Upadate the last user of task_detached(), wait_task_zombie(), to
use thread_group_leader() and kill task_detached().
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Reviewed-by: Tejun Heo <tj@kernel.org>
Change other callers of do_notify_parent() to check the value it
returns, this makes the subsequent task_detached() unnecessary.
Mark do_notify_parent() as __must_check.
Use thread_group_leader() instead of !task_detached() to check
if we need to notify the real parent in wait_task_zombie().
Remove the stale comment in release_task(). "just for sanity" is
no longer true, we have to set EXIT_DEAD to avoid the races with
do_wait().
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Acked-by: Tejun Heo <tj@kernel.org>
- change do_notify_parent() to return a boolean, true if the task should
be reaped because its parent ignores SIGCHLD.
- update the only caller which checks the returned value, exit_notify().
This temporary uglifies exit_notify() even more, will be cleanuped by
the next change.
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Acked-by: Tejun Heo <tj@kernel.org>
The previous patch implemented async notification for ptrace but it
only worked while trace is running. This patch introduces
PTRACE_LISTEN which is suggested by Oleg Nestrov.
It's allowed iff tracee is in STOP trap and puts tracee into
quasi-running state - tracee never really runs but wait(2) and
ptrace(2) consider it to be running. While ptracer is listening,
tracee is allowed to re-enter STOP to notify an async event.
Listening state is cleared on the first notification. Ptracer can
also clear it by issuing INTERRUPT - tracee will re-trap into STOP
with listening state cleared.
This allows ptracer to monitor group stop state without running tracee
- use INTERRUPT to put tracee into STOP trap, issue LISTEN and then
wait(2) to wait for the next group stop event. When it happens,
PTRACE_GETSIGINFO provides information to determine the current state.
Test program follows.
#define PTRACE_SEIZE 0x4206
#define PTRACE_INTERRUPT 0x4207
#define PTRACE_LISTEN 0x4208
#define PTRACE_SEIZE_DEVEL 0x80000000
static const struct timespec ts1s = { .tv_sec = 1 };
int main(int argc, char **argv)
{
pid_t tracee, tracer;
int i;
tracee = fork();
if (!tracee)
while (1)
pause();
tracer = fork();
if (!tracer) {
siginfo_t si;
ptrace(PTRACE_SEIZE, tracee, NULL,
(void *)(unsigned long)PTRACE_SEIZE_DEVEL);
ptrace(PTRACE_INTERRUPT, tracee, NULL, NULL);
repeat:
waitid(P_PID, tracee, NULL, WSTOPPED);
ptrace(PTRACE_GETSIGINFO, tracee, NULL, &si);
if (!si.si_code) {
printf("tracer: SIG %d\n", si.si_signo);
ptrace(PTRACE_CONT, tracee, NULL,
(void *)(unsigned long)si.si_signo);
goto repeat;
}
printf("tracer: stopped=%d signo=%d\n",
si.si_signo != SIGTRAP, si.si_signo);
if (si.si_signo != SIGTRAP)
ptrace(PTRACE_LISTEN, tracee, NULL, NULL);
else
ptrace(PTRACE_CONT, tracee, NULL, NULL);
goto repeat;
}
for (i = 0; i < 3; i++) {
nanosleep(&ts1s, NULL);
printf("mother: SIGSTOP\n");
kill(tracee, SIGSTOP);
nanosleep(&ts1s, NULL);
printf("mother: SIGCONT\n");
kill(tracee, SIGCONT);
}
nanosleep(&ts1s, NULL);
kill(tracer, SIGKILL);
kill(tracee, SIGKILL);
return 0;
}
This is identical to the program to test TRAP_NOTIFY except that
tracee is PTRACE_LISTEN'd instead of PTRACE_CONT'd when group stopped.
This allows ptracer to monitor when group stop ends without running
tracee.
# ./test-listen
tracer: stopped=0 signo=5
mother: SIGSTOP
tracer: SIG 19
tracer: stopped=1 signo=19
mother: SIGCONT
tracer: stopped=0 signo=5
tracer: SIG 18
mother: SIGSTOP
tracer: SIG 19
tracer: stopped=1 signo=19
mother: SIGCONT
tracer: stopped=0 signo=5
tracer: SIG 18
mother: SIGSTOP
tracer: SIG 19
tracer: stopped=1 signo=19
mother: SIGCONT
tracer: stopped=0 signo=5
tracer: SIG 18
-v2: Moved JOBCTL_LISTENING check in wait_task_stopped() into
task_stopped_code() as suggested by Oleg.
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Currently there's no way for ptracer to find out whether group stop
finished other than polling with INTERRUPT - GETSIGINFO - CONT
sequence. This patch implements group stop notification for ptracer
using STOP traps.
When group stop state of a seized tracee changes, JOBCTL_TRAP_NOTIFY
is set, which schedules a STOP trap which is sticky - it isn't cleared
by other traps and at least one STOP trap will happen eventually.
