Граф коммитов

83 Коммитов

Автор SHA1 Сообщение Дата
Andreas Rohner e2c7617ae3 nilfs2: add missing blkdev_issue_flush() to nilfs_sync_fs()
Under normal circumstances nilfs_sync_fs() writes out the super block,
which causes a flush of the underlying block device.  But this depends
on the THE_NILFS_SB_DIRTY flag, which is only set if the pointer to the
last segment crosses a segment boundary.  So if only a small amount of
data is written before the call to nilfs_sync_fs(), no flush of the
block device occurs.

In the above case an additional call to blkdev_issue_flush() is needed.
To prevent unnecessary overhead, the new flag nilfs->ns_flushed_device
is introduced, which is cleared whenever new logs are written and set
whenever the block device is flushed.  For convenience the function
nilfs_flush_device() is added, which contains the above logic.

Signed-off-by: Andreas Rohner <andreas.rohner@gmx.net>
Signed-off-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-10-14 02:18:20 +02:00
Andreas Rohner 70f2fe3a26 nilfs2: fix segctor bug that causes file system corruption
There is a bug in the function nilfs_segctor_collect, which results in
active data being written to a segment, that is marked as clean.  It is
possible, that this segment is selected for a later segment
construction, whereby the old data is overwritten.

The problem shows itself with the following kernel log message:

  nilfs_sufile_do_cancel_free: segment 6533 must be clean

Usually a few hours later the file system gets corrupted:

  NILFS: bad btree node (blocknr=8748107): level = 0, flags = 0x0, nchildren = 0
  NILFS error (device sdc1): nilfs_bmap_last_key: broken bmap (inode number=114660)

The issue can be reproduced with a file system that is nearly full and
with the cleaner running, while some IO intensive task is running.
Although it is quite hard to reproduce.

This is what happens:

 1. The cleaner starts the segment construction
 2. nilfs_segctor_collect is called
 3. sc_stage is on NILFS_ST_SUFILE and segments are freed
 4. sc_stage is on NILFS_ST_DAT current segment is full
 5. nilfs_segctor_extend_segments is called, which
    allocates a new segment
 6. The new segment is one of the segments freed in step 3
 7. nilfs_sufile_cancel_freev is called and produces an error message
 8. Loop around and the collection starts again
 9. sc_stage is on NILFS_ST_SUFILE and segments are freed
    including the newly allocated segment, which will contain active
    data and can be allocated at a later time
10. A few hours later another segment construction allocates the
    segment and causes file system corruption

This can be prevented by simply reordering the statements.  If
nilfs_sufile_cancel_freev is called before nilfs_segctor_extend_segments
the freed segments are marked as dirty and cannot be allocated any more.

Signed-off-by: Andreas Rohner <andreas.rohner@gmx.net>
Reviewed-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp>
Tested-by: Andreas Rohner <andreas.rohner@gmx.net>
Signed-off-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-01-15 14:19:42 +07:00
Vyacheslav Dubeyko 7f42ec3941 nilfs2: fix issue with race condition of competition between segments for dirty blocks
Many NILFS2 users were reported about strange file system corruption
(for example):

   NILFS: bad btree node (blocknr=185027): level = 0, flags = 0x0, nchildren = 768
   NILFS error (device sda4): nilfs_bmap_last_key: broken bmap (inode number=11540)

But such error messages are consequence of file system's issue that takes
place more earlier.  Fortunately, Jerome Poulin <jeromepoulin@gmail.com>
and Anton Eliasson <devel@antoneliasson.se> were reported about another
issue not so recently.  These reports describe the issue with segctor
thread's crash:

  BUG: unable to handle kernel paging request at 0000000000004c83
  IP: nilfs_end_page_io+0x12/0xd0 [nilfs2]

  Call Trace:
   nilfs_segctor_do_construct+0xf25/0x1b20 [nilfs2]
   nilfs_segctor_construct+0x17b/0x290 [nilfs2]
   nilfs_segctor_thread+0x122/0x3b0 [nilfs2]
   kthread+0xc0/0xd0
   ret_from_fork+0x7c/0xb0

These two issues have one reason.  This reason can raise third issue
too.  Third issue results in hanging of segctor thread with eating of
100% CPU.

REPRODUCING PATH:

One of the possible way or the issue reproducing was described by
Jermoe me Poulin <jeromepoulin@gmail.com>:

1. init S to get to single user mode.
2. sysrq+E to make sure only my shell is running
3. start network-manager to get my wifi connection up
4. login as root and launch "screen"
5. cd /boot/log/nilfs which is a ext3 mount point and can log when NILFS dies.
6. lscp | xz -9e > lscp.txt.xz
7. mount my snapshot using mount -o cp=3360839,ro /dev/vgUbuntu/root /mnt/nilfs
8. start a screen to dump /proc/kmsg to text file since rsyslog is killed
9. start a screen and launch strace -f -o find-cat.log -t find
/mnt/nilfs -type f -exec cat {} > /dev/null \;
10. start a screen and launch strace -f -o apt-get.log -t apt-get update
11. launch the last command again as it did not crash the first time
12. apt-get crashes
13. ps aux > ps-aux-crashed.log
13. sysrq+W
14. sysrq+E  wait for everything to terminate
15. sysrq+SUSB

Simplified way of the issue reproducing is starting kernel compilation
task and "apt-get update" in parallel.

