Граф коммитов

38 Коммитов

Автор SHA1 Сообщение Дата
Al Viro a5ef103daa exofs: switch to {simple,page}_symlink_inode_operations
ACK-by: Boaz Harrosh <ooo@electrozaur.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2015-05-10 22:18:27 -04:00
Boaz Harrosh aa281ac631 Boaz Harrosh - Fix broken email address
I no longer have access to the Panasas email.
So change to an email that can always reach me.

Signed-off-by: Boaz Harrosh <ooo@electrozaur.com>
2014-10-19 20:22:32 +03:00
Sachin Bhamare 8b56a30caa exofs: Add SYSFS info for autologin/pNFS export
Introduce sysfs infrastructure for exofs cluster filesystem.

Each OSD target shows up as below in the sysfs hierarchy:
	/sys/fs/exofs/<osdname>_<partition_id>/devX

Where <osdname>_<partition_id> is the unique identification
of a Superblock.

Where devX: 0 <= X < device_table_size. They are ordered
in device-table order as specified to the mkfs.exofs command

Each OSD device  devX has following attributes :
	osdname - ReadOnly
	systemid - ReadOnly
	uri - Read/Write

It is up to user-mode to update devX/uri for support of
autologin.

These sysfs information are used both for autologin as well
as support for exporting exofs via a pNFSD server in user-mode.
(.eg NFS-Ganesha)

Signed-off-by: Sachin Bhamare <sbhamare@panasas.com>
Signed-off-by: Boaz Harrosh <bharrosh@panasas.com>
2012-05-21 12:24:01 +03:00
Al Viro bef41c267e exofs: propagate umode_t
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2012-01-03 22:55:05 -05:00
Boaz Harrosh 3bd9856857 ore: Support for partial component table
Users like the objlayout-driver would like to only pass
a partial device table that covers the IO in question.
For example exofs divides the file into raid-group-sized
chunks and only serves group_width number of devices at
a time.

The partiality is communicated by setting
ore_componets->first_dev and the array covers all logical
devices from oc->first_dev upto (oc->first_dev + oc->numdevs)

The ore_comp_dev() API receives a logical device index
and returns the actual present device in the table.
An out-of-range dev_index will BUG.

Logical device index is the theoretical device index as if
all the devices of a file are present. .i.e:
	total_devs = group_width * mirror_p1 * group_count
	0 <= dev_index < total_devs

Signed-off-by: Boaz Harrosh <bharrosh@panasas.com>
2011-10-14 18:54:41 +02:00
Boaz Harrosh d866d875f6 ore/exofs: Change the type of the devices array (API change)
In the pNFS obj-LD the device table at the layout level needs
to point to a device_cache node, where it is possible and likely
that many layouts will point to the same device-nodes.

In Exofs we have a more orderly structure where we have a single
array of devices that repeats twice for a round-robin view of the
device table

This patch moves to a model that can be used by the pNFS obj-LD
where struct ore_components holds an array of ore_dev-pointers.
(ore_dev is newly defined and contains a struct osd_dev *od
 member)

Each pointer in the array of pointers will point to a bigger
user-defined dev_struct. That can be accessed by use of the
container_of macro.

In Exofs an __alloc_dev_table() function allocates the
ore_dev-pointers array as well as an exofs_dev array, in one
allocation and does the addresses dance to set everything pointing
correctly. It still keeps the double allocation trick for the
inodes round-robin view of the table.

The device table is always allocated dynamically, also for the
single device case. So it is unconditionally freed at umount.

Signed-off-by: Boaz Harrosh <bharrosh@panasas.com>
2011-10-04 12:13:59 +02:00
Boaz Harrosh 8d2d83a835 exofs: Remove unused data_map member from exofs_sb_info
The struct pnfs_osd_data_map data_map member of exofs_sb_info was
never used after mount. In fact all it's members were duplicated
by the ore_layout structure. So just remove the duplicated information.

