There is no user of cm_sbs.c and CONFIG_ACPI_PROCFS_POWER. So remove
them. Prepare for removing /proc/acpi
Signed-off-by: Lan Tianyu <tianyu.lan@intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
This follows what has already been done for the DeviceTree helpers. Move
the ACPI helpers from drivers/acpi/acpi_i2c.c to the I2C core and update
documentation accordingly.
This also solves a problem reported by Jerry Snitselaar that we can't build
the ACPI I2C helpers as a module.
Signed-off-by: Mika Westerberg <mika.westerberg@linux.intel.com>
Acked-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Signed-off-by: Wolfram Sang <wsa@the-dreams.de>
* acpi-assorted:
ACPI / EC: Add HP Folio 13 to ec_dmi_table in order to skip DSDT scan
ACPI: Add CMOS RTC Operation Region handler support
ACPI: Remove unused flags in acpi_device_flags
ACPI: Remove useless initializers
ACPI / battery: Make sure all spaces are in correct places
ACPI: add _STA evaluation at do_acpi_find_child()
ACPI / EC: access user space with get_user()/put_user()
On HP Folio 13-2000, the BIOS defines a CMOS RTC Operation Region and
the EC's _REG methord accesses that region. Thus an appropriate
address space handler must be registered for that region before the
EC driver is loaded.
Introduce a mechanism for adding CMOS RTC address space handlers.
Register an ACPI scan handler for CMOS RTC devices such that, when
a device of that kind is detected during an ACPI namespace scan, a
common CMOS RTC operation region address space handler will be
installed for it.
References: https://bugzilla.kernel.org/show_bug.cgi?id=54621
Reported-and-tested-by: Stefan Nagy <public@stefan-nagy.at>
Signed-off-by: Lan Tianyu <tianyu.lan@intel.com>
Cc: 3.9+ <stable@vger.kernel.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
- Additional CPU ID for the intel_pstate driver from Dirk Brandewie.
- More cpufreq fixes related to ARM big.LITTLE support and locking from
Viresh Kumar.
- VIA C7 cpufreq build fix from Rafał Bilski.
- ACPI power management fix making it possible to use device power
states regardless of the CONFIG_PM setting from Rafael J. Wysocki.
- New ACPI video blacklist item from Bastian Triller.
/
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v2.0.19 (GNU/Linux)
iQIcBAABAgAGBQJRoRZjAAoJEKhOf7ml8uNsv9wQAKAMs9J8k6XqgNPisFKetw+K
hzCOsKFOpI0BQKFikgtWjhGre1SyNIRUvLXO7BHFHXYQW6cLvn1jAyJhvl+i4nvT
eOa+vdGd6grWncbhIxeidoyk9hTZ6bdMWlTBvKUz5KpHzvp4YGC2jlvwFwqsJkpg
nQ8Hcbrbhm4vz5h7EmrlYcELBNTi5LQtmnqlxtbn02GX75BFTpkCm5aLZWZNEUrE
Hix8BhN41+hSy+K34ztHFlP5g/s/lIa9dOX1tewqSigkDB/qYYIt2lpdD2icOIOW
qHAtvpZq8/fZOcoZ9KdFqKUjjbuKVavldb+YzGeTLQufOAwb4hgMRvAccdNFMHIW
9tVkp2TcK6K7pAYlXtgEf25ka7ulLWDBd4C662gZfpi+oPKx2BI/6m7J4VoTULeb
30hDMyZXrXWWvStwO05Pyno3W5lG+cn9jytc3hKkaFerb53NHcZHfb0Rih5NhDZD
Ep09IuPE8fOT9KndY2kw/WwoZyJurYCbrgE+G1QyA+hsNPkNhPlGTxdL8vCqxM4K
ZOaQQejpd1bXBSk8Koz8LRyQ38KJByvM64B0EDSP6BQUT+rlbkcvog1bJV+UdpbJ
4TlhrAFlobhRFQBqlIbRqMXFPH31YSm7wVK1eK/gEqNZI935Kd17YSFf8yyi2yli
vBlmPkiPEIJHysps+tvd
=Srt8
-----END PGP SIGNATURE-----
Merge tag 'pm+acpi-3.10-rc3' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm
Pull power management and ACPI fixes from Rafael Wysocki:
- Additional CPU ID for the intel_pstate driver from Dirk Brandewie.
- More cpufreq fixes related to ARM big.LITTLE support and locking from
Viresh Kumar.
- VIA C7 cpufreq build fix from Rafał Bilski.
- ACPI power management fix making it possible to use device power
states regardless of the CONFIG_PM setting from Rafael J Wysocki.
- New ACPI video blacklist item from Bastian Triller.
* tag 'pm+acpi-3.10-rc3' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm:
ACPI / video: Add "Asus UL30A" to ACPI video detect blacklist
cpufreq: arm_big_little_dt: Instantiate as platform_driver
cpufreq: arm_big_little_dt: Register driver only if DT has valid data
cpufreq / e_powersaver: Fix linker error when ACPI processor is a module
cpufreq / intel_pstate: Add additional supported CPU ID
cpufreq: Drop rwsem lock around CPUFREQ_GOV_POLICY_EXIT
ACPI / PM: Allow device power states to be used for CONFIG_PM unset
Currently, drivers/acpi/device_pm.c depends on CONFIG_PM and all of
the functions defined in there are replaced with static inline stubs
if that option is unset. However, CONFIG_PM means, roughly, "runtime
PM or suspend/hibernation support" and some of those functions are
useful regardless of that. For example, they are used by the ACPI
fan driver for controlling fans and acpi_device_set_power() is called
during device removal. Moreover, device initialization may depend on
setting device power states properly.
For these reasons, make the routines manipulating ACPI device power
states defined in drivers/acpi/device_pm.c available for CONFIG_PM
unset too.
Reported-by: Zhang Rui <rui.zhang@intel.com>
Reported-and-tested-by: Michel Lespinasse <walken@google.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Cc: 3.9+ <stable@vger.kernel.org>
Since we have CSRT only to get additional DMA controller resources, let's get
rid of drivers/acpi/csrt.c and move its logic inside ACPI DMA helpers code.
