Граф коммитов

166 Коммитов

Автор SHA1 Сообщение Дата
David Howells 57be4a784b X.509: struct x509_certificate needs struct tm declaring
struct x509_certificate needs struct tm declaring by #inclusion of linux/time.h
prior to its definition.

Signed-off-by: David Howells <dhowells@redhat.com>
Reviewed-by: Kees Cook <keescook@chromium.org>
Reviewed-by: Josh Boyer <jwboyer@redhat.com>
2013-09-25 17:17:00 +01:00
David Howells 3d167d68e3 KEYS: Split public_key_verify_signature() and make available
Modify public_key_verify_signature() so that it now takes a public_key struct
rather than a key struct and supply a wrapper that takes a key struct.  The
wrapper is then used by the asymmetric key subtype and the modified function is
used by X.509 self-signature checking and can be used by other things also.

Signed-off-by: David Howells <dhowells@redhat.com>
Reviewed-by: Kees Cook <keescook@chromium.org>
Reviewed-by: Josh Boyer <jwboyer@redhat.com>
2013-09-25 17:17:00 +01:00
David Howells 67f7d60b3a KEYS: Store public key algo ID in public_key struct
Store public key algo ID in public_key struct for reference purposes.  This
allows it to be removed from the x509_certificate struct and used to find a
default in public_key_verify_signature().

Signed-off-by: David Howells <dhowells@redhat.com>
Reviewed-by: Kees Cook <keescook@chromium.org>
Reviewed-by: Josh Boyer <jwboyer@redhat.com>
2013-09-25 17:17:00 +01:00
David Howells 206ce59a10 KEYS: Move the algorithm pointer array from x509 to public_key.c
Move the public-key algorithm pointer array from x509_public_key.c to
public_key.c as it isn't X.509 specific.

Note that to make this configure correctly, the public key part must be
dependent on the RSA module rather than the other way round.  This needs a
further patch to make use of the crypto module loading stuff rather than using
a fixed table.

Signed-off-by: David Howells <dhowells@redhat.com>
Reviewed-by: Kees Cook <keescook@chromium.org>
Reviewed-by: Josh Boyer <jwboyer@redhat.com>
2013-09-25 15:51:07 +01:00
David Howells 9abc4e66eb KEYS: Rename public key parameter name arrays
Rename the arrays of public key parameters (public key algorithm names, hash
algorithm names and ID type names) so that the array name ends in "_name".

Signed-off-by: David Howells <dhowells@redhat.com>
Reviewed-by: Kees Cook <keescook@chromium.org>
Reviewed-by: Josh Boyer <jwboyer@redhat.com>
2013-09-25 15:51:07 +01:00
Chun-Yi Lee 04b00bdb41 X.509: Support parse long form of length octets in Authority Key Identifier
Per X.509 spec in 4.2.1.1 section, the structure of Authority Key
Identifier Extension is:

   AuthorityKeyIdentifier ::= SEQUENCE {
      keyIdentifier             [0] KeyIdentifier           OPTIONAL,
      authorityCertIssuer       [1] GeneralNames            OPTIONAL,
      authorityCertSerialNumber [2] CertificateSerialNumber OPTIONAL  }

   KeyIdentifier ::= OCTET STRING

When a certificate also provides
authorityCertIssuer and authorityCertSerialNumber then the length of
AuthorityKeyIdentifier SEQUENCE is likely to long form format.
e.g.
   The example certificate demos/tunala/A-server.pem in openssl source:

X509v3 Authority Key Identifier:
    keyid:49:FB:45:72:12:C4:CC:E1:45:A1:D3:08:9E:95:C4:2C:6D:55:3F:17
    DirName:/C=NZ/L=Wellington/O=Really Irresponsible Authorisation Authority (RIAA)/OU=Cert-stamping/CN=Jackov al-Trades/emailAddress=none@fake.domain
    serial:00

Current parsing rule of OID_authorityKeyIdentifier only take care the
short form format, it causes load certificate to modsign_keyring fail:

[   12.061147] X.509: Extension: 47
[   12.075121] MODSIGN: Problem loading in-kernel X.509 certificate (-74)

So, this patch add the parsing rule for support long form format against
Authority Key Identifier.

v3:
Changed the size check in "Short Form length" case, we allow v[3] smaller
then (vlen - 4) because authorityCertIssuer and authorityCertSerialNumber
are also possible attach in AuthorityKeyIdentifier sequence.

v2:
 - Removed comma from author's name.
 - Moved 'Short Form length' comment inside the if-body.
 - Changed the type of sub to size_t.
 - Use ASN1_INDEFINITE_LENGTH rather than writing 0x80 and 127.
 - Moved the key_len's value assignment before alter v.
 - Fixed the typo of octets.
 - Add 2 to v before entering the loop for calculate the length.
 - Removed the comment of check vlen.