Also removed some stupid, but perfectly supported, restrictions on
layout parameters. The case where num_devices is not divisible by
mirror_count+1 is perfectly fine since the rotating device view
will eventually use all the devices it can get.

Signed-off-by: Boaz Harrosh <bharrosh@panasas.com>
Signed-off-by: Benny Halevy <bhalevy@tonian.com>
2011-10-03 17:07:51 +02:00
Boaz Harrosh 5bf696dad4 exofs: Rename struct ore_components comps => oc
ore_components already has a comps member so this leads
to things like comps->comps which is annoying. the name oc
was already used in new code. So rename all old usage of
ore_components comps => ore_components oc.

Signed-off-by: Boaz Harrosh <bharrosh@panasas.com>
2011-10-03 17:07:50 +02:00
Boaz Harrosh 8ff660ab85 exofs: Rename raid engine from exofs/ios.c => ore
ORE stands for "Objects Raid Engine"

This patch is a mechanical rename of everything that was in ios.c
and its API declaration to an ore.c and an osd_ore.h header. The ore
engine will later be used by the pnfs objects layout driver.

* File ios.c => ore.c

* Declaration of types and API are moved from exofs.h to a new
  osd_ore.h

* All used types are prefixed by ore_ from their exofs_ name.

* Shift includes from exofs.h to osd_ore.h so osd_ore.h is
  independent, include it from exofs.h.

Other than a pure rename there are no other changes. Next patch
will move the ore into it's own module and will export the API
to be used by exofs and later the layout driver

Signed-off-by: Boaz Harrosh <bharrosh@panasas.com>
2011-08-06 19:36:18 -07:00
Boaz Harrosh 9e9db45649 exofs: ios: Move to a per inode components & device-table
Exofs raid engine was saving on memory space by having a single layout-info,
single pid, and a single device-table, global to the filesystem. Then passing
a credential and object_id info at the io_state level, private for each
inode. It would also devise this contraption of rotating the device table
view for each inode->ino to spread out the device usage.

This is not compatible with the pnfs-objects standard, demanding that
each inode can have it's own layout-info, device-table, and each object
component it's own pid, oid and creds.

So: Bring exofs raid engine to be usable for generic pnfs-objects use by:

* Define an exofs_comp structure that holds obj_id and credential info.

* Break up exofs_layout struct to an exofs_components structure that holds a
  possible array of exofs_comp and the array of devices + the size of the
  arrays.

* Add a "comps" parameter to get_io_state() that specifies the ids creds
  and device array to use for each IO.

  This enables to keep the layout global, but the device-table view, creds
  and IDs at the inode level. It only adds two 64bit to each inode, since
  some of these members already existed in another form.

* ios raid engine now access layout-info and comps-info through the passed
  pointers. Everything is pre-prepared by caller for generic access of
  these structures and arrays.

At the exofs Level:

* Super block holds an exofs_components struct that holds the device
  array, previously in layout. The devices there are in device-table
  order. The device-array is twice bigger and repeats the device-table
  twice so now each inode's device array can point to a random device
  and have a round-robin view of the table, making it compatible to
  previous exofs versions.

* Each inode has an exofs_components struct that is initialized at
  load time, with it's own view of the device table IDs and creds.
  When doing IO this gets passed to the io_state together with the
  layout.

While preforming this change. Bugs where found where credentials with the
wrong IDs where used to access the different SB objects (super.c). As well
as some dead code. It was never noticed because the target we use does not
check the credentials.

Signed-off-by: Boaz Harrosh <bharrosh@panasas.com>
2011-08-06 19:35:32 -07:00
Boaz Harrosh 85e44df474 exofs: Move exofs specific osd operations out of ios.c
ios.c will be moving to an external library, for use by the
objects-layout-driver. Remove from it some exofs specific functions.

Also g_attr_logical_length is used both by inode.c and ios.c
move definition to the later, to keep it independent

Signed-off-by: Boaz Harrosh <bharrosh@panasas.com>
2011-08-06 19:35:31 -07:00
Boaz Harrosh e1042ba099 exofs: Add offset/length to exofs_get_io_state
In future raid code we will need to know the IO offset/length
and if it's a read or write to determine some of the array
sizes we'll need.