Signed-off-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Signed-off-by: Mika Westerberg <mika.westerberg@linux.intel.com>
Acked-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Signed-off-by: Vinod Koul <vinod.koul@intel.com>
Split the ACPI processor driver into two parts, one that is
non-modular, resides in the ACPI core and handles the enumeration
and hotplug of processors and one that implements the rest of the
existing processor driver functionality.
The non-modular part uses an ACPI scan handler object to enumerate
processors on the basis of information provided by the ACPI namespace
and to hook up with the common ACPI hotplug infrastructure. It also
populates the ACPI handle of each processor device having a
corresponding object in the ACPI namespace, which allows the driver
proper to bind to those devices, and makes the driver bind to them
if it is readily available (i.e. loaded) when the scan handler's
.attach() routine is running.
There are a few reasons to make this change.
First, switching the ACPI processor driver to using the common ACPI
hotplug infrastructure reduces code duplication and size considerably,
even though a new file is created along with a header comment etc.
Second, since the common hotplug code attempts to offline devices
before starting the (non-reversible) removal procedure, it will abort
(and possibly roll back) hot-remove operations involving processors
if cpu_down() returns an error code for one of them instead of
continuing them blindly (if /sys/firmware/acpi/hotplug/force_remove
is unset). That is a more desirable behavior than what the current
code does.
Finally, the separation of the scan/hotplug part from the driver
proper makes it possible to simplify the driver's .remove() routine,
because it doesn't need to worry about the possible cleanup related
to processor removal any more (the scan/hotplug part is responsible
for that now) and can handle device removal and driver removal
symmetricaly (i.e. as appropriate).
Some user-visible changes in sysfs are made (for example, the
'sysdev' link from the ACPI device node to the processor device's
directory is gone and a 'physical_node' link is present instead
and a corresponding 'firmware_node' is present in the processor
device's directory, the processor driver is now visible under
/sys/bus/cpu/drivers/ and bound to the processor device), but
that shouldn't affect the functionality that users care about
(frequency scaling, C-states and thermal management).
Tested on my venerable Toshiba Portege R500.
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Acked-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Reviewed-by: Toshi Kani <toshi.kani@hp.com>
Devices on the Intel Lynxpoint Low Power Subsystem (LPSS) have some
common features that aren't shared with any other platform devices,
including the clock and LTR (Latency Tolerance Reporting) registers.
It is better to handle those features in common code than to bother
device drivers with doing that (I/O functionality-wise the LPSS
devices are generally compatible with other devices that don't
have those special registers and may be handled by the same drivers).
The clock registers of the LPSS devices are now taken care of by
the special clk-x86-lpss driver, but the MMIO mappings used for
accessing those registers can also be used for accessing the LTR
registers on those devices (LTR support for the Lynxpoint LPSS is
going to be added by a subsequent patch). Thus it is convenient
to add a special ACPI scan handler for the Lynxpoint LPSS devices
that will create the MMIO mappings for accessing the clock (and
LTR in the future) registers and will register the LPSS devices'
clocks, so the clk-x86-lpss driver will only need to take care of
the main Lynxpoint LPSS clock.
Introduce a special ACPI scan handler for Intel Lynxpoint LPSS
devices as described above. This also reduces overhead related to
browsing the ACPI namespace in search of the LPSS devices before the
registration of their clocks, removes some LPSS-specific (and
somewhat ugly) code from acpi_platform.c and shrinks the overall code
size slightly.
Signed-off-by: Mika Westerberg <mika.westerberg@linux.intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Acked-by: Mike Turquette <mturquette@linaro.org>
Core System Resources Table (CSRT) is a proprietary ACPI table that
contains resources for certain devices that are not found in the DSDT
table. Typically a shared DMA controller might be found here.
This patch adds support for this table. We go through all entries in the
table and make platform devices of them. The resources from the table are
passed with the platform device.
There is one special resource in the table and it is the DMA request line
base and number of request lines. This information might be needed by the
DMA controller driver as it needs to map the ACPI DMA request line number
to the actual request line understood by the hardware. This range is passed
as IORESOURCE_DMA resource.
Signed-off-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Signed-off-by: Mika Westerberg <mika.westerberg@linux.intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Move the code related to _PRT setup and removal and to power
resources from acpi_pci_bind() and acpi_pci_unbind() to the .setup()
and .cleanup() callbacks in acpi_pci_bus and remove acpi_pci_bind()
and acpi_pci_unbind() that have no purpose any more. Accordingly,
remove the code related to device .bind() and .unbind() operations
from the ACPI PCI root bridge driver.
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Acked-by: Yinghai Lu <yinghai@kernel.org>
Acked-by: Toshi Kani <toshi.kani@hp.com>
ACPI 5 introduced I2cSerialBus resource that makes it possible to enumerate
and configure the I2C slave devices behind the I2C controller. This patch
adds helper functions to support I2C slave enumeration.
An ACPI enabled I2C controller driver only needs to call acpi_i2c_register_devices()
in order to get its slave devices enumerated, created and bound to the
corresponding ACPI handle.
Signed-off-by: Mika Westerberg <mika.westerberg@linux.intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Move some code used for parsing ACPI device resources from the PNP
subsystem to the ACPI core, so that other bus types (platform, SPI,
I2C) can use the same routines for parsing resources in a consistent
way, without duplicating code.
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Reviewed-by: Mika Westerberg <mika.westerberg@linux.intel.com>
Tested-by: Mika Westerberg <mika.westerberg@linux.intel.com>
With ACPI 5 it is now possible to enumerate traditional SoC
peripherals, like serial bus controllers and slave devices behind
them. These devices are typically based on IP-blocks used in many
existing SoC platforms and platform drivers for them may already
be present in the kernel tree.
To make driver "porting" more straightforward, add ACPI support to
the platform bus type. Instead of writing ACPI "glue" drivers for
the existing platform drivers, register the platform bus type with
ACPI to create platform device objects for the drivers and bind the
corresponding ACPI handles to those platform devices.
This should allow us to reuse the existing platform drivers for the
devices in question with the minimum amount of modifications.
