Граф коммитов

10 Коммитов

Автор SHA1 Сообщение Дата
Geert Uytterhoeven 6c974e79d3 ARM: 9118/1: div64: Remove always-true __div64_const32_is_OK() duplicate
Since commit cafa0010cd ("Raise the minimum required gcc version
to 4.6"), the kernel can no longer be compiled using gcc-3.
Hence __div64_const32_is_OK() is always true.

Moreover, __div64_const32_is_OK() is defined in the same way in
include/asm-generic/div64.h, so the ARM-specific definition can be
removed regardless.

Signed-off-by: Geert Uytterhoeven <geert+renesas@glider.be>
Signed-off-by: Russell King (Oracle) <rmk+kernel@armlinux.org.uk>
2021-08-20 11:39:28 +01:00
Nicolas Pitre e64ab473dd ARM: 9034/1: __div64_32(): straighten up inline asm constraints
The ARM version of __div64_32() encapsulates a call to __do_div64 with
non-standard argument passing. In particular, __n is a 64-bit input
argument assigned to r0-r1 and __rem is an output argument sharing half
of that r0-r1 register pair.

With __n being an input argument, the compiler is in its right to
presume that r0-r1 would still hold the value of __n past the inline
assembly statement. Normally, the compiler would have assigned non
overlapping registers to __n and __rem if the value for __n is needed
again.

However, here we enforce our own register assignment and gcc fails to
notice the conflict. In practice this doesn't cause any problem as __n
is considered dead after the asm statement and *n is overwritten.
However this is not always guaranteed and clang rightfully complains.

Let's fix it properly by making __n into an input-output variable. This
makes it clear that those registers representing __n have been modified.
Then we can extract __rem as the high part of __n with plain C code.

This asm constraint "abuse" was likely relied upon back when gcc didn't
handle 64-bit values optimally. Turns out that gcc is now able to
optimize things and produces the same code with this patch applied.

Reported-by: Antony Yu <swpenim@gmail.com>
Signed-off-by: Nicolas Pitre <nico@fluxnic.net>
Reviewed-by: Ard Biesheuvel <ardb@kernel.org>
Tested-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Russell King <rmk+kernel@armlinux.org.uk>
2020-12-08 10:15:52 +00:00
Greg Kroah-Hartman b24413180f License cleanup: add SPDX GPL-2.0 license identifier to files with no license
Many source files in the tree are missing licensing information, which
makes it harder for compliance tools to determine the correct license.

By default all files without license information are under the default
license of the kernel, which is GPL version 2.

Update the files which contain no license information with the 'GPL-2.0'
SPDX license identifier.  The SPDX identifier is a legally binding
shorthand, which can be used instead of the full boiler plate text.

This patch is based on work done by Thomas Gleixner and Kate Stewart and
Philippe Ombredanne.

How this work was done:

Patches were generated and checked against linux-4.14-rc6 for a subset of
the use cases:
 - file had no licensing information it it.
 - file was a */uapi/* one with no licensing information in it,
 - file was a */uapi/* one with existing licensing information,

Further patches will be generated in subsequent months to fix up cases
where non-standard license headers were used, and references to license
had to be inferred by heuristics based on keywords.

The analysis to determine which SPDX License Identifier to be applied to
a file was done in a spreadsheet of side by side results from of the
output of two independent scanners (ScanCode & Windriver) producing SPDX
tag:value files created by Philippe Ombredanne.  Philippe prepared the
base worksheet, and did an initial spot review of a few 1000 files.

The 4.13 kernel was the starting point of the analysis with 60,537 files
assessed.  Kate Stewart did a file by file comparison of the scanner
results in the spreadsheet to determine which SPDX license identifier(s)
to be applied to the file. She confirmed any determination that was not
immediately clear with lawyers working with the Linux Foundation.

Criteria used to select files for SPDX license identifier tagging was:
 - Files considered eligible had to be source code files.
 - Make and config files were included as candidates if they contained >5
   lines of source
 - File already had some variant of a license header in it (even if <5
   lines).