REPRODUCIBILITY:

The issue is reproduced not stable [60% - 80%].  It is very important to
have proper environment for the issue reproducing.  The critical
conditions for successful reproducing:

(1) It should have big modified file by mmap() way.

(2) This file should have the count of dirty blocks are greater that
    several segments in size (for example, two or three) from time to time
    during processing.

(3) It should be intensive background activity of files modification
    in another thread.

INVESTIGATION:

First of all, it is possible to see that the reason of crash is not valid
page address:

  NILFS [nilfs_segctor_complete_write]:2100 bh->b_count 0, bh->b_blocknr 13895680, bh->b_size 13897727, bh->b_page 0000000000001a82
  NILFS [nilfs_segctor_complete_write]:2101 segbuf->sb_segnum 6783

Moreover, value of b_page (0x1a82) is 6786.  This value looks like segment
number.  And b_blocknr with b_size values look like block numbers.  So,
buffer_head's pointer points on not proper address value.

Detailed investigation of the issue is discovered such picture:

  [-----------------------------SEGMENT 6783-------------------------------]
  NILFS [nilfs_segctor_do_construct]:2310 nilfs_segctor_begin_construction
  NILFS [nilfs_segctor_do_construct]:2321 nilfs_segctor_collect
  NILFS [nilfs_segctor_do_construct]:2336 nilfs_segctor_assign
  NILFS [nilfs_segctor_do_construct]:2367 nilfs_segctor_update_segusage
  NILFS [nilfs_segctor_do_construct]:2371 nilfs_segctor_prepare_write
  NILFS [nilfs_segctor_do_construct]:2376 nilfs_add_checksums_on_logs
  NILFS [nilfs_segctor_do_construct]:2381 nilfs_segctor_write
  NILFS [nilfs_segbuf_submit_bio]:464 bio->bi_sector 111149024, segbuf->sb_segnum 6783

  [-----------------------------SEGMENT 6784-------------------------------]
  NILFS [nilfs_segctor_do_construct]:2310 nilfs_segctor_begin_construction
  NILFS [nilfs_segctor_do_construct]:2321 nilfs_segctor_collect
  NILFS [nilfs_lookup_dirty_data_buffers]:782 bh->b_count 1, bh->b_page ffffea000709b000, page->index 0, i_ino 1033103, i_size 25165824
  NILFS [nilfs_lookup_dirty_data_buffers]:783 bh->b_assoc_buffers.next ffff8802174a6798, bh->b_assoc_buffers.prev ffff880221cffee8
  NILFS [nilfs_segctor_do_construct]:2336 nilfs_segctor_assign
  NILFS [nilfs_segctor_do_construct]:2367 nilfs_segctor_update_segusage
  NILFS [nilfs_segctor_do_construct]:2371 nilfs_segctor_prepare_write
  NILFS [nilfs_segctor_do_construct]:2376 nilfs_add_checksums_on_logs
  NILFS [nilfs_segctor_do_construct]:2381 nilfs_segctor_write
  NILFS [nilfs_segbuf_submit_bh]:575 bh->b_count 1, bh->b_page ffffea000709b000, page->index 0, i_ino 1033103, i_size 25165824
  NILFS [nilfs_segbuf_submit_bh]:576 segbuf->sb_segnum 6784
  NILFS [nilfs_segbuf_submit_bh]:577 bh->b_assoc_buffers.next ffff880218a0d5f8, bh->b_assoc_buffers.prev ffff880218bcdf50
  NILFS [nilfs_segbuf_submit_bio]:464 bio->bi_sector 111150080, segbuf->sb_segnum 6784, segbuf->sb_nbio 0
  [----------] ditto
  NILFS [nilfs_segbuf_submit_bio]:464 bio->bi_sector 111164416, segbuf->sb_segnum 6784, segbuf->sb_nbio 15

  [-----------------------------SEGMENT 6785-------------------------------]
  NILFS [nilfs_segctor_do_construct]:2310 nilfs_segctor_begin_construction
  NILFS [nilfs_segctor_do_construct]:2321 nilfs_segctor_collect
  NILFS [nilfs_lookup_dirty_data_buffers]:782 bh->b_count 2, bh->b_page ffffea000709b000, page->index 0, i_ino 1033103, i_size 25165824
  NILFS [nilfs_lookup_dirty_data_buffers]:783 bh->b_assoc_buffers.next ffff880219277e80, bh->b_assoc_buffers.prev ffff880221cffc88
  NILFS [nilfs_segctor_do_construct]:2367 nilfs_segctor_update_segusage
  NILFS [nilfs_segctor_do_construct]:2371 nilfs_segctor_prepare_write
  NILFS [nilfs_segctor_do_construct]:2376 nilfs_add_checksums_on_logs
  NILFS [nilfs_segctor_do_construct]:2381 nilfs_segctor_write
  NILFS [nilfs_segbuf_submit_bh]:575 bh->b_count 2, bh->b_page ffffea000709b000, page->index 0, i_ino 1033103, i_size 25165824
  NILFS [nilfs_segbuf_submit_bh]:576 segbuf->sb_segnum 6785
  NILFS [nilfs_segbuf_submit_bh]:577 bh->b_assoc_buffers.next ffff880218a0d5f8, bh->b_assoc_buffers.prev ffff880222cc7ee8
  NILFS [nilfs_segbuf_submit_bio]:464 bio->bi_sector 111165440, segbuf->sb_segnum 6785, segbuf->sb_nbio 0
  [----------] ditto
  NILFS [nilfs_segbuf_submit_bio]:464 bio->bi_sector 111177728, segbuf->sb_segnum 6785, segbuf->sb_nbio 12