STOP trap is synchronization point for event notification and the
tracer can determine the current group stop state by looking at the
signal number portion of exit code (si_status from waitid(2) or
si_code from PTRACE_GETSIGINFO).
Notifications are generated both on start and end of group stops but,
because group stop participation always happens before STOP trap, this
doesn't cause an extra trap while tracee is participating in group
stop. The symmetry will be useful later.
Note that this notification works iff tracee is not trapped.
Currently there is no way to be notified of group stop state changes
while tracee is trapped. This will be addressed by a later patch.
An example program follows.
#define PTRACE_SEIZE 0x4206
#define PTRACE_INTERRUPT 0x4207
#define PTRACE_SEIZE_DEVEL 0x80000000
static const struct timespec ts1s = { .tv_sec = 1 };
int main(int argc, char **argv)
{
pid_t tracee, tracer;
int i;
tracee = fork();
if (!tracee)
while (1)
pause();
tracer = fork();
if (!tracer) {
siginfo_t si;
ptrace(PTRACE_SEIZE, tracee, NULL,
(void *)(unsigned long)PTRACE_SEIZE_DEVEL);
ptrace(PTRACE_INTERRUPT, tracee, NULL, NULL);
repeat:
waitid(P_PID, tracee, NULL, WSTOPPED);
ptrace(PTRACE_GETSIGINFO, tracee, NULL, &si);
if (!si.si_code) {
printf("tracer: SIG %d\n", si.si_signo);
ptrace(PTRACE_CONT, tracee, NULL,
(void *)(unsigned long)si.si_signo);
goto repeat;
}
printf("tracer: stopped=%d signo=%d\n",
si.si_signo != SIGTRAP, si.si_signo);
ptrace(PTRACE_CONT, tracee, NULL, NULL);
goto repeat;
}
for (i = 0; i < 3; i++) {
nanosleep(&ts1s, NULL);
printf("mother: SIGSTOP\n");
kill(tracee, SIGSTOP);
nanosleep(&ts1s, NULL);
printf("mother: SIGCONT\n");
kill(tracee, SIGCONT);
}
nanosleep(&ts1s, NULL);
kill(tracer, SIGKILL);
kill(tracee, SIGKILL);
return 0;
}
In the above program, tracer keeps tracee running and gets
notification of each group stop state changes.
# ./test-notify
tracer: stopped=0 signo=5
mother: SIGSTOP
tracer: SIG 19
tracer: stopped=1 signo=19
mother: SIGCONT
tracer: stopped=0 signo=5
tracer: SIG 18
mother: SIGSTOP
tracer: SIG 19
tracer: stopped=1 signo=19
mother: SIGCONT
tracer: stopped=0 signo=5
tracer: SIG 18
mother: SIGSTOP
tracer: SIG 19
tracer: stopped=1 signo=19
mother: SIGCONT
tracer: stopped=0 signo=5
tracer: SIG 18
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Oleg Nesterov <oleg@redhat.com>
do_signal_stop() implemented both normal group stop and trap for group
stop while ptraced. This approach has been enough but scheduled
changes require trap mechanism which can be used in more generic
manner and using group stop trap for generic trap site simplifies both
userland visible interface and implementation.
This patch adds a new jobctl flag - JOBCTL_TRAP_STOP. When set, it
triggers a trap site, which behaves like group stop trap, in
get_signal_to_deliver() after checking for pending signals. While
ptraced, do_signal_stop() doesn't stop itself. It initiates group
stop if requested and schedules JOBCTL_TRAP_STOP and returns. The
caller - get_signal_to_deliver() - is responsible for checking whether
TRAP_STOP is pending afterwards and handling it.
ptrace_attach() is updated to use JOBCTL_TRAP_STOP instead of
JOBCTL_STOP_PENDING and __ptrace_unlink() to clear all pending trap
bits and TRAPPING so that TRAP_STOP and future trap bits don't linger
after detach.
While at it, add proper function comment to do_signal_stop() and make
it return bool.
-v2: __ptrace_unlink() updated to clear JOBCTL_TRAP_MASK and TRAPPING
instead of JOBCTL_PENDING_MASK. This avoids accidentally
clearing JOBCTL_STOP_CONSUME. Spotted by Oleg.
-v3: do_signal_stop() updated to return %false without dropping
siglock while ptraced and TRAP_STOP check moved inside for(;;)
loop after group stop participation. This avoids unnecessary
relocking and also will help avoiding unnecessary traps by
consuming group stop before handling pending traps.
-v4: Jobctl trap handling moved into a separate function -
do_jobctl_trap().
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Oleg Nesterov <oleg@redhat.com>
task->jobctl currently hosts JOBCTL_STOP_PENDING and will host TRAP
pending bits too. Setting pending conditions on a dying task may make
the task unkillable. Currently, each setting site is responsible for
checking for the condition but with to-be-added job control traps this
becomes too fragile.
