In the request_key() upcall mechanism there's a dependency loop by which if
a key type driver overrides the ->request_key hook and the userspace side
manages to lose the authorisation key, the auth key and the internal
construction record (struct key_construction) can keep each other pinned.
Fix this by the following changes:
(1) Killing off the construction record and using the auth key instead.
(2) Including the operation name in the auth key payload and making the
payload available outside of security/keys/.
(3) The ->request_key hook is given the authkey instead of the cons
record and operation name.
Changes (2) and (3) allow the auth key to naturally be cleaned up if the
keyring it is in is destroyed or cleared or the auth key is unlinked.
Fixes: 7ee02a316600 ("keys: Fix dependency loop between construction record and auth key")
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: James Morris <james.morris@microsoft.com>
Provide five new operations in the key_type struct that can be used to
provide access to asymmetric key operations. These will be implemented for
the asymmetric key type in a later patch and may refer to a key retained in
RAM by the kernel or a key retained in crypto hardware.
int (*asym_query)(const struct kernel_pkey_params *params,
struct kernel_pkey_query *info);
int (*asym_eds_op)(struct kernel_pkey_params *params,
const void *in, void *out);
int (*asym_verify_signature)(struct kernel_pkey_params *params,
const void *in, const void *in2);
Since encrypt, decrypt and sign are identical in their interfaces, they're
rolled together in the asym_eds_op() operation and there's an operation ID
in the params argument to distinguish them.
Verify is different in that we supply the data and the signature instead
and get an error value (or 0) as the only result on the expectation that
this may well be how a hardware crypto device may work.
Signed-off-by: David Howells <dhowells@redhat.com>
Tested-by: Marcel Holtmann <marcel@holtmann.org>
Reviewed-by: Marcel Holtmann <marcel@holtmann.org>
Reviewed-by: Denis Kenzior <denkenz@gmail.com>
Tested-by: Denis Kenzior <denkenz@gmail.com>
Signed-off-by: James Morris <james.morris@microsoft.com>
The 'struct key_preparsed_payload' will use 'time_t' which we will
try to remove in the kernel, since 'time_t' is not year 2038 safe on
32bits systems.
Thus this patch replaces 'time_t' with 'time64_t' which is year 2038
safe on 32 bits system for 'struct key_preparsed_payload', moreover
we should use the 'TIME64_MAX' macro to initialize the 'time64_t'
type variable.
Signed-off-by: Baolin Wang <baolin.wang@linaro.org>
Reviewed-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: David Howells <dhowells@redhat.com>
Reviewed-by: James Morris <james.l.morris@oracle.com>
This marks many critical kernel structures for randomization. These are
structures that have been targeted in the past in security exploits, or
contain functions pointers, pointers to function pointer tables, lists,
workqueues, ref-counters, credentials, permissions, or are otherwise
sensitive. This initial list was extracted from Brad Spengler/PaX Team's
code in the last public patch of grsecurity/PaX based on my understanding
of the code. Changes or omissions from the original code are mine and
don't reflect the original grsecurity/PaX code.
Left out of this list is task_struct, which requires special handling
and will be covered in a subsequent patch.
Signed-off-by: Kees Cook <keescook@chromium.org>
The restrict_link functions used to validate keys as they are linked
to a keyring can be associated with specific key types. Each key type
may be loaded (or not) at runtime, so lookup of restrict_link
functions needs to be part of the key type implementation to ensure
that the requested keys can be examined.
Signed-off-by: Mat Martineau <mathew.j.martineau@linux.intel.com>
Remove KEY_FLAG_TRUSTED and KEY_ALLOC_TRUSTED as they're no longer
meaningful. Also we can drop the trusted flag from the preparse structure.
Given this, we no longer need to pass the key flags through to
restrict_link().
Further, we can now get rid of keyring_restrict_trusted_only() also.
Signed-off-by: David Howells <dhowells@redhat.com>
Make the key matching functions pointed to by key_match_data::cmp return bool
rather than int.
Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: Vivek Goyal <vgoyal@redhat.com>
A previous patch added a ->match_preparse() method to the key type. This is
allowed to override the function called by the iteration algorithm.
Therefore, we can just set a default that simply checks for an exact match of
the key description with the original criterion data and allow match_preparse
to override it as needed.
The key_type::match op is then redundant and can be removed, as can the
user_match() function.
Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: Vivek Goyal <vgoyal@redhat.com>
Remove key_type::def_lookup_type as it's no longer used. The information now
defaults to KEYRING_SEARCH_LOOKUP_DIRECT but may be overridden by
type->match_preparse().
Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: Vivek Goyal <vgoyal@redhat.com>
Preparse the match data. This provides several advantages:
(1) The preparser can reject invalid criteria up front.
(2) The preparser can convert the criteria to binary data if necessary (the
asymmetric key type really wants to do binary comparison of the key IDs).
(3) The preparser can set the type of search to be performed. This means
that it's not then a one-off setting in the key type.
(4) The preparser can set an appropriate comparator function.
Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: Vivek Goyal <vgoyal@redhat.com>
Allow a key type's preparsing routine to set the expiry time for a key.
Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: Steve Dickson <steved@redhat.com>
Acked-by: Jeff Layton <jlayton@primarydata.com>
Reviewed-by: Sage Weil <sage@redhat.com>
struct key_preparsed_payload should have two payload pointers to correspond
with those in struct key.
Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: Steve Dickson <steved@redhat.com>
Acked-by: Jeff Layton <jlayton@primarydata.com>
Reviewed-by: Sage Weil <sage@redhat.com>
Provide a generic instantiation function for key types that use the preparse
hook. This makes it easier to prereserve key quota before keyrings get locked
to retain the new key.
Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: Steve Dickson <steved@redhat.com>
Acked-by: Jeff Layton <jlayton@primarydata.com>
Reviewed-by: Sage Weil <sage@redhat.com>
Add KEY_FLAG_TRUSTED to indicate that a key either comes from a trusted source
or had a cryptographic signature chain that led back to a trusted key the
kernel already possessed.
Add KEY_FLAGS_TRUSTED_ONLY to indicate that a keyring will only accept links to
keys marked with KEY_FLAGS_TRUSTED.
Signed-off-by: David Howells <dhowells@redhat.com>
Reviewed-by: Kees Cook <keescook@chromium.org>
Search functions pass around a bunch of arguments, each of which gets copied
with each call. Introduce a search context structure to hold these.
Whilst we're at it, create a search flag that indicates whether the search
should be directly to the description or whether it should iterate through all
keys looking for a non-description match.
This will be useful when keyrings use a generic data struct with generic
routines to manage their content as the search terms can just be passed
through to the iterator callback function.
Also, for future use, the data to be supplied to the match function is
separated from the description pointer in the search context. This makes it
clear which is being supplied.
Signed-off-by: David Howells <dhowells@redhat.com>
Give the key type the opportunity to preparse the payload prior to the
instantiation and update routines being called. This is done with the
provision of two new key type operations:
int (*preparse)(struct key_preparsed_payload *prep);
void (*free_preparse)(struct key_preparsed_payload *prep);
If the first operation is present, then it is called before key creation (in
the add/update case) or before the key semaphore is taken (in the update and
instantiate cases). The second operation is called to clean up if the first
was called.
preparse() is given the opportunity to fill in the following structure:
struct key_preparsed_payload {
char *description;
void *type_data[2];
void *payload;
const void *data;
size_t datalen;
size_t quotalen;
};
Before the preparser is called, the first three fields will have been cleared,
the payload pointer and size will be stored in data and datalen and the default
quota size from the key_type struct will be stored into quotalen.
The preparser may parse the payload in any way it likes and may store data in
the type_data[] and payload fields for use by the instantiate() and update()
ops.
The preparser may also propose a description for the key by attaching it as a
string to the description field. This can be used by passing a NULL or ""
description to the add_key() system call or the key_create_or_update()
function. This cannot work with request_key() as that required the description
to tell the upcall about the key to be created.
This, for example permits keys that store PGP public keys to generate their own
name from the user ID and public key fingerprint in the key.
The instantiate() and update() operations are then modified to look like this:
int (*instantiate)(struct key *key, struct key_preparsed_payload *prep);
int (*update)(struct key *key, struct key_preparsed_payload *prep);
and the new payload data is passed in *prep, whether or not it was preparsed.
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
linux/key-type.h needs to #include linux/errno.h as it refers to ENOKEY.
Without this, with sparc's allmodconfig in one of my test trees, the following
error occurs:
include/linux/key-type.h: In function 'key_negate_and_link':
include/linux/key-type.h:122:43: error: 'ENOKEY' undeclared (first use in this function)
include/linux/key-type.h:122:43: note: each undeclared identifier is reported only once for each fun
Reported-by: Fengguang Wu <fengguang.wu@intel.com>
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: James Morris <james.l.morris@oracle.com>
Give keys their own lockdep class to differentiate them from each other in case
a key of one type has to refer to a key of another type.
Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: Mimi Zohar <zohar@us.ibm.com>
Signed-off-by: James Morris <jmorris@namei.org>
Add a new keyctl op to reject a key with a specified error code. This works
much the same as negating a key, and so keyctl_negate_key() is made a special
case of keyctl_reject_key(). The difference is that keyctl_negate_key()
selects ENOKEY as the error to be reported.
Typically the key would be rejected with EKEYEXPIRED, EKEYREVOKED or
EKEYREJECTED, but this is not mandatory.
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: James Morris <jmorris@namei.org>
Add a key type operation to permit the key type to vet the description of a new
key that key_alloc() is about to allocate. The operation may reject the
description if it wishes with an error of its choosing. If it does this, the
key will not be allocated.
Signed-off-by: David Howells <dhowells@redhat.com>
Reviewed-by: Mimi Zohar <zohar@us.ibm.com>
Signed-off-by: James Morris <jmorris@namei.org>
Make request_key() and co fundamentally asynchronous to make it easier for
NFS to make use of them. There are now accessor functions that do
asynchronous constructions, a wait function to wait for construction to
complete, and a completion function for the key type to indicate completion
of construction.
Note that the construction queue is now gone. Instead, keys under
construction are linked in to the appropriate keyring in advance, and that
anyone encountering one must wait for it to be complete before they can use
it. This is done automatically for userspace.
The following auxiliary changes are also made:
(1) Key type implementation stuff is split from linux/key.h into
linux/key-type.h.
(2) AF_RXRPC provides a way to allocate null rxrpc-type keys so that AFS does
not need to call key_instantiate_and_link() directly.
(3) Adjust the debugging macros so that they're -Wformat checked even if
they are disabled, and make it so they can be enabled simply by defining
__KDEBUG to be consistent with other code of mine.
(3) Documentation.
[alan@lxorguk.ukuu.org.uk: keys: missing word in documentation]
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: Alan Cox <alan@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>