The hlist_nulls_for_each_entry_rcu() docbook header references the
atomic_ops.rst file, which was removed in commit f0400a77eb ("atomic:
Delete obsolete documentation"). This commit therefore substitutes a
section in memory-barriers.txt discussing the use of barrier() in loops.
Cc: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Akira Yokosawa <akiyks@gmail.com>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
- Add a SPDX header;
- Adjust document title;
- Some whitespace fixes and new line breaks;
- Mark literal blocks as such;
- Add it to RCU/index.rst.
Signed-off-by: Mauro Carvalho Chehab <mchehab+huawei@kernel.org>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
This patch further relaxes the need to drop an skb due to a clash with
an existing conntrack entry.
Current clash resolution handles the case where the clash occurs between
two identical entries (distinct nf_conn objects with same tuples), i.e.:
Original Reply
existing: 10.2.3.4:42 -> 10.8.8.8:53 10.2.3.4:42 <- 10.0.0.6:5353
clashing: 10.2.3.4:42 -> 10.8.8.8:53 10.2.3.4:42 <- 10.0.0.6:5353
... existing handling will discard the unconfirmed clashing entry and
makes skb->_nfct point to the existing one. The skb can then be
processed normally just as if the clash would not have existed in the
first place.
For other clashes, the skb needs to be dropped.
This frequently happens with DNS resolvers that send A and AAAA queries
back-to-back when NAT rules are present that cause packets to get
different DNAT transformations applied, for example:
-m statistics --mode random ... -j DNAT --dnat-to 10.0.0.6:5353
-m statistics --mode random ... -j DNAT --dnat-to 10.0.0.7:5353
In this case the A or AAAA query is dropped which incurs a costly
delay during name resolution.
This patch also allows this collision type:
Original Reply
existing: 10.2.3.4:42 -> 10.8.8.8:53 10.2.3.4:42 <- 10.0.0.6:5353
clashing: 10.2.3.4:42 -> 10.8.8.8:53 10.2.3.4:42 <- 10.0.0.7:5353
In this case, clash is in original direction -- the reply direction
is still unique.
The change makes it so that when the 2nd colliding packet is received,
the clashing conntrack is tagged with new IPS_NAT_CLASH_BIT, gets a fixed
1 second timeout and is inserted in the reply direction only.
The entry is hidden from 'conntrack -L', it will time out quickly
and it can be early dropped because it will never progress to the
ASSURED state.
To avoid special-casing the delete code path to special case
the ORIGINAL hlist_nulls node, a new helper, "hlist_nulls_add_fake", is
added so hlist_nulls_del() will work.
Example:
CPU A: CPU B:
1. 10.2.3.4:42 -> 10.8.8.8:53 (A)
2. 10.2.3.4:42 -> 10.8.8.8:53 (AAAA)
3. Apply DNAT, reply changed to 10.0.0.6
4. 10.2.3.4:42 -> 10.8.8.8:53 (AAAA)
5. Apply DNAT, reply changed to 10.0.0.7
6. confirm/commit to conntrack table, no collisions
7. commit clashing entry
Reply comes in:
10.2.3.4:42 <- 10.0.0.6:5353 (A)
-> Finds a conntrack, DNAT is reversed & packet forwarded to 10.2.3.4:42
10.2.3.4:42 <- 10.0.0.7:5353 (AAAA)
-> Finds a conntrack, DNAT is reversed & packet forwarded to 10.2.3.4:42
The conntrack entry is deleted from table, as it has the NAT_CLASH
bit set.
In case of a retransmit from ORIGINAL dir, all further packets will get
the DNAT transformation to 10.0.0.6.
I tried to come up with other solutions but they all have worse
problems.
Alternatives considered were:
1. Confirm ct entries at allocation time, not in postrouting.
a. will cause uneccesarry work when the skb that creates the
conntrack is dropped by ruleset.
b. in case nat is applied, ct entry would need to be moved in
the table, which requires another spinlock pair to be taken.
c. breaks the 'unconfirmed entry is private to cpu' assumption:
we would need to guard all nfct->ext allocation requests with
ct->lock spinlock.