This changeset is based on Mika Westerberg's and Mathias Nyman's
work.
Signed-off-by: Mathias Nyman <mathias.nyman@linux.intel.com>
Signed-off-by: Mika Westerberg <mika.westerberg@linux.intel.com>
Acked-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Acked-by: H. Peter Anvin <hpa@zytor.com>
Acked-by: Tony Luck <tony.luck@intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
ACPI routines for adding and removing device wakeup notifiers are
currently defined in a PCI-specific file, but they will be necessary
for non-PCI devices too, so move them to a separate file under
drivers/acpi and rename them to indicate their ACPI origins.
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Drivers may make calls that require the ACPI IPMI driver to have been
initialised already, so make sure that it appears earlier in the build
order.
Signed-off-by: Matthew Garrett <mjg@redhat.com>
Signed-off-by: Corey Minyard <cminyard@mvista.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
ACPI 5.0 adds the BGRT, a table that contains a pointer to the firmware
boot splash and associated metadata. This simple driver exposes it via
/sys/firmware/acpi in order to allow bootsplash applications to draw their
splash around the firmware image and reduce the number of jarring graphical
transitions during boot.
Signed-off-by: Matthew Garrett <mjg@redhat.com>
Signed-off-by: Len Brown <len.brown@intel.com>
With the conversion of atomicio's routines in place (see commits
6f68c91c55 and 700130b41f), atomicio.[ch] can be removed, replacing
the APEI specific pre-mapping capabilities with the more generalized
versions that drivers/acpi/osl.c provides.
Signed-off-by: Myron Stowe <myron.stowe@redhat.com>
Signed-off-by: Len Brown <len.brown@intel.com>
Some firmware will access memory in ACPI NVS region via APEI. That
is, instructions in APEI ERST/EINJ table will read/write ACPI NVS
region. The original resource conflict checking in APEI code will
check memory/ioport accessed by APEI via general resource management
mechanism. But ACPI NVS region is marked as busy already, so that the
false resource conflict will prevent APEI ERST/EINJ to work.
To fix this, this patch record ACPI NVS regions, so that we can avoid
request resources for memory region inside it.
Signed-off-by: Huang Ying <ying.huang@intel.com>
Signed-off-by: Len Brown <len.brown@intel.com>
* 'release' of git://git.kernel.org/pub/scm/linux/kernel/git/lenb/linux-acpi-2.6:
ACPI EC: remove redundant code
ACPI: Add D3 cold state
ACPI: processor: fix processor_physically_present in UP kernel
ACPI: Split out custom_method functionality into an own driver
ACPI: Cleanup custom_method debug stuff
ACPI EC: enable MSI workaround for Quanta laptops
ACPICA: Update to version 20110413
ACPICA: Execute an orphan _REG method under the EC device
ACPICA: Move ACPI_NUM_PREDEFINED_REGIONS to a more appropriate place
ACPICA: Update internal address SpaceID for DataTable regions
ACPICA: Add more methods eligible for NULL package element removal
ACPICA: Split all internal Global Lock functions to new file - evglock
ACPI: EC: add another DMI check for ASUS hardware
ACPI EC: remove dead code
ACPICA: Fix code divergence of global lock handling
ACPICA: Use acpi_os_create_lock interface
ACPI: osl, add acpi_os_create_lock interface
ACPI:Fix goto flows in thermal-sys
With /sys/kernel/debug/acpi/custom_method root can write
to arbitrary memory and increase his priveleges, even if
these are restricted.
-> Make this an own debug .config option and warn about the
security issue in the config description.
-> Still keep acpi/debugfs.c which now only creates an empty
/sys/kernel/debug/acpi directory. There might be other
users of it later.
Signed-off-by: Thomas Renninger <trenn@suse.de>
Acked-by: Rafael J. Wysocki <rjw@sisk.pl>
Acked-by: rui.zhang@intel.com
Signed-off-by: Len Brown <len.brown@intel.com>
As discussed earlier, the ACPI power meter driver would better live
in drivers/hwmon, as its only purpose is to create hwmon-style
interfaces for ACPI 4.0 power meter devices. Users are more likely to
look for it there, and less likely to accidentally hide it by
unselecting its dependencies.
Signed-off-by: Jean Delvare <khali@linux-fr.org>
Acked-by: "Darrick J. Wong" <djwong@us.ibm.com>
Acked-by: Guenter Roeck <guenter.roeck@ericsson.com>
Cc: Len Brown <lenb@kernel.org>
The saving of the ACPI NVS area during hibernation and suspend and
restoring it during the subsequent resume is entirely specific to
ACPI, so move it to drivers/acpi and drop the CONFIG_SUSPEND_NVS
configuration option which is redundant.
Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl>
Signed-off-by: Len Brown <len.brown@intel.com>
ACPI 4.0 spec adds the ACPI IPMI opregion, which means that the ACPI AML
code can also communicate with the BMC controller. This is to install
the ACPI IPMI opregion and enable the ACPI to access the BMC controller
through the IPMI message.
It will create IPMI user interface for every IPMI device detected
in ACPI namespace and install the corresponding IPMI opregion space handler.
Then it can enable ACPI to access the BMC controller through the IPMI
message.
The following describes how to process the IPMI request in IPMI space handler:
1. format the IPMI message based on the request in AML code.
IPMI system address. Now the address type is SYSTEM_INTERFACE_ADDR_TYPE
IPMI net function & command
IPMI message payload
2. send the IPMI message by using the function of ipmi_request_settime
3. wait for the completion of IPMI message. It can be done in different
routes: One is in handled in IPMI user recv callback function. Another is
handled in timeout function.
4. format the IPMI response and return it to ACPI AML code.
At the same time it also addes the module dependency. The ACPI IPMI opregion
will depend on the IPMI subsystem.
Signed-off-by: Zhao Yakui <yakui.zhao@intel.com>
cc: Bjorn Helgaas <bjorn.helgaas@hp.com>
Signed-off-by: Corey Minyard <cminyard@mvista.com>
Signed-off-by: Len Brown <len.brown@intel.com>
Rmove deprecated ACPI procfs I/F, including
/proc/acpi/debug_layer
/proc/acpi/debug_level
/proc/acpi/info
/proc/acpi/dsdt
/proc/acpi/fadt
/proc/acpi/sleep
because the sysfs I/F is already available
and has been working well for years.
