Граф коммитов

40235 Коммитов

Автор SHA1 Сообщение Дата
Dongli Zhang 9eeda3e007 genirq/cpuhotplug, x86/vector: Prevent vector leak during CPU offline
commit a6c11c0a5235fb144a65e0cb2ffd360ddc1f6c32 upstream.

The absence of IRQD_MOVE_PCNTXT prevents immediate effectiveness of
interrupt affinity reconfiguration via procfs. Instead, the change is
deferred until the next instance of the interrupt being triggered on the
original CPU.

When the interrupt next triggers on the original CPU, the new affinity is
enforced within __irq_move_irq(). A vector is allocated from the new CPU,
but the old vector on the original CPU remains and is not immediately
reclaimed. Instead, apicd->move_in_progress is flagged, and the reclaiming
process is delayed until the next trigger of the interrupt on the new CPU.

Upon the subsequent triggering of the interrupt on the new CPU,
irq_complete_move() adds a task to the old CPU's vector_cleanup list if it
remains online. Subsequently, the timer on the old CPU iterates over its
vector_cleanup list, reclaiming old vectors.

However, a rare scenario arises if the old CPU is outgoing before the
interrupt triggers again on the new CPU.

In that case irq_force_complete_move() is not invoked on the outgoing CPU
to reclaim the old apicd->prev_vector because the interrupt isn't currently
affine to the outgoing CPU, and irq_needs_fixup() returns false. Even
though __vector_schedule_cleanup() is later called on the new CPU, it
doesn't reclaim apicd->prev_vector; instead, it simply resets both
apicd->move_in_progress and apicd->prev_vector to 0.

As a result, the vector remains unreclaimed in vector_matrix, leading to a
CPU vector leak.

To address this issue, move the invocation of irq_force_complete_move()
before the irq_needs_fixup() call to reclaim apicd->prev_vector, if the
interrupt is currently or used to be affine to the outgoing CPU.

Additionally, reclaim the vector in __vector_schedule_cleanup() as well,
following a warning message, although theoretically it should never see
apicd->move_in_progress with apicd->prev_cpu pointing to an offline CPU.

Fixes: f0383c24b4 ("genirq/cpuhotplug: Add support for cleaning up move in progress")
Signed-off-by: Dongli Zhang <dongli.zhang@oracle.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/r/20240522220218.162423-1-dongli.zhang@oracle.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2024-06-16 13:39:52 +02:00
Gerd Hoffmann 625872d22f KVM: x86: Don't advertise guest.MAXPHYADDR as host.MAXPHYADDR in CPUID
commit 6f5c9600621b4efb5c61b482d767432eb1ad3a9c upstream.

Drop KVM's propagation of GuestPhysBits (CPUID leaf 80000008, EAX[23:16])
to HostPhysBits (same leaf, EAX[7:0]) when advertising the address widths
to userspace via KVM_GET_SUPPORTED_CPUID.

Per AMD, GuestPhysBits is intended for software use, and physical CPUs do
not set that field.  I.e. GuestPhysBits will be non-zero if and only if
KVM is running as a nested hypervisor, and in that case, GuestPhysBits is
NOT guaranteed to capture the CPU's effective MAXPHYADDR when running with
TDP enabled.

E.g. KVM will soon use GuestPhysBits to communicate the CPU's maximum
*addressable* guest physical address, which would result in KVM under-
reporting PhysBits when running as an L1 on a CPU with MAXPHYADDR=52,
but without 5-level paging.

Signed-off-by: Gerd Hoffmann <kraxel@redhat.com>
Cc: stable@vger.kernel.org
Reviewed-by: Xiaoyao Li <xiaoyao.li@intel.com>
Link: https://lore.kernel.org/r/20240313125844.912415-2-kraxel@redhat.com
[sean: rewrite changelog with --verbose, Cc stable@]
Signed-off-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2024-06-16 13:39:52 +02:00
Masahiro Yamada 42952002ec x86/kconfig: Select ARCH_WANT_FRAME_POINTERS again when UNWINDER_FRAME_POINTER=y
[ Upstream commit 66ee3636eddcc82ab82b539d08b85fb5ac1dff9b ]

It took me some time to understand the purpose of the tricky code at
the end of arch/x86/Kconfig.debug.

