The whole patch-set aims at making cpuid <-> nodeid mapping persistent. So that,
when node online/offline happens, cache based on cpuid <-> nodeid mapping such as
wq_numa_possible_cpumask will not cause any problem.
It contains 4 steps:
1. Enable apic registeration flow to handle both enabled and disabled cpus.
2. Introduce a new array storing all possible cpuid <-> apicid mapping.
3. Enable _MAT and MADT relative apis to return non-present or disabled cpus' apicid.
4. Establish all possible cpuid <-> nodeid mapping.
This patch finishes step 2.
In this patch, we introduce a new static array named cpuid_to_apicid[],
which is large enough to store info for all possible cpus.
And then, we modify the cpuid calculation. In generic_processor_info(),
it simply finds the next unused cpuid. And it is also why the cpuid <-> nodeid
mapping changes with node hotplug.
After this patch, we find the next unused cpuid, map it to an apicid,
and store the mapping in cpuid_to_apicid[], so that cpuid <-> apicid
mapping will be persistent.
And finally we will use this array to make cpuid <-> nodeid persistent.
cpuid <-> apicid mapping is established at local apic registeration time.
But non-present or disabled cpus are ignored.
In this patch, we establish all possible cpuid <-> apicid mapping when
registering local apic.
Signed-off-by: Gu Zheng <guz.fnst@cn.fujitsu.com>
Signed-off-by: Tang Chen <tangchen@cn.fujitsu.com>
Signed-off-by: Zhu Guihua <zhugh.fnst@cn.fujitsu.com>
Signed-off-by: Dou Liyang <douly.fnst@cn.fujitsu.com>
Acked-by: Ingo Molnar <mingo@kernel.org>
Cc: mika.j.penttila@gmail.com
Cc: len.brown@intel.com
Cc: rafael@kernel.org
Cc: rjw@rjwysocki.net
Cc: yasu.isimatu@gmail.com
Cc: linux-mm@kvack.org
Cc: linux-acpi@vger.kernel.org
Cc: isimatu.yasuaki@jp.fujitsu.com
Cc: gongzhaogang@inspur.com
Cc: tj@kernel.org
Cc: izumi.taku@jp.fujitsu.com
Cc: cl@linux.com
Cc: chen.tang@easystack.cn
Cc: akpm@linux-foundation.org
Cc: kamezawa.hiroyu@jp.fujitsu.com
Cc: lenb@kernel.org
Link: http://lkml.kernel.org/r/1472114120-3281-4-git-send-email-douly.fnst@cn.fujitsu.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
cpuid <-> nodeid mapping is firstly established at boot time. And workqueue caches
the mapping in wq_numa_possible_cpumask in wq_numa_init() at boot time.
When doing node online/offline, cpuid <-> nodeid mapping is established/destroyed,
which means, cpuid <-> nodeid mapping will change if node hotplug happens. But
workqueue does not update wq_numa_possible_cpumask.
So here is the problem:
Assume we have the following cpuid <-> nodeid in the beginning:
Node | CPU
------------------------
node 0 | 0-14, 60-74
node 1 | 15-29, 75-89
node 2 | 30-44, 90-104
node 3 | 45-59, 105-119
and we hot-remove node2 and node3, it becomes:
Node | CPU
------------------------
node 0 | 0-14, 60-74
node 1 | 15-29, 75-89
and we hot-add node4 and node5, it becomes:
Node | CPU
------------------------
node 0 | 0-14, 60-74
node 1 | 15-29, 75-89
node 4 | 30-59
node 5 | 90-119
But in wq_numa_possible_cpumask, cpu30 is still mapped to node2, and the like.
When a pool workqueue is initialized, if its cpumask belongs to a node, its
pool->node will be mapped to that node. And memory used by this workqueue will
also be allocated on that node.
static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs){
...
/* if cpumask is contained inside a NUMA node, we belong to that node */
if (wq_numa_enabled) {
for_each_node(node) {
if (cpumask_subset(pool->attrs->cpumask,
wq_numa_possible_cpumask[node])) {
pool->node = node;
break;
}
}
}
Since wq_numa_possible_cpumask is not updated, it could be mapped to an offline node,
which will lead to memory allocation failure:
SLUB: Unable to allocate memory on node 2 (gfp=0x80d0)
cache: kmalloc-192, object size: 192, buffer size: 192, default order: 1, min order: 0
node 0: slabs: 6172, objs: 259224, free: 245741
node 1: slabs: 3261, objs: 136962, free: 127656
It happens here:
create_worker(struct worker_pool *pool)
|--> worker = alloc_worker(pool->node);
static struct worker *alloc_worker(int node)
{
struct worker *worker;
worker = kzalloc_node(sizeof(*worker), GFP_KERNEL, node); --> Here, useing the wrong node.
......
return worker;
}
[Solution]
There are four mappings in the kernel:
1. nodeid (logical node id) <-> pxm
2. apicid (physical cpu id) <-> nodeid
3. cpuid (logical cpu id) <-> apicid
4. cpuid (logical cpu id) <-> nodeid
1. pxm (proximity domain) is provided by ACPI firmware in SRAT, and nodeid <-> pxm
mapping is setup at boot time. This mapping is persistent, won't change.
2. apicid <-> nodeid mapping is setup using info in 1. The mapping is setup at boot
time and CPU hotadd time, and cleared at CPU hotremove time. This mapping is also
persistent.
3. cpuid <-> apicid mapping is setup at boot time and CPU hotadd time. cpuid is
allocated, lower ids first, and released at CPU hotremove time, reused for other
hotadded CPUs. So this mapping is not persistent.
4. cpuid <-> nodeid mapping is also setup at boot time and CPU hotadd time, and
cleared at CPU hotremove time. As a result of 3, this mapping is not persistent.
To fix this problem, we establish cpuid <-> nodeid mapping for all the possible
cpus at boot time, and make it persistent. And according to init_cpu_to_node(),
cpuid <-> nodeid mapping is based on apicid <-> nodeid mapping and cpuid <-> apicid
mapping. So the key point is obtaining all cpus' apicid.
apicid can be obtained by _MAT (Multiple APIC Table Entry) method or found in
MADT (Multiple APIC Description Table). So we finish the job in the following steps:
1. Enable apic registeration flow to handle both enabled and disabled cpus.
This is done by introducing an extra parameter to generic_processor_info to let the
caller control if disabled cpus are ignored.
2. Introduce a new array storing all possible cpuid <-> apicid mapping. And also modify
the way cpuid is calculated. Establish all possible cpuid <-> apicid mapping when
registering local apic. Store the mapping in this array.
3. Enable _MAT and MADT relative apis to return non-present or disabled cpus' apicid.
This is also done by introducing an extra parameter to these apis to let the caller
control if disabled cpus are ignored.
4. Establish all possible cpuid <-> nodeid mapping.
This is done via an additional acpi namespace walk for processors.
This patch finished step 1.
Signed-off-by: Gu Zheng <guz.fnst@cn.fujitsu.com>
Signed-off-by: Tang Chen <tangchen@cn.fujitsu.com>
Signed-off-by: Zhu Guihua <zhugh.fnst@cn.fujitsu.com>
Signed-off-by: Dou Liyang <douly.fnst@cn.fujitsu.com>
Acked-by: Ingo Molnar <mingo@kernel.org>
Cc: mika.j.penttila@gmail.com
Cc: len.brown@intel.com
Cc: rafael@kernel.org
Cc: rjw@rjwysocki.net
Cc: yasu.isimatu@gmail.com
Cc: linux-mm@kvack.org
Cc: linux-acpi@vger.kernel.org
Cc: isimatu.yasuaki@jp.fujitsu.com
Cc: gongzhaogang@inspur.com
Cc: tj@kernel.org
Cc: izumi.taku@jp.fujitsu.com
Cc: cl@linux.com
Cc: chen.tang@easystack.cn
Cc: akpm@linux-foundation.org
Cc: kamezawa.hiroyu@jp.fujitsu.com
Cc: lenb@kernel.org
Link: http://lkml.kernel.org/r/1472114120-3281-3-git-send-email-douly.fnst@cn.fujitsu.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
For now, x86 does not support memory-less node. A node without memory
will not be onlined, and the cpus on it will be mapped to the other
online nodes with memory in init_cpu_to_node(). The reason of doing this
is to ensure each cpu has mapped to a node with memory, so that it will
be able to allocate local memory for that cpu.
But we don't have to do it in this way.
In this series of patches, we are going to construct cpu <-> node mapping
for all possible cpus at boot time, which is a persistent mapping. It means
that the cpu will be mapped to the node which it belongs to, and will never
be changed. If a node has only cpus but no memory, the cpus on it will be
mapped to a memory-less node. And the memory-less node should be onlined.
Allocate pgdats for all memory-less nodes and online them at boot
time. Then build zonelists for these nodes. As a result, when cpus on these
memory-less nodes try to allocate memory from local node, it will
automatically fall back to the proper zones in the zonelists.
Signed-off-by: Zhu Guihua <zhugh.fnst@cn.fujitsu.com>
Signed-off-by: Dou Liyang <douly.fnst@cn.fujitsu.com>
Acked-by: Ingo Molnar <mingo@kernel.org>
Cc: mika.j.penttila@gmail.com
Cc: len.brown@intel.com
Cc: Tang Chen <tangchen@cn.fujitsu.com>
Cc: rafael@kernel.org
Cc: rjw@rjwysocki.net
Cc: yasu.isimatu@gmail.com
Cc: linux-mm@kvack.org
Cc: linux-acpi@vger.kernel.org
Cc: isimatu.yasuaki@jp.fujitsu.com
Cc: gongzhaogang@inspur.com
Cc: tj@kernel.org
Cc: izumi.taku@jp.fujitsu.com
Cc: cl@linux.com
Cc: chen.tang@easystack.cn
Cc: akpm@linux-foundation.org
Cc: kamezawa.hiroyu@jp.fujitsu.com
Cc: lenb@kernel.org
Link: http://lkml.kernel.org/r/1472114120-3281-2-git-send-email-douly.fnst@cn.fujitsu.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Optimize RAID6 gen_syndrom functions to take advantage of
the 512-bit ZMM integer instructions introduced in AVX512.
AVX512 optimized gen_syndrom functions, which is simply based
on avx2.c written by Yuanhan Liu and sse2.c written by hpa.
The patch was tested and benchmarked before submission on
a hardware that has AVX512 flags to support such instructions
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Jim Kukunas <james.t.kukunas@linux.intel.com>
Cc: Fenghua Yu <fenghua.yu@intel.com>
Signed-off-by: Megha Dey <megha.dey@linux.intel.com>
Signed-off-by: Gayatri Kammela <gayatri.kammela@intel.com>
Reviewed-by: Fenghua Yu <fenghua.yu@intel.com>
Signed-off-by: Shaohua Li <shli@fb.com>
The maximum size of e820 map array for EFI systems is defined as
E820_X_MAX (E820MAX + 3 * MAX_NUMNODES).
In x86_64 defconfig, this ends up with E820_X_MAX = 320, e820 and e820_saved
are 6404 bytes each.
With larger configs, for example Fedora kernels, E820_X_MAX = 3200, e820
and e820_saved are 64004 bytes each. Most of this space is wasted.
Typical machines have some 20-30 e820 areas at most.
After previous patch, e820 and e820_saved are pointers to e280 maps.
Change them to initially point to maps which are __initdata.
At the very end of kernel init, just before __init[data] sections are freed
in free_initmem(), allocate smaller blocks, copy maps there,
and change pointers.
The late switch makes sure that all functions which can be used to change
e820 maps are no longer accessible (they are all __init functions).
Run-tested.
Signed-off-by: Denys Vlasenko <dvlasenk@redhat.com>
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Yinghai Lu <yinghai@kernel.org>
Cc: linux-kernel@vger.kernel.org
Link: http://lkml.kernel.org/r/20160918182125.21000-1-dvlasenk@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
This patch turns e820 and e820_saved into pointers to e820 tables,
of the same size as before.
Signed-off-by: Denys Vlasenko <dvlasenk@redhat.com>
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Yinghai Lu <yinghai@kernel.org>
Cc: linux-kernel@vger.kernel.org
Link: http://lkml.kernel.org/r/20160917213927.1787-2-dvlasenk@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
They are all called only from other __init functions in e820.c
Signed-off-by: Denys Vlasenko <dvlasenk@redhat.com>
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Yinghai Lu <yinghai@kernel.org>
Cc: linux-kernel@vger.kernel.org
Link: http://lkml.kernel.org/r/20160917213927.1787-1-dvlasenk@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
With the following commit:
e18bcccd1a ("x86/dumpstack: Convert show_trace_log_lvl() to use the new unwinder")
The task pointer argument to show_stack_log_lvl() in show_stack() was
inadvertently changed to 'current'.
Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: byungchul.park@lge.com
Cc: fweisbec@gmail.com
Cc: keescook@chromium.org
Cc: linux-tip-commits@vger.kernel.org
Cc: luto@amacapital.net
Cc: nilayvaish@gmail.com
Cc: rostedt@goodmis.org
Cc: tip-bot for Josh Poimboeuf <tipbot@zytor.com>
Fixes: e18bcccd1a ("x86/dumpstack: Convert show_trace_log_lvl() to use the new unwinder")
Link: http://lkml.kernel.org/r/20160920155340.yhewlx7vmgmov5fb@treble
Signed-off-by: Ingo Molnar <mingo@kernel.org>
new EFI memory map reservation code didn't align reservations to
EFI_PAGE_SIZE boundaries causing bogus regions to be inserted into
the global EFI memory map - Matt Fleming
-----BEGIN PGP SIGNATURE-----
iQI2BAABCAAgBQJX4UshGRxtYXR0QGNvZGVibHVlcHJpbnQuY28udWsACgkQLzhZ
wI0jPVX2RA/9HiT48K98R1fkiig/V3Wh8H8y7lQbwO+qA1WZ7q/D+DYau62qI3zM
sLgTSoV2zzjBr+4JWuGIdbtpYBjhHci0HwEcOGp5EFSZmgJGOpc7VY2VdFaYyZ2X
xhowGLXv2jgfKoAPt9MfgZX2Qh5Jt4CRlC+UcilUJp0wy1+uD4W7XmrLM1Rg7Ug2
8XTL/BA5QxQa3wx8+/z6xV/ADlhzf3DQ7BwI3qkx5RHSXSuy1/E2XGTnyuDt/7Oo
KmMwQGGrrv92uSjyq5vJ53DuNxXDJ7nGtlXTT2u0WtcZbzJXsXIaCZItbCA5rqW/
wWGgsz5XSc406m1WNv8Zs8xx9NAEP/+KXQfftwuQHFqoylG4QqYuO060V5XOxQlh
cdRuyVUgMONZAvTzEAUC+5SaN3c+WDCL8oEnrs/tdMxSzBL9Rj7yaHMW+ozVe5Nf
GFxMnO0l5SG9+o8hSAkkn5RDfIDzSTC1W5imqWJQXhC2BXHEdmh4wVWIG4QgPM/K
gqaTpX72Nu04lBjCXXpfKSK5Xqv67hZOzxUDkkjxtq1PtDbL1dPpzAF3s3GFdreI
FfQgetg4jM4EPnWDQWqWVJxQUv+uCfpDV9g5y9kMinVb2OpyGjcZpNckGHKnqIXr
hyntPYqyy793W6dPGEjTqfcVP751qisMjp6iIIqk3h+qr7HyJSF5nqs=
=S9gJ
-----END PGP SIGNATURE-----
Merge tag 'efi-next' of git://git.kernel.org/pub/scm/linux/kernel/git/mfleming/efi into efi/core
Pull EFI fix from Matt Fleming:
* Fix a boot crash reported by Mike Galbraith and Mike Krinkin. The
new EFI memory map reservation code didn't align reservations to
EFI_PAGE_SIZE boundaries causing bogus regions to be inserted into
the global EFI memory map (Matt Fleming)
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Mike Galbraith reported that his machine started rebooting during boot
after,
commit 8e80632fb2 ("efi/esrt: Use efi_mem_reserve() and avoid a kmalloc()")
The ESRT table on his machine is 56 bytes and at no point in the
efi_arch_mem_reserve() call path is that size rounded up to
EFI_PAGE_SIZE, nor is the start address on an EFI_PAGE_SIZE boundary.