Signed-off-by: Zhang Rui <rui.zhang@intel.com>
Signed-off-by: Len Brown <len.brown@intel.com>
Introduce drivers/acpi/sysfs.c.
code for ACPI sysfs I/F, including
#ifdef ACPI_DEBUG
/sys/module/acpi/parameters/debug_layer
/sys/module/acpi/parameters/debug_level
/sys/module/acpi/parameters/trace_method_name
/sys/module/acpi/parameters/trace_debug_layer
/sys/module/acpi/parameters/trace_debug_level
/sys/module/acpi/parameters/trace_state
#endif
/sys/module/acpi/parameters/acpica_version
/sys/firmware/acpi/tables/
/sys/firmware/acpi/interrupts/
is moved to this file.
No function change in this patch.
Signed-off-by: Zhang Rui <rui.zhang@intel.com>
Signed-off-by: Len Brown <len.brown@intel.com>
Introduce drivers/acpi/debugfs.c.
Code for ACPI debugfs I/F,
i.e. /sys/kernel/debug/acpi/custom_method,
is moved to this file.
And make ACPI debugfs always built in,
even if CONFIG_ACPI_DEBUG is cleared.
BTW:this adds about 400bytes code to ACPI, when
CONFIG_ACPI_DEBUG is cleared.
[uaccess.h build fix from Andrew Morton <akpm@linux-foundation.org>]
Signed-off-by: Zhang Rui <rui.zhang@intel.com>
Signed-off-by: Len Brown <len.brown@intel.com>
This patch provides the same information through debugfs, which previously was
provided through /proc/acpi/embedded_controller/*/info
This is the gpe the EC is connected to and whether the global lock
gets used.
The io ports used are added to /proc/ioports in another patch.
Beside the fact that /proc/acpi is deprecated for quite some time,
this info is not needed for applications and thus can be moved
to debugfs instead of a public interface like /sys.
Signed-off-by: Thomas Renninger <trenn@suse.de>
CC: Alexey Starikovskiy <astarikovskiy@suse.de>
CC: Len Brown <lenb@kernel.org>
CC: linux-kernel@vger.kernel.org
CC: linux-acpi@vger.kernel.org
CC: Bjorn Helgaas <bjorn.helgaas@hp.com>
CC: platform-driver-x86@vger.kernel.org
Signed-off-by: Matthew Garrett <mjg@redhat.com>
Hardware Error Device (PNP0C33) is used to report some hardware errors
notified via SCI, mainly the corrected errors. Some APEI Generic
Hardware Error Source (GHES) may use SCI on hardware error device to
notify hardware error to kernel.
After receiving notification from ACPI core, it is forwarded to all
listeners via a notifier chain. The listener such as APEI GHES should
check corresponding error source for new events when notified.
Signed-off-by: Huang Ying <ying.huang@intel.com>
Signed-off-by: Andi Kleen <ak@linux.intel.com>
Signed-off-by: Len Brown <len.brown@intel.com>
Now, a dedicated HEST tabling parsing code is used for PCIE AER
firmware_first setup. It is rebased on general HEST tabling parsing
code of APEI. The firmware_first setup code is moved from PCI core to
AER driver too, because it is only AER related.
Signed-off-by: Huang Ying <ying.huang@intel.com>
Signed-off-by: Andi Kleen <ak@linux.intel.com>
Reviewed-by: Hidetoshi Seto <seto.hidetoshi@jp.fujitsu.com>
Acked-by: Jesse Barnes <jbarnes@virtuousgeek.org>
Signed-off-by: Len Brown <len.brown@intel.com>
APEI stands for ACPI Platform Error Interface, which allows to report
errors (for example from the chipset) to the operating system. This
improves NMI handling especially. In addition it supports error
serialization and error injection.
For more information about APEI, please refer to ACPI Specification
version 4.0, chapter 17.
This patch provides some common functions used by more than one APEI
tables, mainly framework of interpreter for EINJ and ERST.
A machine readable language is defined for EINJ and ERST for OS to
execute, and so to drive the firmware to fulfill the corresponding
functions. The machine language for EINJ and ERST is compatible, so a
common framework is defined for them.
Signed-off-by: Huang Ying <ying.huang@intel.com>
Signed-off-by: Andi Kleen <ak@linux.intel.com>
Signed-off-by: Len Brown <len.brown@intel.com>
Some ACPI IO accessing need to be done in atomic context. For example,
APEI ERST operations may be used for permanent storage in hardware
error handler. That is, it may be called in atomic contexts such as
IRQ or NMI, etc. And, ERST/EINJ implement their operations via IO
memory/port accessing. But the IO memory accessing method provided by
ACPI (acpi_read/acpi_write) maps the IO memory during it is accessed,
so it can not be used in atomic context. To solve the issue, the IO
memory should be pre-mapped during EINJ/ERST initializing. A linked
list is used to record which memory area has been mapped, when memory
is accessed in hardware error handler, search the linked list for the
mapped virtual address from the given physical address.
Signed-off-by: Huang Ying <ying.huang@intel.com>
Signed-off-by: Andi Kleen <ak@linux.intel.com>
Signed-off-by: Len Brown <len.brown@intel.com>
We've renamed the old processor_core.c to processor_driver.c, to
convey the idea that it can be built modular and has driver-like
bits.
Now let's re-create a processor_core.c for the bits needed
statically by the rest of the kernel. The contents of processor_pdc.c
are a good starting spot, so let's just rename that file and
complete our three card monte.
Acked-by: Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
Signed-off-by: Alex Chiang <achiang@hp.com>
Signed-off-by: Len Brown <len.brown@intel.com>
The ACPI processor driver can be built as a module. But it has
pieces of code that should always be built statically into the
kernel.
The plan is for processor_core.c to contain the static bits while
processor_driver.c contains the module-like bits.
Since the bulk of the code in the current processor_core.c is
module-like, first step is to rename the file to processor_driver.c
Next step will re-create processor_core.c and cherry-pick out
the static bits.
