Граф коммитов

10 Коммитов

Автор SHA1 Сообщение Дата
David S. Miller 2198a10b50 Merge branch 'master' of master.kernel.org:/pub/scm/linux/kernel/git/davem/net-2.6
Conflicts:
	net/core/dev.c
2010-10-21 08:43:05 -07:00
stephen hemminger ff51bf8415 rds: make local functions/variables static
The RDS protocol has lots of functions that should be
declared static. rds_message_get/add_version_extension is
removed since it defined but never used.

Signed-off-by: Stephen Hemminger <shemminger@vyatta.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2010-10-21 04:26:39 -07:00
Linus Torvalds 799c10559d De-pessimize rds_page_copy_user
Don't try to "optimize" rds_page_copy_user() by using kmap_atomic() and
the unsafe atomic user mode accessor functions.  It's actually slower
than the straightforward code on any reasonable modern CPU.

Back when the code was written (although probably not by the time it was
actually merged, though), 32-bit x86 may have been the dominant
architecture.  And there kmap_atomic() can be a lot faster than kmap()
(unless you have very good locality, in which case the virtual address
caching by kmap() can overcome all the downsides).

But these days, x86-64 may not be more populous, but it's getting there
(and if you care about performance, it's definitely already there -
you'd have upgraded your CPU's already in the last few years).  And on
x86-64, the non-kmap_atomic() version is faster, simply because the code
is simpler and doesn't have the "re-try page fault" case.

People with old hardware are not likely to care about RDS anyway, and
the optimization for the 32-bit case is simply buggy, since it doesn't
verify the user addresses properly.

Reported-by: Dan Rosenberg <drosenberg@vsecurity.com>
Acked-by: Andrew Morton <akpm@linux-foundation.org>
Cc: stable@kernel.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-10-15 11:09:28 -07:00
Andy Grover 0b088e003c RDS: Use page_remainder_alloc() for recv bufs
Instead of splitting up a page into RDS_FRAG_SIZE chunks
ourselves, ask rds_page_remainder_alloc() to do it. While it
is possible PAGE_SIZE > FRAG_SIZE, on x86en it isn't, so having
duplicate "carve up a page into buffers" code seems excessive.

The other modification this spawns is the use of a single
struct scatterlist in rds_page_frag instead of a bare page ptr.
This causes verbosity to increase in some places, and decrease
in others.

Finally, I decided to unify the lifetimes and alloc/free of
rds_page_frag and its page. This is a nice simplification in itself,
but will be extra-nice once we come to adding cmason's recycling
patch.

Signed-off-by: Andy Grover <andy.grover@oracle.com>
2010-09-08 18:15:20 -07:00
Andy Grover 8690bfa17a RDS: cleanup: remove "== NULL"s and "!= NULL"s in ptr comparisons
Favor "if (foo)" style over "if (foo != NULL)".

Signed-off-by: Andy Grover <andy.grover@oracle.com>
2010-09-08 18:11:32 -07:00
Tejun Heo 5a0e3ad6af include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h
percpu.h is included by sched.h and module.h and thus ends up being
included when building most .c files.  percpu.h includes slab.h which
in turn includes gfp.h making everything defined by the two files
universally available and complicating inclusion dependencies.

percpu.h -> slab.h dependency is about to be removed.  Prepare for
this change by updating users of gfp and slab facilities include those
headers directly instead of assuming availability.  As this conversion
needs to touch large number of source files, the following script is
used as the basis of conversion.

  http://userweb.kernel.org/~tj/misc/slabh-sweep.py

The script does the followings.

* Scan files for gfp and slab usages and update includes such that
  only the necessary includes are there.  ie. if only gfp is used,
  gfp.h, if slab is used, slab.h.

* When the script inserts a new include, it looks at the include
  blocks and try to put the new include such that its order conforms
  to its surrounding.  It's put in the include block which contains
  core kernel includes, in the same order that the rest are ordered -
  alphabetical, Christmas tree, rev-Xmas-tree or at the end if there
  doesn't seem to be any matching order.

* If the script can't find a place to put a new include (mostly
  because the file doesn't have fitting include block), it prints out
  an error message indicating which .h file needs to be added to the
  file.

The conversion was done in the following steps.

1. The initial automatic conversion of all .c files updated slightly
   over 4000 files, deleting around 700 includes and adding ~480 gfp.h
   and ~3000 slab.h inclusions.  The script emitted errors for ~400
   files.

2. Each error was manually checked.  Some didn't need the inclusion,
   some needed manual addition while adding it to implementation .h or
   embedding .c file was more appropriate for others.  This step added
   inclusions to around 150 files.