  NILFS [nilfs_segctor_do_construct]:2399 nilfs_segctor_wait
  NILFS [nilfs_segbuf_wait]:676 segbuf->sb_segnum 6783
  NILFS [nilfs_segbuf_wait]:676 segbuf->sb_segnum 6784
  NILFS [nilfs_segbuf_wait]:676 segbuf->sb_segnum 6785

  NILFS [nilfs_segctor_complete_write]:2100 bh->b_count 0, bh->b_blocknr 13895680, bh->b_size 13897727, bh->b_page 0000000000001a82

  BUG: unable to handle kernel paging request at 0000000000001a82
  IP: [<ffffffffa024d0f2>] nilfs_end_page_io+0x12/0xd0 [nilfs2]

Usually, for every segment we collect dirty files in list.  Then, dirty
blocks are gathered for every dirty file, prepared for write and
submitted by means of nilfs_segbuf_submit_bh() call.  Finally, it takes
place complete write phase after calling nilfs_end_bio_write() on the
block layer.  Buffers/pages are marked as not dirty on final phase and
processed files removed from the list of dirty files.

It is possible to see that we had three prepare_write and submit_bio
phases before segbuf_wait and complete_write phase.  Moreover, segments
compete between each other for dirty blocks because on every iteration
of segments processing dirty buffer_heads are added in several lists of
payload_buffers:

  [SEGMENT 6784]: bh->b_assoc_buffers.next ffff880218a0d5f8, bh->b_assoc_buffers.prev ffff880218bcdf50
  [SEGMENT 6785]: bh->b_assoc_buffers.next ffff880218a0d5f8, bh->b_assoc_buffers.prev ffff880222cc7ee8

The next pointer is the same but prev pointer has changed.  It means
that buffer_head has next pointer from one list but prev pointer from
another.  Such modification can be made several times.  And, finally, it
can be resulted in various issues: (1) segctor hanging, (2) segctor
crashing, (3) file system metadata corruption.

FIX:
This patch adds:

(1) setting of BH_Async_Write flag in nilfs_segctor_prepare_write()
    for every proccessed dirty block;

(2) checking of BH_Async_Write flag in
    nilfs_lookup_dirty_data_buffers() and
    nilfs_lookup_dirty_node_buffers();

(3) clearing of BH_Async_Write flag in nilfs_segctor_complete_write(),
    nilfs_abort_logs(), nilfs_forget_buffer(), nilfs_clear_dirty_page().

Reported-by: Jerome Poulin <jeromepoulin@gmail.com>
Reported-by: Anton Eliasson <devel@antoneliasson.se>
Cc: Paul Fertser <fercerpav@gmail.com>
Cc: ARAI Shun-ichi <hermes@ceres.dti.ne.jp>
Cc: Piotr Szymaniak <szarpaj@grubelek.pl>
Cc: Juan Barry Manuel Canham <Linux@riotingpacifist.net>
Cc: Zahid Chowdhury <zahid.chowdhury@starsolutions.com>
Cc: Elmer Zhang <freeboy6716@gmail.com>
Cc: Kenneth Langga <klangga@gmail.com>
Signed-off-by: Vyacheslav Dubeyko <slava@dubeyko.com>
Acked-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-09-30 14:31:02 -07:00
Vyacheslav Dubeyko e5f7f84843 ] nilfs2: use atomic64_t type for inodes_count and blocks_count fields in nilfs_root struct
The cp_inodes_count and cp_blocks_count are represented as __le64 type in
on-disk structure (struct nilfs_checkpoint).  But analogous fields in
in-core structure (struct nilfs_root) are represented by atomic_t type.

This patch replaces atomic_t on atomic64_t type in representation of
inodes_count and blocks_count fields in struct nilfs_root.

Signed-off-by: Vyacheslav Dubeyko <slava@dubeyko.com>
Acked-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp>
Acked-by: Joern Engel <joern@logfs.org>
Cc: Clemens Eisserer <linuxhippy@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-07-03 16:08:01 -07:00
Jan Kara 2c22b337b5 nilfs2: Convert to new freezing mechanism
We change nilfs_page_mkwrite() to provide proper freeze protection for
writeable page faults (we must wait for frozen filesystem even if the
page is fully mapped).

We remove all vfs_check_frozen() checks since they are now handled by
the generic code.

CC: linux-nilfs@vger.kernel.org
CC: KONISHI Ryusuke <konishi.ryusuke@lab.ntt.co.jp>
Signed-off-by: Jan Kara <jack@suse.cz>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2012-07-31 09:45:52 +04:00
Ryusuke Konishi fbb24a3a91 nilfs2: ensure proper cache clearing for gc-inodes
A gc-inode is a pseudo inode used to buffer the blocks to be moved by
garbage collection.

Block caches of gc-inodes must be cleared every time a garbage collection
function (nilfs_clean_segments) completes.  Otherwise, stale blocks
buffered in the caches may be wrongly reused in successive calls of the GC
function.

For user files, this is not a problem because their gc-inodes are
distinguished by a checkpoint number as well as an inode number.  They
never buffer different blocks if either an inode number, a checkpoint
number, or a block offset differs.