All documentation files were explicitly excluded.

The following heuristics were used to determine which SPDX license
identifiers to apply.

 - when both scanners couldn't find any license traces, file was
   considered to have no license information in it, and the top level
   COPYING file license applied.

   For non */uapi/* files that summary was:

   SPDX license identifier                            # files
   ---------------------------------------------------|-------
   GPL-2.0                                              11139

   and resulted in the first patch in this series.

   If that file was a */uapi/* path one, it was "GPL-2.0 WITH
   Linux-syscall-note" otherwise it was "GPL-2.0".  Results of that was:

   SPDX license identifier                            # files
   ---------------------------------------------------|-------
   GPL-2.0 WITH Linux-syscall-note                        930

   and resulted in the second patch in this series.

 - if a file had some form of licensing information in it, and was one
   of the */uapi/* ones, it was denoted with the Linux-syscall-note if
   any GPL family license was found in the file or had no licensing in
   it (per prior point).  Results summary:

   SPDX license identifier                            # files
   ---------------------------------------------------|------
   GPL-2.0 WITH Linux-syscall-note                       270
   GPL-2.0+ WITH Linux-syscall-note                      169
   ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause)    21
   ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause)    17
   LGPL-2.1+ WITH Linux-syscall-note                      15
   GPL-1.0+ WITH Linux-syscall-note                       14
   ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause)    5
   LGPL-2.0+ WITH Linux-syscall-note                       4
   LGPL-2.1 WITH Linux-syscall-note                        3
   ((GPL-2.0 WITH Linux-syscall-note) OR MIT)              3
   ((GPL-2.0 WITH Linux-syscall-note) AND MIT)             1

   and that resulted in the third patch in this series.

 - when the two scanners agreed on the detected license(s), that became
   the concluded license(s).

 - when there was disagreement between the two scanners (one detected a
   license but the other didn't, or they both detected different
   licenses) a manual inspection of the file occurred.

 - In most cases a manual inspection of the information in the file
   resulted in a clear resolution of the license that should apply (and
   which scanner probably needed to revisit its heuristics).

 - When it was not immediately clear, the license identifier was
   confirmed with lawyers working with the Linux Foundation.

 - If there was any question as to the appropriate license identifier,
   the file was flagged for further research and to be revisited later
   in time.

In total, over 70 hours of logged manual review was done on the
spreadsheet to determine the SPDX license identifiers to apply to the
source files by Kate, Philippe, Thomas and, in some cases, confirmation
by lawyers working with the Linux Foundation.

Kate also obtained a third independent scan of the 4.13 code base from
FOSSology, and compared selected files where the other two scanners
disagreed against that SPDX file, to see if there was new insights.  The
Windriver scanner is based on an older version of FOSSology in part, so
they are related.

Thomas did random spot checks in about 500 files from the spreadsheets
for the uapi headers and agreed with SPDX license identifier in the
files he inspected. For the non-uapi files Thomas did random spot checks
in about 15000 files.

In initial set of patches against 4.14-rc6, 3 files were found to have
copy/paste license identifier errors, and have been fixed to reflect the
correct identifier.

Additionally Philippe spent 10 hours this week doing a detailed manual
inspection and review of the 12,461 patched files from the initial patch
version early this week with:
 - a full scancode scan run, collecting the matched texts, detected
   license ids and scores
 - reviewing anything where there was a license detected (about 500+
   files) to ensure that the applied SPDX license was correct
 - reviewing anything where there was no detection but the patch license
   was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied
   SPDX license was correct

This produced a worksheet with 20 files needing minor correction.  This
worksheet was then exported into 3 different .csv files for the
different types of files to be modified.

These .csv files were then reviewed by Greg.  Thomas wrote a script to
parse the csv files and add the proper SPDX tag to the file, in the
format that the file expected.  This script was further refined by Greg
based on the output to detect more types of files automatically and to
distinguish between header and source .c files (which need different
comment types.)  Finally Greg ran the script using the .csv files to
generate the patches.

Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-11-02 11:10:55 +01:00
Nicolas Pitre 73e592f3bc ARM: 8504/1: __arch_xprod_64(): small optimization
The tmp variable is used twice: first to pose as a register containing
a value of zero, and then to provide a temporary register that initially
is zero and get added some value. But somehow gcc decides to split those
two usages in different registers.

Example code:

u64 div64const1000(u64 x)
{
	u32 y = 1000;
	do_div(x, y);
	return x;
}

Result:

div64const1000:
	push	{r4, r5, r6, r7, lr}
	mov	lr, #0
	mov	r6, r0
	mov	r7, r1
	adr	r5, .L8
	ldrd	r4, [r5]
	mov	r1, lr
	umull	r2, r3, r4, r6
	cmn	r2, r4
	adcs	r3, r3, r5
	adc	r2, lr, #0
	umlal	r3, r2, r5, r6
	umlal	r3, r1, r4, r7
	mov	r3, #0
	adds	r2, r1, r2
	adc	r3, r3, #0
	umlal	r2, r3, r5, r7
	lsr	r0, r2, #9
	lsr	r1, r3, #9
	orr	r0, r0, r3, lsl #23
	pop	{r4, r5, r6, r7, pc}
	.align	3
.L8:
	.word	-1924145349
	.word	-2095944041

Full kernel build size:

   text	   data	    bss	    dec	    hex	filename
13663814	1553940	 351368	15569122	 ed90e2	vmlinux

Here the two instances of 'tmp' are assigned to r1 and lr.

To avoid that, let's mark the first 'tmp' usage in __arch_xprod_64()
with a "+r" constraint even if the register is not written to, so to
create a dependency for the second usage with the effect of enforcing
a single temporary register throughout.

Result:

div64const1000:
	push	{r4, r5, r6, r7}
	movs	r3, #0
	adr	r5, .L8
	ldrd	r4, [r5]
	umull	r6, r7, r4, r0
	cmn	r6, r4
	adcs	r7, r7, r5
	adc	r6, r3, #0
	umlal	r7, r6, r5, r0
	umlal	r7, r3, r4, r1
	mov	r7, #0
	adds	r6, r3, r6
	adc	r7, r7, #0
	umlal	r6, r7, r5, r1
	lsr	r0, r6, #9
	lsr	r1, r7, #9
	orr	r0, r0, r7, lsl #23
	pop	{r4, r5, r6, r7}
	bx	lr
	.align	3
.L8:
	.word	-1924145349
	.word	-2095944041

   text	   data	    bss	    dec	    hex	filename
13663438	1553940	 351368	15568746	 ed8f6a	vmlinux

This time 'tmp' is assigned to r3 and used throughout. However, by being
assigned to r3, that blocks usage of the r2-r3 double register slot for
64-bit values, forcing more registers to be spilled on the stack. Let's
try to help it by forcing 'tmp' to the caller-saved ip register.

Result:

div64const1000:
	stmfd	sp!, {r4, r5}
	mov	ip, #0
	adr	r5, .L8
	ldrd	r4, [r5]
	umull	r2, r3, r4, r0
	cmn	r2, r4
	adcs	r3, r3, r5
	adc	r2, ip, #0
	umlal	r3, r2, r5, r0
	umlal	r3, ip, r4, r1
	mov	r3, #0
	adds	r2, ip, r2
	adc	r3, r3, #0
	umlal	r2, r3, r5, r1
	mov	r0, r2, lsr #9
	mov	r1, r3, lsr #9
	orr	r0, r0, r3, asl #23
	ldmfd	sp!, {r4, r5}
	bx	lr
	.align	3
.L8:
	.word	-1924145349
	.word	-2095944041

   text	   data	    bss	    dec	    hex	filename
13662838	1553940	 351368	15568146	 ed8d12	vmlinux

We could make the code marginally smaller yet by forcing 'tmp' to lr
instead, but that would have a negative inpact on branch prediction for
which "bx lr" is optimal.

