of the CBM are reserved.
More details on the bit mask are described in x86 Software Developer's
Manual.
The bitmask is shown in "info" directory for each resource. It's
up to user to decide how to use the bitmask within a CBM in a partition
to share or isolate a resource with other executing units.
Suggested-by: Reinette Chatre <reinette.chatre@intel.com>
Signed-off-by: Fenghua Yu <fenghua.yu@intel.com>
Signed-off-by: Tony Luck <tony.luck@intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: ravi.v.shankar@intel.com
Cc: peterz@infradead.org
Cc: eranian@google.com
Cc: ak@linux.intel.com
Cc: davidcc@google.com
Cc: vikas.shivappa@linux.intel.com
Link: http://lkml.kernel.org/r/20170725223904.12996-1-tony.luck@intel.com
Add the new ORC unwinder which is enabled by CONFIG_ORC_UNWINDER=y.
It plugs into the existing x86 unwinder framework.
It relies on objtool to generate the needed .orc_unwind and
.orc_unwind_ip sections.
For more details on why ORC is used instead of DWARF, see
Documentation/x86/orc-unwinder.txt - but the short version is
that it's a simplified, fundamentally more robust debugninfo
data structure, which also allows up to two orders of magnitude
faster lookups than the DWARF unwinder - which matters to
profiling workloads like perf.
Thanks to Andy Lutomirski for the performance improvement ideas:
splitting the ORC unwind table into two parallel arrays and creating a
fast lookup table to search a subset of the unwind table.
Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Jiri Slaby <jslaby@suse.cz>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: live-patching@vger.kernel.org
Link: http://lkml.kernel.org/r/0a6cbfb40f8da99b7a45a1a8302dc6aef16ec812.1500938583.git.jpoimboe@redhat.com
[ Extended the changelog. ]
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Replace PKEY_DENY_WRITE with PKEY_DISABLE_WRITE,
to match the source code.
Signed-off-by: Wang Kai <morgan.wang@huawei.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: corbet@lwn.net
Cc: dave.hansen@intel.com
Cc: dave.hansen@linux.intel.com
Cc: linux-doc@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Paul Menzel recently asked how to load microcode on a system and I realized
that we don't really have all the methods written down somewhere.
Do that, so people can go and look them up.
Reported-by: Paul Menzel <pmenzel@molgen.mpg.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/20170724101228.17326-3-bp@alien8.de
[ Fix whitespace noise in the new description. ]
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Most of things are in place and we can enable support for 5-level paging.
The patch makes XEN_PV and XEN_PVH dependent on !X86_5LEVEL. Both are
not ready to work with 5-level paging.
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Reviewed-by: Juergen Gross <jgross@suse.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-arch@vger.kernel.org
Cc: linux-mm@kvack.org
Link: http://lkml.kernel.org/r/20170716225954.74185-9-kirill.shutemov@linux.intel.com
[ Minor readability edits. ]
Signed-off-by: Ingo Molnar <mingo@kernel.org>