2. Make the unconfirmed list a hash table instead of a pcpu list.
Shares drawback c) of the first alternative.
3. Document this is expected and force users to rearrange their
ruleset (e.g. by using "-m cluster" instead of "-m statistics").
nft has the 'jhash' expression which can be used instead of 'numgen'.
Major drawback: doesn't fix what I consider a bug, not very realistic
and I believe its reasonable to have the existing rulesets to 'just
work'.
4. Document this is expected and force users to steer problematic
packets to the same CPU -- this would serialize the "allocate new
conntrack entry/nat table evaluation/perform nat/confirm entry", so
no race can occur. Similar drawback to 3.
Another advantage of this patch compared to 1) and 2) is that there are
no changes to the hot path; things are handled in the udp tracker and
the clash resolution path.
Cc: rcu@vger.kernel.org
Cc: "Paul E. McKenney" <paulmck@kernel.org>
Cc: Josh Triplett <josh@joshtriplett.org>
Cc: Jozsef Kadlecsik <kadlec@netfilter.org>
Signed-off-by: Florian Westphal <fw@strlen.de>
Signed-off-by: Pablo Neira Ayuso <pablo@netfilter.org>
This patch changes the docbook comment "head for your list"
to "head of the list".
Signed-off-by: Madhuparna Bhowmik <madhuparnabhowmik04@gmail.com>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
This patch adds docbook comment headers for hlist_nulls_first_rcu()
and hlist_nulls_next_rcu() in rculist_nulls.h.
Signed-off-by: Madhuparna Bhowmik <madhuparnabhowmik04@gmail.com>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Michal Kubecek and Firo Yang did a very nice analysis of crashes
happening in __inet_lookup_established().
Since a TCP socket can go from TCP_ESTABLISH to TCP_LISTEN
(via a close()/socket()/listen() cycle) without a RCU grace period,
I should not have changed listeners linkage in their hash table.
They must use the nulls protocol (Documentation/RCU/rculist_nulls.txt),
so that a lookup can detect a socket in a hash list was moved in
another one.
Since we added code in commit d296ba60d8 ("soreuseport: Resolve
merge conflict for v4/v6 ordering fix"), we have to add
hlist_nulls_add_tail_rcu() helper.
Fixes: 3b24d854cb ("tcp/dccp: do not touch listener sk_refcnt under synflood")
Signed-off-by: Eric Dumazet <edumazet@google.com>
Reported-by: Michal Kubecek <mkubecek@suse.cz>
Reported-by: Firo Yang <firo.yang@suse.com>
Reviewed-by: Michal Kubecek <mkubecek@suse.cz>
Link: https://lore.kernel.org/netdev/20191120083919.GH27852@unicorn.suse.cz/
Signed-off-by: Jakub Kicinski <jakub.kicinski@netronome.com>
As we move stuff around, some doc references are broken. Fix some of
them via this script:
./scripts/documentation-file-ref-check --fix
Manually checked if the produced result is valid, removing a few
false-positives.
Acked-by: Takashi Iwai <tiwai@suse.de>
Acked-by: Masami Hiramatsu <mhiramat@kernel.org>
Acked-by: Stephen Boyd <sboyd@kernel.org>
Acked-by: Charles Keepax <ckeepax@opensource.wolfsonmicro.com>
Acked-by: Mathieu Poirier <mathieu.poirier@linaro.org>
Reviewed-by: Coly Li <colyli@suse.de>
Signed-off-by: Mauro Carvalho Chehab <mchehab+samsung@kernel.org>
Acked-by: Jonathan Corbet <corbet@lwn.net>
Alexander Potapenko reported use of uninitialized memory [1]
This happens when inserting a request socket into TCP ehash,
in __sk_nulls_add_node_rcu(), since sk_reuseport is not initialized.