Cc: Rusty Russell <rusty@rustcorp.com.au>
Cc: Josh Boyer <jwboyer@redhat.com>
Cc: Randy Dunlap <rdunlap@xenotime.net>
Cc: Herbert Xu <herbert@gondor.apana.org.au>
Cc: "David S. Miller" <davem@davemloft.net>
Acked-by: David Howells <dhowells@redhat.com>
Signed-off-by: Chun-Yi Lee <jlee@suse.com>
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
2013-04-22 11:32:19 +09:30
David Howells 2f1c4fef10 X.509: Convert some printk calls to pr_devel
Some debugging printk() calls should've been converted to pr_devel() calls.
Do that now.

Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
2012-10-10 20:06:38 +10:30
Randy Dunlap cf75446e69 asymmetric keys: fix printk format warning
Fix printk format warning in x509_cert_parser.c:

crypto/asymmetric_keys/x509_cert_parser.c: In function 'x509_note_OID':
crypto/asymmetric_keys/x509_cert_parser.c:113:3: warning: format '%zu' expects type 'size_t', but argument 2 has type 'long unsigned int'

Builds cleanly on i386 and x86_64.

Signed-off-by: Randy Dunlap <rdunlap@xenotime.net>
Cc: David Howells <dhowells@redhat.com>
Cc: Herbert Xu <herbert@gondor.apana.org.au>
Cc: linux-crypto@vger.kernel.org
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
2012-10-10 20:06:38 +10:30
David Howells a5752d11b3 MODSIGN: Fix 32-bit overflow in X.509 certificate validity date checking
The current choice of lifetime for the autogenerated X.509 of 100 years,
putting the validTo date in 2112, causes problems on 32-bit systems where a
32-bit time_t wraps in 2106.  64-bit x86_64 systems seem to be unaffected.

This can result in something like:

	Loading module verification certificates
	X.509: Cert 6e03943da0f3b015ba6ed7f5e0cac4fe48680994 has expired
	MODSIGN: Problem loading in-kernel X.509 certificate (-127)

Or:

	X.509: Cert 6e03943da0f3b015ba6ed7f5e0cac4fe48680994 is not yet valid
	MODSIGN: Problem loading in-kernel X.509 certificate (-129)

Instead of turning the dates into time_t values and comparing, turn the system
clock and the ASN.1 dates into tm structs and compare those piecemeal instead.

Reported-by: Rusty Russell <rusty@rustcorp.com.au>
Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: Josh Boyer <jwboyer@redhat.com>
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
2012-10-10 20:06:37 +10:30
David Howells c26fd69fa0 X.509: Add a crypto key parser for binary (DER) X.509 certificates
Add a crypto key parser for binary (DER) encoded X.509 certificates.  The
certificate is parsed and, if possible, the signature is verified.

An X.509 key can be added like this:

	# keyctl padd crypto bar @s </tmp/x509.cert
	15768135

and displayed like this:

	# cat /proc/keys
	00f09a47 I--Q---     1 perm 39390000     0     0 asymmetri bar: X509.RSA e9fd6d08 []

Note that this only works with binary certificates.  PEM encoded certificates
are ignored by the parser.

Note also that the X.509 key ID is not congruent with the PGP key ID, but for
the moment, they will match.

If a NULL or "" name is given to add_key(), then the parser will generate a key
description from the CertificateSerialNumber and Name fields of the
TBSCertificate:

	00aefc4e I--Q---     1 perm 39390000     0     0 asymmetri bfbc0cd76d050ea4:/C=GB/L=Cambridge/O=Red Hat/CN=kernel key: X509.RSA 0c688c7b []

Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
2012-10-08 13:50:22 +10:30
David Howells 0b1568a453 RSA: Fix signature verification for shorter signatures
gpg can produce a signature file where length of signature is less than the
modulus size because the amount of space an MPI takes up is kept as low as
possible by discarding leading zeros.  This regularly happens for several
modules during the build.