This patch adds task_set_jobctl_pending() which should be used when
setting task->jobctl bits to schedule a stop or trap. The function
performs the followings to ease setting pending bits.
* Sanity checks.
* If fatal signal is pending or PF_EXITING is set, no bit is set.
* STOP_SIGMASK is automatically cleared if new value is being set.
do_signal_stop() and ptrace_attach() are updated to use
task_set_jobctl_pending() instead of setting STOP_PENDING explicitly.
The surrounding structures around setting are changed to fit
task_set_jobctl_pending() better but there should be no userland
visible behavior difference.
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
This patch introduces JOBCTL_PENDING_MASK and replaces
task_clear_jobctl_stop_pending() with task_clear_jobctl_pending()
which takes an extra @mask argument.
JOBCTL_PENDING_MASK is currently equal to JOBCTL_STOP_PENDING but
future patches will add more bits. recalc_sigpending_tsk() is updated
to use JOBCTL_PENDING_MASK instead.
task_clear_jobctl_pending() takes @mask which in subset of
JOBCTL_PENDING_MASK and clears the relevant jobctl bits. If
JOBCTL_STOP_PENDING is set, other STOP bits are cleared together. All
task_clear_jobctl_stop_pending() users are updated to call
task_clear_jobctl_pending() with JOBCTL_STOP_PENDING which is
functionally identical to task_clear_jobctl_stop_pending().
This patch doesn't cause any functional change.
Signed-off-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
signal->group_stop currently hosts mostly group stop related flags;
however, it's gonna be used for wider purposes and the GROUP_STOP_
flag prefix becomes confusing. Rename signal->group_stop to
signal->jobctl and rename all GROUP_STOP_* flags to JOBCTL_*.
Bit position macros JOBCTL_*_BIT are defined and JOBCTL_* flags are
defined in terms of them to allow using bitops later.
While at it, reassign JOBCTL_TRAPPING to bit 22 to better accomodate
future additions.
This doesn't cause any functional change.
-v2: JOBCTL_*_BIT macros added as suggested by Linus.
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Thomas Gleixner reports that we now have a boot crash triggered by
CONFIG_CPUMASK_OFFSTACK=y:
BUG: unable to handle kernel NULL pointer dereference at (null)
IP: [<c11ae035>] find_next_bit+0x55/0xb0
Call Trace:
[<c11addda>] cpumask_any_but+0x2a/0x70
[<c102396b>] flush_tlb_mm+0x2b/0x80
[<c1022705>] pud_populate+0x35/0x50
[<c10227ba>] pgd_alloc+0x9a/0xf0
[<c103a3fc>] mm_init+0xec/0x120
[<c103a7a3>] mm_alloc+0x53/0xd0
which was introduced by commit de03c72cfc ("mm: convert
mm->cpu_vm_cpumask into cpumask_var_t"), and is due to wrong ordering of
mm_init() vs mm_init_cpumask
Thomas wrote a patch to just fix the ordering of initialization, but I
hate the new double allocation in the fork path, so I ended up instead
doing some more radical surgery to clean it all up.
Reported-by: Thomas Gleixner <tglx@linutronix.de>
Reported-by: Ingo Molnar <mingo@elte.hu>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* 'perf-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip: (25 commits)
perf: Fix SIGIO handling
perf top: Don't stop if no kernel symtab is found
perf top: Handle kptr_restrict
perf top: Remove unused macro
perf events: initialize fd array to -1 instead of 0
perf tools: Make sure kptr_restrict warnings fit 80 col terms
perf tools: Fix build on older systems
perf symbols: Handle /proc/sys/kernel/kptr_restrict
perf: Remove duplicate headers
ftrace: Add internal recursive checks
tracing: Update btrfs's tracepoints to use u64 interface
tracing: Add __print_symbolic_u64 to avoid warnings on 32bit machine
ftrace: Set ops->flag to enabled even on static function tracing
tracing: Have event with function tracer check error return
ftrace: Have ftrace_startup() return failure code
jump_label: Check entries limit in __jump_label_update
ftrace/recordmcount: Avoid STT_FUNC symbols as base on ARM
scripts/tags.sh: Add magic for trace-events for etags too
scripts/tags.sh: Fix ctags for DEFINE_EVENT()
x86/ftrace: Fix compiler warning in ftrace.c
...
The rule is, we have to update tsk->rt.nr_cpus_allowed if we change
tsk->cpus_allowed. Otherwise RT scheduler may confuse.
Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: http://lkml.kernel.org/r/4DD4B3FA.5060901@jp.fujitsu.com
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Adds functionality to read/write lock CLONE_THREAD fork()ing per-threadgroup
Add an rwsem that lives in a threadgroup's signal_struct that's taken for
reading in the fork path, under CONFIG_CGROUPS. If another part of the
kernel later wants to use such a locking mechanism, the CONFIG_CGROUPS
ifdefs should be changed to a higher-up flag that CGROUPS and the other
system would both depend on.