So add a new exofs_get_rw_state() API for use when
writeing/reading. All other simple cases are left using the
old way.

The major change to this is that now we need to call
exofs_get_io_state later at inode.c::read_exec and
inode.c::write_exec when we actually know these things. So this
patch is kept separate so I can test things apart from other
changes.

Signed-off-by: Boaz Harrosh <bharrosh@panasas.com>
2011-08-06 19:35:31 -07:00
Boaz Harrosh 6d4073e881 exofs: BUG: Avoid sbi realloc
Since the beginning we realloced the sbi structure when a bigger
then one device table was specified. (I know that was really stupid).

Then much later when "register bdi" was added (By Jens) it was
registering the pointer to sbi->bdi before the realloc.

We never saw this problem because up till now the realloc did not
do anything since the device table was small enough to fit in the
original allocation. But once we starting testing with large device
tables (Bigger then 28) we noticed the crash of writeback operating
on a deallocated pointer.

* Avoid the all mess by allocating the device-table as a second array
  and get rid of the variable-sized structure and the rest of this
  mess.
* Take the chance to clean near by structures and comments.
* Add a needed dprint on startup to indicate the loaded layout.
* Also move the bdi registration to the very end because it will
  only fail in a low memory, which will probably fail before hand.
  There are many more likely causes to not load before that. This
  way the error handling is made simpler. (Just doing this would be
  enough to fix the BUG)

Signed-off-by: Boaz Harrosh <bharrosh@panasas.com>
2011-08-04 12:35:20 -07:00
Boaz Harrosh 26ae93c2dc exofs: Remove pnfs-osd private definitions
Now that pnfs-osd has hit mainline we can remove exofs's
private header. (And the FIXME comment)

Signed-off-by: Boaz Harrosh <bharrosh@panasas.com>
2011-08-04 12:35:18 -07:00
Boaz Harrosh 1cea312ad4 exofs: Write sbi->s_nextid as part of the Create command
Before when creating a new inode, we'd set the sb->s_dirt flag,
and sometime later the system would write out s_nextid as part
of the sb_info. Also on inode sync we would force the sb sync
as well.

Define the s_nextid as a new partition attribute and set it
every time we create a new object.
At mount we read it from it's new place.

We now never set sb->s_dirt anywhere in exofs. write_super
is actually never called. The call to exofs_write_super from
exofs_put_super is also removed because the VFS always calls
->sync_fs before calling ->put_super twice.

To stay backward-and-forward compatible we also write the old
s_nextid in the super_block object at unmount, and support zero
length attribute on mount.

This also fixes a BUG where in layouts when group_width was not
a divisor of EXOFS_SUPER_ID (0x10000) the s_nextid was not read
from the device it was written to. Because of the sliding window
layout trick, and because the read was always done from the 0
device but the write was done via the raid engine that might slide
the device view. Now we read and write through the raid engine.

Signed-off-by: Boaz Harrosh <bharrosh@panasas.com>
2011-03-15 15:02:51 +02:00
bharrosh@panasas.com 66cd6cad49 exofs: Override read-ahead to align on stripe_size
* Set all inode->i_mapping->backing_dev_info to point to
  the per super-block sb->s_bdi.

* Calculating a read_ahead that is:
  - preferable 2 stripes long
    (Future patch will add a mount option to override this)
  - Minimum 128K aligned up to stripe-size
  - Caped to maximum-IO-sizes round down to stripe_size.
    (Max sizes are governed by max bio-size that fits in a page
     times number-of-devices)

CC: Marc Dionne <marc.c.dionne@gmail.com>
Signed-off-by: Boaz Harrosh <bharrosh@panasas.com>
2011-03-15 15:02:50 +02:00
Al Viro 4ec70c9b46 convert exofs to ->evict_inode()
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2010-08-09 16:48:24 -04:00
Boaz Harrosh 2f246fd0f1 exofs: New truncate sequence
These changes are crafted based on the similar
conversion done to ext2 by Nick Piggin.