Bug was added by commit d894ba18d4 ("soreuseport: fix ordering for
mixed v4/v6 sockets")
Note that d296ba60d8 ("soreuseport: Resolve merge conflict for v4/v6
ordering fix") missed the opportunity to get rid of
hlist_nulls_add_tail_rcu() :
Both UDP sockets and TCP/DCCP listeners no longer use
__sk_nulls_add_node_rcu() for their hash insertion.
Since all other sockets have unique 4-tuple, the reuseport status
has no special meaning, so we can always use hlist_nulls_add_head_rcu()
for them and save few cycles/instructions.
[1]
==================================================================
BUG: KMSAN: use of uninitialized memory in inet_ehash_insert+0xd40/0x1050
CPU: 0 PID: 0 Comm: swapper/0 Not tainted 4.13.0+ #3288
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS Bochs 01/01/2011
Call Trace:
<IRQ>
__dump_stack lib/dump_stack.c:16
dump_stack+0x185/0x1d0 lib/dump_stack.c:52
kmsan_report+0x13f/0x1c0 mm/kmsan/kmsan.c:1016
__msan_warning_32+0x69/0xb0 mm/kmsan/kmsan_instr.c:766
__sk_nulls_add_node_rcu ./include/net/sock.h:684
inet_ehash_insert+0xd40/0x1050 net/ipv4/inet_hashtables.c:413
reqsk_queue_hash_req net/ipv4/inet_connection_sock.c:754
inet_csk_reqsk_queue_hash_add+0x1cc/0x300 net/ipv4/inet_connection_sock.c:765
tcp_conn_request+0x31e7/0x36f0 net/ipv4/tcp_input.c:6414
tcp_v4_conn_request+0x16d/0x220 net/ipv4/tcp_ipv4.c:1314
tcp_rcv_state_process+0x42a/0x7210 net/ipv4/tcp_input.c:5917
tcp_v4_do_rcv+0xa6a/0xcd0 net/ipv4/tcp_ipv4.c:1483
tcp_v4_rcv+0x3de0/0x4ab0 net/ipv4/tcp_ipv4.c:1763
ip_local_deliver_finish+0x6bb/0xcb0 net/ipv4/ip_input.c:216
NF_HOOK ./include/linux/netfilter.h:248
ip_local_deliver+0x3fa/0x480 net/ipv4/ip_input.c:257
dst_input ./include/net/dst.h:477
ip_rcv_finish+0x6fb/0x1540 net/ipv4/ip_input.c:397
NF_HOOK ./include/linux/netfilter.h:248
ip_rcv+0x10f6/0x15c0 net/ipv4/ip_input.c:488
__netif_receive_skb_core+0x36f6/0x3f60 net/core/dev.c:4298
__netif_receive_skb net/core/dev.c:4336
netif_receive_skb_internal+0x63c/0x19c0 net/core/dev.c:4497
napi_skb_finish net/core/dev.c:4858
napi_gro_receive+0x629/0xa50 net/core/dev.c:4889
e1000_receive_skb drivers/net/ethernet/intel/e1000/e1000_main.c:4018
e1000_clean_rx_irq+0x1492/0x1d30
drivers/net/ethernet/intel/e1000/e1000_main.c:4474
e1000_clean+0x43aa/0x5970 drivers/net/ethernet/intel/e1000/e1000_main.c:3819
napi_poll net/core/dev.c:5500
net_rx_action+0x73c/0x1820 net/core/dev.c:5566
__do_softirq+0x4b4/0x8dd kernel/softirq.c:284
invoke_softirq kernel/softirq.c:364
irq_exit+0x203/0x240 kernel/softirq.c:405
exiting_irq+0xe/0x10 ./arch/x86/include/asm/apic.h:638
do_IRQ+0x15e/0x1a0 arch/x86/kernel/irq.c:263
common_interrupt+0x86/0x86
Fixes: d894ba18d4 ("soreuseport: fix ordering for mixed v4/v6 sockets")
Fixes: d296ba60d8 ("soreuseport: Resolve merge conflict for v4/v6 ordering fix")
Signed-off-by: Eric Dumazet <edumazet@google.com>
Reported-by: Alexander Potapenko <glider@google.com>
Acked-by: Craig Gallek <kraig@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Many source files in the tree are missing licensing information, which
makes it harder for compliance tools to determine the correct license.