Since the EFI memory map only deals with whole pages, inserting an EFI
memory region with 56 bytes results in a new entry covering zero
pages, and completely screws up the calculations for the old regions
that were trimmed.
Round all sizes upwards, and start addresses downwards, to the nearest
EFI_PAGE_SIZE boundary.
Additionally, efi_memmap_insert() expects the mem::range::end value to
be one less than the end address for the region.
Reported-by: Mike Galbraith <umgwanakikbuti@gmail.com>
Reported-by: Mike Krinkin <krinkin.m.u@gmail.com>
Tested-by: Mike Krinkin <krinkin.m.u@gmail.com>
Cc: Peter Jones <pjones@redhat.com>
Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Taku Izumi <izumi.taku@jp.fujitsu.com>
Signed-off-by: Matt Fleming <matt@codeblueprint.co.uk>
Since commit 4d4c474124 ("perf/x86/intel/bts: Fix BTS PMI detection")
my box goes boom on boot:
| .... node #0, CPUs: #1#2#3#4#5#6#7
| BUG: unable to handle kernel NULL pointer dereference at 0000000000000018
| IP: [<ffffffff8100c463>] intel_bts_interrupt+0x43/0x130
| Call Trace:
| <NMI> d [<ffffffff8100b341>] intel_pmu_handle_irq+0x51/0x4b0
| [<ffffffff81004d47>] perf_event_nmi_handler+0x27/0x40
This happens because the code introduced in this commit dereferences the
debug store pointer unconditionally. The debug store is not guaranteed to
be available, so a NULL pointer check as on other places is required.
Fixes: 4d4c474124 ("perf/x86/intel/bts: Fix BTS PMI detection")
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Reviewed-by: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Arnaldo Carvalho de Melo <acme@infradead.org>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: vince@deater.net
Cc: eranian@google.com
Link: http://lkml.kernel.org/r/20160920131220.xg5pbdjtznszuyzb@breakpoint.cc
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Waiman reported that booting with CONFIG_EFI_MIXED enabled on his
multi-terabyte HP machine results in boot crashes, because the EFI
region mapping functions loop forever while trying to map those
regions describing RAM.
While this patch doesn't fix the underlying hang, there's really no
reason to map EFI_CONVENTIONAL_MEMORY regions into the EFI page tables
when mixed-mode is not in use at runtime.
Reported-by: Waiman Long <waiman.long@hpe.com>
Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
CC: Theodore Ts'o <tytso@mit.edu>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Scott J Norton <scott.norton@hpe.com>
Cc: Douglas Hatch <doug.hatch@hpe.com>
Cc: <stable@vger.kernel.org> # v4.6+
Signed-off-by: Matt Fleming <matt@codeblueprint.co.uk>
There's a mixture of signed 32-bit and unsigned 32-bit and 64-bit data
types used for keeping track of how many pages have been mapped.
This leads to hangs during boot when mapping large numbers of pages
(multiple terabytes, as reported by Waiman) because those values are
interpreted as being negative.
commit 742563777e ("x86/mm/pat: Avoid truncation when converting
cpa->numpages to address") fixed one of those bugs, but there is
another lurking in __change_page_attr_set_clr().
Additionally, the return value type for the populate_*() functions can
return negative values when a large number of pages have been mapped,
triggering the error paths even though no error occurred.
Consistently use 64-bit types on 64-bit platforms when counting pages.
Even in the signed case this gives us room for regions 8PiB
(pebibytes) in size whilst still allowing the usual negative value
error checking idiom.
Reported-by: Waiman Long <waiman.long@hpe.com>
Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
CC: Theodore Ts'o <tytso@mit.edu>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Scott J Norton <scott.norton@hpe.com>
Cc: Douglas Hatch <doug.hatch@hpe.com>
Signed-off-by: Matt Fleming <matt@codeblueprint.co.uk>
vm_data->avic_vm_id is a u32, so the check for a error
return (less than zero) such as -EAGAIN from
avic_get_next_vm_id currently has no effect whatsoever.
Fix this by using a temporary int for the comparison
and assign vm_data->avic_vm_id to this. I used an explicit
u32 cast in the assignment to show why vm_data->avic_vm_id
cannot be used in the assign/compare steps.
Signed-off-by: Colin Ian King <colin.king@canonical.com>
Acked-by: Joerg Roedel <jroedel@suse.de>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Lately tsc page was implemented but filled with empty
values. This patch setup tsc page scale and offset based
on vcpu tsc, tsc_khz and HV_X64_MSR_TIME_REF_COUNT value.
The valid tsc page drops HV_X64_MSR_TIME_REF_COUNT msr
reads count to zero which potentially improves performance.
Signed-off-by: Andrey Smetanin <asmetanin@virtuozzo.com>
Reviewed-by: Peter Hornyack <peterhornyack@google.com>
Reviewed-by: Radim Krčmář <rkrcmar@redhat.com>
CC: Paolo Bonzini <pbonzini@redhat.com>
CC: Roman Kagan <rkagan@virtuozzo.com>
CC: Denis V. Lunev <den@openvz.org>
[Computation of TSC page parameters rewritten to use the Linux timekeeper
parameters. - Paolo]
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Introduce a function that reads the exact nanoseconds value that is
provided to the guest in kvmclock. This crystallizes the notion of
kvmclock as a thin veneer over a stable TSC, that the guest will
(hopefully) convert with NTP. In other words, kvmclock is *not* a
paravirtualized host-to-guest NTP.
Drop the get_kernel_ns() function, that was used both to get the base
value of the master clock and to get the current value of kvmclock.
The former use is replaced by ktime_get_boot_ns(), the latter is
the purpose of get_kernel_ns().
This also allows KVM to provide a Hyper-V time reference counter that
is synchronized with the time that is computed from the TSC page.
Reviewed-by: Roman Kagan <rkagan@virtuozzo.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Make the guest's kvmclock count up from zero, not from the host boot
time. The guest cannot rely on that anyway because it changes on
migration, the numbers are easier on the eye and finally it matches the
desired semantics of the Hyper-V time reference counter.
Reviewed-by: Roman Kagan <rkagan@virtuozzo.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
We will use it in the next patches for KVM_GET_CLOCK and as a basis for the
contents of the Hyper-V TSC page. Get the values from the Linux
timekeeper even if kvmclock is not enabled.
Reviewed-by: Roman Kagan <rkagan@virtuozzo.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
All previous users of dump_trace() have been converted to use the new
unwind interfaces, so we can remove it and the related
print_context_stack() and print_context_stack_bp() callback functions.
Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Byungchul Park <byungchul.park@lge.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Nilay Vaish <nilayvaish@gmail.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/5b97da3572b40b5a4d8e185cf2429308d0987a13.1474045023.git.jpoimboe@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Convert show_trace_log_lvl() to use the new unwinder. dump_trace() has
been deprecated.
show_trace_log_lvl() is special compared to other users of the unwinder.
It's the only place where both reliable *and* unreliable addresses are
needed. With frame pointers enabled, most callers of the unwinder don't
want to know about unreliable addresses. But in this case, when we're
dumping the stack to the console because something presumably went
wrong, the unreliable addresses are useful:
- They show stale data on the stack which can provide useful clues.
- If something goes wrong with the unwinder, or if frame pointers are
corrupt or missing, all the stack addresses still get shown.
So in order to show all addresses on the stack, and at the same time
figure out which addresses are reliable, we have to do the scanning and
the unwinding in parallel.
The scanning is done with the help of get_stack_info() to traverse the
stacks. The unwinding is done separately by the new unwinder.
In theory we could simplify show_trace_log_lvl() by instead pushing some
of this logic into the unwind code. But then we would need some kind of
"fake" frame logic in the unwinder which would add a lot of complexity
and wouldn't be worth it in order to support only one user.
Another benefit of this approach is that once we have a DWARF unwinder,
we should be able to just plug it in with minimal impact to this code.
Another change here is that callers of show_trace_log_lvl() don't need
to provide the 'bp' argument. The unwinder already finds the relevant
frame pointer by unwinding until it reaches the first frame after the
provided stack pointer.
Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Byungchul Park <byungchul.park@lge.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Nilay Vaish <nilayvaish@gmail.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/703b5998604c712a1f801874b43f35d6dac52ede.1474045023.git.jpoimboe@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The x86 stack dump code is a bit of a mess. dump_trace() uses
callbacks, and each user of it seems to have slightly different
requirements, so there are several slightly different callbacks floating
around.
Also there are some upcoming features which will need more changes to
the stack dump code, including the printing of stack pt_regs, reliable
stack detection for live patching, and a DWARF unwinder. Each of those
features would at least need more callbacks and/or callback interfaces,
resulting in a much bigger mess than what we have today.
Before doing all that, we should try to clean things up and replace
dump_trace() with something cleaner and more flexible.
The new unwinder is a simple state machine which was heavily inspired by
a suggestion from Andy Lutomirski:
https://lkml.kernel.org/r/CALCETrUbNTqaM2LRyXGRx=kVLRPeY5A3Pc6k4TtQxF320rUT=w@mail.gmail.com
It's also similar to the libunwind API:
http://www.nongnu.org/libunwind/man/libunwind(3).html
Some if its advantages:
- Simplicity: no more callback sprawl and less code duplication.
- Flexibility: it allows the caller to stop and inspect the stack state
at each step in the unwinding process.
- Modularity: the unwinder code, console stack dump code, and stack
metadata analysis code are all better separated so that changing one
of them shouldn't have much of an impact on any of the others.
Two implementations are added which conform to the new unwind interface:
- The frame pointer unwinder which is used for CONFIG_FRAME_POINTER=y.
- The "guess" unwinder which is used for CONFIG_FRAME_POINTER=n. This
isn't an "unwinder" per se. All it does is scan the stack for kernel
text addresses. But with no frame pointers, guesses are better than
nothing in most cases.
Suggested-by: Andy Lutomirski <luto@amacapital.net>
Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Byungchul Park <byungchul.park@lge.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Nilay Vaish <nilayvaish@gmail.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/6dc2f909c47533d213d0505f0a113e64585bec82.1474045023.git.jpoimboe@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
With the addition of uses of GCC's condition code outputs in commit:
35ccfb7114 ("x86, asm: Use CC_SET()/CC_OUT() in <asm/rwsem.h>")
... there's now an overlap of outputs and clobbers in __down_write_trylock().
Such overlaps are generally getting tagged with an error (occasionally
even with an ICE). I can't really tell why plain GCC 6.2 doesn't detect
this (judging by the code it is meant to), while the slightly modified
one I use does. Since condition code clobbers are never necessary on x86
(other than perhaps for documentation purposes, which doesn't really
get done consistently), remove it altogether rather than inventing
something like CC_CLOBBER (to accompany CC_SET/CC_OUT).
Signed-off-by: Jan Beulich <jbeulich@suse.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/57E003CC0200007800110102@prv-mh.provo.novell.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The Intel PT facility grew some new functionality:
* PTWRITE packet carries the payload of the new PTWRITE instruction
that can be used to instrument Intel PT traces with user-supplied
data. Packets of this type are only generated if 'ptwrite' capability
is set and PTWEn bit is set in the event attribute's config. Flow
update packets (FUP) can be generated on PTWRITE packets if FUPonPTW
config bit is set. Setting these bits is not allowed if 'ptwrite'
capability is not set.
* PWRE, PWRX, MWAIT, EXSTOP packets communicate core power management
events. These depend on 'power_event_tracing' capability and are
enabled by setting PwrEvtEn bit in the event attribute.
Extend the driver capabilities and provide the proper sanity checks in the
event validation function.
[ tglx: Massaged changelog ]
Signed-off-by: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Arnaldo Carvalho de Melo <acme@infradead.org>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: vince@deater.net
Cc: eranian@google.com
Cc: Adrian Hunter <adrian.hunter@intel.com>
Link: http://lkml.kernel.org/r/20160916134819.1978-1-alexander.shishkin@linux.intel.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
These files were only including module.h for exception table related
functions. We've now separated that content out into its own file
"extable.h" so now move over to that and avoid all the extra header content
in module.h that we don't really need to compile these files.
Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com>
Acked-by: Ingo Molnar <mingo@kernel.org>
Link: http://lkml.kernel.org/r/20160919210418.30243-1-paul.gortmaker@windriver.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
commit aa297292d7 ("x86/tsc: Enumerate SKL cpu_khz and tsc_khz via
CPUID") added code to retrieve the crystal and TSC frequency from CPUID
leaves. If the crystal freqency is enumerated as 0,the resulting TSC
frequency is 0 as well. For CPUs with a known fixed crystal frequency a
quirk list is available to set the frequency,
Kabylake and SkylakeX CPUs are missing in the list of CPUs which need this
quirk. Add them so the TSC frequency can be calculated correctly.
[ tglx: Removed the silly default case as the switch() is only invoked when
cpu_khz is 0. Massaged changelog. ]
Signed-off-by: Prarit Bhargava <prarit@redhat.com>
Cc: Len Brown <len.brown@intel.com>
Cc: Rafael Aquini <aquini@redhat.com>
Cc: "Peter Zijlstra (Intel)" <peterz@infradead.org>
Cc: Andy Lutomirski <luto@kernel.org>
Link: http://lkml.kernel.org/r/1474289501-31717-3-git-send-email-prarit@redhat.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
asm/intel-family.h contains defines for cpu ids which should be used
instead of hex constants. Convert the switch case in native_calibrate_tsc()
to use the defines before adding more cpu models.