Without it, the following would be shown:

  WARNING: unmet direct dependencies detected for FRAME_POINTER

because

  81d3871900 ("x86/kconfig: Consolidate unwinders into multiple choice selection")

removed 'select ARCH_WANT_FRAME_POINTERS'.

The correct and more straightforward approach should have been to move
it where 'select FRAME_POINTER' is located.

Several architectures properly handle the conditional selection of
ARCH_WANT_FRAME_POINTERS. For example, 'config UNWINDER_FRAME_POINTER'
in arch/arm/Kconfig.debug.

Fixes: 81d3871900 ("x86/kconfig: Consolidate unwinders into multiple choice selection")
Signed-off-by: Masahiro Yamada <masahiroy@kernel.org>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Acked-by: Josh Poimboeuf <jpoimboe@kernel.org>
Link: https://lore.kernel.org/r/20240204122003.53795-1-masahiroy@kernel.org
Signed-off-by: Sasha Levin <sashal@kernel.org>
2024-06-16 13:39:46 +02:00
Adrian Hunter 69db696bdb x86/insn: Fix PUSH instruction in x86 instruction decoder opcode map
[ Upstream commit 59162e0c11d7257cde15f907d19fefe26da66692 ]

The x86 instruction decoder is used not only for decoding kernel
instructions. It is also used by perf uprobes (user space probes) and by
perf tools Intel Processor Trace decoding. Consequently, it needs to
support instructions executed by user space also.

Opcode 0x68 PUSH instruction is currently defined as 64-bit operand size
only i.e. (d64). That was based on Intel SDM Opcode Map. However that is
contradicted by the Instruction Set Reference section for PUSH in the
same manual.

Remove 64-bit operand size only annotation from opcode 0x68 PUSH
instruction.

Example:

  $ cat pushw.s
  .global  _start
  .text
  _start:
          pushw   $0x1234
          mov     $0x1,%eax   # system call number (sys_exit)
          int     $0x80
  $ as -o pushw.o pushw.s
  $ ld -s -o pushw pushw.o
  $ objdump -d pushw | tail -4
  0000000000401000 <.text>:
    401000:       66 68 34 12             pushw  $0x1234
    401004:       b8 01 00 00 00          mov    $0x1,%eax
    401009:       cd 80                   int    $0x80
  $ perf record -e intel_pt//u ./pushw
  [ perf record: Woken up 1 times to write data ]
  [ perf record: Captured and wrote 0.014 MB perf.data ]

 Before:

  $ perf script --insn-trace=disasm
  Warning:
  1 instruction trace errors
           pushw   10349 [000] 10586.869237014:            401000 [unknown] (/home/ahunter/git/misc/rtit-tests/pushw)           pushw $0x1234
           pushw   10349 [000] 10586.869237014:            401006 [unknown] (/home/ahunter/git/misc/rtit-tests/pushw)           addb %al, (%rax)
           pushw   10349 [000] 10586.869237014:            401008 [unknown] (/home/ahunter/git/misc/rtit-tests/pushw)           addb %cl, %ch
           pushw   10349 [000] 10586.869237014:            40100a [unknown] (/home/ahunter/git/misc/rtit-tests/pushw)           addb $0x2e, (%rax)
   instruction trace error type 1 time 10586.869237224 cpu 0 pid 10349 tid 10349 ip 0x40100d code 6: Trace doesn't match instruction

 After:

  $ perf script --insn-trace=disasm
             pushw   10349 [000] 10586.869237014:            401000 [unknown] (./pushw)           pushw $0x1234
             pushw   10349 [000] 10586.869237014:            401004 [unknown] (./pushw)           movl $1, %eax

Fixes: eb13296cfa ("x86: Instruction decoder API")
Signed-off-by: Adrian Hunter <adrian.hunter@intel.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lore.kernel.org/r/20240502105853.5338-3-adrian.hunter@intel.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
2024-06-16 13:39:31 +02:00
Ard Biesheuvel 89e2d5f29a x86/purgatory: Switch to the position-independent small code model
[ Upstream commit cba786af84a0f9716204e09f518ce3b7ada8555e ]

On x86, the ordinary, position dependent small and kernel code models
only support placement of the executable in 32-bit addressable memory,
due to the use of 32-bit signed immediates to generate references to
global variables. For the kernel, this implies that all global variables
must reside in the top 2 GiB of the kernel virtual address space, where
the implicit address bits 63:32 are equal to sign bit 31.