This is a pre-patch for cgroup-procs-write.patch.
Signed-off-by: Ben Blum <bblum@andrew.cmu.edu>
Cc: "Eric W. Biederman" <ebiederm@xmission.com>
Cc: Li Zefan <lizf@cn.fujitsu.com>
Cc: Matt Helsley <matthltc@us.ibm.com>
Reviewed-by: Paul Menage <menage@google.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Witold reported a reboot caused by the selftests of the dynamic function
tracer. He sent me a config and I used ktest to do a config_bisect on it
(as my config did not cause the crash). It pointed out that the problem
config was CONFIG_PROVE_RCU.
What happened was that if multiple callbacks are attached to the
function tracer, we iterate a list of callbacks. Because the list is
managed by synchronize_sched() and preempt_disable, the access to the
pointers uses rcu_dereference_raw().
When PROVE_RCU is enabled, the rcu_dereference_raw() calls some
debugging functions, which happen to be traced. The tracing of the debug
function would then call rcu_dereference_raw() which would then call the
debug function and then... well you get the idea.
I first wrote two different patches to solve this bug.
1) add a __rcu_dereference_raw() that would not do any checks.
2) add notrace to the offending debug functions.
Both of these patches worked.
Talking with Paul McKenney on IRC, he suggested to add recursion
detection instead. This seemed to be a better solution, so I decided to
implement it. As the task_struct already has a trace_recursion to detect
recursion in the ring buffer, and that has a very small number it
allows, I decided to use that same variable to add flags that can detect
the recursion inside the infrastructure of the function tracer.
I plan to change it so that the task struct bit can be checked in
mcount, but as that requires changes to all archs, I will hold that off
to the next merge window.
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Link: http://lkml.kernel.org/r/1306348063.1465.116.camel@gandalf.stny.rr.com
Reported-by: Witold Baryluk <baryluk@smp.if.uj.edu.pl>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
cpumask_t is very big struct and cpu_vm_mask is placed wrong position.
It might lead to reduce cache hit ratio.
This patch has two change.
1) Move the place of cpumask into last of mm_struct. Because usually cpumask
is accessed only front bits when the system has cpu-hotplug capability
2) Convert cpu_vm_mask into cpumask_var_t. It may help to reduce memory
footprint if cpumask_size() will use nr_cpumask_bits properly in future.
In addition, this patch change the name of cpu_vm_mask with cpu_vm_mask_var.
It may help to detect out of tree cpu_vm_mask users.
This patch has no functional change.
[akpm@linux-foundation.org: build fix]
[akpm@linux-foundation.org: coding-style fixes]
Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: David Howells <dhowells@redhat.com>
Cc: Koichi Yasutake <yasutake.koichi@jp.panasonic.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Chris Metcalf <cmetcalf@tilera.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
There's a kernel-wide shortage of per-process flags, so it's always
helpful to trim one when possible without incurring a significant penalty.
It's even more important when you're planning on adding a per- process
flag yourself, which I plan to do shortly for transparent hugepages.
PF_OOM_ORIGIN is used by ksm and swapoff to prefer current since it has a
tendency to allocate large amounts of memory and should be preferred for
killing over other tasks. We'd rather immediately kill the task making
the errant syscall rather than penalizing an innocent task.
This patch removes PF_OOM_ORIGIN since its behavior is equivalent to
setting the process's oom_score_adj to OOM_SCORE_ADJ_MAX.
The process's old oom_score_adj is stored and then set to
OOM_SCORE_ADJ_MAX during the time it used to have PF_OOM_ORIGIN. The old
value is then reinstated when the process should no longer be considered a
high priority for oom killing.
Signed-off-by: David Rientjes <rientjes@google.com>
Reviewed-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Reviewed-by: Minchan Kim <minchan.kim@gmail.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Izik Eidus <ieidus@redhat.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* 'perf-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip:
perf tools: Fix sample size bit operations
perf tools: Fix ommitted mmap data update on remap
watchdog: Change the default timeout and configure nmi watchdog period based on watchdog_thresh
watchdog: Disable watchdog when thresh is zero
watchdog: Only disable/enable watchdog if neccessary
watchdog: Fix rounding bug in get_sample_period()
perf tools: Propagate event parse error handling
perf tools: Robustify dynamic sample content fetch
perf tools: Pre-check sample size before parsing
perf tools: Move evlist sample helpers to evlist area
perf tools: Remove junk code in mmap size handling
perf tools: Check we are able to read the event size on mmap
This restores the previous behavior of softlock_thresh.
Currently, setting watchdog_thresh to zero causes the watchdog
kthreads to consume a lot of CPU.
In addition, the logic of proc_dowatchdog_thresh and
proc_dowatchdog_enabled has been factored into proc_dowatchdog.