[ tglx: Massaged changelog ]
Signed-off-by: Prarit Bhargava <prarit@redhat.com>
Cc: Len Brown <len.brown@intel.com>
Cc: Rafael Aquini <aquini@redhat.com>
Cc: "Peter Zijlstra (Intel)" <peterz@infradead.org>
Cc: Andy Lutomirski <luto@kernel.org>
Link: http://lkml.kernel.org/r/1474289501-31717-2-git-send-email-prarit@redhat.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
The array has a size of MAX_LOCAL_APIC, which can be as large as 32k, so it
can consume up to 128k.
The array has been there forever and was never used for anything useful
other than a version mismatch check which was introduced in 2009.
There is no reason to store the version in an array. The kernel is not
prepared to handle different APIC versions anyway, so the real important
part is to detect a version mismatch and warn about it, which can be done
with a single variable as well.
[ tglx: Massaged changelog ]
Signed-off-by: Denys Vlasenko <dvlasenk@redhat.com>
CC: Andy Lutomirski <luto@amacapital.net>
CC: Borislav Petkov <bp@alien8.de>
CC: Brian Gerst <brgerst@gmail.com>
CC: Mike Travis <travis@sgi.com>
Link: http://lkml.kernel.org/r/20160913181232.30815-1-dvlasenk@redhat.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
===============================
[ INFO: suspicious RCU usage. ]
4.8.0-rc6+ #5 Not tainted
-------------------------------
./arch/x86/include/asm/msr-trace.h:47 suspicious rcu_dereference_check() usage!
other info that might help us debug this:
RCU used illegally from idle CPU!
rcu_scheduler_active = 1, debug_locks = 0
RCU used illegally from extended quiescent state!
no locks held by swapper/2/0.
stack backtrace:
CPU: 2 PID: 0 Comm: swapper/2 Not tainted 4.8.0-rc6+ #5
Hardware name: Dell Inc. OptiPlex 7020/0F5C5X, BIOS A03 01/08/2015
0000000000000000 ffff8d1bd6003f10 ffffffff94446949 ffff8d1bd4a68000
0000000000000001 ffff8d1bd6003f40 ffffffff940e9247 ffff8d1bbdfcf3d0
000000000000080b 0000000000000000 0000000000000000 ffff8d1bd6003f70
Call Trace:
<IRQ> [<ffffffff94446949>] dump_stack+0x99/0xd0
[<ffffffff940e9247>] lockdep_rcu_suspicious+0xe7/0x120
[<ffffffff9448e0d5>] do_trace_write_msr+0x135/0x140
[<ffffffff9406e750>] native_write_msr+0x20/0x30
[<ffffffff9406503d>] native_apic_msr_eoi_write+0x1d/0x30
[<ffffffff9405b17e>] smp_trace_call_function_interrupt+0x1e/0x270
[<ffffffff948cb1d6>] trace_call_function_interrupt+0x96/0xa0
<EOI> [<ffffffff947200f4>] ? cpuidle_enter_state+0xe4/0x360
[<ffffffff947200df>] ? cpuidle_enter_state+0xcf/0x360
[<ffffffff947203a7>] cpuidle_enter+0x17/0x20
[<ffffffff940df008>] cpu_startup_entry+0x338/0x4d0
[<ffffffff9405bfc4>] start_secondary+0x154/0x180
This can be reproduced readily by running ftrace test case of kselftest.
Move the irq_enter() call before ack_APIC_irq(), because irq_enter() tells
the RCU susbstems to end the extended quiescent state, so that the
following trace call in ack_APIC_irq() works correctly. The same applies to
exiting_ack_irq() which calls ack_APIC_irq() after irq_exit().
[ tglx: Massaged changelog ]
Signed-off-by: Wanpeng Li <wanpeng.li@hotmail.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Wanpeng Li <wanpeng.li@hotmail.com>
Link: http://lkml.kernel.org/r/1474198491-3738-1-git-send-email-wanpeng.li@hotmail.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
The prctl code which references vdso_image_x32 is built when CONFIG_X86_X32
is set. This results in the following build failure:
LD init/built-in.o
arch/x86/built-in.o: In function `do_arch_prctl':
(.text+0x27466): undefined reference to `vdso_image_x32'
vdso_image_x32 depends on CONFIG_X86_X32_ABI. So we need to make the prctl
depend on that as well.
[ tglx: Massaged changelog ]
Fixes: 2eefd87896 ("x86/arch_prctl/vdso: Add ARCH_MAP_VDSO_*")
Signed-off-by: Vinson Lee <vlee@freedesktop.org>
Reviewed-by: Dmitry Safonov <dsafonov@virtuozzo.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Borislav Petkov <bp@suse.de>
Cc: Dmitry Vyukov <dvyukov@google.com>
Link: http://lkml.kernel.org/r/1474073513-6656-1-git-send-email-vlee@freedesktop.org
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Install the callbacks via the state machine.
CPU_UP_CANCELED_FROZEN() is not preserved: It is only there to free memory in an
error case because it is assumed if the CPU does show up on resume it won't be
seen ever again. As per Borislav:
|IOW, you don't need mc_cpu_dead().
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: rt@linutronix.de
Link: http://lkml.kernel.org/r/20160907164523.46a2xnffha4bv63g@linutronix.de
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Fix a potential race when disabling MSI/MSI-X on a VMD domain device. If
the VMD interrupt service is running, it may see a disabled IRQ. We can
synchronize RCU just before freeing the MSI descriptor. This is safe since
the irq_desc lock isn't held, and the descriptor is valid even though it is
disabled. After vmd_msi_free(), though, the handler is reinitialized to
handle_bad_irq(), so we can't let the VMD ISR's list iteration see the
disabled IRQ after this.
Signed-off-by: Keith Busch <keith.busch@intel.com>
Signed-off-by: Bjorn Helgaas <bhelgaas@google.com>
Acked-by Jon Derrick: <jonathan.derrick@intel.com>
Use math to discover the IRQ list index number relative to the IRQ list
head.
Signed-off-by: Jon Derrick <jonathan.derrick@intel.com>
Signed-off-by: Bjorn Helgaas <bhelgaas@google.com>
Acked-by: Keith Busch <keith.busch@intel.com>
Eliminate unused vmd and vector members from vmd_irq_list and discover the
vector using pci_irq_vector().
Signed-off-by: Jon Derrick <jonathan.derrick@intel.com>
Signed-off-by: Bjorn Helgaas <bhelgaas@google.com>
Acked-by: Keith Busch <keith.busch@intel.com>
Convert to use the pci_alloc_irq_vectors() API.
Signed-off-by: Jon Derrick <jonathan.derrick@intel.com>
Signed-off-by: Bjorn Helgaas <bhelgaas@google.com>
Reviewed-by: Keith Busch <keith.busch@intel.com>
To reduce the amount of memory required for IRQ lists, only allocate their
space after calling pci_msix_enable_range() which may reduce the number of
MSI-X vectors allocated.
Signed-off-by: Jon Derrick <jonathan.derrick@intel.com>
Signed-off-by: Bjorn Helgaas <bhelgaas@google.com>
Reviewed-by: Keith Busch <keith.busch@intel.com>
Pull perf fixes from Thomas Gleixner:
"A couple of small fixes to x86 perf drivers:
- Measure L2 for HW_CACHE* events on AMD
- Fix the address filter handling in the intel/pt driver
- Handle the BTS disabling at the proper place"
* 'perf-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
perf/x86/amd: Make HW_CACHE_REFERENCES and HW_CACHE_MISSES measure L2
perf/x86/intel/pt: Do validate the size of a kernel address filter
perf/x86/intel/pt: Fix kernel address filter's offset validation
perf/x86/intel/pt: Fix an off-by-one in address filter configuration
perf/x86/intel: Don't disable "intel_bts" around "intel" event batching
This commit exports the following information to
user-space via the newly created per-vcpu debugfs
directory:
- TSC offset (as a signed number)
- TSC scaling ratio
- TSC scaling ratio fractinal bits
The original intention of this commit was to
export only the TSC offset, but the TSC scaling
information is exported for completeness.
We need to retrieve the TSC offset from user-space
in order to support the merging of host and guest
traces in trace-cmd. Today, we use the kvm_write_tsc_offset
tracepoint, but it has a number of problems (mainly,
it requires a running VM to be rebooted, ftrace setup,
and also tracepoints are not supposed to be ABIs).
The merging of host and guest traces is explained
in more detail in this thread:
[Qemu-devel] [RFC] host and guest kernel trace merging
https://lists.nongnu.org/archive/html/qemu-devel/2016-03/msg00887.html
This commit creates the following files in debugfs:
/sys/kernel/debug/kvm/66828-10/vcpu0/tsc-offset
/sys/kernel/debug/kvm/66828-10/vcpu0/tsc-scaling-ratio
/sys/kernel/debug/kvm/66828-10/vcpu0/tsc-scaling-ratio-frac-bits
The last two are only created if TSC scaling is supported.
Signed-off-by: Luiz Capitulino <lcapitulino@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Two stubs are added:
o kvm_arch_has_vcpu_debugfs(): must return true if the arch
supports creating debugfs entries in the vcpu debugfs dir
(which will be implemented by the next commit)
o kvm_arch_create_vcpu_debugfs(): code that creates debugfs
entries in the vcpu debugfs dir
For x86, this commit introduces a new file to avoid growing
arch/x86/kvm/x86.c even more.
Signed-off-by: Luiz Capitulino <lcapitulino@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The TSC offset can now be read directly from struct kvm_arch_vcpu.
Signed-off-by: Luiz Capitulino <lcapitulino@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
A future commit will want to easily read a vCPU's TSC offset,
so we store it in struct kvm_arch_vcpu_arch for easy access.
Signed-off-by: Luiz Capitulino <lcapitulino@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
show_stack_log_lvl() and friends allow a NULL pointer for the
task_struct to indicate the current task. This creates confusion and
can cause sneaky bugs.
Instead require the caller to pass 'current' directly.
This only changes the internal workings of the dumpstack code. The
dump_trace() and show_stack() interfaces still allow a NULL task
pointer. Those interfaces should also probably be fixed as well.
Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
While the Intel PMU monitors the LLC when perf enables the
HW_CACHE_REFERENCES and HW_CACHE_MISSES events, these events monitor
L1 instruction cache fetches (0x0080) and instruction cache misses
(0x0081) on the AMD PMU.
This is extremely confusing when monitoring the same workload across
Intel and AMD machines, since parameters like,
$ perf stat -e cache-references,cache-misses
measure completely different things.
Instead, make the AMD PMU measure instruction/data cache and TLB fill
requests to the L2 and instruction/data cache and TLB misses in the L2
when HW_CACHE_REFERENCES and HW_CACHE_MISSES are enabled,
respectively. That way the events measure unified caches on both
platforms.
Signed-off-by: Matt Fleming <matt@codeblueprint.co.uk>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Cc: <stable@vger.kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1472044328-21302-1-git-send-email-matt@codeblueprint.co.uk
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Right now, the kernel address filters in PT are prone to integer overflow
that may happen in adding filter's size to its offset to obtain the end
of the range. Such an overflow would also throw a #GP in the PT event
configuration path.
Fix this by explicitly validating the result of this calculation.
Reported-by: Adrian Hunter <adrian.hunter@intel.com>
Signed-off-by: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Cc: Arnaldo Carvalho de Melo <acme@infradead.org>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Stephane Eranian <eranian@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Cc: stable@vger.kernel.org # v4.7
Cc: stable@vger.kernel.org#v4.7
Cc: vince@deater.net
Link: http://lkml.kernel.org/r/20160915151352.21306-4-alexander.shishkin@linux.intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The kernel_ip() filter is used mostly by the DS/LBR code to look at the
branch addresses, but Intel PT also uses it to validate the address
filter offsets for kernel addresses, for which it is not sufficient:
supplying something in bits 64:48 that's not a sign extension of the lower
address bits (like 0xf00d000000000000) throws a #GP.
This patch adds address validation for the user supplied kernel filters.
Reported-by: Adrian Hunter <adrian.hunter@intel.com>
Signed-off-by: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Cc: Arnaldo Carvalho de Melo <acme@infradead.org>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Stephane Eranian <eranian@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Cc: stable@vger.kernel.org # v4.7
Cc: stable@vger.kernel.org#v4.7
Cc: vince@deater.net
Link: http://lkml.kernel.org/r/20160915151352.21306-3-alexander.shishkin@linux.intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
PT address filter configuration requires that a range is specified by
its first and last address, but at the moment we're obtaining the end
of the range by adding user specified size to its start, which is off
by one from what it actually needs to be.
Fix this and make sure that zero-sized filters don't pass the filter
validation.
Reported-by: Adrian Hunter <adrian.hunter@intel.com>
Signed-off-by: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Cc: Arnaldo Carvalho de Melo <acme@infradead.org>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Stephane Eranian <eranian@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Cc: stable@vger.kernel.org # v4.7
Cc: stable@vger.kernel.org#v4.7
Cc: vince@deater.net
Link: http://lkml.kernel.org/r/20160915151352.21306-2-alexander.shishkin@linux.intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
This will prevent a crash if get_wchan() runs after the task stack
is freed.
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Jann Horn <jann@thejh.net>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/337aeca8614024aa4d8d9c81053bbf8fcffbe4ad.1474003868.git.luto@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Specifically, pin the stack in save_stack_trace_tsk() and
show_trace_log_lvl().
This will prevent a crash if the target task dies before or while
dumping its stack once we start freeing task stacks early.
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Jann Horn <jann@thejh.net>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/cf0082cde65d1941a996d026f2b2cdbfaca17bfa.1474003868.git.luto@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
When I rebased my thread_info changes onto Brian's switch_to()
changes, I carefully checked that I fixed up all the code correctly,
but I missed a comment :(
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Jann Horn <jann@thejh.net>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Fixes: 15f4eae70d ("x86: Move thread_info into task_struct")
Link: http://lkml.kernel.org/r/089fe1e1cbe8b258b064fccbb1a5a5fd23861031.1474003868.git.luto@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Windows because it uses RTC periodic interrupts.