This means the kernel code model is not suitable for other bare metal
executables such as the kexec purgatory, which can be placed arbitrarily
in the physical address space, where its address may no longer be
representable as a sign extended 32-bit quantity. For this reason,
commit

  e16c2983fb ("x86/purgatory: Change compiler flags from -mcmodel=kernel to -mcmodel=large to fix kexec relocation errors")

switched to the large code model, which uses 64-bit immediates for all
symbol references, including function calls, in order to avoid relying
on any assumptions regarding proximity of symbols in the final
executable.

The large code model is rarely used, clunky and the least likely to
operate in a similar fashion when comparing GCC and Clang, so it is best
avoided. This is especially true now that Clang 18 has started to emit
executable code in two separate sections (.text and .ltext), which
triggers an issue in the kexec loading code at runtime.

The SUSE bugzilla fixes tag points to gcc 13 having issues with the
large model too and that perhaps the large model should simply not be
used at all.

Instead, use the position independent small code model, which makes no
assumptions about placement but only about proximity, where all
referenced symbols must be within -/+ 2 GiB, i.e., in range for a
RIP-relative reference. Use hidden visibility to suppress the use of a
GOT, which carries absolute addresses that are not covered by static ELF
relocations, and is therefore incompatible with the kexec loader's
relocation logic.

  [ bp: Massage commit message. ]

Fixes: e16c2983fb ("x86/purgatory: Change compiler flags from -mcmodel=kernel to -mcmodel=large to fix kexec relocation errors")
Fixes: https://bugzilla.suse.com/show_bug.cgi?id=1211853
Closes: https://github.com/ClangBuiltLinux/linux/issues/2016
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Reviewed-by: Nathan Chancellor <nathan@kernel.org>
Reviewed-by: Fangrui Song <maskray@google.com>
Acked-by: Nick Desaulniers <ndesaulniers@google.com>
Tested-by: Nathan Chancellor <nathan@kernel.org>
Link: https://lore.kernel.org/all/20240417-x86-fix-kexec-with-llvm-18-v1-0-5383121e8fb7@kernel.org/
Signed-off-by: Sasha Levin <sashal@kernel.org>
2024-06-16 13:39:22 +02:00
Guixiong Wei 8a1f57539d x86/boot: Ignore relocations in .notes sections in walk_relocs() too
[ Upstream commit 76e9762d66373354b45c33b60e9a53ef2a3c5ff2 ]

Commit:

  aaa8736370db ("x86, relocs: Ignore relocations in .notes section")

... only started ignoring the .notes sections in print_absolute_relocs(),
but the same logic should also by applied in walk_relocs() to avoid
such relocations.

[ mingo: Fixed various typos in the changelog, removed extra curly braces from the code. ]

Fixes: aaa8736370db ("x86, relocs: Ignore relocations in .notes section")
Fixes: 5ead97c84f ("xen: Core Xen implementation")
Fixes: da1a679cde ("Add /sys/kernel/notes")
Signed-off-by: Guixiong Wei <weiguixiong@bytedance.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Kees Cook <keescook@chromium.org>
Link: https://lore.kernel.org/r/20240317150547.24910-1-weiguixiong@bytedance.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
2024-06-16 13:39:18 +02:00
Eric Biggers cc1e53c7f7 crypto: x86/sha512-avx2 - add missing vzeroupper
[ Upstream commit 6a24fdfe1edbafacdacd53516654d99068f20eec ]

Since sha512_transform_rorx() uses ymm registers, execute vzeroupper
before returning from it.  This is necessary to avoid reducing the
performance of SSE code.