However, gc-inodes of sufile, cpfile and DAT file can store different data
for the same block offset.  Thus, the nilfs_clean_segments function can
move incorrect block for these meta-data files if an old block is cached.
I found this is really causing meta-data corruption in nilfs.

This fixes the issue by ensuring cache clear of gc-inodes and resolves
reported GC problems including checkpoint file corruption, b-tree
corruption, and the following warning during GC.

  nilfs_palloc_freev: entry number 307234 already freed.
  ...

Signed-off-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp>
Tested-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp>
Cc: <stable@vger.kernel.org>	[2.6.37+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-06-20 14:39:35 -07:00
Tejun Heo a0acae0e88 freezer: unexport refrigerator() and update try_to_freeze() slightly
There is no reason to export two functions for entering the
refrigerator.  Calling refrigerator() instead of try_to_freeze()
doesn't save anything noticeable or removes any race condition.

* Rename refrigerator() to __refrigerator() and make it return bool
  indicating whether it scheduled out for freezing.

* Update try_to_freeze() to return bool and relay the return value of
  __refrigerator() if freezing().

* Convert all refrigerator() users to try_to_freeze().

* Update documentation accordingly.

* While at it, add might_sleep() to try_to_freeze().

Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Samuel Ortiz <samuel@sortiz.org>
Cc: Chris Mason <chris.mason@oracle.com>
Cc: "Theodore Ts'o" <tytso@mit.edu>
Cc: Steven Whitehouse <swhiteho@redhat.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Jan Kara <jack@suse.cz>
Cc: KONISHI Ryusuke <konishi.ryusuke@lab.ntt.co.jp>
Cc: Christoph Hellwig <hch@infradead.org>
2011-11-21 12:32:22 -08:00
Ryusuke Konishi 071d73cfe5 nilfs2: fix problem in setting checkpoint interval
Checkpoint generation interval of nilfs goes wrong after user has
changed the interval parameter with nilfs-tune tool.

 segctord starting. Construction interval = 5 seconds,
 CP frequency < 30 seconds
 segctord starting. Construction interval = 0 seconds,
 CP frequency < 30 seconds

This turned out to be caused by a trivial bug in initialization code
of log writer.  This will fix it.

Reported-by: Andrea Gelmini <andrea.gelmini@gmail.com>
Signed-off-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp>
2011-06-11 15:51:15 +09:00
Ryusuke Konishi 5fc7b14177 nilfs2: use mark_buffer_dirty to mark btnode or meta data dirty
This replaces nilfs_mdt_mark_buffer_dirty and nilfs_btnode_mark_dirty
macros with mark_buffer_dirty and gets rid of nilfs_mark_buffer_dirty,
an own mark buffer dirty function.

Signed-off-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp>
2011-05-10 22:21:57 +09:00
Ryusuke Konishi aa405b1f42 nilfs2: always set back pointer to host inode in mapping->host
In the current nilfs, page cache for btree nodes and meta data files
do not set a valid back pointer to the host inode in mapping->host.

This will change it so that every address space in nilfs uses
mapping->host to hold its host inode.

Signed-off-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp>
2011-05-10 22:21:57 +09:00
Ryusuke Konishi 0cc1283881 nilfs2: use list_first_entry
This uses list_first_entry macro instead of list_entry if it's used to
get the first entry.

Signed-off-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp>
2011-05-10 22:21:56 +09:00
Ryusuke Konishi 56eb553885 nilfs2: zero fill unused portion of super root block
The super root block is newly-allocated each time it is written back
to disk, so unused portion of the block should be cleared.

Signed-off-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp>
2011-05-10 22:21:45 +09:00
Ryusuke Konishi 6c6de1aa65 nilfs2: super root size should change depending on inode size
The size of super root structure depends on inode size, so
NILFS_SR_BYTES macro should be a function of the inode size.  This
fixes the issue.

Even though a different size value will be written for a possible
future filesystem with extended inode, but fortunately this does not
break disk format compatibility.

Signed-off-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp>
2011-05-10 22:21:44 +09:00
Ryusuke Konishi 1cb2d38cb3 nilfs2: get rid of private page allocator
Previously, nilfs was cloning pages for mmapped region to freeze their
data and ensure consistency of checksum during writeback cycles.  A
private page allocator was used for this page cloning.  But, we no
longer need to do that since clear_page_dirty_for_io function sets up
pte so that vm_ops->page_mkwrite function is called right before the
mmapped pages are modified and nilfs_page_mkwrite function can safely
wait for the pages to be written back to disk.

So, this stops making a copy of mmapped pages during writeback, and
eliminates the private page allocation and deallocation functions from
nilfs.

Signed-off-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp>
2011-05-10 22:21:44 +09:00
Nicolas Kaiser eaae0f37d8 nilfs2: merge list_del()/list_add_tail() to list_move_tail()
Merge list_del() + list_add_tail() to list_move_tail().