Signed-off-by: Mandeep Singh Baines <msb@chromium.org>
Cc: Marcin Slusarz <marcin.slusarz@gmail.com>
Cc: Don Zickus <dzickus@redhat.com>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Link: http://lkml.kernel.org/r/1306127423-3347-3-git-send-email-msb@chromium.org
Signed-off-by: Ingo Molnar <mingo@elte.hu>
LKML-Reference: <20110517071018.GE22305@elte.hu>
Introduce SCHED_LOAD_RESOLUTION, which scales is added to
SCHED_LOAD_SHIFT and increases the resolution of
SCHED_LOAD_SCALE. This patch sets the value of
SCHED_LOAD_RESOLUTION to 10, scaling up the weights for all
sched entities by a factor of 1024. With this extra resolution,
we can handle deeper cgroup hiearchies and the scheduler can do
better shares distribution and load load balancing on larger
systems (especially for low weight task groups).
This does not change the existing user interface, the scaled
weights are only used internally. We do not modify
prio_to_weight values or inverses, but use the original weights
when calculating the inverse which is used to scale execution
time delta in calc_delta_mine(). This ensures we do not lose
accuracy when accounting time to the sched entities. Thanks to
Nikunj Dadhania for fixing an bug in c_d_m() that broken fairness.
Below is some analysis of the performance costs/improvements of
this patch.
1. Micro-arch performance costs:
Experiment was to run Ingo's pipe_test_100k 200 times with the
task pinned to one cpu. I measured instruction, cycles and
stalled-cycles for the runs. See:
http://thread.gmane.org/gmane.linux.kernel/1129232/focus=1129389
for more info.
-tip (baseline):
Performance counter stats for '/root/load-scale/pipe-test-100k' (200 runs):
964,991,769 instructions # 0.82 insns per cycle
# 0.33 stalled cycles per insn
# ( +- 0.05% )
1,171,186,635 cycles # 0.000 GHz ( +- 0.08% )
306,373,664 stalled-cycles-backend # 26.16% backend cycles idle ( +- 0.28% )
314,933,621 stalled-cycles-frontend # 26.89% frontend cycles idle ( +- 0.34% )
1.122405684 seconds time elapsed ( +- 0.05% )
-tip+patches:
Performance counter stats for './load-scale/pipe-test-100k' (200 runs):
963,624,821 instructions # 0.82 insns per cycle
# 0.33 stalled cycles per insn
# ( +- 0.04% )
1,175,215,649 cycles # 0.000 GHz ( +- 0.08% )
315,321,126 stalled-cycles-backend # 26.83% backend cycles idle ( +- 0.28% )
316,835,873 stalled-cycles-frontend # 26.96% frontend cycles idle ( +- 0.29% )
1.122238659 seconds time elapsed ( +- 0.06% )
With this patch, instructions decrease by ~0.10% and cycles
increase by 0.27%. This doesn't look statistically significant.
The number of stalled cycles in the backend increased from
26.16% to 26.83%. This can be attributed to the shifts we do in
c_d_m() and other places. The fraction of stalled cycles in the
frontend remains about the same, at 26.96% compared to 26.89% in -tip.
2. Balancing low-weight task groups
Test setup: run 50 tasks with random sleep/busy times (biased
around 100ms) in a low weight container (with cpu.shares = 2).
Measure %idle as reported by mpstat over a 10s window.
-tip (baseline):
06:47:48 PM CPU %usr %nice %sys %iowait %irq %soft %steal %guest %idle intr/s
06:47:49 PM all 94.32 0.00 0.06 0.00 0.00 0.00 0.00 0.00 5.62 15888.00
06:47:50 PM all 94.57 0.00 0.62 0.00 0.00 0.00 0.00 0.00 4.81 16180.00
06:47:51 PM all 94.69 0.00 0.06 0.00 0.00 0.00 0.00 0.00 5.25 15966.00
06:47:52 PM all 95.81 0.00 0.00 0.00 0.00 0.00 0.00 0.00 4.19 16053.00
06:47:53 PM all 94.88 0.06 0.00 0.00 0.00 0.00 0.00 0.00 5.06 15984.00
06:47:54 PM all 93.31 0.00 0.00 0.00 0.00 0.00 0.00 0.00 6.69 15806.00
06:47:55 PM all 94.19 0.00 0.06 0.00 0.00 0.00 0.00 0.00 5.75 15896.00
06:47:56 PM all 92.87 0.00 0.00 0.00 0.00 0.00 0.00 0.00 7.13 15716.00
06:47:57 PM all 94.88 0.00 0.00 0.00 0.00 0.00 0.00 0.00 5.12 15982.00
06:47:58 PM all 95.44 0.00 0.00 0.00 0.00 0.00 0.00 0.00 4.56 16075.00
Average: all 94.49 0.01 0.08 0.00 0.00 0.00 0.00 0.00 5.42 15954.60
-tip+patches:
06:47:03 PM CPU %usr %nice %sys %iowait %irq %soft %steal %guest %idle intr/s
06:47:04 PM all 100.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 16630.00
06:47:05 PM all 99.69 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.31 16580.20
06:47:06 PM all 99.69 0.00 0.06 0.00 0.00 0.00 0.00 0.00 0.25 16596.00
06:47:07 PM all 99.20 0.00 0.74 0.00 0.00 0.06 0.00 0.00 0.00 17838.61
06:47:08 PM all 100.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 16540.00
06:47:09 PM all 100.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 16575.00
06:47:10 PM all 100.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 16614.00
06:47:11 PM all 99.94 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.06 16588.00
06:47:12 PM all 99.94 0.00 0.06 0.00 0.00 0.00 0.00 0.00 0.00 16593.00
06:47:13 PM all 99.94 0.00 0.06 0.00 0.00 0.00 0.00 0.00 0.00 16551.00
Average: all 99.84 0.00 0.09 0.00 0.00 0.01 0.00 0.00 0.06 16711.58
We see an improvement in idle% on the system (drops from 5.42% on -tip to 0.06%
with the patches).