Acked-by: Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
Signed-off-by: Alex Chiang <achiang@hp.com>
Signed-off-by: Len Brown <len.brown@intel.com>
We discovered that at least one machine (HP Envy), methods in the DSDT
attempt to call external methods defined in a dynamically loaded SSDT.
Unfortunately, the DSDT methods we are trying to call are part of the
EC initialization, which happens very early, and the the dynamic SSDT
is only loaded when a processor _PDC method runs much later.
This results in namespace lookup errors for the (as of yet) undefined
methods.
Since Windows doesn't have any issues with this machine, we take it
as a hint that they must be evaluating _PDC much earlier than we are.
Thus, the proper thing for Linux to do should be to match the Windows
implementation more closely.
Provide a mechanism to call _PDC before we enable the EC. Doing so loads
the dynamic tables, and allows the EC to be enabled correctly.
The ACPI processor driver will still evaluate _PDC in its .add() method
to cover the hotplug case.
Resolves: http://bugzilla.kernel.org/show_bug.cgi?id=14824
Cc: ming.m.lin@intel.com
Signed-off-by: Alex Chiang <achiang@hp.com>
Signed-off-by: Len Brown <len.brown@intel.com>
Feedback from Hidetoshi Seto and Kenji Kaneshige incorporated. This
correctly handles PCI-X bridges, PCIe root ports and endpoints, and
prints debug messages when invalid/reserved types are found in the
HEST. PCI devices not in domain/segment 0 are not represented in
HEST, thus will be ignored.
Today, the PCIe Advanced Error Reporting (AER) driver attaches itself
to every PCIe root port for which BIOS reports it should, via ACPI
_OSC.
However, _OSC alone is insufficient for newer BIOSes. Part of ACPI
4.0 is the new APEI (ACPI Platform Error Interfaces) which is a way
for OS and BIOS to handshake over which errors for which components
each will handle. One table in ACPI 4.0 is the Hardware Error Source
Table (HEST), where BIOS can define that errors for certain PCIe
devices (or all devices), should be handled by BIOS ("Firmware First
mode"), rather than be handled by the OS.
Dell PowerEdge 11G server BIOS defines Firmware First mode in HEST, so
that it may manage such errors, log them to the System Event Log, and
possibly take other actions. The aer driver should honor this, and
not attach itself to devices noted as such.
Furthermore, Kenji Kaneshige reminded us to disallow changing the AER
registers when respecting Firmware First mode. Platform firmware is
expected to manage these, and if changes to them are allowed, it could
break that firmware's behavior.
The HEST parsing code may be replaced in the future by a more
feature-rich implementation. This patch provides the minimum needed
to prevent breakage until that implementation is available.
Reviewed-by: Kenji Kaneshige <kaneshige.kenji@jp.fujitsu.com>
Reviewed-by: Hidetoshi Seto <seto.hidetoshi@jp.fujitsu.com>
Signed-off-by: Matt Domsch <Matt_Domsch@dell.com>
Signed-off-by: Jesse Barnes <jbarnes@virtuousgeek.org>
* 'acpi-pad' of git://git.kernel.org/pub/scm/linux/kernel/git/lenb/linux-acpi-2.6:
acpi_pad: build only on X86
ACPI: create Processor Aggregator Device driver
Fixup trivial conflicts in MAINTAINERS file.
This driver exposes ACPI 4.0 compliant power meters as hardware monitoring
devices. This second revision of the driver also exports the ACPI string
info as sysfs attributes, a list of the devices that the meter measures,
and will send ACPI notifications over the ACPI netlink socket. This
latest revision only enables the power capping controls if it can be
confirmed that the power cap can be enforced by the hardware and explains
how the notification interfaces work.
[akpm@linux-foundation.org: remove default-y]
[akpm@linux-foundation.org: build fix]
Signed-off-by: Darrick J. Wong <djwong@us.ibm.com>
Cc: Zhang Rui <rui.zhang@intel.com>
Cc: Pavel Machek <pavel@ucw.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Len Brown <len.brown@intel.com>
ACPI 4.0 created the logical "processor aggregator device" as
a mechinism for platforms to ask the OS to force otherwise busy
processors to enter (power saving) idle.
The intent is to lower power consumption to ride-out
transient electrical and thermal emergencies,
rather than powering off the server.
On platforms that can save more power/performance via P-states,
the platform will first exhaust P-states before forcing idle.
However, the relative benefit of P-states vs. idle states
is platform dependent, and thus this driver need not know
or care about it.
This driver does not use the kernel's CPU hot-plug mechanism
because after the transient emergency is over, the system must
be returned to its normal state, and hotplug would permanently
break both cpusets and binding.
So to force idle, the driver creates a power saving thread.
The scheduler will migrate the thread to the preferred CPU.
The thread has max priority and has SCHED_RR policy,
so it can occupy one CPU. To save power, the thread will
invoke the deep C-state entry instructions.
To avoid starvation, the thread will sleep 5% of the time
time for every second (current RT scheduler has threshold
to avoid starvation, but if other CPUs are idle,
the CPU can borrow CPU timer from other,
which makes the mechanism not work here)
Vaidyanathan Srinivasan has proposed scheduler enhancements
to allow injecting idle time into the system. This driver doesn't
depend on those enhancements, but could cut over to them
when they are available.
Peter Z. does not favor upstreaming this driver until
the those scheduler enhancements are in place. However,
we favor upstreaming this driver now because it is useful
now, and can be enhanced over time.
Signed-off-by: Shaohua Li <shaohua.li@intel.com>
NACKed-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Vaidyanathan Srinivasan <svaidy@linux.vnet.ibm.com>
Signed-off-by: Len Brown <len.brown@intel.com>
The battery driver tends to take quite some time to initialize
(100ms-300ms is quite typical).
This patch initializes the batter driver asynchronously, so that other
things in the kernel can initialize in parallel to this 300 msec.
As part of this, the battery driver had to move to the back
of the ACPI init order (hence the Makefile change).
Without this move, the next ACPI driver would just block
on the ACPI/devicee layer semaphores until the battery driver was
done anyway, not gaining any boot time.