* Remove the deprecated ->truncate vector. Let exofs_setattr
  take care of on-disk size updates.
* Call truncate_pagecache on the unused pages if
  write_begin/end fails.
* Cleanup exofs_delete_inode that did stupid inode
  writes and updates on an inode that will be
  removed.
* And finally get rid of exofs_get_block. We never
  had any blocks it was all for calling nobh_truncate_page.
  nobh_truncate_page is not actually needed in exofs since
  the last page is complete and gone, just like all the other
  pages. There is no partial blocks in exofs.

I've tested with this patch, and there are no apparent
failures, so far.

CC: Nick Piggin <npiggin@suse.de>
CC: Christoph Hellwig <hch@lst.de>
Signed-off-by: Boaz Harrosh <bharrosh@panasas.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2010-08-09 16:47:41 -04:00
Boaz Harrosh a36fed12a4 exofs: Fix "add bdi backing to mount session" fall out
Commit b3d0ab7e60 ("exofs: add bdi backing
to mount session") has a bug in the placement of the bdi member at
struct exofs_sb_info.  The layout member must be kept last.

Signed-off-by: Boaz Harrosh <bharrosh@panasas.com>
Acked-by: Jens Axboe <jens.axboe@oracle.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-04-29 07:59:16 -07:00
Jens Axboe b3d0ab7e60 exofs: add bdi backing to mount session
This ensures that dirty data gets flushed properly.

Signed-off-by: Jens Axboe <jens.axboe@oracle.com>
2010-04-22 12:26:04 +02:00
Christoph Hellwig a9185b41a4 pass writeback_control to ->write_inode
This gives the filesystem more information about the writeback that
is happening.  Trond requested this for the NFS unstable write handling,
and other filesystems might benefit from this too by beeing able to
distinguish between the different callers in more detail.

Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2010-03-05 13:25:52 -05:00
Boaz Harrosh 50a76fd3c3 exofs: groups support
* _calc_stripe_info() changes to accommodate for grouping
  calculations. Returns additional information

* old _prepare_pages() becomes _prepare_one_group()
  which stores pages belonging to one device group.

* New _prepare_for_striping iterates on all groups calling
  _prepare_one_group().

* Enable mounting of groups data_maps (group_width != 0)

[QUESTION]
what is faster A or B;
A.	x += stride;
	x = x % width + first_x;

B	x += stride
	if (x < last_x)
		x = first_x;

Signed-off-by: Boaz Harrosh <bharrosh@panasas.com>
2010-02-28 03:55:53 -08:00
Boaz Harrosh 86093aaff5 exofs: convert io_state to use pages array instead of bio at input
* inode.c operations are full-pages based, and not actually
  true scatter-gather
* Lets us use more pages at once upto 512 (from 249) in 64 bit
* Brings us much much closer to be able to use exofs's io_state engine
  from objlayout driver. (Once I decide where to put the common code)

After RAID0 patch the outer (input) bio was never used as a bio, but
was simply a page carrier into the raid engine. Even in the simple
mirror/single-dev arrangement pages info was copied into a second bio.
It is now easer to just pass a pages array into the io_state and prepare
bio(s) once.

Signed-off-by: Boaz Harrosh <bharrosh@panasas.com>
2010-02-28 03:44:42 -08:00
Boaz Harrosh 5d952b8391 exofs: RAID0 support
We now support striping over mirror devices. Including variable sized
stripe_unit.

Some limits:
* stripe_unit must be a multiple of PAGE_SIZE
* stripe_unit * stripe_count is maximum upto 32-bit (4Gb)

Tested RAID0 over mirrors, RAID0 only, mirrors only. All check.

Design notes:
* I'm not using a vectored raid-engine mechanism yet. Following the
  pnfs-objects-layout data-map structure, "Mirror" is just a private
  case of "group_width" == 1, and RAID0 is a private case of
  "Mirrors" == 1. The performance lose of the general case over the
  particular special case optimization is totally negligible, also
  considering the extra code size.