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v2.0.22 (GNU/Linux)
iQEcBAABAgAGBQJX2xpHAAoJEL/70l94x66D9NsIAIw+9oRA86qjehVnguV3fRKA
ITZ4OGFDiXPWuxqDaw8mHHXr0RYx8KcMTzfFNbV+YL5U0cq9xYzdaNhchKPpyF+3
7H5wL8Ku9wkYZ930kdCf5Q+LNCfg8d/wKlibPEbX0MDx4jL99kkcxLzEkmIRqFlq
bpXaQe/KR1xCWR6gI/a6aRJWLfGuFMV82YSnk/dCSjwotbAwjJUSt+IPhLwhx28o
7ddcxW3CxQqelJorcu2lvRiGnCvEzDhIdOvHJqibCjo3uzqbcI4PA2gs3rozbs9s
VMEzqZpNgK0XsyKyccSw75npViIHYPkjMzxoyHMDhgiP3eIwp/tJquxAfLjK4WE=
=h4P4
-----END PGP SIGNATURE-----
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull kvm fix from Paolo Bonzini:
"One fix for an x86 regression in VM migration, mostly visible with
Windows because it uses RTC periodic interrupts"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm:
kvm: x86: correctly reset dest_map->vector when restoring LAPIC state
get_user_ex(x, ptr) should zero x on failure. It's not a lot of a leak
(at most we are leaking uninitialized 64bit value off the kernel stack,
and in a fairly constrained situation, at that), but the fix is trivial,
so...
Cc: stable@vger.kernel.org
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
[ This sat in different branch from the uaccess fixes since mid-August ]
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When userspace sends KVM_SET_LAPIC, KVM schedules a check between
the vCPU's IRR and ISR and the IOAPIC redirection table, in order
to re-establish the IOAPIC's dest_map (the list of CPUs servicing
the real-time clock interrupt with the corresponding vectors).
However, __rtc_irq_eoi_tracking_restore_one was forgetting to
set dest_map->vectors. Because of this, the IOAPIC did not process
the real-time clock interrupt EOI, ioapic->rtc_status.pending_eoi
got stuck at a non-zero value, and further RTC interrupts were
reported to userspace as coalesced.
Fixes: 9e4aabe2bb
Fixes: 4d99ba898d
Cc: stable@vger.kernel.org
Cc: Joerg Roedel <jroedel@suse.de>
Cc: David Gilbert <dgilbert@redhat.com>
Reviewed-by: Radim Krčmář <rkrcmar@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
At the moment, intel_bts events get disabled from intel PMU's disable
callback, which includes event scheduling transactions of said PMU,
which have nothing to do with intel_bts events.
We do want to keep intel_bts events off inside the PMI handler to
avoid filling up their buffer too soon.
This patch moves intel_bts enabling/disabling directly to the PMI
handler.
Reported-by: Vince Weaver <vincent.weaver@maine.edu>
Signed-off-by: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Arnaldo Carvalho de Melo <acme@infradead.org>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stephane Eranian <eranian@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: vince@deater.net
Link: http://lkml.kernel.org/r/20160915082233.11065-1-alexander.shishkin@linux.intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
... otherwise the compiler complains:
arch/x86/entry/vdso/vma.c:252:12: warning: ‘map_vdso_randomized’ defined but not used [-Wunused-function]
But the #ifdeffery here is getting pretty ugly, so move around
vdso_addr() as well to cluster the dependencies a bit more.
It's still not particulary pretty though ...
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: Dmitry Safonov <dsafonov@virtuozzo.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: gorcunov@openvz.org
Cc: linux-kernel@vger.kernel.org
Cc: linux-mm@kvack.org
Cc: oleg@redhat.com
Cc: xemul@virtuozzo.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Now that most of the thread_info users have been cleaned up,
this is straightforward.
Most of this code was written by Linus.
Originally-from: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Jann Horn <jann@thejh.net>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/a50eab40abeaec9cb9a9e3cbdeafd32190206654.1473801993.git.luto@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
thread_info may move in the future, so use the accessors.
[ Andy Lutomirski wrote this changelog message and changed
"task_thread_info(child)->cpu" to "task_cpu(child)". ]
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Jann Horn <jann@thejh.net>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/3439705d9838940cc82733a7335fa8c654c37db8.1473801993.git.luto@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
It was a nice optimization while it lasted, but thread_info is moving
and this optimization will no longer work.
Quoting Linus:
Oh Gods, Andy. That pt_regs_to_thread_info() thing made me want
to do unspeakable acts on a poor innocent wax figure that looked
_exactly_ like you.
[ Changelog written by Andy. ]
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Jann Horn <jann@thejh.net>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/6376aa81c68798cc81631673f52bd91a3e078944.1473801993.git.luto@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Because sched.h and thread_info.h are a tangled mess, I turned
in_compat_syscall() into a macro. If we had current_thread_struct()
or similar and we could use it from thread_info.h, then this would
be a bit cleaner.
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Jann Horn <jann@thejh.net>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/ccc8a1b2f41f9c264a41f771bb4a6539a642ad72.1473801993.git.luto@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
in_exception_stack() has some recursion checking which makes sure the
stack trace code never traverses a given exception stack more than once.
This prevents an infinite loop if corruption somehow causes a stack's
"next stack" pointer to point to itself (directly or indirectly).
The recursion checking can be useful for other stacks in addition to the
exception stack, so extend it to work for all stacks.
Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Byungchul Park <byungchul.park@lge.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Nilay Vaish <nilayvaish@gmail.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/95de5db4cfe111754845a5cef04e20630d01423f.1473905218.git.jpoimboe@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
When an interrupt happens in entry code while running on a software IRQ
stack, and the IRQ stack was empty, regs->sp will contain the stack end
address (e.g., irq_stack_ptr). If the regs are passed to dump_trace(),
get_stack_info() will report STACK_TYPE_UNKNOWN, causing dump_trace() to
return prematurely without trying to go to the next stack.
Update the bounds checking for software interrupt stacks so that the
ending address is now considered part of the stack.
This means that it's now possible for the 'walk_stack' callbacks --
print_context_stack() and print_context_stack_bp() -- to be called with
an empty stack. But that's fine; they're already prepared to deal with
that due to their on_stack() checks.
Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Byungchul Park <byungchul.park@lge.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Nilay Vaish <nilayvaish@gmail.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/5a5e5de92dcf11e8dc6b6e8e50ad7639d067830b.1473905218.git.jpoimboe@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
valid_stack_ptr() is buggy: it assumes that all stacks are of size
THREAD_SIZE, which is not true for exception stacks. So the
walk_stack() callbacks will need to know the location of the beginning
of the stack as well as the end.
Another issue is that in general the various features of a stack (type,
size, next stack pointer, description string) are scattered around in
various places throughout the stack dump code.
Encapsulate all that information in a single place with a new stack_info
struct and a get_stack_info() interface.
Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Byungchul Park <byungchul.park@lge.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Nilay Vaish <nilayvaish@gmail.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/8164dd0db96b7e6a279fa17ae5e6dc375eecb4a9.1473905218.git.jpoimboe@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
in_exception_stack() does some bad, bad things just so the unwinder can
print different values for different areas of the debug exception stack.
There's no need to clarify where exactly on the stack it is. Just print
"#DB" and be done with it.
Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Byungchul Park <byungchul.park@lge.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Nilay Vaish <nilayvaish@gmail.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/e91cb410169dd576678dd427c35efb716fd0cee1.1473905218.git.jpoimboe@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Enumeration
Mark Haswell Power Control Unit as having non-compliant BARs (Bjorn Helgaas)
Power management
Fix bridge_d3 update on device removal (Lukas Wunner)
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQIcBAABAgAGBQJX2az0AAoJEFmIoMA60/r8/EoP/28mGRiKi8mlqNAR3MYN3F0n
VSIm7WyxWNawH1gRJXKQBzNqgMJnj4qRGXSIvP3AIYyBDcJs/X7j91/eKOARNfQr
55A+gfSz4jUKlw+0WgPY8/U2/xQ4yoom1zhbsAYcIVeljZo/3JUg+wHpPjhIMkH0
2slTerHRDExrS43jxQi225toiEaO6lcY8EVmHCDo+jYlQz3sCEwIXg9hn1rwTbvG
sJI0zyUwHF+oWowgJqlwYxsbPPnelPAN5YAx7KrHuVmBdL0Bgo3oIRtbb3JZZ9Up
L9bQ6NpRjSARvijaZ2TAhueqIIDv2HGgvwNB01l4Yggw7Sm1dFCuUS6vj/e5tpZA
xntE3F6s2Z+I4I1D7pAX3jMYCdYx/QltiTCeGRp8pJv+f4ewW3jcel3FAksY3BEg
0NCjDrGFqGYai4hGRROpt/aXlW/Pn53eQLlu4Xg2qgkj0NMh0ODMrTjMnABB39ae
eGqIXab7WeVBxt10eU19J1u1RTqpUO2LJW+cMnvYdCfKAYby/gj8SD8vIsn3oDjZ
hQS/4fSHurc7LZwDmwOfaiHlGnvcQWV9EKwgScS0v8AxPQnC8pNUgYpzZcXY8Q6I
YXtyK7suFriSZPS0Qs4FrdfJrmTBaBQ55aZu9aftb5v4YqacN5qZo+HaXiONBy3v
RzsFK6xIbnIgb35g8vKy
=PQml
-----END PGP SIGNATURE-----
Merge tag 'pci-v4.8-fixes-2' of git://git.kernel.org/pub/scm/linux/kernel/git/helgaas/pci
Pull PCI fixes from Bjorn Helgaas:
"Here are two changes for v4.8. The first fixes a "[Firmware Bug]: reg
0x10: invalid BAR (can't size)" warning on Haswell, and the second
fixes a problem in some new runtime suspend functionality we merged
for v4.8. Summary:
Enumeration:
Mark Haswell Power Control Unit as having non-compliant BARs (Bjorn Helgaas)
Power management:
Fix bridge_d3 update on device removal (Lukas Wunner)"
* tag 'pci-v4.8-fixes-2' of git://git.kernel.org/pub/scm/linux/kernel/git/helgaas/pci:
PCI: Fix bridge_d3 update on device removal
PCI: Mark Haswell Power Control Unit as having non-compliant BARs
Introduce new flags that defines which ABI to use on creating sigframe.
Those flags kernel will set according to sigaction syscall ABI,
which set handler for the signal being delivered.
So that will drop the dependency on TIF_IA32/TIF_X32 flags on signal deliver.
Those flags will be used only under CONFIG_COMPAT.
Similar way ARM uses sa_flags to differ in which mode deliver signal
for 26-bit applications (look at SA_THIRYTWO).
Signed-off-by: Dmitry Safonov <dsafonov@virtuozzo.com>
Reviewed-by: Andy Lutomirski <luto@kernel.org>
Cc: 0x7f454c46@gmail.com
Cc: oleg@redhat.com
Cc: linux-mm@kvack.org
Cc: gorcunov@openvz.org
Cc: xemul@virtuozzo.com
Link: http://lkml.kernel.org/r/20160905133308.28234-7-dsafonov@virtuozzo.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
As the task isn't executing at the moment of {GET,SET}REGS,
return regset that corresponds to code selector, rather than
value of TIF_IA32 flag.
I.e. if we ptrace i386 elf binary that has just changed it's
code selector to __USER_CS, than GET_REGS will return
full x86_64 register set.
Note, that this will work only if application has changed it's CS.
If the application does 32-bit syscall with __USER_CS, ptrace
will still return 64-bit register set. Which might be still confusing
for tools that expect TS_COMPACT to be exposed [1, 2].
So this this change should make PTRACE_GETREGSET more reliable and
this will be another step to drop TIF_{IA32,X32} flags.
[1]: https://sourceforge.net/p/strace/mailman/message/30471411/
[2]: https://lkml.org/lkml/2012/1/18/320
Signed-off-by: Dmitry Safonov <dsafonov@virtuozzo.com>
Cc: 0x7f454c46@gmail.com
Cc: oleg@redhat.com
Cc: linux-mm@kvack.org
Cc: luto@kernel.org
Cc: Pedro Alves <palves@redhat.com>
Cc: gorcunov@openvz.org
Cc: xemul@virtuozzo.com
Link: http://lkml.kernel.org/r/20160905133308.28234-6-dsafonov@virtuozzo.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
show_stack_log_lvl() and dump_trace() are already preemption safe:
- If they're running in irq or exception context, preemption is already
disabled and the percpu stack pointers can be trusted.
- If they're running with preemption enabled, they must be running on
the task stack anyway, so it doesn't matter if they're comparing the
stack pointer against a percpu stack pointer from this CPU or another
one: either way it won't match.
Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Byungchul Park <byungchul.park@lge.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Nilay Vaish <nilayvaish@gmail.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/a0ca0b1044eca97d4f0ec7c1619cf80b3b65560d.1473371307.git.jpoimboe@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Pull x86 fixes from Ingo Molnar:
"Three fixes:
- AMD microcode loading fix with randomization
- an lguest tooling fix
- and an APIC enumeration boundary condition fix"
* 'x86-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/apic: Fix num_processors value in case of failure
tools/lguest: Don't bork the terminal in case of wrong args
x86/microcode/AMD: Fix load of builtin microcode with randomized memory
Pull perf fixes from Ingo Molnar:
"This contains:
- a set of fixes found by directed-random perf fuzzing efforts by
Vince Weaver, Alexander Shishkin and Peter Zijlstra
- a cqm driver crash fix
- an AMD uncore driver use after free fix"
* 'perf-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
perf/x86/intel: Fix PEBSv3 record drain
perf/x86/intel/bts: Kill a silly warning
perf/x86/intel/bts: Fix BTS PMI detection
perf/x86/intel/bts: Fix confused ordering of PMU callbacks
perf/core: Fix aux_mmap_count vs aux_refcount order
perf/core: Fix a race between mmap_close() and set_output() of AUX events
perf/x86/amd/uncore: Prevent use after free
perf/x86/intel/cqm: Check cqm/mbm enabled state in event init
perf/core: Remove WARN from perf_event_read()
Pull EFI fixes from Ingo Molnar:
"This contains a Xen fix, an arm64 fix and a race condition /
robustization set of fixes related to ExitBootServices() usage and
boundary conditions"
* 'efi-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/efi: Use efi_exit_boot_services()
efi/libstub: Use efi_exit_boot_services() in FDT
efi/libstub: Introduce ExitBootServices helper
efi/libstub: Allocate headspace in efi_get_memory_map()
efi: Fix handling error value in fdt_find_uefi_params
efi: Make for_each_efi_memory_desc_in_map() cope with running on Xen
The espfix64 setup code was a bit inscrutible and contained an
unnecessary push of RAX. Remove that push, update all the stack
offsets to match, and document the whole mess.