Signed-off-by: Arjan van de Ven <arjan@linux.intel.com>
Signed-off-by: Len Brown <len.brown@intel.com>
Impact: cleanup
Rather than overriding MODULE_PARAM_PREFIX, build via acpi.o so
KBUILD_MODNAME is set to "acpi".
This is the logical way to do it, even though acpi cannot be a module
due to these config options being bool. Those parts of ACPI which can
be modular are not built into the acpi "module".
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
Signed-off-by: Len Brown <len.brown@intel.com>
This patch removes the suggestion that ec.o link order is important,
because it doesn't matter since acpi_ec_init() is no longer an initcall.
And it puts together most of the core modules that are not configurable.
Signed-off-by: Bjorn Helgaas <bjorn.helgaas@hp.com>
Signed-off-by: Len Brown <len.brown@intel.com>
Remove CONFIG_ACPI_SYSTEM. It was always set the same as CONFIG_ACPI,
and it had no menu label, so there was no way to set it to anything
other than "y".
Some things under CONFIG_ACPI_SYSTEM (acpi_irq_handled, acpi_os_gpe_count(),
event_is_open, register_acpi_notifier(), etc.) are used unconditionally
by the CA, the OSPM, and drivers, so we depend on them always being
present.
Signed-off-by: Bjorn Helgaas <bjorn.helgaas@hp.com>
Signed-off-by: Len Brown <len.brown@intel.com>
These are platform specific drivers that happen to use ACPI,
while drivers/acpi/ is for code that implements ACPI itself.
Signed-off-by: Len Brown <len.brown@intel.com>
If an ACPI graphics device supports backlight brightness functions (cmp. with
latest ACPI spec Appendix B), let the ACPI video driver control backlight and
switch backlight control off in vendor specific ACPI drivers (asus_acpi,
thinkpad_acpi, eeepc, fujitsu_laptop, msi_laptop, sony_laptop, acer-wmi).
Currently it is possible to load above drivers and let both poke on the
brightness HW registers, the video and vendor specific ACPI drivers -> bad.
This patch provides the basic support to check for BIOS capabilities before
driver loading time. Driver specific modifications are in separate follow up
patches.
"acpi_backlight=vendor"
Prever vendor driver over ACPI driver for backlight.
"acpi_backlight=video" (default)
Prever ACPI driver over vendor driver for backlight.
Signed-off-by: Thomas Renninger <trenn@suse.de>
Acked-by: Zhang Rui <rui.zhang@intel.com>
Signed-off-by: Andi Kleen <ak@linux.intel.com>
Signed-off-by: Len Brown <len.brown@intel.com>
Remove CONFIG_ACPI_EC. It was always set the same as CONFIG_ACPI,
and it had no menu label, so there was no way to set it to anything
other than "y".
Per section 6.5.4 of the ACPI 3.0b specification,
OSPM must make Embedded Controller operation regions, accessed
via the Embedded Controllers described in ECDT, available before
executing any control method.
The ECDT table is optional, but if it is present, the above text
means that the EC it describes is a required part of the ACPI
subsystem, so CONFIG_ACPI_EC=n wouldn't make sense.
Signed-off-by: Bjorn Helgaas <bjorn.helgaas@hp.com>
Acked-by: Alexey Starikovskiy <astarikovskiy@suse.de>
Signed-off-by: Len Brown <len.brown@intel.com>
Remove CONFIG_ACPI_POWER. It was always set the same as CONFIG_ACPI,
and it had no menu label, so there was no way to set it to anything
other than "y".
The interfaces under CONFIG_ACPI_POWER (acpi_device_sleep_wake(),
acpi_power_transition(), etc) are called unconditionally from the
ACPI core, so we already depend on it always being present.
Signed-off-by: Bjorn Helgaas <bjorn.helgaas@hp.com>
Signed-off-by: Len Brown <len.brown@intel.com>
There exists the following warning message will appear after the
following commit is merged.
>commit f2e969acd6d5981e6b1272810002558650d0736e
>Author: Zhao Yakui <yakui.zhao@intel.com>
>Date: Mon Aug 11 14:57:50 2008 +0800
>ACPI: Add "acpi.power_nocheck=1" to disable power state check in
power transition:
>WARNING: at linux-2.6/fs/sysfs/dir.c:463 sysfs_add_one+0x33/0x39()
>sysfs: duplicate filename 'acpi' can not be created
>kobject_add_internal failed for acpi with -EEXIST, don't try to register
things with the same name in the same directory
In the above commit the "acpi.power_nocheck" module parameter is defined
in drivers/acpi/power.c file. As several module parameters using the same ACPI
prefix are defined in the different files(for example: power_nocheck is
defined in drivers/acpi/power.c,debug_layer/debug_level are defined in
drivers/acpi/debug.c) and there exists another module between them, the
warning message will be printed when using the current generic param code.
(In the function of param_sysfs_init).
In fact when ACPI is selected, the drivers/acpi/power will also be compiled
as built-in kernel.So this issue can be fixed by the following approach.
workaround it by adjusting the module link order in drivers/acpi/Makefile.
In such case the module parameter using the same prefix(ACPI) are put together
in the param data section.
Of course the better solution is to fix it in generic param code related
with sysfs.
Signed-off-by: Zhao Yakui <yakui.zhao@intel.com>
Signed-off-by: Len Brown <len.brown@intel.com>
* 'linux-next' of git://git.kernel.org/pub/scm/linux/kernel/git/jbarnes/pci-2.6: (72 commits)
Revert "x86/PCI: ACPI based PCI gap calculation"
PCI: remove unnecessary volatile in PCIe hotplug struct controller
x86/PCI: ACPI based PCI gap calculation
PCI: include linux/pm_wakeup.h for device_set_wakeup_capable
PCI PM: Fix pci_prepare_to_sleep
x86/PCI: Fix PCI config space for domains > 0
Fix acpi_pm_device_sleep_wake() by providing a stub for CONFIG_PM_SLEEP=n
PCI: Simplify PCI device PM code
PCI PM: Introduce pci_prepare_to_sleep and pci_back_from_sleep
PCI ACPI: Rework PCI handling of wake-up
ACPI: Introduce new device wakeup flag 'prepared'
ACPI: Introduce acpi_device_sleep_wake function
PCI: rework pci_set_power_state function to call platform first
PCI: Introduce platform_pci_power_manageable function
ACPI: Introduce acpi_bus_power_manageable function
PCI: make pci_name use dev_name
PCI: handle pci_name() being const
PCI: add stub for pci_set_consistent_dma_mask()
PCI: remove unused arch pcibios_update_resource() functions
PCI: fix pci_setup_device()'s sprinting into a const buffer
...