* In general I added a prepare_stripes() stage that divides the
  to-be-io pages to the participating devices, the previous
  exofs_ios_write/read, now becomes _write/read_mirrors and a new
  write/read upper layer loops on all devices calling
  _write/read_mirrors. Effectively the prepare_stripes stage is the all
  secret.
  Also truncate need fixing to accommodate for striping.

* In a RAID0 arrangement, in a regular usage scenario, if all inode
  layouts will start at the same device, the small files fill up the
  first device and the later devices stay empty, the farther the device
  the emptier it is.

  To fix that, each inode will start at a different stripe_unit,
  according to it's obj_id modulus number-of-stripe-units. And
  will then span all stripe-units in the same incrementing order
  wrapping back to the beginning of the device table. We call it
  a stripe-units moving window.

  Special consideration was taken to keep all devices in a mirror
  arrangement identical. So a broken osd-device could just be cloned
  from one of the mirrors and no FS scrubbing is needed. (We do that
  by rotating stripe-unit at a time and not a single device at a time.)

TODO:
 We no longer verify object_length == inode->i_size in exofs_iget.
 (since i_size is stripped on multiple objects now).
 I should introduce a multiple-device attribute reading, and use
 it in exofs_iget.

Signed-off-by: Boaz Harrosh <bharrosh@panasas.com>
2010-02-28 03:43:08 -08:00
Boaz Harrosh d9c740d225 exofs: Define on-disk per-inode optional layout attribute
* Layouts describe the way a file is spread on multiple devices.
  The layout information is stored in the objects attribute introduced
  in this patch.

* There can be multiple generating function for the layout.
  Currently defined:
    - No attribute present - use below moving-window on global
      device table, all devices.
      (This is the only one currently used in exofs)
    - an obj_id generated moving window - the obj_id is a randomizing
      factor in the otherwise global map layout.
    - An explicit layout stored, including a data_map and a device
      index list.
    - More might be defined in future ...

* There are two attributes defined of the same structure:
  A-data-files-layout - This layout is used by data-files. If present
                        at a directory, all files of that directory will
                        be created with this layout.
  A-meta-data-layout - This layout is used by a directory and other
                       meta-data information. Also inherited at creation
                       of subdirectories.

* At creation time inodes are created with the layout specified above.
  A usermode utility may change the creation layout on a give directory
  or file. Which in the case of directories, will also apply to newly
  created files/subdirectories, children of that directory.
  In the simple unaltered case of a newly created exofs, no layout
  attributes are present, and all layouts adhere to the layout specified
  at the device-table.

* In case of a future file system loaded in an old exofs-driver.
  At iget(), the generating_function is inspected and if not supported
  will return an IO error to the application and the inode will not
  be loaded. So not to damage any data.
  Note: After this patch we do not yet support any type of layout
        only the RAID0 patch that enables striping at the super-block
        level will add support for RAID0 layouts above. This way we
        are past and future compatible and fully bisectable.

* Access to the device table is done by an accessor since
  it will change according to above information.

Signed-off-by: Boaz Harrosh <bharrosh@panasas.com>
2010-02-28 03:35:28 -08:00
Boaz Harrosh 45d3abcb1a exofs: Move layout related members to a layout structure
* Abstract away those members in exofs_sb_info that are related/needed
  by a layout into a new exofs_layout structure. Embed it in exofs_sb_info.

* At exofs_io_state receive/keep a pointer to an exofs_layout. No need for
  an exofs_sb_info pointer, all we need is at exofs_layout.

* Change any usage of above exofs_sb_info members to their new name.