Signed-off-by: Nicolas Pitre <nico@linaro.org>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
2016-02-11 15:33:37 +00:00
Nicolas Pitre 040b323b50 ARM: asm/div64.h: adjust to generic codde
Now that the constant divisor optimization is made generic, adapt the
ARM case to it.

Signed-off-by: Nicolas Pitre <nico@linaro.org>
2015-11-19 20:00:43 -05:00
Xiangyu Lu 80bb3ef109 ARM: 8027/1: fix do_div() bug in big-endian systems
In big-endian systems, "%1" get the most significant part of the value, cause the instruction to get the wrong result.

When viewing ftrace record in big-endian ARM systems, we found that
the timestamp errors:

swapper-0   [001] 1325.970000:   0:120:R ==> [001]    16:120:R events/1
events/1-16 [001] 1325.970000:   16:120:S ==> [001]    0:120:R swapper
swapper-0   [000] 1325.1000000:  0:120:R   + [000]    15:120:R events/0
swapper-0   [000] 1325.1000000:  0:120:R ==> [000]    15:120:R events/0
swapper-0   [000] 1326.030000:   0:120:R   + [000]  1150:120:R sshd
swapper-0   [000] 1326.030000:   0:120:R ==> [000]  1150:120:R sshd

When viewed ftrace records, it will call the do_div(n, base) function, which achieved arch/arm/include/asm/div64.h in. When n = 10000000, base = 1000000, in do_div(n, base) will execute "umull %Q0, %R0, %1, %Q2".

Reviewed-by: Dave Martin <Dave.Martin@arm.com>
Reviewed-by: Nicolas Pitre <nico@linaro.org>
Cc: <stable@vger.kernel.org> # 2.6.20+
Signed-off-by: Alex Wu <wuquanming@huawei.com>
Signed-off-by: Xiangyu Lu <luxiangyu@huawei.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
2014-04-22 22:23:57 +01:00
Arnd Bergmann 049f3e84d3 ARM: 7705/1: use optimized do_div only for EABI
In OABI configurations, some uses of the do_div function
cause gcc to run out of registers. To work around that,
we can force the use of the out-of-line version for
configurations that build a OABI kernel.

Without this patch, building netx_defconfig results in:

net/core/pktgen.c: In function 'pktgen_if_show':
net/core/pktgen.c:682:2775: error: can't find a register in class 'GENERAL_REGS' while reloading 'asm'
net/core/pktgen.c:682:3153: error: can't find a register in class 'GENERAL_REGS' while reloading 'asm'
net/core/pktgen.c:682:2775: error: 'asm' operand has impossible constraints
net/core/pktgen.c:682:3153: error: 'asm' operand has impossible constraints

Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
2013-05-15 19:35:53 +01:00
David Howells 9f97da78bf Disintegrate asm/system.h for ARM
Disintegrate asm/system.h for ARM.

Signed-off-by: David Howells <dhowells@redhat.com>
cc: Russell King <linux@arm.linux.org.uk>
cc: linux-arm-kernel@lists.infradead.org
2012-03-28 18:30:01 +01:00
Nicolas Pitre 884afaab44 [ARM] 5320/1: fix assembly constraints in implementation of do_div()
Those inline assembly segments using the umlal instruction must have
the & modifier so to be sure that a purely input register won't alias
one of the registers used as input+output.  In most cases, the inputs
are still used after the outputs are touched, and most binutil versions
insist on "rdhi, rdlo and rm must all be different" even for ARMv6+.

Signed-off-by: Nicolas Pitre <nico@marvell.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
2008-10-23 12:53:32 +01:00
Russell King 4baa992243 [ARM] move include/asm-arm to arch/arm/include/asm
Move platform independent header files to arch/arm/include/asm, leaving
those in asm/arch* and asm/plat* alone.

Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
2008-08-02 21:32:35 +01:00