This patch fixes a build failure introduced by 1d8393171 ("avr32: use
generic ptrace_resume code") which had the static keyword as a leftover.
arch/avr32/kernel/ptrace.c:32: error: static declaration of `user_enable_single_step' follows non-static declaration
include/linux/ptrace.h:268: error: previous declaration of `user_enable_single_step' was here
References:
[1]http://kisskb.ellerman.id.au/kisskb/buildresult/2448162/
Signed-off-by: Peter Huewe <peterhuewe@gmx.de>
Cc: Haavard Skinnemoen <hskinnemoen@atmel.com>
Cc: Christoph Hellwig <hch@lst.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Use the generic ptrace_resume code for PTRACE_SYSCALL, PTRACE_CONT,
PTRACE_KILL and PTRACE_SINGLESTEP. This implies defining
arch_has_single_step in <asm/ptrace.h> and implementing the
user_enable_single_step and user_disable_single_step functions, which also
causes the breakpoint information to be cleared on fork, which could be
considered a bug fix.
Also the TIF_SYSCALL_TRACE thread flag is now cleared on PTRACE_KILL which
it previously wasn't which is consistent with all architectures using the
modern ptrace code.
Currently avr32 doesn't implement any code to disable single stepping when
one of the non-syscall requests is called which seems wrong, but I've left
it as-is for now.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Roland McGrath <roland@redhat.com>
Acked-by: Haavard Skinnemoen <hskinnemoen@atmel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Keep track of processes being debugged (including the kernel itself)
and turn the OCD system on and off as appropriate. Since enabling
debugging turns off some optimizations in the CPU core, this fixes the
issue that enabling KProbes support or simply running a program under
gdbserver will reduce system performance significantly until the next
reboot.
The CPU performance will still be reduced for all processes while a
process is being debugged, but this is a lot better than reducing the
performance forever.
Signed-off-by: Haavard Skinnemoen <hskinnemoen@atmel.com>
The current debug trap handling code does a number of things that are
illegal according to the AVR32 Architecture manual. Most importantly,
it may try to schedule from Debug Mode, thus clearing the D bit, which
can lead to "undefined behaviour".
It seems like this works in most cases, but several people have
observed somewhat unstable behaviour when debugging programs,
including soft lockups. So there's definitely something which is not
right with the existing code.
The new code will never schedule from Debug mode, it will always exit
Debug mode with a "retd" instruction, and if something not running in
Debug mode needs to do something debug-related (like doing a single
step), it will enter debug mode through a "breakpoint" instruction.
The monitor code will then return directly to user space, bypassing
its own saved registers if necessary (since we don't actually care
about the trapped context, only the one that came before.)
This adds three instructions to the common exception handling code,
including one branch. It does not touch super-hot paths like the TLB
miss handler.
Signed-off-by: Haavard Skinnemoen <hskinnemoen@atmel.com>
Generate a new set of OCD register definitions in asm/ocd.h and rename
__mfdr() and __mtdr() to ocd_read() and ocd_write() respectively.
The bitfield definitions are a lot more complete now, and they are
entirely based on bit numbers, not masks. This is because OCD
registers are frequently accessed from assembly code, where bit
numbers are a lot more useful (can be fed directly to sbr, bfins,
etc.)
Bitfields that consist of more than one bit have two definitions:
_START, which indicates the number of the first bit, and _SIZE, which
indicates the number of bits. These directly correspond to the
parameters taken by the bfextu, bfexts and bfins instructions.
Signed-off-by: Haavard Skinnemoen <hskinnemoen@atmel.com>
Identical handlers of PTRACE_DETACH go into ptrace_request().
Not touching compat code.
Not touching archs that don't call ptrace_request.
Signed-off-by: Alexey Dobriyan <adobriyan@sw.ru>
Acked-by: Christoph Hellwig <hch@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Identical implementations of PTRACE_POKEDATA go into generic_ptrace_pokedata()
function.
AFAICS, fix bug on xtensa where successful PTRACE_POKEDATA will nevertheless
return EPERM.
Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: <linux-arch@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Recently a few direct accesses to the thread_info in the task structure snuck
back, so this wraps them with the appropriate wrapper.
Signed-off-by: Roman Zippel <zippel@linux-m68k.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Remove includes of <linux/smp_lock.h> where it is not used/needed.
Suggested by Al Viro.
Builds cleanly on x86_64, i386, alpha, ia64, powerpc, sparc,
sparc64, and arm (all 59 defconfigs).
Signed-off-by: Randy Dunlap <randy.dunlap@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This patch moves the die notifier handling to common code. Previous
various architectures had exactly the same code for it. Note that the new
code is compiled unconditionally, this should be understood as an appel to
the other architecture maintainer to implement support for it aswell (aka
sprinkling a notify_die or two in the proper place)
arm had a notifiy_die that did something totally different, I renamed it to
arm_notify_die as part of the patch and made it static to the file it's
declared and used at. avr32 used to pass slightly less information through
this interface and I brought it into line with the other architectures.
[akpm@linux-foundation.org: build fix]
[akpm@linux-foundation.org: fix vmalloc_sync_all bustage]
[bryan.wu@analog.com: fix vmalloc_sync_all in nommu]
Signed-off-by: Christoph Hellwig <hch@lst.de>
Cc: <linux-arch@vger.kernel.org>
Cc: Russell King <rmk@arm.linux.org.uk>
Signed-off-by: Bryan Wu <bryan.wu@analog.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
We should OR in a bitmask, not a bit offset, into ti->flags. This
might fix some strange behaviour when single stepping.
Also, use set_ti_thread_flag() to manipulate the flags to avoid
surprises in the future.
Signed-off-by: Haavard Skinnemoen <hskinnemoen@atmel.com>
Silence a few compile warnings which are basically harmless, but
easy to fix.
Signed-off-by: Haavard Skinnemoen <hskinnemoen@atmel.com>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
This adds support for the Atmel AVR32 architecture as well as the AT32AP7000
CPU and the AT32STK1000 development board.
AVR32 is a new high-performance 32-bit RISC microprocessor core, designed for
cost-sensitive embedded applications, with particular emphasis on low power
consumption and high code density. The AVR32 architecture is not binary
compatible with earlier 8-bit AVR architectures.
The AVR32 architecture, including the instruction set, is described by the
AVR32 Architecture Manual, available from
http://www.atmel.com/dyn/resources/prod_documents/doc32000.pdf
The Atmel AT32AP7000 is the first CPU implementing the AVR32 architecture. It
features a 7-stage pipeline, 16KB instruction and data caches and a full
Memory Management Unit. It also comes with a large set of integrated
peripherals, many of which are shared with the AT91 ARM-based controllers from
Atmel.
Full data sheet is available from
http://www.atmel.com/dyn/resources/prod_documents/doc32003.pdf
while the CPU core implementation including caches and MMU is documented by
the AVR32 AP Technical Reference, available from
http://www.atmel.com/dyn/resources/prod_documents/doc32001.pdf
Information about the AT32STK1000 development board can be found at
http://www.atmel.com/dyn/products/tools_card.asp?tool_id=3918
including a BSP CD image with an earlier version of this patch, development
tools (binaries and source/patches) and a root filesystem image suitable for
booting from SD card.
Alternatively, there's a preliminary "getting started" guide available at
http://avr32linux.org/twiki/bin/view/Main/GettingStarted which provides links
to the sources and patches you will need in order to set up a cross-compiling
environment for avr32-linux.
This patch, as well as the other patches included with the BSP and the
toolchain patches, is actively supported by Atmel Corporation.
[dmccr@us.ibm.com: Fix more pxx_page macro locations]
[bunk@stusta.de: fix `make defconfig']
Signed-off-by: Haavard Skinnemoen <hskinnemoen@atmel.com>
Signed-off-by: Adrian Bunk <bunk@stusta.de>
Signed-off-by: Dave McCracken <dmccr@us.ibm.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>