By default all files without license information are under the default
license of the kernel, which is GPL version 2.
Update the files which contain no license information with the 'GPL-2.0'
SPDX license identifier. The SPDX identifier is a legally binding
shorthand, which can be used instead of the full boiler plate text.
This patch is based on work done by Thomas Gleixner and Kate Stewart and
Philippe Ombredanne.
How this work was done:
Patches were generated and checked against linux-4.14-rc6 for a subset of
the use cases:
- file had no licensing information it it.
- file was a */uapi/* one with no licensing information in it,
- file was a */uapi/* one with existing licensing information,
Further patches will be generated in subsequent months to fix up cases
where non-standard license headers were used, and references to license
had to be inferred by heuristics based on keywords.
The analysis to determine which SPDX License Identifier to be applied to
a file was done in a spreadsheet of side by side results from of the
output of two independent scanners (ScanCode & Windriver) producing SPDX
tag:value files created by Philippe Ombredanne. Philippe prepared the
base worksheet, and did an initial spot review of a few 1000 files.
The 4.13 kernel was the starting point of the analysis with 60,537 files
assessed. Kate Stewart did a file by file comparison of the scanner
results in the spreadsheet to determine which SPDX license identifier(s)
to be applied to the file. She confirmed any determination that was not
immediately clear with lawyers working with the Linux Foundation.
Criteria used to select files for SPDX license identifier tagging was:
- Files considered eligible had to be source code files.
- Make and config files were included as candidates if they contained >5
lines of source
- File already had some variant of a license header in it (even if <5
lines).
All documentation files were explicitly excluded.
The following heuristics were used to determine which SPDX license
identifiers to apply.
- when both scanners couldn't find any license traces, file was
considered to have no license information in it, and the top level
COPYING file license applied.
For non */uapi/* files that summary was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 11139
and resulted in the first patch in this series.
If that file was a */uapi/* path one, it was "GPL-2.0 WITH
Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 WITH Linux-syscall-note 930
and resulted in the second patch in this series.
- if a file had some form of licensing information in it, and was one
of the */uapi/* ones, it was denoted with the Linux-syscall-note if
any GPL family license was found in the file or had no licensing in
it (per prior point). Results summary:
SPDX license identifier # files
---------------------------------------------------|------
GPL-2.0 WITH Linux-syscall-note 270
GPL-2.0+ WITH Linux-syscall-note 169
((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21
((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17
LGPL-2.1+ WITH Linux-syscall-note 15
GPL-1.0+ WITH Linux-syscall-note 14
((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5
LGPL-2.0+ WITH Linux-syscall-note 4
LGPL-2.1 WITH Linux-syscall-note 3
((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3
((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1
and that resulted in the third patch in this series.
- when the two scanners agreed on the detected license(s), that became
the concluded license(s).
- when there was disagreement between the two scanners (one detected a
license but the other didn't, or they both detected different
licenses) a manual inspection of the file occurred.
- In most cases a manual inspection of the information in the file
resulted in a clear resolution of the license that should apply (and
which scanner probably needed to revisit its heuristics).
- When it was not immediately clear, the license identifier was
confirmed with lawyers working with the Linux Foundation.
- If there was any question as to the appropriate license identifier,
the file was flagged for further research and to be revisited later
in time.
In total, over 70 hours of logged manual review was done on the
spreadsheet to determine the SPDX license identifiers to apply to the
source files by Kate, Philippe, Thomas and, in some cases, confirmation
by lawyers working with the Linux Foundation.