Signed-off-by: Boaz Harrosh <bharrosh@panasas.com>
2010-02-28 03:35:27 -08:00
Boaz Harrosh 518f167a37 exofs: Micro-optimize exofs_i_info
optimize the exofs_i_info struct usage by moving the embedded
vfs_inode to be first. A compiler might optimize away an "add"
operation with constant zero. (Which it cannot with other constants)

Signed-off-by: Boaz Harrosh <bharrosh@panasas.com>
2010-02-28 03:35:25 -08:00
Boaz Harrosh 04dc1e88ad exofs: Multi-device mirror support
This patch changes on-disk format, it is accompanied with a parallel
patch to mkfs.exofs that enables multi-device capabilities.

After this patch, old exofs will refuse to mount a new formatted FS and
new exofs will refuse an old format. This is done by moving the magic
field offset inside the FSCB. A new FSCB *version* field was added. In
the future, exofs will refuse to mount unmatched FSCB version. To
up-grade or down-grade an exofs one must use mkfs.exofs --upgrade option
before mounting.

Introduced, a new object that contains a *device-table*. This object
contains the default *data-map* and a linear array of devices
information, which identifies the devices used in the filesystem. This
object is only written to offline by mkfs.exofs. This is why it is kept
separate from the FSCB, since the later is written to while mounted.

Same partition number, same object number is used on all devices only
the device varies.

* define the new format, then load the device table on mount time make
  sure every thing is supported.

* Change I/O engine to now support Mirror IO, .i.e write same data
  to multiple devices, read from a random device to spread the
  read-load from multiple clients (TODO: stripe read)

Implementation notes:
 A few points introduced in previous patch should be mentioned here:

* Special care was made so absolutlly all operation that have any chance
  of failing are done before any osd-request is executed. This is to
  minimize the need for a data consistency recovery, to only real IO
  errors.

* Each IO state has a kref. It starts at 1, any osd-request executed
  will increment the kref, finally when all are executed the first ref
  is dropped. At IO-done, each request completion decrements the kref,
  the last one to return executes the internal _last_io() routine.
  _last_io() will call the registered io_state_done. On sync mode a
  caller does not supply a done method, indicating a synchronous
  request, the caller is put to sleep and a special io_state_done is
  registered that will awaken the caller. Though also in sync mode all
  operations are executed in parallel.

Signed-off-by: Boaz Harrosh <bharrosh@panasas.com>
2009-12-10 09:59:23 +02:00
Boaz Harrosh 06886a5a3d exofs: Move all operations to an io_engine
In anticipation for multi-device operations, we separate osd operations
into an abstract I/O API. Currently only one device is used but later
when adding more devices, we will drive all devices in parallel according
to a "data_map" that describes how data is arranged on multiple devices.
The file system level operates, like before, as if there is one object
(inode-number) and an i_size. The io engine will split this to the same
object-number but on multiple device.

At first we introduce Mirror (raid 1) layout. But at the final outcome
we intend to fully implement the pNFS-Objects data-map, including
raid 0,4,5,6 over mirrored devices, over multiple device-groups. And
more. See: http://tools.ietf.org/html/draft-ietf-nfsv4-pnfs-obj-12

* Define an io_state based API for accessing osd storage devices
  in an abstract way.
  Usage:
	First a caller allocates an io state with:
		exofs_get_io_state(struct exofs_sb_info *sbi,
				   struct exofs_io_state** ios);

	Then calles one of:
		exofs_sbi_create(struct exofs_io_state *ios);
		exofs_sbi_remove(struct exofs_io_state *ios);
		exofs_sbi_write(struct exofs_io_state *ios);
		exofs_sbi_read(struct exofs_io_state *ios);
		exofs_oi_truncate(struct exofs_i_info *oi, u64 new_len);

	And when done
		exofs_put_io_state(struct exofs_io_state *ios);

* Convert all source files to use this new API
* Convert from bio_alloc to bio_kmalloc
* In io engine we make use of the now fixed osd_req_decode_sense

There are no functional changes or on disk additions after this patch.

Signed-off-by: Boaz Harrosh <bharrosh@panasas.com>
2009-12-10 09:59:22 +02:00
Boaz Harrosh baaf94cdc7 exofs: Avoid using file_fsync()
The use of file_fsync() in exofs_file_sync() is not necessary since it
does some extra stuff not used by exofs. Open code just the parts that
are currently needed.