Fixes: e01d69cb01 ("crypto: sha512 - Optimized SHA512 x86_64 assembly routine using AVX instructions.")
Signed-off-by: Eric Biggers <ebiggers@google.com>
Acked-by: Tim Chen <tim.c.chen@linux.intel.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2024-06-16 13:39:17 +02:00
Eric Biggers 7bce9cd3da crypto: x86/sha256-avx2 - add missing vzeroupper
[ Upstream commit 57ce8a4e162599cf9adafef1f29763160a8e5564 ]

Since sha256_transform_rorx() uses ymm registers, execute vzeroupper
before returning from it.  This is necessary to avoid reducing the
performance of SSE code.

Fixes: d34a460092 ("crypto: sha256 - Optimized sha256 x86_64 routine using AVX2's RORX instructions")
Signed-off-by: Eric Biggers <ebiggers@google.com>
Acked-by: Tim Chen <tim.c.chen@linux.intel.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2024-06-16 13:39:17 +02:00
Eric Biggers d15b50f2ef crypto: x86/nh-avx2 - add missing vzeroupper
[ Upstream commit 4ad096cca942959871d8ff73826d30f81f856f6e ]

Since nh_avx2() uses ymm registers, execute vzeroupper before returning
from it.  This is necessary to avoid reducing the performance of SSE
code.

Fixes: 0f961f9f67 ("crypto: x86/nhpoly1305 - add AVX2 accelerated NHPoly1305")
Signed-off-by: Eric Biggers <ebiggers@google.com>
Acked-by: Tim Chen <tim.c.chen@linux.intel.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2024-06-16 13:39:17 +02:00
Linus Torvalds e1e4e33df5 x86/mm: Remove broken vsyscall emulation code from the page fault code
[ Upstream commit 02b670c1f88e78f42a6c5aee155c7b26960ca054 ]

The syzbot-reported stack trace from hell in this discussion thread
actually has three nested page faults:

  https://lore.kernel.org/r/000000000000d5f4fc0616e816d4@google.com

... and I think that's actually the important thing here:

 - the first page fault is from user space, and triggers the vsyscall
   emulation.

 - the second page fault is from __do_sys_gettimeofday(), and that should
   just have caused the exception that then sets the return value to
   -EFAULT

 - the third nested page fault is due to _raw_spin_unlock_irqrestore() ->
   preempt_schedule() -> trace_sched_switch(), which then causes a BPF
   trace program to run, which does that bpf_probe_read_compat(), which
   causes that page fault under pagefault_disable().

It's quite the nasty backtrace, and there's a lot going on.

The problem is literally the vsyscall emulation, which sets

        current->thread.sig_on_uaccess_err = 1;

and that causes the fixup_exception() code to send the signal *despite* the
exception being caught.

And I think that is in fact completely bogus.  It's completely bogus
exactly because it sends that signal even when it *shouldn't* be sent -
like for the BPF user mode trace gathering.

In other words, I think the whole "sig_on_uaccess_err" thing is entirely
broken, because it makes any nested page-faults do all the wrong things.

Now, arguably, I don't think anybody should enable vsyscall emulation any
more, but this test case clearly does.

I think we should just make the "send SIGSEGV" be something that the
vsyscall emulation does on its own, not this broken per-thread state for
something that isn't actually per thread.

The x86 page fault code actually tried to deal with the "incorrect nesting"
by having that:

                if (in_interrupt())
                        return;

which ignores the sig_on_uaccess_err case when it happens in interrupts,
but as shown by this example, these nested page faults do not need to be
about interrupts at all.

IOW, I think the only right thing is to remove that horrendously broken
code.

The attached patch looks like the ObviouslyCorrect(tm) thing to do.

NOTE! This broken code goes back to this commit in 2011:

  4fc3490114 ("x86-64: Set siginfo and context on vsyscall emulation faults")

... and back then the reason was to get all the siginfo details right.
Honestly, I do not for a moment believe that it's worth getting the siginfo
details right here, but part of the commit says:

    This fixes issues with UML when vsyscall=emulate.

... and so my patch to remove this garbage will probably break UML in this
situation.