Fixed up conflicts in various files (arch/x86/kernel/setup_64.c,
arch/x86/pci/irq.c, arch/x86/pci/pci.h, drivers/acpi/sleep/main.c,
drivers/pci/pci.c, drivers/pci/pci.h, include/acpi/acpi_bus.h) from x86
and ACPI updates manually.
Detect all physical PCI slots as described by ACPI, and create entries in
/sys/bus/pci/slots/.
Not all physical slots are hotpluggable, and the acpiphp module does not
detect them. Now we know the physical PCI geography of our system, without
caring about hotplug.
[kaneshige.kenji@jp.fujitsu.com: export-kobject_rename-for-pci_hotplug_core]
Signed-off-by: Kenji Kaneshige <kaneshige.kenji@jp.fujitsu.com>
Acked-by: Greg KH <greg@kroah.com>
[akpm@linux-foundation.org: build fix]
[akpm@linux-foundation.org: fix build with CONFIG_DMI=n]
Signed-off-by: Alex Chiang <achiang@hp.com>
Cc: Greg KH <greg@kroah.com>
Cc: Kristen Carlson Accardi <kristen.c.accardi@intel.com>
Cc: Len Brown <lenb@kernel.org>
Acked-by: Len Brown <len.brown@intel.com>
Acked-by: Kenji Kaneshige <kaneshige.kenji@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Jesse Barnes <jbarnes@virtuousgeek.org>
In static case sbshc must be compiled ahead of sbs, so that
hc is configured first.
http://bugzilla.kernel.org/show_bug.cgi?id=9910
Signed-off-by: Alexey Starikovskiy <astarikovskiy@suse.de>
Signed-off-by: Len Brown <len.brown@intel.com>
The following is an implementation of the Windows Management
Instrumentation (WMI) ACPI interface mapper (PNP0C14).
What it does:
Parses the _WDG method and exports functions to process WMI method calls,
data block query/ set commands (both based on GUID) and does basic event
handling.
How: WMI presents an in kernel interface here (essentially, a minimal
wrapper around ACPI)
(const char *guid assume the 36 character ASCII representation of
a GUID - e.g. 67C3371D-95A3-4C37-BB61-DD47B491DAAB)
wmi_evaluate_method(const char *guid, u8 instance, u32 method_id,
const struct acpi_buffer *in, struct acpi_buffer *out)
wmi_query_block(const char *guid, u8 instance,
struct acpi_buffer *out)
wmi_set_block(const char *guid, u38 instance,
const struct acpi_buffer *in)
wmi_install_notify_handler(acpi_notify_handler handler);
wmi_remove_notify_handler(void);
wmi_get_event_data(u32 event, struct acpi_buffer *out)
wmi_has_guid(const char guid*)
wmi_has_guid() is a helper function to find if a GUID exists or not on the
system (a quick and easy way for WMI dependant drivers to see if the
the method/ block they want exists, since GUIDs are supposed to be unique).
Event handling - allow a WMI based driver to register a notifier handler
for each GUID with WMI. When a notification is sent to a GUID in WMI, the
handler registered with WMI is then called (it is left to the caller to
ask for the WMI event data associated with the GUID, if needed).
What it won't do:
Unicode - The MS article[1] calls for converting between ASCII and Unicode (or
vice versa) if a GUID is marked as "string". This is left up to the calling
driver.
Handle a MOF[1] - the WMI mapper just exports methods, data and events to
userspace. MOF handling is down to userspace.
Userspace interface - this will be added later.
[1] http://www.microsoft.com/whdc/system/pnppwr/wmi/wmi-acpi.mspx
===
ChangeLog
==
v1 (2007-10-02):
* Initial release
v2 (2007-10-05):
* Cleaned up code - split up super "wmi_evaluate_block" -> each external
symbol now handles its own ACPI calls, rather than handing off to
a "super" method (and in turn, is a lot simpler to read)
* Added a find_guid() symbol - return true if a given GUID exists on
the system
* wmi_* functions now return type acpi_status (since they are just
fancy wrappers around acpi_evaluate_object())
* Removed extra debug code
v3 (2007-10-27)
* More code clean up - now passes checkpatch.pl
* Change data block calls - ref MS spec, method ID is not required for
them, so drop it from the function parameters.
* Const'ify guid in the function call parameters.
* Fix _WDG buffer handling - copy the data to our own private structure.
* Change WMI from tristate to bool - otherwise the external functions are
not exported in linux/acpi.h if you try to build WMI as a module.
* Fix more flag comparisons.
* Add a maintainers entry - since I wrote this, I should take the blame
for it.
v4 (2007-10-30)
* Add missing brace from after fixing checkpatch errors.
* Rewrote event handling - allow external drivers to register with WMI to
handle WMI events
* Clean up flags and sanitise flag handling
v5 (2007-11-03)
* Add sysfs interface for userspace. Export events over netlink again.
* Remove module left overs, fully convert to built-in driver.
* Tweak in-kernel API to use u8 for instance, since this is what the GUID
blocks use (so instance cannot be greater than u8).
* Export wmi_get_event_data() for in kernel WMI drivers.
v6 (2007-11-07)
* Split out userspace into a different patch
v7 (2007-11-20)
* Fix driver to handle multiple PNP0C14 devices - store all GUIDs using
the kernel's built in list functions, and just keep adding to the list
every time we handle a PNP0C14 devices - GUIDs will always be unique,
and WMI callers do not know or care about different devices.
* Change WMI event handler registration to use its' own event handling
struct; we should not pass an acpi_handle down to any WMI based drivers
- they should be able to function with only the calls provided in WMI.