TODO: Farther optimization can be done to sync the sb only on inode
update of new files, Usually the sb update is not needed in exofs.

Signed-off-by: Boaz Harrosh <bharrosh@panasas.com>
2009-06-21 17:53:47 +03:00
Boaz Harrosh 27d2e14919 exofs: Remove IBM copyrights
Boaz,
Congrats on getting all the OSD stuff into 2.6.30!
I just pulled the git, and saw that the IBM copyrights are still there.
Please remove them from all files:
 * Copyright (C) 2005, 2006
 * International Business Machines

IBM has revoked all rights on the code - they gave it to me.

Thanks!
Avishay

Signed-off-by: Avishay Traeger <avishay@gmail.com>
Signed-off-by: Boaz Harrosh <bharrosh@panasas.com>
2009-06-21 17:53:47 +03:00
Boaz Harrosh 8cf74b3936 exofs: export_operations
implement export_operations and set in superblock.
It is now posible to export exofs via nfs

Signed-off-by: Boaz Harrosh <bharrosh@panasas.com>
2009-03-31 19:44:36 +03:00
Boaz Harrosh ba9e5e98ca exofs: super_operations and file_system_type
This patch ties all operation vectors into a file system superblock
and registers the exofs file_system_type at module's load time.

* The file system control block (AKA on-disk superblock) resides in
  an object with a special ID (defined in common.h).
  Information included in the file system control block is used to
  fill the in-memory superblock structure at mount time. This object
  is created before the file system is used by mkexofs.c It contains
  information such as:
	- The file system's magic number
	- The next inode number to be allocated

Signed-off-by: Boaz Harrosh <bharrosh@panasas.com>
2009-03-31 19:44:34 +03:00
Boaz Harrosh e6af00f1d1 exofs: dir_inode and directory operations
implementation of directory and inode operations.

* A directory is treated as a file, and essentially contains a list
  of <file name, inode #> pairs for files that are found in that
  directory. The object IDs correspond to the files' inode numbers
  and are allocated using a 64bit incrementing global counter.
* Each file's control block (AKA on-disk inode) is stored in its
  object's attributes. This applies to both regular files and other
  types (directories, device files, symlinks, etc.).

Signed-off-by: Boaz Harrosh <bharrosh@panasas.com>
2009-03-31 19:44:31 +03:00
Boaz Harrosh beaec07ba6 exofs: address_space_operations
OK Now we start to read and write from osd-objects. We try to
collect at most contiguous pages as possible in a single write/read.
The first page index is the object's offset.

TODO:
   In 64-bit a single bio can carry at most 128 pages.
   Add support of chaining multiple bios

Signed-off-by: Boaz Harrosh <bharrosh@panasas.com>
2009-03-31 19:44:29 +03:00
Boaz Harrosh 982980d753 exofs: symlink_inode and fast_symlink_inode operations
Generic implementation of symlink ops.

Signed-off-by: Boaz Harrosh <bharrosh@panasas.com>
2009-03-31 19:44:27 +03:00
Boaz Harrosh e806271916 exofs: file and file_inode operations
implementation of the file_operations and inode_operations for
regular data files.

Most file_operations are generic vfs implementations except:
- exofs_truncate will truncate the OSD object as well
- Generic file_fsync is not good for none_bd devices so open code it
- The default for .flush in Linux is todo nothing so call exofs_fsync
  on the file.

Signed-off-by: Boaz Harrosh <bharrosh@panasas.com>
2009-03-31 19:44:24 +03:00
Boaz Harrosh b14f8ab284 exofs: Kbuild, Headers and osd utils
This patch includes osd infrastructure that will be used later by
the file system.

Also the declarations of constants, on disk structures,
and prototypes.

And the Kbuild+Kconfig files needed to build the exofs module.

Signed-off-by: Boaz Harrosh <bharrosh@panasas.com>
2009-03-31 19:44:20 +03:00