We see an improvement in idle% on the system (drops from 5.42%
on -tip to 0.06% with the patches).
Signed-off-by: Nikhil Rao <ncrao@google.com>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Cc: Nikunj A. Dadhania <nikunj@linux.vnet.ibm.com>
Cc: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
Cc: Stephan Barwolf <stephan.baerwolf@tu-ilmenau.de>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Link: http://lkml.kernel.org/r/1305754668-18792-1-git-send-email-ncrao@google.com
Signed-off-by: Ingo Molnar <mingo@elte.hu>
SCHED_LOAD_SCALE is used to increase nice resolution and to
scale cpu_power calculations in the scheduler. This patch
introduces SCHED_POWER_SCALE and converts all uses of
SCHED_LOAD_SCALE for scaling cpu_power to use SCHED_POWER_SCALE
instead.
This is a preparatory patch for increasing the resolution of
SCHED_LOAD_SCALE, and there is no need to increase resolution
for cpu_power calculations.
Signed-off-by: Nikhil Rao <ncrao@google.com>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Cc: Nikunj A. Dadhania <nikunj@linux.vnet.ibm.com>
Cc: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
Cc: Stephan Barwolf <stephan.baerwolf@tu-ilmenau.de>
Cc: Mike Galbraith <efault@gmx.de>
Link: http://lkml.kernel.org/r/1305738580-9924-3-git-send-email-ncrao@google.com
Signed-off-by: Ingo Molnar <mingo@elte.hu>
sched_fork() and wake_up_new_task() are defined with a parameter
'unsigned long clone_flags', which is unused.
This patch removes the parameters.
Signed-off-by: Samir Bellabes <sam@synack.fr>
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: http://lkml.kernel.org/r/1305130685-1047-1-git-send-email-sam@synack.fr
Signed-off-by: Ingo Molnar <mingo@elte.hu>
When a task is traced and is in a stopped state, the tracer
may execute a ptrace request to examine the tracee state and
get its task struct. Right after, the tracee can be killed
and thus its breakpoints released.
This can happen concurrently when the tracer is in the middle
of reading or modifying these breakpoints, leading to dereferencing
a freed pointer.
Hence, to prepare the fix, create a generic breakpoint reference
holding API. When a reference on the breakpoints of a task is
held, the breakpoints won't be released until the last reference
is dropped. After that, no more ptrace request on the task's
breakpoints can be serviced for the tracer.
Reported-by: Oleg Nesterov <oleg@redhat.com>
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Prasad <prasad@linux.vnet.ibm.com>
Cc: Paul Mundt <lethal@linux-sh.org>
Cc: v2.6.33.. <stable@kernel.org>
Link: http://lkml.kernel.org/r/1302284067-7860-2-git-send-email-fweisbec@gmail.com
Neil Brown pointed out that lock_depth somehow escaped the BKL
removal work. Let's get rid of it now.
Note that the perf scripting utilities still have a bunch of
code for dealing with common_lock_depth in tracepoints; I have
left that in place in case anybody wants to use that code with
older kernels.
Suggested-by: Neil Brown <neilb@suse.de>
Signed-off-by: Jonathan Corbet <corbet@lwn.net>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Link: http://lkml.kernel.org/r/20110422111910.456c0e84@bike.lwn.net
Signed-off-by: Ingo Molnar <mingo@elte.hu>
5520e89 ("brk: fix min_brk lower bound computation for COMPAT_BRK")
tried to get the whole logic of brk randomization for legacy
(libc5-based) applications finally right.
It turns out that the way to detect whether brk has actually been
randomized in the end or not introduced by that patch still doesn't work
for those binaries, as reported by Geert:
: /sbin/init from my old m68k ramdisk exists prematurely.
:
: Before the patch:
:
: | brk(0x80005c8e) = 0x80006000
:
: After the patch:
:
: | brk(0x80005c8e) = 0x80005c8e
:
: Old libc5 considers brk() to have failed if the return value is not
: identical to the requested value.