Kate also obtained a third independent scan of the 4.13 code base from
FOSSology, and compared selected files where the other two scanners
disagreed against that SPDX file, to see if there was new insights. The
Windriver scanner is based on an older version of FOSSology in part, so
they are related.
Thomas did random spot checks in about 500 files from the spreadsheets
for the uapi headers and agreed with SPDX license identifier in the
files he inspected. For the non-uapi files Thomas did random spot checks
in about 15000 files.
In initial set of patches against 4.14-rc6, 3 files were found to have
copy/paste license identifier errors, and have been fixed to reflect the
correct identifier.
Additionally Philippe spent 10 hours this week doing a detailed manual
inspection and review of the 12,461 patched files from the initial patch
version early this week with:
- a full scancode scan run, collecting the matched texts, detected
license ids and scores
- reviewing anything where there was a license detected (about 500+
files) to ensure that the applied SPDX license was correct
- reviewing anything where there was no detection but the patch license
was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied
SPDX license was correct
This produced a worksheet with 20 files needing minor correction. This
worksheet was then exported into 3 different .csv files for the
different types of files to be modified.
These .csv files were then reviewed by Greg. Thomas wrote a script to
parse the csv files and add the proper SPDX tag to the file, in the
format that the file expected. This script was further refined by Greg
based on the output to detect more types of files automatically and to
distinguish between header and source .c files (which need different
comment types.) Finally Greg ran the script using the .csv files to
generate the patches.
Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
when all map elements are pre-allocated one cpu can delete and reuse htab_elem
while another cpu is still walking the hlist. In such case the lookup may
miss the element. Convert hlist to hlist_nulls to avoid such scenario.
When bucket lock is taken there is no need to take such precautions,
so only convert map_lookup and map_get_next to nulls.
The race window is extremely small and only reproducible with explicit
udelay() inside lookup_nulls_elem_raw()
Similar to hlist add hlist_nulls_for_each_entry_safe() and
hlist_nulls_entry_safe() helpers.
Fixes: 6c90598174 ("bpf: pre-allocate hash map elements")
Reported-by: Jonathan Perry <jonperry@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: David S. Miller <davem@davemloft.net>
With the SO_REUSEPORT socket option, it is possible to create sockets
in the AF_INET and AF_INET6 domains which are bound to the same IPv4 address.
This is only possible with SO_REUSEPORT and when not using IPV6_V6ONLY on
the AF_INET6 sockets.
Prior to the commits referenced below, an incoming IPv4 packet would
always be routed to a socket of type AF_INET when this mixed-mode was used.
After those changes, the same packet would be routed to the most recently
bound socket (if this happened to be an AF_INET6 socket, it would
have an IPv4 mapped IPv6 address).
The change in behavior occurred because the recent SO_REUSEPORT optimizations
short-circuit the socket scoring logic as soon as they find a match. They
did not take into account the scoring logic that favors AF_INET sockets
over AF_INET6 sockets in the event of a tie.
To fix this problem, this patch changes the insertion order of AF_INET
and AF_INET6 addresses in the TCP and UDP socket lists when the sockets
have SO_REUSEPORT set. AF_INET sockets will be inserted at the head of the
list and AF_INET6 sockets with SO_REUSEPORT set will always be inserted at
the tail of the list. This will force AF_INET sockets to always be
considered first.
Fixes: e32ea7e747 ("soreuseport: fast reuseport UDP socket selection")
Fixes: 125e80b88687 ("soreuseport: fast reuseport TCP socket selection")
Reported-by: Maciej Żenczykowski <maze@google.com>
Signed-off-by: Craig Gallek <kraig@google.com>
Signed-off-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Roman Gushchin discovered that udp4_lib_lookup2() was not reloading
first item in the rcu protected list, in case the loop was restarted.
This produced soft lockups as in https://lkml.org/lkml/2013/4/16/37
rcu_dereference(X)/ACCESS_ONCE(X) seem to not work as intended if X is
ptr->field :
In some cases, gcc caches the value or ptr->field in a register.