* Update my e-mail address
v8 (2007-11-28)
* Convert back to a module.
* Update Kconfig to default to building as a module.
* Remove an erroneous printk.
* Simply comments for string flag (since we now leave the handling to the
caller).
v9 (2007-12-07)
* Add back missing MODULE_DEVICE_TABLE for autoloading
* Checkpatch fixes
v10 (2007-12-12)
* Workaround broken GUIDs declared expensive without a WCxx method.
* Minor cleanups
v11 (2007-12-17)
* More fixing for broken GUIDs declared expensive without a WCxx method.
* Add basic EmbeddedControl region handling.
v12 (2007-12-18)
* Changed EC region handling code, as per Alexey's comments.
v13 (2007-12-27)
* Changed event handling so that we can have one event handler registered
per GUID, as per Matthew Garrett's suggestion.
v14 (2008-01-12)
* Remove ACPI debug statements
v15 (2008-02-01)
* Replace two remaining 'x == NULL' type tests with '!x'
v16 (2008-02-05)
* Change MAINTAINERS entry, as I am not, and never have been, paid to work
on WMI
* Remove 'default' line from Kconfig
Signed-off-by: Carlos Corbacho <carlos@strangeworlds.co.uk>
CC: Matthew Garrett <mjg59@srcf.ucam.org>
CC: Alexey Starikovskiy <aystarik@gmail.com>
Signed-off-by: Len Brown <len.brown@intel.com>
Introduce new ACPI_PROCFS_POWER (default Yes) config option and move
procfs code in battery, ac, and sbs drivers under it.
This is done to allow ACPI_PROCFS to be default No.
Signed-off-by: Alexey Starikovskiy <astarikovskiy@suse.de>
Signed-off-by: Len Brown <len.brown@intel.com>
Replace poll-based host controller driver with the notify-based one.
Split it out of sbs.c.
Signed-off-by: Alexey Starikovskiy <astarikovskiy@suse.de>
Signed-off-by: Len Brown <len.brown@intel.com>
ibm-acpi is not an ACPICA driver, so move it to drivers/misc as per Len
Brown's request.
Signed-off-by: Henrique de Moraes Holschuh <hmh@hmh.eng.br>
Signed-off-by: Len Brown <len.brown@intel.com>
SBS does not depend on I2C.
i2c_ec.h and i2c_ec.c are not needed
Signed-off-by: Vladimir Lebedev <vladimir.p.lebedev@intel.com>
Signed-off-by: Len Brown <len.brown@intel.com>
Signed-off-by: Kristen Carlson Accardi <kristen.c.accardi@intel.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Len Brown <len.brown@intel.com>
The PNP system board driver (drivers/pnp/system.c) contains all the
same functionality, so we don't need the ACPI version.
Previously, a motherboard device would be claimed by *both* the ACPI and
PNP drivers, resulting in stuff like this in /proc/ioports:
1200-121f : motherboard <-- from drivers/acpi/motherboard.c
1200-121f : pnp 00:0d <-- from drivers/pnp/system.c
Make sure to enable CONFIG_PNP (and CONFIG_PNPACPI) to include the
PNP system board driver.
Signed-off-by: Bjorn Helgaas <bjorn.helgaas@hp.com>
Signed-off-by: Len Brown <len.brown@intel.com>
Adjust link order to add ACPI devices to global list before PCI devices.
In addition, acpi_bus type must be initialized before any driver loads.
Signed-off-by: Zhang Rui <rui.zhang@intel.com>
Signed-off-by: Len Brown <len.brown@intel.com>
This reverts commit a5e1b94008.
Adrian Bunk points out that it has build errors, and apparently no
maintenance. Throw it out.
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Most batteries today are ACPI "Control Method" batteries,
but some models ship with the older "Smart Battery"
that requires this code.
Rich Townsend and Bruno Ducrot were the original authors.
Vladimir Lebedev updated to run on latest kernel.
http://bugzilla.kernel.org/show_bug.cgi?id=3734
Signed-off-by: Len Brown <len.brown@intel.com>
Create a driver which lives in the acpi subsystem to handle dock events.
This driver is not an "ACPI" driver, because acpi drivers require that the
object be present when the driver is loaded.
Signed-off-by: Kristen Carlson Accardi <kristen.c.accardi@intel.com>
Cc: Dave Hansen <haveblue@us.ibm.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Len Brown <len.brown@intel.com>
Signed-off-by: Al Viro <viro@ftp.linux.org.uk>
Signed-off-by: Len Brown <len.brown@intel.com>
(cherry picked from ef4611613657dfb8af8d336f2f61f08cfcdc9d8a commit)
Delete the ability to build an ACPI kernel that does
not include PCI support. When such a machine is created
and it requires a tuned kernel, send a patch.
http://bugzilla.kernel.org/show_bug.cgi?id=1364
Signed-off-by: Len Brown <len.brown@intel.com>
Implement the framework for binding physical devices
with ACPI devices. A physical bus like PCI bus
should create a 'acpi_bus_type', with:
.find_device:
For device which has parent such as normal PCI devices.
.find_bridge:
It's for special devices, such as PCI root bridge
or IDE controller. Such devices generally haven't a
parent or ->bus. We use the special method
to get an ACPI handle.
Uses new field in struct device: firmware_data
http://bugzilla.kernel.org/show_bug.cgi?id=4277
Signed-off-by: David Shaohua Li <shaohua.li@intel.com>
Signed-off-by: Len Brown <len.brown@intel.com>
See Documentation/acpi-hotkey.txt
Use cmdline "acpi_specific_hotkey" to enable
legacy platform specific drivers.
http://bugzilla.kernel.org/show_bug.cgi?id=3887
Signed-off-by: Luming Yu <luming.yu@intel.com>
Signed-off-by: Len Brown <len.brown@intel.com>
Initial git repository build. I'm not bothering with the full history,
even though we have it. We can create a separate "historical" git
archive of that later if we want to, and in the meantime it's about
3.2GB when imported into git - space that would just make the early
git days unnecessarily complicated, when we don't have a lot of good
infrastructure for it.
Let it rip!