I don't like it, but currently see no better option than a bit flag in
task_struct to catch the CONFIG_COMPAT_BRK && randomize_va_space == 2
case.
Signed-off-by: Jiri Kosina <jkosina@suse.cz>
Tested-by: Geert Uytterhoeven <geert@linux-m68k.org>
Reported-by: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: <stable@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Now that we've removed the rq->lock requirement from the first part of
ttwu() and can compute placement without holding any rq->lock, ensure
we execute the second half of ttwu() on the actual cpu we want the
task to run on.
This avoids having to take rq->lock and doing the task enqueue
remotely, saving lots on cacheline transfers.
As measured using: http://oss.oracle.com/~mason/sembench.c
$ for i in /sys/devices/system/cpu/cpu*/cpufreq/scaling_governor ; do echo performance > $i; done
$ echo 4096 32000 64 128 > /proc/sys/kernel/sem
$ ./sembench -t 2048 -w 1900 -o 0
unpatched: run time 30 seconds 647278 worker burns per second
patched: run time 30 seconds 816715 worker burns per second
Reviewed-by: Frank Rowand <frank.rowand@am.sony.com>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Nick Piggin <npiggin@kernel.dk>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: http://lkml.kernel.org/r/20110405152729.515897185@chello.nl
In prepratation of having to call task_contributes_to_load() without
holding rq->lock, we need to store the result until we do and can
update the rq accounting accordingly.
Reviewed-by: Frank Rowand <frank.rowand@am.sony.com>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Nick Piggin <npiggin@kernel.dk>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: http://lkml.kernel.org/r/20110405152729.151523907@chello.nl
In preparation of calling this without rq->lock held, remove the
dependency on the rq argument.
Reviewed-by: Frank Rowand <frank.rowand@am.sony.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Nick Piggin <npiggin@kernel.dk>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Link: http://lkml.kernel.org/r/20110405152729.071474242@chello.nl
Signed-off-by: Ingo Molnar <mingo@elte.hu>
In preparation of calling select_task_rq() without rq->lock held, drop
the dependency on the rq argument.
Reviewed-by: Frank Rowand <frank.rowand@am.sony.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Nick Piggin <npiggin@kernel.dk>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Link: http://lkml.kernel.org/r/20110405152729.031077745@chello.nl
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Provide a generic p->on_rq because the p->se.on_rq semantics are
unfavourable for lockless wakeups but needed for sched_fair.
In particular, p->on_rq is only cleared when we actually dequeue the
task in schedule() and not on any random dequeue as done by things
like __migrate_task() and __sched_setscheduler().
This also allows us to remove p->se usage from !sched_fair code.
Reviewed-by: Frank Rowand <frank.rowand@am.sony.com>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Nick Piggin <npiggin@kernel.dk>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: http://lkml.kernel.org/r/20110405152728.949545047@chello.nl
Since we now have p->on_cpu unconditionally available, use it to
re-implement mutex_spin_on_owner.
Requested-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Frank Rowand <frank.rowand@am.sony.com>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Nick Piggin <npiggin@kernel.dk>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: http://lkml.kernel.org/r/20110405152728.826338173@chello.nl
Always provide p->on_cpu so that we can determine if its on a cpu
without having to lock the rq.
Reviewed-by: Frank Rowand <frank.rowand@am.sony.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Nick Piggin <npiggin@kernel.dk>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Link: http://lkml.kernel.org/r/20110405152728.785452014@chello.nl
Signed-off-by: Ingo Molnar <mingo@elte.hu>
For future rework of try_to_wake_up() we'd like to push part of that
function onto the CPU the task is actually going to run on.
In order to do so we need a generic callback from the existing scheduler IPI.
This patch introduces such a generic callback: scheduler_ipi() and
implements it as a NOP.
BenH notes: PowerPC might use this IPI on offline CPUs under rare conditions!
Acked-by: Russell King <rmk+kernel@arm.linux.org.uk>
Acked-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Acked-by: Chris Metcalf <cmetcalf@tilera.com>
Acked-by: Jesper Nilsson <jesper.nilsson@axis.com>
Acked-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: Ralf Baechle <ralf@linux-mips.org>
Reviewed-by: Frank Rowand <frank.rowand@am.sony.com>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Nick Piggin <npiggin@kernel.dk>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: http://lkml.kernel.org/r/20110405152728.744338123@chello.nl
Remove the SD_LV_ enum and use dynamic level assignments.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Nick Piggin <npiggin@kernel.dk>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Link: http://lkml.kernel.org/r/20110407122942.969433965@chello.nl
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Since we now allocate SD_LV_MAX * nr_cpu_ids sched_domain/sched_group
structures when rebuilding the scheduler toplogy it might make sense
to shrink that depending on the CONFIG_ options.