3. The script was run again and the output was compared to the edits
   from #2 to make sure no file was left behind.

4. Several build tests were done and a couple of problems were fixed.
   e.g. lib/decompress_*.c used malloc/free() wrappers around slab
   APIs requiring slab.h to be added manually.

5. The script was run on all .h files but without automatically
   editing them as sprinkling gfp.h and slab.h inclusions around .h
   files could easily lead to inclusion dependency hell.  Most gfp.h
   inclusion directives were ignored as stuff from gfp.h was usually
   wildly available and often used in preprocessor macros.  Each
   slab.h inclusion directive was examined and added manually as
   necessary.

6. percpu.h was updated not to include slab.h.

7. Build test were done on the following configurations and failures
   were fixed.  CONFIG_GCOV_KERNEL was turned off for all tests (as my
   distributed build env didn't work with gcov compiles) and a few
   more options had to be turned off depending on archs to make things
   build (like ipr on powerpc/64 which failed due to missing writeq).

   * x86 and x86_64 UP and SMP allmodconfig and a custom test config.
   * powerpc and powerpc64 SMP allmodconfig
   * sparc and sparc64 SMP allmodconfig
   * ia64 SMP allmodconfig
   * s390 SMP allmodconfig
   * alpha SMP allmodconfig
   * um on x86_64 SMP allmodconfig

8. percpu.h modifications were reverted so that it could be applied as
   a separate patch and serve as bisection point.

Given the fact that I had only a couple of failures from tests on step
6, I'm fairly confident about the coverage of this conversion patch.
If there is a breakage, it's likely to be something in one of the arch
headers which should be easily discoverable easily on most builds of
the specific arch.

Signed-off-by: Tejun Heo <tj@kernel.org>
Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-30 22:02:32 +09:00
Linus Torvalds ada3fa1505 Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/percpu
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/percpu: (46 commits)
  powerpc64: convert to dynamic percpu allocator
  sparc64: use embedding percpu first chunk allocator
  percpu: kill lpage first chunk allocator
  x86,percpu: use embedding for 64bit NUMA and page for 32bit NUMA
  percpu: update embedding first chunk allocator to handle sparse units
  percpu: use group information to allocate vmap areas sparsely
  vmalloc: implement pcpu_get_vm_areas()
  vmalloc: separate out insert_vmalloc_vm()
  percpu: add chunk->base_addr
  percpu: add pcpu_unit_offsets[]
  percpu: introduce pcpu_alloc_info and pcpu_group_info
  percpu: move pcpu_lpage_build_unit_map() and pcpul_lpage_dump_cfg() upward
  percpu: add @align to pcpu_fc_alloc_fn_t
  percpu: make @dyn_size mandatory for pcpu_setup_first_chunk()
  percpu: drop @static_size from first chunk allocators
  percpu: generalize first chunk allocator selection
  percpu: build first chunk allocators selectively
  percpu: rename 4k first chunk allocator to page
  percpu: improve boot messages
  percpu: fix pcpu_reclaim() locking
  ...

Fix trivial conflict as by Tejun Heo in kernel/sched.c
2009-09-15 09:39:44 -07:00
Andy Grover 616b757ae1 RDS: Export symbols from core RDS
Now that rdma and tcp transports will be modularized,
we need to export a number of functions so they can call them.

Signed-off-by: Andy Grover <andy.grover@oracle.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2009-08-23 19:13:07 -07:00
Tejun Heo b9bf3121af percpu: use DEFINE_PER_CPU_SHARED_ALIGNED()
There are a few places where ___cacheline_aligned* is used with
DEFINE_PER_CPU().  Use DEFINE_PER_CPU_SHARED_ALIGNED() instead.

DEFINE_PER_CPU_SHARED_ALIGNED() applies alignment only on SMPs.  While
all other converted places used _in_smp variant or only get compiled
for SMP, net/rds used unconditional ____cacheline_aligned.  I don't
see any reason these data structures should be aligned on UP and thus
converted together.

Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Mike Frysinger <vapier@gentoo.org>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Andy Grover <andy.grover@oracle.com>
2009-06-24 15:13:47 +09:00
Andy Grover 7875e18e09 RDS: Message parsing
Parsing of newly-received RDS message headers (including ext.
headers) and copy-to/from-user routines.

page.c implements a per-cpu page remainder cache, to reduce the
number of allocations needed for small datagrams.

Signed-off-by: Andy Grover <andy.grover@oracle.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2009-02-26 23:39:28 -08:00