Signed-off-by: Nicolas Kaiser <nikai@nikai.net>
Signed-off-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp>
2011-05-10 22:21:44 +09:00
Ryusuke Konishi e3154e9748 nilfs2: get rid of nilfs_sb_info structure
This directly uses sb->s_fs_info to keep a nilfs filesystem object and
fully removes the intermediate nilfs_sb_info structure.  With this
change, the hierarchy of on-memory structures of nilfs will be
simplified as follows:

Before:
  super_block
       -> nilfs_sb_info
             -> the_nilfs
                   -> cptree --+-> nilfs_root (current file system)
                               +-> nilfs_root (snapshot A)
                               +-> nilfs_root (snapshot B)
                               :
             -> nilfs_sc_info (log writer structure)
After:
  super_block
       -> the_nilfs
             -> cptree --+-> nilfs_root (current file system)
                         +-> nilfs_root (snapshot A)
                         +-> nilfs_root (snapshot B)
                         :
             -> nilfs_sc_info (log writer structure)

The reason why we didn't design so from the beginning is because the
initial shape also differed from the above.  The early hierachy was
composed of "per-mount-point" super_block -> nilfs_sb_info pairs and a
shared nilfs object.  On the kernel 2.6.37, it was changed to the
current shape in order to unify super block instances into one per
device, and this cleanup became applicable as the result.

Signed-off-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp>
2011-03-09 11:54:26 +09:00
Ryusuke Konishi f7545144c2 nilfs2: use sb instance instead of nilfs_sb_info struct
This replaces sbi uses with direct reference to sb instance.

Signed-off-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp>
2011-03-09 11:05:08 +09:00
Ryusuke Konishi d96bbfa28a nilfs2: get rid of sc_sbi back pointer
Removes sci->sc_sbi which is a back pointer to nilfs_sb_info struct
from log writer object (nilfs_sc_info).

Signed-off-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp>
2011-03-09 11:05:08 +09:00
Ryusuke Konishi 3fd3fe5aea nilfs2: move log writer onto nilfs object
Log writer is held by the nilfs_sb_info structure.  This moves it into
nilfs object and replaces all uses of NILFS_SC() accessor.

Signed-off-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp>
2011-03-09 11:05:08 +09:00
Ryusuke Konishi 693dd32122 nilfs2: move s_inode_lock and s_dirty_files into nilfs object
Moves s_inode_lock spinlock and s_dirty_files list to nilfs object
from nilfs_sb_info structure.

Signed-off-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp>
2011-03-09 11:05:07 +09:00
Ryusuke Konishi 574e6c3145 nilfs2: move parameters on nilfs_sb_info into nilfs object
This moves four parameter variables on nilfs_sb_info s_resuid,
s_resgid, s_interval and s_watermark to the nilfs object.

Signed-off-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp>
2011-03-09 11:05:07 +09:00
Ryusuke Konishi 3b2ce58b0f nilfs2: move mount options to nilfs object
This moves mount_opt local variable to nilfs object from nilfs_sb_info
struct.

Signed-off-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp>
2011-03-09 11:05:07 +09:00
Ryusuke Konishi 72746ac643 nilfs2: fix regression that i-flag is not set on changeless checkpoints
According to the report from Jiro SEKIBA titled "regression in
2.6.37?"  (Message-Id: <8739n8vs1f.wl%jir@sekiba.com>), on 2.6.37 and
later kernels, lscp command no longer displays "i" flag on checkpoints
that snapshot operations or garbage collection created.

This is a regression of nilfs2 checkpointing function, and it's
critical since it broke behavior of a part of nilfs2 applications.
For instance, snapshot manager of TimeBrowse gets to create
meaningless snapshots continuously; snapshot creation triggers another
checkpoint, but applications cannot distinguish whether the new
checkpoint contains meaningful changes or not without the i-flag.

This patch fixes the regression and brings that application behavior
back to normal.

Reported-by: Jiro SEKIBA <jir@unicus.jp>
Signed-off-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp>
Tested-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp>
Tested-by: Jiro SEKIBA <jir@unicus.jp>
Cc: stable <stable@kernel.org>  [2.6.37]
2011-03-02 09:55:18 +09:00
Ryusuke Konishi 365e215ce1 nilfs2: unfold nilfs_dat_inode function
nilfs_dat_inode function was a wrapper to switch between normal dat
inode and gcdat, a clone of the dat inode for garbage collection.

This function got obsolete when the gcdat inode was removed, and now
we can access the dat inode directly from a nilfs object.  So, we will
unfold the wrapper and remove it.

Signed-off-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp>
2011-01-10 14:38:39 +09:00
Ryusuke Konishi 27e6c7a3ce nilfs2: mark buffer heads as delayed until the data is written to disk
Nilfs does not allocate new blocks on disk until they are actually
written to.  To implement fiemap, we need to deal with such blocks.

To allow successive fiemap patch to distinguish mapped but unallocated
regions, this marks buffer heads of those new blocks as delayed and
clears the flag after the blocks are written to disk.

Signed-off-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp>
2011-01-10 14:05:45 +09:00
Ryusuke Konishi e828949e5b nilfs2: call nilfs_error inside bmap routines
Some functions using nilfs bmap routines can wrongly return invalid
argument error (i.e. -EINVAL) that bmap returns as an internal code
for btree corruption.

This fixes the issue by catching and converting the internal EINVAL to
EIO and calling nilfs_error function inside bmap routines.

Signed-off-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp>
2011-01-10 14:05:45 +09:00
Michael Rubin f629d1c9bd mm: add account_page_writeback()
To help developers and applications gain visibility into writeback
behaviour this patch adds two counters to /proc/vmstat.

  # grep nr_dirtied /proc/vmstat
  nr_dirtied 3747
  # grep nr_written /proc/vmstat
  nr_written 3618

These entries allow user apps to understand writeback behaviour over time
and learn how it is impacting their performance.  Currently there is no
way to inspect dirty and writeback speed over time.  It's not possible for
nr_dirty/nr_writeback.