This is only needed until we get rid of SD_LV_* alltogether and
provide a full dynamic topology interface.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Nick Piggin <npiggin@kernel.dk>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Link: http://lkml.kernel.org/r/20110407122942.406226449@chello.nl
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Instead of relying on static allocations for the sched_domain and
sched_group trees, dynamically allocate and RCU free them.
Allocating this dynamically also allows for some build_sched_groups()
simplification since we can now (like with other simplifications) rely
on the sched_domain tree instead of hard-coded knowledge.
One tricky to note is that detach_destroy_domains() needs to hold
rcu_read_lock() over the entire tear-down, per-cpu is not sufficient
since that can lead to partial sched_group existance (could possibly
be solved by doing the tear-down backwards but this is much more
robust).
A concequence of the above is that we can no longer print the
sched_domain debug stuff from cpu_attach_domain() since that might now
run with preemption disabled (due to classic RCU etc.) and
sched_domain_debug() does some GFP_KERNEL allocations.
Another thing to note is that we now fully rely on normal RCU and not
RCU-sched, this is because with the new and exiting RCU flavours we
grew over the years BH doesn't necessarily hold off RCU-sched grace
periods (-rt is known to break this). This would in fact already cause
us grief since we do sched_domain/sched_group iterations from softirq
context.
This patch is somewhat larger than I would like it to be, but I didn't
find any means of shrinking/splitting this.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Nick Piggin <npiggin@kernel.dk>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Link: http://lkml.kernel.org/r/20110407122942.245307941@chello.nl
Signed-off-by: Ingo Molnar <mingo@elte.hu>
This patch moves SIGNAL_STOP_DEQUEUED from signal_struct->flags to
task_struct->group_stop, and thus makes it per-thread.
Like SIGNAL_STOP_DEQUEUED, GROUP_STOP_DEQUEUED can be false-positive
after return from get_signal_to_deliver(), this is fine. The only
purpose of this bit is: we can drop ->siglock after __dequeue_signal()
returns the sig_kernel_stop() signal and before we call
do_signal_stop(), in this case we must not miss SIGCONT if it comes in
between.
But, unlike SIGNAL_STOP_DEQUEUED, GROUP_STOP_DEQUEUED can not be
false-positive in do_signal_stop() if multiple threads dequeue the
sig_kernel_stop() signal at the same time.
Consider two threads T1 and T2, SIGTTIN has a hanlder.
- T1 dequeues SIGTSTP and sets SIGNAL_STOP_DEQUEUED, then
it drops ->siglock
- SIGCONT comes and clears SIGNAL_STOP_DEQUEUED, SIGTSTP
should be cancelled.
- T2 dequeues SIGTTIN and sets SIGNAL_STOP_DEQUEUED again.
Since we have a handler we should not stop, T2 returns
to usermode to run the handler.
- T1 continues, calls do_signal_stop() and wrongly starts
the group stop because SIGNAL_STOP_DEQUEUED was restored
in between.
With or without this change:
- we need to do something with ptrace_signal() which can
return SIGSTOP, but this needs another discussion
- SIGSTOP can be lost if it races with the mt exec, will
be fixed later.
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
* 'for-2.6.39/core' of git://git.kernel.dk/linux-2.6-block: (65 commits)
Documentation/iostats.txt: bit-size reference etc.
cfq-iosched: removing unnecessary think time checking
cfq-iosched: Don't clear queue stats when preempt.
blk-throttle: Reset group slice when limits are changed
blk-cgroup: Only give unaccounted_time under debug
cfq-iosched: Don't set active queue in preempt
block: fix non-atomic access to genhd inflight structures
block: attempt to merge with existing requests on plug flush
block: NULL dereference on error path in __blkdev_get()
cfq-iosched: Don't update group weights when on service tree
fs: assign sb->s_bdi to default_backing_dev_info if the bdi is going away
block: Require subsystems to explicitly allocate bio_set integrity mempool
jbd2: finish conversion from WRITE_SYNC_PLUG to WRITE_SYNC and explicit plugging
jbd: finish conversion from WRITE_SYNC_PLUG to WRITE_SYNC and explicit plugging
fs: make fsync_buffers_list() plug
mm: make generic_writepages() use plugging
blk-cgroup: Add unaccounted time to timeslice_used.
block: fixup plugging stubs for !CONFIG_BLOCK
block: remove obsolete comments for blkdev_issue_zeroout.
blktrace: Use rq->cmd_flags directly in blk_add_trace_rq.
...
Fix up conflicts in fs/{aio.c,super.c}
The sentence uses the possessive pronoun, which is spelled
without an apostrophe.
Signed-off-by: Jonathan Neuschäfer <j.neuschaefer@gmx.net>
Cc: Jiri Kosina <trivial@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
LKML-Reference: <1300735487-2406-1-git-send-email-j.neuschaefer@gmx.net>
Signed-off-by: Ingo Molnar <mingo@elte.hu>