Many user space API headers have licensing information, which is either
incomplete, badly formatted or just a shorthand for referring to the
license under which the file is supposed to be. This makes it hard for
compliance tools to determine the correct license.
Update these files with an SPDX license identifier. The identifier was
chosen based on the license information in the file.
GPL/LGPL licensed headers get the matching GPL/LGPL SPDX license
identifier with the added 'WITH Linux-syscall-note' exception, which is
the officially assigned exception identifier for the kernel syscall
exception:
NOTE! This copyright does *not* cover user programs that use kernel
services by normal system calls - this is merely considered normal use
of the kernel, and does *not* fall under the heading of "derived work".
This exception makes it possible to include GPL headers into non GPL
code, without confusing license compliance tools.
Headers which have either explicit dual licensing or are just licensed
under a non GPL license are updated with the corresponding SPDX
identifier and the GPLv2 with syscall exception identifier. The format
is:
((GPL-2.0 WITH Linux-syscall-note) OR SPDX-ID-OF-OTHER-LICENSE)
SPDX license identifiers are a legally binding shorthand, which can be
used instead of the full boiler plate text. The update does not remove
existing license information as this has to be done on a case by case
basis and the copyright holders might have to be consulted. This will
happen in a separate step.
This patch is based on work done by Thomas Gleixner and Kate Stewart and
Philippe Ombredanne. See the previous patch in this series for the
methodology of how this patch was researched.
Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
The newly added header file triggers a sanity check:
usr/include/linux/aspeed-lpc-ctrl.h:44: found __[us]{8,16,32,64} type without #include <linux/types.h>
We should include linux/types.h explicitly to ensure the header
can be included from user space.
Fixes: 6c4e976785 ("drivers/misc: Add Aspeed LPC control driver")
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Acked-by: Joel Stanley <joel@jms.id.au>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
In order to manage server systems, there is typically another processor
known as a BMC (Baseboard Management Controller) which is responsible
for powering the server and other various elements, sometimes fans,
often the system flash.
The Aspeed BMC family which is what is used on OpenPOWER machines and a
number of x86 as well is typically connected to the host via an LPC
(Low Pin Count) bus (among others).
The LPC bus is an ISA bus on steroids. It's generally used by the
BMC chip to provide the host with access to the system flash (via MEM/FW
cycles) that contains the BIOS or other host firmware along with a
number of SuperIO-style IOs (via IO space) such as UARTs, IPMI
controllers.
On the BMC chip side, this is all configured via a bunch of registers
whose content is related to a given policy of what devices are exposed
at a per system level, which is system/vendor specific, so we don't want
to bolt that into the BMC kernel. This started with a need to provide
something nicer than /dev/mem for user space to configure these things.
One important aspect of the configuration is how the MEM/FW space is
exposed to the host (ie, the x86 or POWER). Some registers in that
bridge can define a window remapping all or portion of the LPC MEM/FW
space to a portion of the BMC internal bus, with no specific limits
imposed in HW.
I think it makes sense to ensure that this window is configured by a
kernel driver that can apply some serious sanity checks on what it is
configured to map.
In practice, user space wants to control this by flipping the mapping
between essentially two types of portions of the BMC address space:
- The flash space. This is a region of the BMC MMIO space that
more/less directly maps the system flash (at least for reads, writes
are somewhat more complicated).
- One (or more) reserved area(s) of the BMC physical memory.
The latter is needed for a number of things, such as avoiding letting
the host manipulate the innards of the BMC flash controller via some
evil backdoor, we want to do flash updates by routing the window to a
portion of memory (under control of a mailbox protocol via some
separate set of registers) which the host can use to write new data in
bulk and then request the BMC to flash it. There are other uses, such
as allowing the host to boot from an in-memory flash image rather than
the one in flash (very handy for continuous integration and test, the
BMC can just download new images).
It is important to note that due to the way the Aspeed chip lets the
kernel configure the mapping between host LPC addresses and BMC ram
addresses the offset within the window must be a multiple of size.
Not doing so will fragment the accessible space rather than simply
moving 'zero' upwards. This is caused by the nature of HICR8 being a
mask and the way host LPC addresses are translated.
Signed-off-by: Cyril Bur <cyrilbur@gmail.com>
Reviewed-by: Joel Stanley <joel@jms.id.au>
Reviewed-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>