I do not believe that anybody should be running with vsyscall=emulate in
2024 in the first place, much less if you are doing things like UML. But
let's see if somebody screams.

Reported-and-tested-by: syzbot+83e7f982ca045ab4405c@syzkaller.appspotmail.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Tested-by: Jiri Olsa <jolsa@kernel.org>
Acked-by: Andy Lutomirski <luto@kernel.org>
Link: https://lore.kernel.org/r/CAHk-=wh9D6f7HUkDgZHKmDCHUQmp+Co89GP+b8+z+G56BKeyNg@mail.gmail.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
2024-06-16 13:39:15 +02:00
Daniel J Blueman bdd621ccc9 x86/tsc: Trust initial offset in architectural TSC-adjust MSRs
commit 455f9075f14484f358b3c1d6845b4a438de198a7 upstream.

When the BIOS configures the architectural TSC-adjust MSRs on secondary
sockets to correct a constant inter-chassis offset, after Linux brings the
cores online, the TSC sync check later resets the core-local MSR to 0,
triggering HPET fallback and leading to performance loss.

Fix this by unconditionally using the initial adjust values read from the
MSRs. Trusting the initial offsets in this architectural mechanism is a
better approach than special-casing workarounds for specific platforms.

Signed-off-by: Daniel J Blueman <daniel@quora.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Steffen Persvold <sp@numascale.com>
Reviewed-by: James Cleverdon <james.cleverdon.external@eviden.com>
Reviewed-by: Dimitri Sivanich <sivanich@hpe.com>
Reviewed-by: Prarit Bhargava <prarit@redhat.com>
Link: https://lore.kernel.org/r/20240419085146.175665-1-daniel@quora.org
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2024-06-16 13:39:11 +02:00
Sean Christopherson c9f2b6d88e KVM: x86: Clear "has_error_code", not "error_code", for RM exception injection
commit 6c41468c7c upstream.

When injecting an exception into a vCPU in Real Mode, suppress the error
code by clearing the flag that tracks whether the error code is valid, not
by clearing the error code itself.  The "typo" was introduced by recent
fix for SVM's funky Paged Real Mode.

Opportunistically hoist the logic above the tracepoint so that the trace
is coherent with respect to what is actually injected (this was also the
behavior prior to the buggy commit).

Fixes: b97f074583 ("KVM: x86: determine if an exception has an error code only when injecting it.")
Cc: stable@vger.kernel.org
Cc: Maxim Levitsky <mlevitsk@redhat.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20230322143300.2209476-2-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
[nsaenz: backport to 5.15.y]
Signed-off-by: Nicolas Saenz Julienne <nsaenz@amazon.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Acked-by: Sean Christopherson <seanjc@google.com>
2024-05-25 16:20:17 +02:00
Sean Christopherson 36b32816fb cpu: Re-enable CPU mitigations by default for !X86 architectures
commit fe42754b94a42d08cf9501790afc25c4f6a5f631 upstream.

Rename x86's to CPU_MITIGATIONS, define it in generic code, and force it
on for all architectures exception x86.  A recent commit to turn
mitigations off by default if SPECULATION_MITIGATIONS=n kinda sorta
missed that "cpu_mitigations" is completely generic, whereas
SPECULATION_MITIGATIONS is x86-specific.

Rename x86's SPECULATIVE_MITIGATIONS instead of keeping both and have it
select CPU_MITIGATIONS, as having two configs for the same thing is
unnecessary and confusing.  This will also allow x86 to use the knob to
manage mitigations that aren't strictly related to speculative
execution.

Use another Kconfig to communicate to common code that CPU_MITIGATIONS
is already defined instead of having x86's menu depend on the common
CPU_MITIGATIONS.  This allows keeping a single point of contact for all
of x86's mitigations, and it's not clear that other architectures *want*
to allow disabling mitigations at compile-time.