Fix it by relaxing check in RSA verification code.

Thanks to Tomas Mraz and Miloslav Trmac for help.

Signed-off-by: Milan Broz <mbroz@redhat.com>
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
2012-10-08 13:50:17 +10:30
David Howells 612e0fe999 RSA: Implement signature verification algorithm [PKCS#1 / RFC3447]
Implement RSA public key cryptography [PKCS#1 / RFC3447].  At this time, only
the signature verification algorithm is supported.  This uses the asymmetric
public key subtype to hold its key data.

Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
2012-10-08 13:50:16 +10:30
David Howells 4ae71c1dce KEYS: Provide signature verification with an asymmetric key
Provide signature verification using an asymmetric-type key to indicate the
public key to be used.

The API is a single function that can be found in crypto/public_key.h:

	int verify_signature(const struct key *key,
			     const struct public_key_signature *sig)

The first argument is the appropriate key to be used and the second argument
is the parsed signature data:

	struct public_key_signature {
		u8 *digest;
		u16 digest_size;
		enum pkey_hash_algo pkey_hash_algo : 8;
		union {
			MPI mpi[2];
			struct {
				MPI s;		/* m^d mod n */
			} rsa;
			struct {
				MPI r;
				MPI s;
			} dsa;
		};
	};

This should be filled in prior to calling the function.  The hash algorithm
should already have been called and the hash finalised and the output should
be in a buffer pointed to by the 'digest' member.

Any extra data to be added to the hash by the hash format (eg. PGP) should
have been added by the caller prior to finalising the hash.

It is assumed that the signature is made up of a number of MPI values.  If an
algorithm becomes available for which this is not the case, the above structure
will have to change.

It is also assumed that it will have been checked that the signature algorithm
matches the key algorithm.

Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
2012-10-08 13:50:15 +10:30
David Howells a9681bf3dd KEYS: Asymmetric public-key algorithm crypto key subtype
Add a subtype for supporting asymmetric public-key encryption algorithms such
as DSA (FIPS-186) and RSA (PKCS#1 / RFC1337).

Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
2012-10-08 13:50:14 +10:30
David Howells 46c6f1776e KEYS: Asymmetric key pluggable data parsers
The instantiation data passed to the asymmetric key type are expected to be
formatted in some way, and there are several possible standard ways to format
the data.

The two obvious standards are OpenPGP keys and X.509 certificates.  The latter
is especially useful when dealing with UEFI, and the former might be useful
when dealing with, say, eCryptfs.

Further, it might be desirable to provide formatted blobs that indicate
hardware is to be accessed to retrieve the keys or that the keys live
unretrievably in a hardware store, but that the keys can be used by means of
the hardware.

From userspace, the keys can be loaded using the keyctl command, for example,
an X.509 binary certificate:

	keyctl padd asymmetric foo @s <dhowells.pem

or a PGP key:

	keyctl padd asymmetric bar @s <dhowells.pub

or a pointer into the contents of the TPM:

	keyctl add asymmetric zebra "TPM:04982390582905f8" @s

Inside the kernel, pluggable parsers register themselves and then get to
examine the payload data to see if they can handle it.  If they can, they get
to:

  (1) Propose a name for the key, to be used it the name is "" or NULL.

  (2) Specify the key subtype.

  (3) Provide the data for the subtype.

The key type asks the parser to do its stuff before a key is allocated and thus
before the name is set.  If successful, the parser stores the suggested data
into the key_preparsed_payload struct, which will be either used (if the key is
successfully created and instantiated or updated) or discarded.

Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
2012-10-08 13:50:13 +10:30
David Howells 964f3b3bf4 KEYS: Implement asymmetric key type
Create a key type that can be used to represent an asymmetric key type for use
in appropriate cryptographic operations, such as encryption, decryption,
signature generation and signature verification.

The key type is "asymmetric" and can provide access to a variety of
cryptographic algorithms.

Possibly, this would be better as "public_key" - but that has the disadvantage
that "public key" is an overloaded term.

Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
2012-10-08 13:50:12 +10:30