These entries are necessary to give visibility into writeback behaviour.
We have /proc/diskstats which lets us understand the io in the block
layer.  We have blktrace for more in depth understanding.  We have
e2fsprogs and debugsfs to give insight into the file systems behaviour,
but we don't offer our users the ability understand what writeback is
doing.  There is no way to know how active it is over the whole system, if
it's falling behind or to quantify it's efforts.  With these values
exported users can easily see how much data applications are sending
through writeback and also at what rates writeback is processing this
data.  Comparing the rates of change between the two allow developers to
see when writeback is not able to keep up with incoming traffic and the
rate of dirty memory being sent to the IO back end.  This allows folks to
understand their io workloads and track kernel issues.  Non kernel
engineers at Google often use these counters to solve puzzling performance
problems.

Patch #4 adds a pernode vmstat file with nr_dirtied and nr_written

Patch #5 add writeback thresholds to /proc/vmstat

Currently these values are in debugfs. But they should be promoted to
/proc since they are useful for developers who are writing databases
and file servers and are not debugging the kernel.

The output is as below:

 # grep threshold /proc/vmstat
 nr_pages_dirty_threshold 409111
 nr_pages_dirty_background_threshold 818223

This patch:

This allows code outside of the mm core to safely manipulate page
writeback state and not worry about the other accounting.  Not using these
routines means that some code will lose track of the accounting and we get
bugs.

Modify nilfs2 to use interface.

Signed-off-by: Michael Rubin <mrubin@google.com>
Reviewed-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Reviewed-by: Wu Fengguang <fengguang.wu@intel.com>
Cc: KONISHI Ryusuke <konishi.ryusuke@lab.ntt.co.jp>
Cc: Jiro SEKIBA <jir@unicus.jp>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Nick Piggin <nickpiggin@yahoo.com.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-10-26 16:52:06 -07:00
Jiro SEKIBA 6b81e14e64 nilfs2: eliminate sparse warning - "context imbalance"
insert sparse annotations to fix following sparse warning.

fs/nilfs2/segment.c:2681:3: warning: context imbalance in 'nilfs_segctor_kill_thread' - unexpected unlock

nilfs_segctor_kill_thread is only called inside sc_state_lock lock.
sparse doesn't detect the context and warn "unexpected unlock".
__acquires/__releases pretend to lock/unlock the sc_state_lock for sparse.

Signed-off-by: Jiro SEKIBA <jir@unicus.jp>
Signed-off-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp>
2010-10-23 09:24:40 +09:00
Ryusuke Konishi 5beb6e0b20 nilfs2: add bdev freeze/thaw support
Nilfs hasn't supported the freeze/thaw feature because it didn't work
due to the peculiar design that multiple super block instances could
be allocated for a device.  This limitation was removed by the patch
"nilfs2: do not allocate multiple super block instances for a device".

So now this adds the freeze/thaw support to nilfs.

Signed-off-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp>
2010-10-23 09:24:39 +09:00
Ryusuke Konishi 090fd5b101 nilfs2: get rid of back pointer to writable sb instance
Nilfs object holds a back pointer to a writable super block instance
in nilfs->ns_writer, and this became eliminable since sb is now made
per device and all inodes have a valid pointer to it.

This deletes the ns_writer pointer and a reader/writer semaphore
protecting it.

Signed-off-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp>
2010-10-23 09:24:38 +09:00
Ryusuke Konishi c1c1d70920 nilfs2: get rid of GCDAT inode
This applies prepared rollback function and redirect function of
metadata file to DAT file, and eliminates GCDAT inode.

Signed-off-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp>
2010-10-23 09:24:38 +09:00
Ryusuke Konishi b1f6a4f294 nilfs2: add routines to redirect access to buffers of DAT file
During garbage collection (GC), DAT file, which converts virtual block
number to real block number, may return disk block number that is not
yet written to the device.

To avoid access to unwritten blocks, the current implementation stores
changes to the caches of GCDAT during GC and atomically commit the
changes into the DAT file after they are written to the device.

This patch, instead, adds a function that makes a copy of specified
buffer and stores it in nilfs_shadow_map, and a function to get the
backup copy as needed (nilfs_mdt_freeze_buffer and
nilfs_mdt_get_frozen_buffer respectively).

Before DAT changes block number in an entry block, it makes a copy and
redirect access to the buffer so that address conversion function
(i.e. nilfs_dat_translate) refers to the old address saved in the
copy.

This patch gives requisites for such redirection.

Signed-off-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp>
2010-10-23 09:24:37 +09:00
Ryusuke Konishi b7c0634204 nilfs2: move inode count and block count into root object
This moves sbi->s_inodes_count and sbi->s_blocks_count into nilfs_root
object.

Signed-off-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp>
2010-10-23 09:24:35 +09:00
Ryusuke Konishi e912a5b668 nilfs2: use root object to get ifile
This rewrites functions using ifile so that they get ifile from
nilfs_root object, and will remove sbi->s_ifile.  Some functions that
don't know the root object are extended to receive it from caller.

Signed-off-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp>
2010-10-23 09:24:35 +09:00
Ryusuke Konishi 263d90cefc nilfs2: remove own inode hash used for GC
This uses inode hash function that vfs provides instead of the own
hash table for caching gc inodes.  This finally removes the own inode
hash from nilfs.