Reported-By: Borislav Petkov <bp@alien8.de>
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Reviewed-by: Borislav Petkov <bp@suse.de>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/e5459eb10cf1175c8b36b840bc425f210d045f35.1473717910.git.luto@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
and allow drivers to permanently reserve EFI boot services regions
on x86, as well as ARM/arm64 - Matt Fleming
* Add ARM support for the EFI esrt driver - Ard Biesheuvel
* Make the EFI runtime services and efivar API interruptible by
swapping spinlocks for semaphores - Sylvain Chouleur
* Provide the EFI identity mapping for kexec which allows kexec to
work on SGI/UV platforms with requiring the "noefi" kernel command
line parameter - Alex Thorlton
* Add debugfs node to dump EFI page tables on arm64 - Ard Biesheuvel
* Merge the EFI test driver being carried out of tree until now in
the FWTS project - Ivan Hu
* Expand the list of flags for classifying EFI regions as "RAM" on
arm64 so we align with the UEFI spec - Ard Biesheuvel
* Optimise out the EFI mixed mode if it's unsupported (CONFIG_X86_32)
or disabled (CONFIG_EFI_MIXED=n) and switch the early EFI boot
services function table for direct calls, alleviating us from
having to maintain the custom function table - Lukas Wunner
* Miscellaneous cleanups and fixes
-----BEGIN PGP SIGNATURE-----
iQI2BAABCAAgBQJX0tCTGRxtYXR0QGNvZGVibHVlcHJpbnQuY28udWsACgkQLzhZ
wI0jPVWLVBAAn/iM91Vmhggdk3t0wCMJzrNGonw61VJ9TZJVbCUJyiH0qdDUThhj
R4rO+6Vf6yOuyswu+mGmae61tfsjwJHH+IPpB8nRLIGQRwzoxk+aGC7FzmQ0ISVO
wIdv5shsmeWhFAyNB1D4hzlp1NxOZaqcU/0cfUVGe4HmK0Js3tUpWWx8VgJ7yvW+
X1PBbfyChArGqiwV6FJz/mJxRAgByUfhvYMcX9HhQkou6F4U5Y8l3vlhUMbuAZAi
ZfG2LWGYCQ+F4XKxMq2QDAtdUgBzlYWw6W60o55x9WO4cEVSzNVRgedto5o1Zea9
2QGEr94gim+e5cJ/HeDIEmbWZhAqIdcNDqXSSBd1CDVQytp4PNAn6rxk+2S9kxoe
T9Mk523HEabo+AZvDAPPJlzcsnIe83JYy69M1xFvcP25ebk7y2BwQtd1jwWPrPDQ
Q/llzF93aezUFR/guvIw0oHckhQl0ZkNedL9Tq4+UKL0ibp2X4gSX636/x4PkBSP
5+pyfmO1SAqTiiMQGQMnp4+ngPQeQrxkmVnh1P7cKlTNXg1IoS03t46Xn2Pj10cd
3KneVDeN9DKIAOn7wPKuPnjTho+9FH36xbwTaIgbt0cWuFFfu090rmqOQfjAJEDN
foHzsMZ7S6CmeOJnj97NNR8sMQDcc+p9bh1KXpJIHaZAgrKmvqPZpMk=
=G7L6
-----END PGP SIGNATURE-----
Merge tag 'efi-next' of git://git.kernel.org/pub/scm/linux/kernel/git/mfleming/efi into efi/core
Pull EFI updates from Matt Fleming:
"* Refactor the EFI memory map code into architecture neutral files
and allow drivers to permanently reserve EFI boot services regions
on x86, as well as ARM/arm64 - Matt Fleming
* Add ARM support for the EFI esrt driver - Ard Biesheuvel
* Make the EFI runtime services and efivar API interruptible by
swapping spinlocks for semaphores - Sylvain Chouleur
* Provide the EFI identity mapping for kexec which allows kexec to
work on SGI/UV platforms with requiring the "noefi" kernel command
line parameter - Alex Thorlton
* Add debugfs node to dump EFI page tables on arm64 - Ard Biesheuvel
* Merge the EFI test driver being carried out of tree until now in
the FWTS project - Ivan Hu
* Expand the list of flags for classifying EFI regions as "RAM" on
arm64 so we align with the UEFI spec - Ard Biesheuvel
* Optimise out the EFI mixed mode if it's unsupported (CONFIG_X86_32)
or disabled (CONFIG_EFI_MIXED=n) and switch the early EFI boot
services function table for direct calls, alleviating us from
having to maintain the custom function table - Lukas Wunner
* Miscellaneous cleanups and fixes"
Signed-off-by: Ingo Molnar <mingo@kernel.org>
__show_regs() fails to dump the PKRU state when the debug registers are in
their default state because there is a return statement on the debug
register state.
Change the logic to report PKRU value even when debug registers are in
their default state.
Fixes:c0b17b5bd4b7 ("x86/mm/pkeys: Dump PKRU with other kernel registers")
Signed-off-by: Nicolas Iooss <nicolas.iooss_linux@m4x.org>
Acked-by: Dave Hansen <dave.hansen@linux.intel.com>
Link: http://lkml.kernel.org/r/20160910183045.4618-1-nicolas.iooss_linux@m4x.org
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
In particular:
arch/x86/ras/mce_amd_inj.c: In function ‘prepare_msrs’:
arch/x86/ras/mce_amd_inj.c:249:13: warning: declaration of ‘i_mce’ shadows a global declaration [-Wshadow]
struct mce i_mce = *(struct mce *)info;
^~~~~
arch/x86/ras/mce_amd_inj.c: In function ‘init_mce_inject’:
arch/x86/ras/mce_amd_inj.c:453:16: warning: comparison between signed and unsigned integer expressions [-Wsign-compare]
for (i = 0; i < ARRAY_SIZE(dfs_fls); i++) {
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: http://lkml.kernel.org/r/20160912075941.24699-16-bp@alien8.de
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Bank 4 is reserved on family 0x17 and shouldn't generate any MCE
records. However, broken hardware and software is not something unheard
of so warn about bank 4 errors. They shouldn't be coming from bank 4
naturally but users can still use mce_amd_inj to simulate errors from it
for testing purposed.
Also, avoid special handling in the injector mce_amd_inj like it is
being done on the older families.
[ bp: Rewrite commit message and merge into one patch. Use boot_cpu_data. ]
Signed-off-by: Yazen Ghannam <Yazen.Ghannam@amd.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Aravind Gopalakrishnan <aravindksg.lkml@gmail.com>
Link: http://lkml.kernel.org/r/1473384591-5323-1-git-send-email-Yazen.Ghannam@amd.com
Link: http://lkml.kernel.org/r/1473384591-5323-2-git-send-email-Yazen.Ghannam@amd.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
The MCA_ADDR registers on Scalable MCA systems contain the ErrorAddr
in bits [55:0] and the least significant bit of the address in bits
[61:56]. We should extract the valid ErrorAddr bits from the MCA_ADDR
register rather than saving the raw value to struct mce.
Signed-off-by: Yazen Ghannam <Yazen.Ghannam@amd.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: http://lkml.kernel.org/r/1473275643-1721-1-git-send-email-Yazen.Ghannam@amd.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
The MCA_SYND and MCA_IPID registers contain valuable information and
should be included in MCE output. The MCA_SYND register contains
syndrome and other error information, and the MCA_IPID register will
uniquely identify the MCA bank's type without having to rely on system
software.
Signed-off-by: Yazen Ghannam <Yazen.Ghannam@amd.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: http://lkml.kernel.org/r/1472680624-34221-2-git-send-email-Yazen.Ghannam@amd.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
The MCA_IPID register uniquely identifies a bank's type and instance
on Scalable MCA systems. We should save the value of this register
in struct mce along with the other relevant error information. This
ensures that we can decode errors without relying on system software to
correlate the bank to the type.
Signed-off-by: Yazen Ghannam <Yazen.Ghannam@amd.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: http://lkml.kernel.org/r/1472680624-34221-1-git-send-email-Yazen.Ghannam@amd.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
The Deferred Error Interrupt Type is set per bank on Scalable MCA
systems. This is done in a bitfield in the MCA_CONFIG register of each
bank. We should set its type to APIC-based interrupt and not assume BIOS
has set it for us.
Signed-off-by: Yazen Ghannam <Yazen.Ghannam@amd.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: http://lkml.kernel.org/r/1472737486-1720-1-git-send-email-Yazen.Ghannam@amd.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Define a bank's sysfs filename based on its IP type and InstanceId.
Credits go to Aravind for:
* The general idea and proto- get_name().
* Defining smca_umc_block_names[] and buf_mcatype[].
Signed-off-by: Yazen Ghannam <Yazen.Ghannam@amd.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: Aravind Gopalakrishnan <aravindksg.lkml@gmail.com>
Link: http://lkml.kernel.org/r/1473193490-3291-2-git-send-email-Yazen.Ghannam@amd.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Scalable MCA defines a number of IP types. An MCA bank on an SMCA
system is defined as one of these IP types. A bank's type is uniquely
identified by the combination of the HWID and MCATYPE values read from
its MCA_IPID register.
Add the required tables in order to be able to lookup error descriptions
based on a bank's type and the error's extended error code.
[ bp: Align comments, simplify a bit. ]
Signed-off-by: Yazen Ghannam <Yazen.Ghannam@amd.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: http://lkml.kernel.org/r/1472741832-1690-1-git-send-email-Yazen.Ghannam@amd.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Scalable MCA systems allow non-core MCA banks to only be accessible by
certain CPUs. The MSRs for these banks are Read-as-Zero on other CPUs.
During allocate_threshold_blocks(), get_block_address() can be scheduled
on CPUs other than the one allocating the block. This causes the MSRs to
be read on the wrong CPU and results in incorrect behavior.
Add a @cpu parameter to get_block_address() and pass this in to ensure
that the MSRs are only read on the CPU that is allocating the block.
Signed-off-by: Yazen Ghannam <Yazen.Ghannam@amd.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: http://lkml.kernel.org/r/1472673994-12235-2-git-send-email-Yazen.Ghannam@amd.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Add a debugfs file which holds the error syndrome (written into
MCA_SYND) of an injected error. Only write it on SMCA systems. Update
README file, while at it.
Signed-off-by: Yazen Ghannam <Yazen.Ghannam@amd.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: http://lkml.kernel.org/r/1467633035-32080-3-git-send-email-Yazen.Ghannam@amd.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Syndrome information is no longer contained in MCA_STATUS for SMCA
systems but in a new register - MCA_SYND.
Add a synd field to struct mce to hold MCA_SYND register value. Add it
to the end of struct mce to maintain compatibility with old versions of
mcelog. Also, add it to the respective tracepoint.
Signed-off-by: Yazen Ghannam <Yazen.Ghannam@amd.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: http://lkml.kernel.org/r/1467633035-32080-1-git-send-email-Yazen.Ghannam@amd.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Change MSR_IA32_MCx_MISC() macro to msr_ops.misc() because SMCA machines
define a different set of MSRs and msr_ops will give you the correct
MISC register.
Signed-off-by: Yazen Ghannam <Yazen.Ghannam@amd.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: http://lkml.kernel.org/r/1468269447-8808-1-git-send-email-Yazen.Ghannam@amd.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Paul Mackerras writes:
The highlights are:
* Reduced latency for interrupts from PCI pass-through devices, from
Suresh Warrier and me.
* Halt-polling implementation from Suraj Jitindar Singh.
* 64-bit VCPU statistics, also from Suraj.
* Various other minor fixes and improvements.
This patch has no functional change; it is purely cosmetic, though
it does make it a wee bit easier to understand the code. Before, the
count of LAPICs was being stored in the variable 'x2count' and the
count of X2APICs was being stored in the variable 'count'. This
patch swaps that so that the routine acpi_parse_madt_lapic_entries()
will now consistently use x2count to refer to X2APIC info, and count
to refer to LAPIC info.
Signed-off-by: Al Stone <ahs3@redhat.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Pull libnvdimm fixes from Dan Williams:
"nvdimm fixes for v4.8, two of them are tagged for -stable:
- Fix devm_memremap_pages() to use track_pfn_insert(). Otherwise,
DAX pmd mappings end up with an uncached pgprot, and unusable
performance for the device-dax interface. The device-dax interface
appeared in 4.7 so this is tagged for -stable.
- Fix a couple VM_BUG_ON() checks in the show_smaps() path to
understand DAX pmd entries. This fix is tagged for -stable.
- Fix a mis-merge of the nfit machine-check handler to flip the
polarity of an if() to match the final version of the patch that
Vishal sent for 4.8-rc1. Without this the nfit machine check
handler never detects / inserts new 'badblocks' entries which
applications use to identify lost portions of files.
- For test purposes, fix the nvdimm_clear_poison() path to operate on
legacy / simulated nvdimm memory ranges. Without this fix a test
can set badblocks, but never clear them on these ranges.
- Fix the range checking done by dax_dev_pmd_fault(). This is not
tagged for -stable since this problem is mitigated by specifying
aligned resources at device-dax setup time.
These patches have appeared in a next release over the past week. The
recent rebase you can see in the timestamps was to drop an invalid fix
as identified by the updated device-dax unit tests [1]. The -mm
touches have an ack from Andrew"
[1]: "[ndctl PATCH 0/3] device-dax test for recent kernel bugs"
https://lists.01.org/pipermail/linux-nvdimm/2016-September/006855.html
* 'libnvdimm-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/nvdimm/nvdimm:
libnvdimm: allow legacy (e820) pmem region to clear bad blocks
nfit, mce: Fix SPA matching logic in MCE handler
mm: fix cache mode of dax pmd mappings
mm: fix show_smap() for zone_device-pmd ranges
dax: fix mapping size check
This patch implements the uncore monitoring driver for Skylake server.
The uncore subsystem in Skylake server is similar to previous
server. There are some differences in config register encoding and pci
device IDs. Besides, Skylake introduces many new boxes to reflect the
MESH architecture changes.
The control registers for IIO and UPI have been extended to 64 bit. This
patch also introduces event_mask_ext to handle the high 32 bit mask.
The CHA box number could vary for different machines. This patch gets
the CHA box number by counting the CHA register space during
initialization at runtime.
Signed-off-by: Kan Liang <kan.liang@intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stephane Eranian <eranian@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Link: http://lkml.kernel.org/r/1471378190-17276-3-git-send-email-kan.liang@intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
This patch enables RAPL counters (energy consumption counters)
support for Intel Apollo Lake (Goldmont) processors (Model 92):
RAPL of Goldmont, unlikes ESU increment of Silvermont/Airmont,
it likes the Haswell microarchitecture in 1/2^ESU joules and
supports power domains in PP0/PP1/PKG/RAM.
ESU and power domains refer to Intel Software Developers' Manual,
Vol. 3C, Order No. 325384, Table 35-12.
Usage example:
$ perf list
$ perf stat -a -e power/energy-cores/,power/energy-pkg/ sleep 10
Signed-off-by: Harry Pan <harry.pan@intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stephane Eranian <eranian@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Cc: bp@alien8.de
Cc: gs0622@gmail.com
Cc: hpa@zytor.com
Cc: srinivas.pandruvada@linux.intel.com
Link: http://lkml.kernel.org/r/1473325738-730-1-git-send-email-harry.pan@intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Alexander hit the WARN_ON_ONCE(!event) on his Skylake while running
the perf fuzzer.
This means the PEBSv3 record included a status bit for an inactive
event, something that _should_ not happen.