Use a barrier() to disallow such caching, as documented in
Documentation/atomic_ops.txt line 114
Thanks a lot to Roman for providing analysis and numerous patches.
Diagnosed-by: Roman Gushchin <klamm@yandex-team.ru>
Signed-off-by: Eric Dumazet <edumazet@google.com>
Reported-by: Boris Zhmurov <zhmurov@yandex-team.ru>
Signed-off-by: Roman Gushchin <klamm@yandex-team.ru>
Acked-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
This avoids warnings from missing __rcu annotations
in the rculist implementation, making it possible to
use the same lists in both RCU and non-RCU cases.
We can add rculist annotations later, together with
lockdep support for rculist, which is missing as well,
but that may involve changing all the users.
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Pavel Emelyanov <xemul@openvz.org>
Cc: Sukadev Bhattiprolu <sukadev@us.ibm.com>
Reviewed-by: Josh Triplett <josh@joshtriplett.org>
The theory is that use of bare rcu_dereference() is more prone
to error than use of the RCU list-traversal primitives.
Therefore, disable lockdep RCU read-side critical-section
checking in these primitives for the time being. Once all of
the rcu_dereference() uses have been dealt with, it may be time
to re-enable lockdep checking for the RCU list-traversal
primitives.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: laijs@cn.fujitsu.com
Cc: dipankar@in.ibm.com
Cc: mathieu.desnoyers@polymtl.ca
Cc: josh@joshtriplett.org
Cc: dvhltc@us.ibm.com
Cc: niv@us.ibm.com
Cc: peterz@infradead.org
Cc: rostedt@goodmis.org
Cc: Valdis.Kletnieks@vt.edu
Cc: dhowells@redhat.com
LKML-Reference: <1266887105-1528-4-git-send-email-paulmck@linux.vnet.ibm.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
hlist uses NULL value to finish a chain.
hlist_nulls variant use the low order bit set to 1 to signal an end-of-list marker.
This allows to store many different end markers, so that some RCU lockless
algos (used in TCP/UDP stack for example) can save some memory barriers in
fast paths.
Two new files are added :
include/linux/list_nulls.h
- mimics hlist part of include/linux/list.h, derived to hlist_nulls variant
include/linux/rculist_nulls.h
- mimics hlist part of include/linux/rculist.h, derived to hlist_nulls variant
Only four helpers are declared for the moment :
hlist_nulls_del_init_rcu(), hlist_nulls_del_rcu(),
hlist_nulls_add_head_rcu() and hlist_nulls_for_each_entry_rcu()
prefetches() were removed, since an end of list is not anymore NULL value.
prefetches() could trigger useless (and possibly dangerous) memory transactions.
Example of use (extracted from __udp4_lib_lookup())
struct sock *sk, *result;
struct hlist_nulls_node *node;
unsigned short hnum = ntohs(dport);
unsigned int hash = udp_hashfn(net, hnum);
struct udp_hslot *hslot = &udptable->hash[hash];
int score, badness;
rcu_read_lock();
begin:
result = NULL;
badness = -1;
sk_nulls_for_each_rcu(sk, node, &hslot->head) {
score = compute_score(sk, net, saddr, hnum, sport,
daddr, dport, dif);
if (score > badness) {
result = sk;
badness = score;
}
}
/*
* if the nulls value we got at the end of this lookup is
* not the expected one, we must restart lookup.
* We probably met an item that was moved to another chain.
*/
if (get_nulls_value(node) != hash)
goto begin;
if (result) {
if (unlikely(!atomic_inc_not_zero(&result->sk_refcnt)))
result = NULL;
else if (unlikely(compute_score(result, net, saddr, hnum, sport,
daddr, dport, dif) < badness)) {
sock_put(result);
goto begin;
}
}
rcu_read_unlock();
return result;
Signed-off-by: Eric Dumazet <dada1@cosmosbay.com>
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: David S. Miller <davem@davemloft.net>