Signed-off-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp>
2010-10-23 09:24:34 +09:00
Ryusuke Konishi 6c43f41000 nilfs2: keep zero value in i_cno except for gc-inodes
On-memory inode structures of nilfs have a member "i_cno" which stores
a checkpoint number related to the inode.  For gc-inodes, this field
indicates version of data each gc-inode caches for GC.  Log writer
temporarily uses "i_cno" to transfer the latest checkpoint number.

This stops the latter use and lets only gc-inodes use it.

The purpose of this patch is to allow the successive change use
"i_cno" for inode lookup.

Signed-off-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp>
2010-10-23 09:24:33 +09:00
Ryusuke Konishi 325020477a nilfs2: do not update log cursor for small change
Super blocks of nilfs are periodically overwritten in order to record
the recent log position.  This shortens recovery time after unclean
unmount, but the current implementation performs the update even for a
few blocks of change.  If the filesystem gets small changes slowly and
continually, super blocks may be updated excessively.

This moderates the issue by skipping update of log cursor if it does
not cross a segment boundary.

Signed-off-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp>
2010-07-23 10:02:11 +09:00
Jiro SEKIBA b2ac86e1a8 nilfs2: sync super blocks in turns
This will sync super blocks in turns instead of syncing duplicate
super blocks at the time.  This will help searching valid super root
when super block is written into disk before log is written, which is
happen when barrier-less block devices are unmounted uncleanly.  In
the situation, old super block likely points to valid log.

This patch introduces ns_sbwcount member to the nilfs object and adds
nilfs_sb_will_flip() function; ns_sbwcount counts how many times super
blocks write back to the disk.  And, nilfs_sb_will_flip() decides
whether flipping required or not based on the count of ns_sbwcount to
sync super blocks asymmetrically.

The following functions are also changed:

 - nilfs_prepare_super(): flips super blocks according to the
   argument.  The argument is calculated by nilfs_sb_will_flip()
   function.

 - nilfs_cleanup_super(): sets "clean" flag to both super blocks if
   they point to the same checkpoint.

To update both of super block information, caller of
nilfs_commit_super must set the information on both super blocks.

Signed-off-by: Jiro SEKIBA <jir@unicus.jp>
Signed-off-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp>
2010-07-23 10:02:11 +09:00
Jiro SEKIBA d26493b6f0 nilfs2: introduce nilfs_prepare_super
This function checks validity of super block pointers.
If first super block is invalid, it will swap the super blocks.
The function should be called before any super block information updates.
Caller must obtain nilfs->ns_sem.

Signed-off-by: Jiro SEKIBA <jir@unicus.jp>
Signed-off-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp>
2010-07-23 10:02:10 +09:00
Ryusuke Konishi 4762077c7b nilfs2: get rid of macros for segment summary information
This removes macros to test segment summary flags and redefines a few
relevant macros with inline functions.

Signed-off-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp>
2010-07-23 10:02:09 +09:00
Ryusuke Konishi 4e819509cb nilfs2: make nilfs_sc_*_ops static
This kills the following sparse warnings:

fs/nilfs2/segment.c:567:28: warning: symbol 'nilfs_sc_file_ops' was not declared. Should it be static?
fs/nilfs2/segment.c:617:28: warning: symbol 'nilfs_sc_dat_ops' was not declared. Should it be static?
fs/nilfs2/segment.c:625:28: warning: symbol 'nilfs_sc_dsync_ops' was not declared. Should it be static?

Signed-off-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp>
2010-05-10 11:32:31 +09:00
Li Hong fdce895ea5 nilfs2: change sc_timer from a pointer to an embedded one in struct nilfs_sc_info
In nilfs_segctor_thread(), timer is a local variable allocated on stack. Its
address can't be set to sci->sc_timer and passed in several procedures.

It works now by chance, just because other procedures are called by
nilfs_segctor_thread() directly or indirectly and the stack hasn't been
deallocated yet.

Signed-off-by: Li Hong <lihong.hi@gmail.com>
Signed-off-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp>
2010-05-10 11:32:31 +09:00
Li Hong 154ac5a830 nilfs2: remove nilfs_segctor_init() in segment.c
There are only two lines of code in nilfs_segctor_init(). From a logic
design view, the first line 'sci->sc_seq_done = sci->sc_seq_request;'
should be put in nilfs_segctor_new(). Even in nilfs_segctor_new(),
this initialization is needless because sci is kzalloc-ed. So
nilfs_segctor_init() is only a wrap call to
nilfs_segctor_start_thread().

Signed-off-by: Li Hong <lihong.hi@gmail.com>
Signed-off-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp>
2010-05-10 11:32:31 +09:00
Ryusuke Konishi 50614bcf29 nilfs2: insert checkpoint number in segment summary header
This adds a field to record the latest checkpoint number in the
nilfs_segment_summary structure.  This will help to recover the latest
checkpoint number from logs on disk.  This field is intended for
crucial cases in which super blocks have lost pointer to the latest
log.

Even though this will change the disk format, both backward and
forward compatibility is preserved by a size field prepared in the
segment summary header.

Signed-off-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp>
2010-05-10 11:32:31 +09:00
Li Hong 41c88bd74d nilfs2: cleanup multi kmem_cache_{create,destroy} code
This cleanup patch gives several improvements:

 - Moving all kmem_cache_{create_destroy} calls into one place, which removes
 some small function calls, cleans up error check code and clarify the logic.

 - Mark all initial code in __init section.

 - Remove some very obvious comments.

 - Adjust some declarations.

 - Fix some space-tab issues.