Move the code that filters the status bits against our known PEBS
events up a spot to guarantee we only deal with events we know about.
Further add "continue" statements to the WARN_ON_ONCE()s such that
we'll not die nor generate silly events in case we ever do hit them
again.
Reported-by: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Tested-by: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Kan Liang <kan.liang@intel.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stephane Eranian <eranian@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vince Weaver <vince@deater.net>
Cc: stable@vger.kernel.org
Fixes: a3d86542de ("perf/x86/intel/pebs: Add PEBSv3 decoding")
Signed-off-by: Ingo Molnar <mingo@kernel.org>
At the moment, intel_bts will WARN() out if there is more than one
event writing to the same ring buffer, via SET_OUTPUT, and will only
send data from one event to a buffer.
There is no reason to have this warning in, so kill it.
Signed-off-by: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Arnaldo Carvalho de Melo <acme@infradead.org>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stephane Eranian <eranian@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: vince@deater.net
Link: http://lkml.kernel.org/r/20160906132353.19887-6-alexander.shishkin@linux.intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Since BTS doesn't have a dedicated PMI status bit, the driver needs to
take extra care to check for the condition that triggers it to avoid
spurious NMI warnings.
Regardless of the local BTS context state, the only way of knowing that
the NMI is ours is to compare the write pointer against the interrupt
threshold.
Reported-by: Vince Weaver <vincent.weaver@maine.edu>
Signed-off-by: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Arnaldo Carvalho de Melo <acme@infradead.org>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stephane Eranian <eranian@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: vince@deater.net
Link: http://lkml.kernel.org/r/20160906132353.19887-5-alexander.shishkin@linux.intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The intel_bts driver is using a CPU-local 'started' variable to order
callbacks and PMIs and make sure that AUX transactions don't get messed
up. However, the ordering rules in regard to this variable is a complete
mess, which recently resulted in perf_fuzzer-triggered warnings and
panics.
The general ordering rule that is patch is enforcing is that this
cpu-local variable be set only when the cpu-local AUX transaction is
active; consequently, this variable is to be checked before the AUX
related bits can be touched.
Reported-by: Vince Weaver <vincent.weaver@maine.edu>
Signed-off-by: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Arnaldo Carvalho de Melo <acme@infradead.org>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stephane Eranian <eranian@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: vince@deater.net
Link: http://lkml.kernel.org/r/20160906132353.19887-4-alexander.shishkin@linux.intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
track_pfn_insert() in vmf_insert_pfn_pmd() is marking dax mappings as
uncacheable rendering them impractical for application usage. DAX-pte
mappings are cached and the goal of establishing DAX-pmd mappings is to
attain more performance, not dramatically less (3 orders of magnitude).
track_pfn_insert() relies on a previous call to reserve_memtype() to
establish the expected page_cache_mode for the range. While memremap()
arranges for reserve_memtype() to be called, devm_memremap_pages() does
not. So, teach track_pfn_insert() and untrack_pfn() how to handle
tracking without a vma, and arrange for devm_memremap_pages() to
establish the write-back-cache reservation in the memtype tree.
Cc: <stable@vger.kernel.org>
Cc: Matthew Wilcox <mawilcox@microsoft.com>
Cc: Ross Zwisler <ross.zwisler@linux.intel.com>
Cc: Nilesh Choudhury <nilesh.choudhury@oracle.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Reported-by: Toshi Kani <toshi.kani@hpe.com>
Reported-by: Kai Zhang <kai.ka.zhang@oracle.com>
Acked-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
The resent conversion of the cpu hotplug support in the uncore driver
introduced a regression due to the way the callbacks are invoked at
initialization time.
The old code called the prepare/starting/online function on each online cpu
as a block. The new code registers the hotplug callbacks in the core for
each state. The core invokes the callbacks at each registration on all
online cpus.
The code implicitely relied on the prepare/starting/online callbacks being
called as combo on a particular cpu, which was not obvious and completely
undocumented.
The resulting subtle wreckage happens due to the way how the uncore code
manages shared data structures for cpus which share an uncore resource in
hardware. The sharing is determined in the cpu starting callback, but the
prepare callback allocates per cpu data for the upcoming cpu because
potential sharing is unknown at this point. If the starting callback finds
a online cpu which shares the hardware resource it takes a refcount on the
percpu data of that cpu and puts the own data structure into a
'free_at_online' pointer of that shared data structure. The online callback
frees that.
With the old model this worked because in a starting callback only one non
unused structure (the one of the starting cpu) was available. The new code
allocates the data structures for all cpus when the prepare callback is
registered.
Now the starting function iterates through all online cpus and looks for a
data structure (skipping its own) which has a matching hardware id. The id
member of the data structure is initialized to 0, but the hardware id can
be 0 as well. The resulting wreckage is:
CPU0 finds a matching id on CPU1, takes a refcount on CPU1 data and puts
its own data structure into CPU1s data structure to be freed.
CPU1 skips CPU0 because the data structure is its allegedly unsued own.
It finds a matching id on CPU2, takes a refcount on CPU1 data and puts
its own data structure into CPU2s data structure to be freed.
....
Now the online callbacks are invoked.
CPU0 has a pointer to CPU1s data and frees the original CPU0 data. So
far so good.
CPU1 has a pointer to CPU2s data and frees the original CPU1 data, which
is still referenced by CPU0 ---> Booom
So there are two issues to be solved here:
1) The id field must be initialized at allocation time to a value which
cannot be a valid hardware id, i.e. -1
This prevents the above scenario, but now CPU1 and CPU2 both stick their
own data structure into the free_at_online pointer of CPU0. So we leak
CPU1s data structure.
2) Fix the memory leak described in #1
Instead of having a single pointer, use a hlist to enqueue the
superflous data structures which are then freed by the first cpu
invoking the online callback.
Ideally we should know the sharing _before_ invoking the prepare callback,
but that's way beyond the scope of this bug fix.
[ tglx: Rewrote changelog ]
Fixes: 96b2bd3866 ("perf/x86/amd/uncore: Convert to hotplug state machine")
Reported-and-tested-by: Eric Sandeen <sandeen@sandeen.net>
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Cc: Borislav Petkov <bp@suse.de>
Link: http://lkml.kernel.org/r/20160909160822.lowgmkdwms2dheyv@linutronix.de
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
We currently allow invocation of 8 boot services with efi_call_early().
Not included are LocateHandleBuffer and LocateProtocol in particular.
For graphics output or to retrieve PCI ROMs and Apple device properties,
we're thus forced to use the LocateHandle + AllocatePool + LocateHandle
combo, which is cumbersome and needs more code.
The ARM folks allow invocation of the full set of boot services but are
restricted to our 8 boot services in functions shared across arches.
Thus, rather than adding just LocateHandleBuffer and LocateProtocol to
struct efi_config, let's rework efi_call_early() to allow invocation of
arbitrary boot services by selecting the 64 bit vs 32 bit code path in
the macro itself.
When compiling for 32 bit or for 64 bit without mixed mode, the unused
code path is optimized away and the binary code is the same as before.
But on 64 bit with mixed mode enabled, this commit adds one compare
instruction to each invocation of a boot service and, depending on the
code path selected, two jump instructions. (Most of the time gcc
arranges the jumps in the 32 bit code path.) The result is a minuscule
performance penalty and the binary code becomes slightly larger and more
difficult to read when disassembled. This isn't a hot path, so these
drawbacks are arguably outweighed by the attainable simplification of
the C code. We have some overhead anyway for thunking or conversion
between calling conventions.
The 8 boot services can consequently be removed from struct efi_config.
No functional change intended (for now).
Example -- invocation of free_pool before (64 bit code path):
0x2d4 movq %ds:efi_early, %rdx ; efi_early
0x2db movq %ss:arg_0-0x20(%rsp), %rsi
0x2e0 xorl %eax, %eax
0x2e2 movq %ds:0x28(%rdx), %rdi ; efi_early->free_pool
0x2e6 callq *%ds:0x58(%rdx) ; efi_early->call()
Example -- invocation of free_pool after (64 / 32 bit mixed code path):
0x0dc movq %ds:efi_early, %rax ; efi_early
0x0e3 cmpb $0, %ds:0x28(%rax) ; !efi_early->is64 ?
0x0e7 movq %ds:0x20(%rax), %rdx ; efi_early->call()
0x0eb movq %ds:0x10(%rax), %rax ; efi_early->boot_services
0x0ef je $0x150
0x0f1 movq %ds:0x48(%rax), %rdi ; free_pool (64 bit)
0x0f5 xorl %eax, %eax
0x0f7 callq *%rdx
...
0x150 movl %ds:0x30(%rax), %edi ; free_pool (32 bit)
0x153 jmp $0x0f5
Size of eboot.o text section:
CONFIG_X86_32: 6464 before, 6318 after
CONFIG_X86_64 && !CONFIG_EFI_MIXED: 7670 before, 7573 after
CONFIG_X86_64 && CONFIG_EFI_MIXED: 7670 before, 8319 after
Signed-off-by: Lukas Wunner <lukas@wunner.de>
Signed-off-by: Matt Fleming <matt@codeblueprint.co.uk>
Commit 2c23b73c2d ("x86/efi: Prepare GOP handling code for reuse
as generic code") introduced an efi_is_64bit() macro to x86 which
previously only existed for arm arches. The macro is used to
choose between the 64 bit or 32 bit code path in gop.c at runtime.
However the code path that's going to be taken is known at compile
time when compiling for x86_32 or for x86_64 with mixed mode disabled.
Amend the macro to eliminate the unused code path in those cases.
Size of gop.o text section:
CONFIG_X86_32: 1758 before, 1299 after
CONFIG_X86_64 && !CONFIG_EFI_MIXED: 2201 before, 1406 after
CONFIG_X86_64 && CONFIG_EFI_MIXED: 2201 before and after
Signed-off-by: Lukas Wunner <lukas@wunner.de>
Reviewed-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Matt Fleming <matt@codeblueprint.co.uk>
* A multiplication for the size determination of a memory allocation
indicated that an array data structure should be processed.
Thus reuse the corresponding function "kmalloc_array".
This issue was detected by using the Coccinelle software.
* Replace the specification of a data type by a pointer dereference
to make the corresponding size determination a bit safer according to
the Linux coding style convention.
Signed-off-by: Markus Elfring <elfring@users.sourceforge.net>
Reviewed-by: Paolo Bonzini <pbonzini@redhat.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Julia Lawall <julia.lawall@lip6.fr>
Signed-off-by: Matt Fleming <matt@codeblueprint.co.uk>
Commit 7b02d53e7852 ("efi: Allow drivers to reserve boot services forever")
introduced a new efi_mem_reserve to reserve the boot services memory
regions forever. This reservation involves allocating a new EFI memory
range descriptor. However, allocation can only succeed if there is memory
available for the allocation. Otherwise, error such as the following may
occur:
esrt: Reserving ESRT space from 0x000000003dd6a000 to 0x000000003dd6a010.
Kernel panic - not syncing: ERROR: Failed to allocate 0x9f0 bytes below \
0x0.
CPU: 0 PID: 0 Comm: swapper Not tainted 4.7.0-rc5+ #503
0000000000000000 ffffffff81e03ce0 ffffffff8131dae8 ffffffff81bb6c50
ffffffff81e03d70 ffffffff81e03d60 ffffffff8111f4df 0000000000000018
ffffffff81e03d70 ffffffff81e03d08 00000000000009f0 00000000000009f0
Call Trace:
[<ffffffff8131dae8>] dump_stack+0x4d/0x65
[<ffffffff8111f4df>] panic+0xc5/0x206
[<ffffffff81f7c6d3>] memblock_alloc_base+0x29/0x2e
[<ffffffff81f7c6e3>] memblock_alloc+0xb/0xd
[<ffffffff81f6c86d>] efi_arch_mem_reserve+0xbc/0x134
[<ffffffff81fa3280>] efi_mem_reserve+0x2c/0x31
[<ffffffff81fa3280>] ? efi_mem_reserve+0x2c/0x31
[<ffffffff81fa40d3>] efi_esrt_init+0x19e/0x1b4
[<ffffffff81f6d2dd>] efi_init+0x398/0x44a
[<ffffffff81f5c782>] setup_arch+0x415/0xc30
[<ffffffff81f55af1>] start_kernel+0x5b/0x3ef
[<ffffffff81f55434>] x86_64_start_reservations+0x2f/0x31
[<ffffffff81f55520>] x86_64_start_kernel+0xea/0xed
---[ end Kernel panic - not syncing: ERROR: Failed to allocate 0x9f0
bytes below 0x0.
An inspection of the memblock configuration reveals that there is no memory
available for the allocation:
MEMBLOCK configuration:
memory size = 0x0 reserved size = 0x4f339c0
memory.cnt = 0x1
memory[0x0] [0x00000000000000-0xffffffffffffffff], 0x0 bytes on node 0\
flags: 0x0
reserved.cnt = 0x4
reserved[0x0] [0x0000000008c000-0x0000000008c9bf], 0x9c0 bytes flags: 0x0
reserved[0x1] [0x0000000009f000-0x000000000fffff], 0x61000 bytes\
flags: 0x0
reserved[0x2] [0x00000002800000-0x0000000394bfff], 0x114c000 bytes\
flags: 0x0
reserved[0x3] [0x000000304e4000-0x00000034269fff], 0x3d86000 bytes\
flags: 0x0
This situation can be avoided if we call efi_esrt_init after memblock has
memory regions for the allocation.
Also, the EFI ESRT driver makes use of early_memremap'pings. Therfore, we
do not want to defer efi_esrt_init for too long. We must call such function
while calls to early_memremap are still valid.
A good place to meet the two aforementioned conditions is right after
memblock_x86_fill, grouped with other EFI-related functions.
Reported-by: Scott Lawson <scott.lawson@intel.com>
Signed-off-by: Ricardo Neri <ricardo.neri-calderon@linux.intel.com>
Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Cc: Peter Jones <pjones@redhat.com>
Signed-off-by: Matt Fleming <matt@codeblueprint.co.uk>
This is a simple change to add in the physical mappings as well as the
virtual mappings in efi_map_region_fixed. The motivation here is to
get access to EFI runtime code that is only available via the 1:1
mappings on a kexec'd kernel.
The added call is essentially the kexec analog of the first __map_region
that Boris put in efi_map_region in commit d2f7cbe7b2 ("x86/efi:
Runtime services virtual mapping").
Signed-off-by: Alex Thorlton <athorlton@sgi.com>
Cc: Russ Anderson <rja@sgi.com>
Cc: Dimitri Sivanich <sivanich@sgi.com>
Cc: Mike Travis <travis@sgi.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Dave Young <dyoung@redhat.com>
Cc: Borislav Petkov <bp@alien8.de>
Signed-off-by: Matt Fleming <matt@codeblueprint.co.uk>
Although very unlikey, if size is too small or zero, then we end up with
status not being set and returning garbage. Instead, initializing status to
EFI_INVALID_PARAMETER to indicate that size is invalid in the calls to
setup_uga32 and setup_uga64.
Signed-off-by: Colin Ian King <colin.king@canonical.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Matt Fleming <matt@codeblueprint.co.uk>
efi_mem_reserve() allows us to permanently mark EFI boot services
regions as reserved, which means we no longer need to copy the image
data out and into a separate buffer.
Leaving the data in the original boot services region has the added
benefit that BGRT images can now be passed across kexec reboot.
Reviewed-by: Josh Triplett <josh@joshtriplett.org>
Tested-by: Dave Young <dyoung@redhat.com> [kexec/kdump]
Tested-by: Ard Biesheuvel <ard.biesheuvel@linaro.org> [arm]
Acked-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Cc: Leif Lindholm <leif.lindholm@linaro.org>
Cc: Peter Jones <pjones@redhat.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Josh Boyer <jwboyer@fedoraproject.org>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Môshe van der Sterre <me@moshe.nl>
Signed-off-by: Matt Fleming <matt@codeblueprint.co.uk>
Now that efi.memmap is available all of the time there's no need to
allocate and build a separate copy of the EFI memory map.
Furthermore, efi.memmap contains boot services regions but only those
regions that have been reserved via efi_mem_reserve(). Using
efi.memmap allows us to pass boot services across kexec reboot so that
the ESRT and BGRT drivers will now work.
Tested-by: Dave Young <dyoung@redhat.com> [kexec/kdump]
Tested-by: Ard Biesheuvel <ard.biesheuvel@linaro.org> [arm]
Acked-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Cc: Leif Lindholm <leif.lindholm@linaro.org>
Cc: Peter Jones <pjones@redhat.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Matt Fleming <matt@codeblueprint.co.uk>
Today, it is not possible for drivers to reserve EFI boot services for
access after efi_free_boot_services() has been called on x86. For
ARM/arm64 it can be done simply by calling memblock_reserve().
Having this ability for all three architectures is desirable for a
couple of reasons,
1) It saves drivers copying data out of those regions
2) kexec reboot can now make use of things like ESRT
Instead of using the standard memblock_reserve() which is insufficient
to reserve the region on x86 (see efi_reserve_boot_services()), a new
API is introduced in this patch; efi_mem_reserve().
efi.memmap now always represents which EFI memory regions are
available. On x86 the EFI boot services regions that have not been
reserved via efi_mem_reserve() will be removed from efi.memmap during
efi_free_boot_services().
This has implications for kexec, since it is not possible for a newly
kexec'd kernel to access the same boot services regions that the
initial boot kernel had access to unless they are reserved by every
kexec kernel in the chain.
Tested-by: Dave Young <dyoung@redhat.com> [kexec/kdump]
Tested-by: Ard Biesheuvel <ard.biesheuvel@linaro.org> [arm]
Acked-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Cc: Leif Lindholm <leif.lindholm@linaro.org>
Cc: Peter Jones <pjones@redhat.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Matt Fleming <matt@codeblueprint.co.uk>
Drivers need a way to access the EFI memory map at runtime. ARM and
arm64 currently provide this by remapping the EFI memory map into the
vmalloc space before setting up the EFI virtual mappings.
x86 does not provide this functionality which has resulted in the code
in efi_mem_desc_lookup() where it will manually map individual EFI
memmap entries if the memmap has already been torn down on x86,
/*
* If a driver calls this after efi_free_boot_services,
* ->map will be NULL, and the target may also not be mapped.
* So just always get our own virtual map on the CPU.
*
*/
md = early_memremap(p, sizeof (*md));
There isn't a good reason for not providing a permanent EFI memory map
for runtime queries, especially since the EFI regions are not mapped
into the standard kernel page tables.
Tested-by: Dave Young <dyoung@redhat.com> [kexec/kdump]
Tested-by: Ard Biesheuvel <ard.biesheuvel@linaro.org> [arm]
Acked-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Cc: Leif Lindholm <leif.lindholm@linaro.org>
Cc: Peter Jones <pjones@redhat.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Matt Fleming <matt@codeblueprint.co.uk>
Every EFI architecture apart from ia64 needs to setup the EFI memory
map at efi.memmap, and the code for doing that is essentially the same
across all implementations. Therefore, it makes sense to factor this
out into the common code under drivers/firmware/efi/.
The only slight variation is the data structure out of which we pull
the initial memory map information, such as physical address, memory
descriptor size and version, etc. We can address this by passing a
generic data structure (struct efi_memory_map_data) as the argument to
efi_memmap_init_early() which contains the minimum info required for
initialising the memory map.
In the process, this patch also fixes a few undesirable implementation
differences:
- ARM and arm64 were failing to clear the EFI_MEMMAP bit when
unmapping the early EFI memory map. EFI_MEMMAP indicates whether
the EFI memory map is mapped (not the regions contained within) and
can be traversed. It's more correct to set the bit as soon as we
memremap() the passed in EFI memmap.
- Rename efi_unmmap_memmap() to efi_memmap_unmap() to adhere to the
regular naming scheme.
This patch also uses a read-write mapping for the memory map instead
of the read-only mapping currently used on ARM and arm64. x86 needs
the ability to update the memory map in-place when assigning virtual
addresses to regions (efi_map_region()) and tagging regions when
reserving boot services (efi_reserve_boot_services()).
There's no way for the generic fake_mem code to know which mapping to
use without introducing some arch-specific constant/hook, so just use
read-write since read-only is of dubious value for the EFI memory map.
Tested-by: Dave Young <dyoung@redhat.com> [kexec/kdump]
Tested-by: Ard Biesheuvel <ard.biesheuvel@linaro.org> [arm]
Acked-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Cc: Leif Lindholm <leif.lindholm@linaro.org>
Cc: Peter Jones <pjones@redhat.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Matt Fleming <matt@codeblueprint.co.uk>
EFI regions are currently mapped in two separate places. The bulk of
the work is done in efi_map_regions() but when CONFIG_EFI_MIXED is
enabled the additional regions that are required when operating in
mixed mode are mapping in efi_setup_page_tables().
Pull everything into efi_map_regions() and refactor the test for
which regions should be mapped into a should_map_region() function.
Generously sprinkle comments to clarify the different cases.
Acked-by: Borislav Petkov <bp@suse.de>
Tested-by: Dave Young <dyoung@redhat.com> [kexec/kdump]
Tested-by: Ard Biesheuvel <ard.biesheuvel@linaro.org> [arm]
Acked-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Matt Fleming <matt@codeblueprint.co.uk>
Both efi_find_mirror() and efi_fake_memmap() really want to know
whether the EFI memory map is available, not just whether the machine
was booted using EFI. efi_fake_memmap() even has a check for
EFI_MEMMAP at the start of the function.
Since we've already got other code that has this dependency, merge
everything under one if() conditional, and remove the now superfluous
check from efi_fake_memmap().
Tested-by: Dave Young <dyoung@redhat.com> [kexec/kdump]
Tested-by: Ard Biesheuvel <ard.biesheuvel@linaro.org> [arm]
Acked-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Cc: Taku Izumi <izumi.taku@jp.fujitsu.com>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Xishi Qiu <qiuxishi@huawei.com>
Cc: Kamezawa Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Signed-off-by: Matt Fleming <matt@codeblueprint.co.uk>
On a large system with many CPUs, using HPET as the clock source can
have a significant impact on the overall system performance because
of the following reasons:
1) There is a single HPET counter shared by all the CPUs.
2) HPET counter reading is a very slow operation.
Using HPET as the default clock source may happen when, for example,
the TSC clock calibration exceeds the allowable tolerance. Something
the performance slowdown can be so severe that the system may crash
because of a NMI watchdog soft lockup, for example.
During the TSC clock calibration process, the default clock source
will be set temporarily to HPET. For systems with many CPUs, it is
possible that NMI watchdog soft lockup may occur occasionally during
that short time period where HPET clocking is active as is shown in
the kernel log below:
[ 71.646504] hpet0: 8 comparators, 64-bit 14.318180 MHz counter
[ 71.655313] Switching to clocksource hpet
[ 95.679135] BUG: soft lockup - CPU#144 stuck for 23s! [swapper/144:0]
[ 95.693363] BUG: soft lockup - CPU#145 stuck for 23s! [swapper/145:0]
[ 95.695580] BUG: soft lockup - CPU#582 stuck for 23s! [swapper/582:0]
[ 95.698128] BUG: soft lockup - CPU#357 stuck for 23s! [swapper/357:0]
This patch addresses the above issues by reducing HPET read contention
using the fact that if more than one CPUs are trying to access HPET at
the same time, it will be more efficient when only one CPU in the group
reads the HPET counter and shares it with the rest of the group instead
of each group member trying to read the HPET counter individually.
This is done by using a combination quadword that contains a 32-bit
stored HPET value and a 32-bit spinlock. The CPU that gets the lock
will be responsible for reading the HPET counter and storing it in
the quadword. The others will monitor the change in HPET value and
lock status and grab the latest stored HPET value accordingly. This
change is only enabled on 64-bit SMP configuration.
On a 4-socket Haswell-EX box with 144 threads (HT on), running the
AIM7 compute workload (1500 users) on a 4.8-rc1 kernel (HZ=1000)
with and without the patch has the following performance numbers
(with HPET or TSC as clock source):
TSC = 1042431 jobs/min
HPET w/o patch = 798068 jobs/min
HPET with patch = 1029445 jobs/min
The perf profile showed a reduction of the %CPU time consumed by
read_hpet from 11.19% without patch to 1.24% with patch.
[ tglx: It's really sad that we need to have such hacks just to deal with
the fact that cpu vendors have not managed to fix the TSC wreckage
within 15+ years. Were They Forgetting? ]
Signed-off-by: Waiman Long <Waiman.Long@hpe.com>
Tested-by: Prarit Bhargava <prarit@redhat.com>
Cc: Scott J Norton <scott.norton@hpe.com>
Cc: Douglas Hatch <doug.hatch@hpe.com>
Cc: Randy Wright <rwright@hpe.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@suse.de>
Link: http://lkml.kernel.org/r/1473182530-29175-1-git-send-email-Waiman.Long@hpe.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
As discussed in the previous patch, there is a reliability
benefit to allowing an init value for the Protection Keys Rights
User register (PKRU) which differs from what the XSAVE hardware
provides.
But, having PKRU be 0 (its init value) provides some nonzero
amount of optimization potential to the hardware. It can, for
instance, skip writes to the XSAVE buffer when it knows that PKRU
is in its init state.
The cost of losing this optimization is approximately 100 cycles
per context switch for a workload which lightly using XSAVE
state (something not using AVX much). The overhead comes from a
combinaation of actually manipulating PKRU and the overhead of
pullin in an extra cacheline.
This overhead is not huge, but it's also not something that I
think we should unconditionally inflict on everyone. So, make it
configurable both at boot-time and from debugfs.
Changes to the debugfs value affect all processes created after
the write to debugfs.
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Cc: linux-arch@vger.kernel.org
Cc: Dave Hansen <dave@sr71.net>
Cc: mgorman@techsingularity.net
Cc: arnd@arndb.de
Cc: linux-api@vger.kernel.org
Cc: linux-mm@kvack.org
Cc: luto@kernel.org
Cc: akpm@linux-foundation.org
Cc: torvalds@linux-foundation.org
Link: http://lkml.kernel.org/r/20160729163023.407672D2@viggo.jf.intel.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
PKRU is the register that lets you disallow writes or all access to a given
protection key.
The XSAVE hardware defines an "init state" of 0 for PKRU: its most
permissive state, allowing access/writes to everything. Since we start off
all new processes with the init state, we start all processes off with the
most permissive possible PKRU.
This is unfortunate. If a thread is clone()'d [1] before a program has
time to set PKRU to a restrictive value, that thread will be able to write
to all data, no matter what pkey is set on it. This weakens any integrity
guarantees that we want pkeys to provide.
To fix this, we define a very restrictive PKRU to override the
XSAVE-provided value when we create a new FPU context. We choose a value
that only allows access to pkey 0, which is as restrictive as we can
practically make it.
This does not cause any practical problems with applications using
protection keys because we require them to specify initial permissions for
each key when it is allocated, which override the restrictive default.
In the end, this ensures that threads which do not know how to manage their
own pkey rights can not do damage to data which is pkey-protected.
I would have thought this was a pretty contrived scenario, except that I
heard a bug report from an MPX user who was creating threads in some very
early code before main(). It may be crazy, but folks evidently _do_ it.
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Cc: linux-arch@vger.kernel.org
Cc: Dave Hansen <dave@sr71.net>
Cc: mgorman@techsingularity.net
Cc: arnd@arndb.de
Cc: linux-api@vger.kernel.org
Cc: linux-mm@kvack.org
Cc: luto@kernel.org
Cc: akpm@linux-foundation.org
Cc: torvalds@linux-foundation.org
Link: http://lkml.kernel.org/r/20160729163021.F3C25D4A@viggo.jf.intel.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
This patch adds two new system calls:
int pkey_alloc(unsigned long flags, unsigned long init_access_rights)
int pkey_free(int pkey);
These implement an "allocator" for the protection keys
themselves, which can be thought of as analogous to the allocator
that the kernel has for file descriptors. The kernel tracks
which numbers are in use, and only allows operations on keys that
are valid. A key which was not obtained by pkey_alloc() may not,
for instance, be passed to pkey_mprotect().
These system calls are also very important given the kernel's use
of pkeys to implement execute-only support. These help ensure
that userspace can never assume that it has control of a key
unless it first asks the kernel. The kernel does not promise to
preserve PKRU (right register) contents except for allocated
pkeys.
The 'init_access_rights' argument to pkey_alloc() specifies the
rights that will be established for the returned pkey. For
instance:
pkey = pkey_alloc(flags, PKEY_DENY_WRITE);
will allocate 'pkey', but also sets the bits in PKRU[1] such that
writing to 'pkey' is already denied.
The kernel does not prevent pkey_free() from successfully freeing
in-use pkeys (those still assigned to a memory range by
pkey_mprotect()). It would be expensive to implement the checks
for this, so we instead say, "Just don't do it" since sane
software will never do it anyway.
Any piece of userspace calling pkey_alloc() needs to be prepared
for it to fail. Why? pkey_alloc() returns the same error code
(ENOSPC) when there are no pkeys and when pkeys are unsupported.
They can be unsupported for a whole host of reasons, so apps must
be prepared for this. Also, libraries or LD_PRELOADs might steal
keys before an application gets access to them.
This allocation mechanism could be implemented in userspace.
Even if we did it in userspace, we would still need additional
user/kernel interfaces to tell userspace which keys are being
used by the kernel internally (such as for execute-only
mappings). Having the kernel provide this facility completely
removes the need for these additional interfaces, or having an
implementation of this in userspace at all.