Signed-off-by: Li Hong <lihong.hi@gmail.com>
Signed-off-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp>
2010-05-10 11:32:30 +09:00
Ryusuke Konishi aaed1d5bfa nilfs2: move out checksum routines to segment buffer code
This moves out checksum routines in log writer to segbuf.c for
cleanup.

Signed-off-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp>
2010-05-10 11:32:30 +09:00
Ryusuke Konishi 1e2b68bf28 nilfs2: move pointer to super root block into logs
This moves a pointer to buffer storing super root block to each log
buffer from nilfs_sc_info struct for simplicity.

Signed-off-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp>
2010-05-10 11:32:30 +09:00
Tejun Heo 5a0e3ad6af include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h
percpu.h is included by sched.h and module.h and thus ends up being
included when building most .c files.  percpu.h includes slab.h which
in turn includes gfp.h making everything defined by the two files
universally available and complicating inclusion dependencies.

percpu.h -> slab.h dependency is about to be removed.  Prepare for
this change by updating users of gfp and slab facilities include those
headers directly instead of assuming availability.  As this conversion
needs to touch large number of source files, the following script is
used as the basis of conversion.

  http://userweb.kernel.org/~tj/misc/slabh-sweep.py

The script does the followings.

* Scan files for gfp and slab usages and update includes such that
  only the necessary includes are there.  ie. if only gfp is used,
  gfp.h, if slab is used, slab.h.

* When the script inserts a new include, it looks at the include
  blocks and try to put the new include such that its order conforms
  to its surrounding.  It's put in the include block which contains
  core kernel includes, in the same order that the rest are ordered -
  alphabetical, Christmas tree, rev-Xmas-tree or at the end if there
  doesn't seem to be any matching order.

* If the script can't find a place to put a new include (mostly
  because the file doesn't have fitting include block), it prints out
  an error message indicating which .h file needs to be added to the
  file.

The conversion was done in the following steps.

1. The initial automatic conversion of all .c files updated slightly
   over 4000 files, deleting around 700 includes and adding ~480 gfp.h
   and ~3000 slab.h inclusions.  The script emitted errors for ~400
   files.

2. Each error was manually checked.  Some didn't need the inclusion,
   some needed manual addition while adding it to implementation .h or
   embedding .c file was more appropriate for others.  This step added
   inclusions to around 150 files.

3. The script was run again and the output was compared to the edits
   from #2 to make sure no file was left behind.

4. Several build tests were done and a couple of problems were fixed.
   e.g. lib/decompress_*.c used malloc/free() wrappers around slab
   APIs requiring slab.h to be added manually.

5. The script was run on all .h files but without automatically
   editing them as sprinkling gfp.h and slab.h inclusions around .h
   files could easily lead to inclusion dependency hell.  Most gfp.h
   inclusion directives were ignored as stuff from gfp.h was usually
   wildly available and often used in preprocessor macros.  Each
   slab.h inclusion directive was examined and added manually as
   necessary.

6. percpu.h was updated not to include slab.h.

7. Build test were done on the following configurations and failures
   were fixed.  CONFIG_GCOV_KERNEL was turned off for all tests (as my
   distributed build env didn't work with gcov compiles) and a few
   more options had to be turned off depending on archs to make things
   build (like ipr on powerpc/64 which failed due to missing writeq).

   * x86 and x86_64 UP and SMP allmodconfig and a custom test config.
   * powerpc and powerpc64 SMP allmodconfig
   * sparc and sparc64 SMP allmodconfig
   * ia64 SMP allmodconfig
   * s390 SMP allmodconfig
   * alpha SMP allmodconfig
   * um on x86_64 SMP allmodconfig

8. percpu.h modifications were reverted so that it could be applied as
   a separate patch and serve as bisection point.

Given the fact that I had only a couple of failures from tests on step
6, I'm fairly confident about the coverage of this conversion patch.
If there is a breakage, it's likely to be something in one of the arch
headers which should be easily discoverable easily on most builds of
the specific arch.

Signed-off-by: Tejun Heo <tj@kernel.org>
Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-30 22:02:32 +09:00
Ryusuke Konishi 110d735a0a nilfs2: fix hang-up of cleaner after log writer returned with error
According to the report from Andreas Beckmann (Message-ID:
<4BA54677.3090902@abeckmann.de>), nilfs in 2.6.33 kernel got stuck
after a disk full error.

This turned out to be a regression by log writer updates merged at
kernel 2.6.33.  nilfs_segctor_abort_construction, which is a cleanup
function for erroneous cases, was skipping writeback completion for
some logs.

This fixes the bug and would resolve the hang issue.

Reported-by: Andreas Beckmann <debian@abeckmann.de>
Signed-off-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp>
Tested-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp>
Cc: stable <stable@kernel.org>                     [2.6.33.x]
2010-03-24 00:03:06 +09:00
Ryusuke Konishi 2d8428acae nilfs2: fix duplicate call to nilfs_segctor_cancel_freev
Andreas Beckmann gave me a report that nilfs logged the following
warnings when it got a disk full:

  nilfs_sufile_do_cancel_free: segment 0 must be clean
  nilfs_sufile_do_cancel_free: segment 1 must be clean

These arise from a duplicate call to nilfs_segctor_cancel_freev in an
error path of log writer.  This will fix the issue.

Reported-by: Andreas Beckmann <debian@abeckmann.de>
Signed-off-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp>
2010-03-22 14:41:07 +09:00