Note that we have to make changes to all of the architectures
that do not use mman-common.h because we use the new
PKEY_DENY_ACCESS/WRITE macros in arch-independent code.
1. PKRU is the Protection Key Rights User register. It is a
usermode-accessible register that controls whether writes
and/or access to each individual pkey is allowed or denied.
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Cc: linux-arch@vger.kernel.org
Cc: Dave Hansen <dave@sr71.net>
Cc: arnd@arndb.de
Cc: linux-api@vger.kernel.org
Cc: linux-mm@kvack.org
Cc: luto@kernel.org
Cc: akpm@linux-foundation.org
Cc: torvalds@linux-foundation.org
Link: http://lkml.kernel.org/r/20160729163015.444FE75F@viggo.jf.intel.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Today, mprotect() takes 4 bits of data: PROT_READ/WRITE/EXEC/NONE.
Three of those bits: READ/WRITE/EXEC get translated directly in to
vma->vm_flags by calc_vm_prot_bits(). If a bit is unset in
mprotect()'s 'prot' argument then it must be cleared in vma->vm_flags
during the mprotect() call.
We do this clearing today by first calculating the VMA flags we
want set, then clearing the ones we do not want to inherit from
the original VMA:
vm_flags = calc_vm_prot_bits(prot, key);
...
newflags = vm_flags;
newflags |= (vma->vm_flags & ~(VM_READ | VM_WRITE | VM_EXEC));
However, we *also* want to mask off the original VMA's vm_flags in
which we store the protection key.
To do that, this patch adds a new macro:
ARCH_VM_PKEY_FLAGS
which allows the architecture to specify additional bits that it would
like cleared. We use that to ensure that the VM_PKEY_BIT* bits get
cleared.
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-arch@vger.kernel.org
Cc: Dave Hansen <dave@sr71.net>
Cc: arnd@arndb.de
Cc: linux-api@vger.kernel.org
Cc: linux-mm@kvack.org
Cc: luto@kernel.org
Cc: akpm@linux-foundation.org
Cc: torvalds@linux-foundation.org
Link: http://lkml.kernel.org/r/20160729163013.E48D6981@viggo.jf.intel.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
pkey_mprotect() is just like mprotect, except it also takes a
protection key as an argument. On systems that do not support
protection keys, it still works, but requires that key=0.
Otherwise it does exactly what mprotect does.
I expect it to get used like this, if you want to guarantee that
any mapping you create can *never* be accessed without the right
protection keys set up.
int real_prot = PROT_READ|PROT_WRITE;
pkey = pkey_alloc(0, PKEY_DENY_ACCESS);
ptr = mmap(NULL, PAGE_SIZE, PROT_NONE, MAP_ANONYMOUS|MAP_PRIVATE, -1, 0);
ret = pkey_mprotect(ptr, PAGE_SIZE, real_prot, pkey);
This way, there is *no* window where the mapping is accessible
since it was always either PROT_NONE or had a protection key set
that denied all access.
We settled on 'unsigned long' for the type of the key here. We
only need 4 bits on x86 today, but I figured that other
architectures might need some more space.
Semantically, we have a bit of a problem if we combine this
syscall with our previously-introduced execute-only support:
What do we do when we mix execute-only pkey use with
pkey_mprotect() use? For instance:
pkey_mprotect(ptr, PAGE_SIZE, PROT_WRITE, 6); // set pkey=6
mprotect(ptr, PAGE_SIZE, PROT_EXEC); // set pkey=X_ONLY_PKEY?
mprotect(ptr, PAGE_SIZE, PROT_WRITE); // is pkey=6 again?
To solve that, we make the plain-mprotect()-initiated execute-only
support only apply to VMAs that have the default protection key (0)
set on them.
Proposed semantics:
1. protection key 0 is special and represents the default,
"unassigned" protection key. It is always allocated.
2. mprotect() never affects a mapping's pkey_mprotect()-assigned
protection key. A protection key of 0 (even if set explicitly)
represents an unassigned protection key.
2a. mprotect(PROT_EXEC) on a mapping with an assigned protection
key may or may not result in a mapping with execute-only
properties. pkey_mprotect() plus pkey_set() on all threads
should be used to _guarantee_ execute-only semantics if this
is not a strong enough semantic.
3. mprotect(PROT_EXEC) may result in an "execute-only" mapping. The
kernel will internally attempt to allocate and dedicate a
protection key for the purpose of execute-only mappings. This
may not be possible in cases where there are no free protection
keys available. It can also happen, of course, in situations
where there is no hardware support for protection keys.
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Cc: linux-arch@vger.kernel.org
Cc: Dave Hansen <dave@sr71.net>
Cc: arnd@arndb.de
Cc: linux-api@vger.kernel.org
Cc: linux-mm@kvack.org
Cc: luto@kernel.org
Cc: akpm@linux-foundation.org
Cc: torvalds@linux-foundation.org
Link: http://lkml.kernel.org/r/20160729163012.3DDD36C4@viggo.jf.intel.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
The CPPC registers can also be accessed via functional fixed hardware
addresse(FFH) in X86. Add support by modifying cpc_read and cpc_write to
be able to read/write MSRs on x86 platform on per cpu basis.
Also with this change, acpi_cppc_processor_probe doesn't bail out if
address space id is not equal to PCC or memory address space and FFH
is supported on the system.
Signed-off-by: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
When booting a kvm guest on AMD with the latest kernel the following
messages are displayed in the boot log:
tsc: Unable to calibrate against PIT
tsc: HPET/PMTIMER calibration failed
aa297292d7 ("x86/tsc: Enumerate SKL cpu_khz and tsc_khz via CPUID")
introduced a change to account for a difference in cpu and tsc frequencies for
Intel SKL processors. Before this change the native tsc set
x86_platform.calibrate_tsc to native_calibrate_tsc() which is a hardware
calibration of the tsc, and in tsc_init() executed
tsc_khz = x86_platform.calibrate_tsc();
cpu_khz = tsc_khz;
The kvm code changed x86_platform.calibrate_tsc to kvm_get_tsc_khz() and
executed the same tsc_init() function. This meant that KVM guests did not
execute the native hardware calibration function.
After aa297292d7, there are separate native calibrations for cpu_khz and
tsc_khz. The code sets x86_platform.calibrate_tsc to native_calibrate_tsc()
which is now an Intel specific calibration function, and
x86_platform.calibrate_cpu to native_calibrate_cpu() which is the "old"
native_calibrate_tsc() function (ie, the native hardware calibration
function).
tsc_init() now does
cpu_khz = x86_platform.calibrate_cpu();
tsc_khz = x86_platform.calibrate_tsc();
if (tsc_khz == 0)
tsc_khz = cpu_khz;
else if (abs(cpu_khz - tsc_khz) * 10 > tsc_khz)
cpu_khz = tsc_khz;
The kvm code should not call the hardware initialization in
native_calibrate_cpu(), as it isn't applicable for kvm and it didn't do that
prior to aa297292d7.
This patch resolves this issue by setting x86_platform.calibrate_cpu to
kvm_get_tsc_khz().
v2: I had originally set x86_platform.calibrate_cpu to
cpu_khz_from_cpuid(), however, pbonzini pointed out that the CPUID leaf
in that function is not available in KVM. I have changed the function
pointer to kvm_get_tsc_khz().
Fixes: aa297292d7 ("x86/tsc: Enumerate SKL cpu_khz and tsc_khz via CPUID")
Signed-off-by: Prarit Bhargava <prarit@redhat.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: x86@kernel.org
Cc: Len Brown <len.brown@intel.com>
Cc: "Peter Zijlstra (Intel)" <peterz@infradead.org>
Cc: Borislav Petkov <bp@suse.de>
Cc: Adrian Hunter <adrian.hunter@intel.com>
Cc: "Christopher S. Hall" <christopher.s.hall@intel.com>
Cc: David Woodhouse <dwmw2@infradead.org>
Cc: kvm@vger.kernel.org
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
- lazy enablement of runtime instrumentation
- up to 255 CPUs for nested guests
- rework of machine check deliver
- cleanups/fixes
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v2.0.14 (GNU/Linux)
iQIcBAABAgAGBQJX0VHHAAoJEBF7vIC1phx88QwP/ir7L15bHPLUtdqwQn95yjzK
wlMTSekOrvbXImEKMh7nizMN76WI2nee1NvRe3pNf6Uc0Ntwiyzr7d2wQwX6L8Fn
D+28Crx3v/X3wGSLWdCf/17tuOUjVVMLhRHAIX4K+bl88L6NoMN2lsuXSAq7Fp7I
/CiXTGjHnF2eVL41e6p5oIRJvNaIfX3DlvRgfYc3TVrJum4tXcfCCMGWaXASarIW
g/q/q7s3iNbaLPrgb5rhQ2XY6puTTrot4whW7hXWsNWEW0r3MuwjOtxoy1VCMBeI
5PiCSqByYf7c6O5hqu4VClhalB76q43LQLY55/WLnuljJfru7Koiy9zxpnE0zTii
VnesQZv7emI1HYd4UbZkwo1LdE0o67I1dWucQx2yrqRpRvx6K/0VvvWH/Z4Y8N1Z
B6DQdvn0tRAnpFxsJLZ51WaEwtZuaXYirXwE6wMDcxhbmCorXvPTUdu4mLPhMkp7
nLfbA8fyXeU7HwzH90v/dvKY38jU6O0yzFAKHySowlSb6Kzmbuhym5Hgd2N91BUK
bbE4uW4mOjUpByGNGKcOJ+5typN2hfotriayWwgKKiROYQR19HpFNR4VFiE4Gwgy
yGxkbDgr11tHZ9flEMJT1c7k6sDDY+Dg2xgc1AxQQ9aZCXeH4Fe70uvgQzrTKjX3
XRER04mHV5yXpze7lumg
=99TB
-----END PGP SIGNATURE-----
Merge tag 'kvm-s390-next-4.9-1' of git://git.kernel.org/pub/scm/linux/kernel/git/kvms390/linux into HEAD
KVM: s390: features and fixes for 4.9
- lazy enablement of runtime instrumentation
- up to 255 CPUs for nested guests
- rework of machine check deliver
- cleanups/fixes
On Penwell SRAM has to be powered on, otherwise it prevents booting.
Signed-off-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Fixes: ca22312dc8 ("x86/platform/intel-mid: Extend PWRMU to support Penwell")
Link: http://lkml.kernel.org/r/20160908103232.137587-2-andriy.shevchenko@linux.intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Commit:
ca22312dc8 ("x86/platform/intel-mid: Extend PWRMU to support Penwell")
... enabled the PWRMU driver on platforms based on Intel Penwell, but
unfortunately this is not enough.
Add Intel Penwell ID to pci-mid.c driver as well. To avoid confusion in the
future add a comment to both drivers.
Signed-off-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Fixes: ca22312dc8 ("x86/platform/intel-mid: Extend PWRMU to support Penwell")
Link: http://lkml.kernel.org/r/20160908103232.137587-1-andriy.shevchenko@linux.intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
This patch implements update_pi_irte function hook to allow SVM
communicate to IOMMU driver regarding how to set up IRTE for handling
posted interrupt.
In case AVIC is enabled, during vcpu_load/unload, SVM needs to update
IOMMU IRTE with appropriate host physical APIC ID. Also, when
vcpu_blocking/unblocking, SVM needs to update the is-running bit in
the IOMMU IRTE. Both are achieved via calling amd_iommu_update_ga().
However, if GA mode is not enabled for the pass-through device,
IOMMU driver will simply just return when calling amd_iommu_update_ga.
Signed-off-by: Suravee Suthikulpanit <suravee.suthikulpanit@amd.com>
Reviewed-by: Radim Krčmář <rkrcmar@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
This patch introduces avic_ga_log_notifier, which will be called
by IOMMU driver whenever it handles the Guest vAPIC (GA) log entry.
Reviewed-by: Radim Krčmář <rkrcmar@redhat.com>
Signed-off-by: Suravee Suthikulpanit <suravee.suthikulpanit@amd.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Introduces per-VM AVIC ID and helper functions to manage the IDs.
Currently, the ID will be used to implement 32-bit AVIC IOMMU GA tag.
The ID is 24-bit one-based indexing value, and is managed via helper
functions to get the next ID, or to free an ID once a VM is destroyed.
There should be no ID conflict for any active VMs.
Reviewed-by: Radim Krčmář <rkrcmar@redhat.com>
Signed-off-by: Suravee Suthikulpanit <suravee.suthikulpanit@amd.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The (start, size) tuple represents a range [start, start + size - 1],
which means "start" and "start + size - 1" should be compared to see
whether the range overflows.
For example, a range with (start, size):
(0xffffffff fffffff0, 0x00000000 00000010)
represents
[0xffffffff fffffff0, 0xffffffff ffffffff]
... would be judged overflow in the original code, while actually it is not.
This patch fixes this and makes sure it still works when size is zero.
Signed-off-by: Wei Yang <richard.weiyang@gmail.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: yinghai@kernel.org
Link: http://lkml.kernel.org/r/1471657213-31817-1-git-send-email-richard.weiyang@gmail.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The various functions involved in dumping the stack all do similar
things with regard to getting the stack pointer and the frame pointer
based on the regs and task arguments. Create helper functions to
do that instead.
Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com>
Reviewed-by: Andy Lutomirski <luto@kernel.org>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Byungchul Park <byungchul.park@lge.com>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Nilay Vaish <nilayvaish@gmail.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/f448914885a35f333fe04da1b97a6c2cc1f80974.1472057064.git.jpoimboe@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Change printk_stack_address() to be useful when called by an unwinder
outside the context of dump_trace().
Specifically:
- printk_stack_address()'s 'data' argument is always used as the log
level string. Make that explicit.
- Call touch_nmi_watchdog().
Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Byungchul Park <byungchul.park@lge.com>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Nilay Vaish <nilayvaish@gmail.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/9fbe0db05bacf66d337c162edbf61450d0cff1e2.1472057064.git.jpoimboe@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
dump_trace() doesn't add the interrupted instruction's address to the
trace, so add it manually. This makes the profile more useful, and also
makes it more consistent with what perf profiling does.
Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com>
Acked-by: Robert Richter <rric@kernel.org>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Byungchul Park <byungchul.park@lge.com>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Nilay Vaish <nilayvaish@gmail.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/6c745a83dbd69fc6857ef9b2f8be0f011d775936.1472057064.git.jpoimboe@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Add a check to perf_callchain_kernel() so that it returns early if the
callchain entry array is already full.
Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Byungchul Park <byungchul.park@lge.com>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Nilay Vaish <nilayvaish@gmail.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/dce6d60bab08be2600efd90021d9b85620646161.1472057064.git.jpoimboe@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>