Fixes: f337a6a21e2f ("x86/cpu: Actually turn off mitigations by default for SPECULATION_MITIGATIONS=n")
Closes: https://lkml.kernel.org/r/20240413115324.53303a68%40canb.auug.org.au
Reported-by: Stephen Rothwell <sfr@canb.auug.org.au>
Reported-by: Michael Ellerman <mpe@ellerman.id.au>
Reported-by: Geert Uytterhoeven <geert@linux-m68k.org>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Acked-by: Josh Poimboeuf <jpoimboe@kernel.org>
Acked-by: Borislav Petkov (AMD) <bp@alien8.de>
Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/r/20240420000556.2645001-2-seanjc@google.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2024-05-02 16:24:48 +02:00
David Kaplan 2cb0b9aaa0 x86/cpu: Fix check for RDPKRU in __show_regs()
commit b53c6bd5d271d023857174b8fd3e32f98ae51372 upstream.

cpu_feature_enabled(X86_FEATURE_OSPKE) does not necessarily reflect
whether CR4.PKE is set on the CPU.  In particular, they may differ on
non-BSP CPUs before setup_pku() is executed.  In this scenario, RDPKRU
will #UD causing the system to hang.

Fix by checking CR4 for PKE enablement which is always correct for the
current CPU.

The scenario happens by inserting a WARN* before setup_pku() in
identiy_cpu() or some other diagnostic which would lead to calling
__show_regs().

  [ bp: Massage commit message. ]

Signed-off-by: David Kaplan <david.kaplan@amd.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Link: https://lore.kernel.org/r/20240421191728.32239-1-bp@kernel.org
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2024-05-02 16:24:47 +02:00
Sandipan Das f5a55db79b KVM: x86/pmu: Do not mask LVTPC when handling a PMI on AMD platforms
commit 49ff3b4aec51e3abfc9369997cc603319b02af9a upstream.

On AMD and Hygon platforms, the local APIC does not automatically set
the mask bit of the LVTPC register when handling a PMI and there is
no need to clear it in the kernel's PMI handler.

For guests, the mask bit is currently set by kvm_apic_local_deliver()
and unless it is cleared by the guest kernel's PMI handler, PMIs stop
arriving and break use-cases like sampling with perf record.

This does not affect non-PerfMonV2 guests because PMIs are handled in
the guest kernel by x86_pmu_handle_irq() which always clears the LVTPC
mask bit irrespective of the vendor.

Before:

  $ perf record -e cycles:u true
  [ perf record: Woken up 1 times to write data ]
  [ perf record: Captured and wrote 0.001 MB perf.data (1 samples) ]

After:

  $ perf record -e cycles:u true
  [ perf record: Woken up 1 times to write data ]
  [ perf record: Captured and wrote 0.002 MB perf.data (19 samples) ]

Fixes: a16eb25b09 ("KVM: x86: Mask LVTPC when handling a PMI")
Cc: stable@vger.kernel.org
Signed-off-by: Sandipan Das <sandipan.das@amd.com>
Reviewed-by: Jim Mattson <jmattson@google.com>
[sean: use is_intel_compatible instead of !is_amd_or_hygon()]
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-ID: <20240405235603.1173076-3-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2024-04-27 17:05:28 +02:00
Sean Christopherson 7169354120 KVM: x86: Snapshot if a vCPU's vendor model is AMD vs. Intel compatible
commit fd706c9b1674e2858766bfbf7430534c2b26fbef upstream.

Add kvm_vcpu_arch.is_amd_compatible to cache if a vCPU's vendor model is
compatible with AMD, i.e. if the vCPU vendor is AMD or Hygon, along with
helpers to check if a vCPU is compatible AMD vs. Intel.  To handle Intel
vs. AMD behavior related to masking the LVTPC entry, KVM will need to
check for vendor compatibility on every PMI injection, i.e. querying for
AMD will soon be a moderately hot path.

Note!  This subtly (or maybe not-so-subtly) makes "Intel compatible" KVM's
default behavior, both if userspace omits (or never sets) CPUID 0x0 and if
userspace sets a completely unknown vendor.  One could argue that KVM
should treat such vCPUs as not being compatible with Intel *or* AMD, but
that would add useless complexity to KVM.

KVM needs to do *something* in the face of vendor specific behavior, and
so unless KVM conjured up a magic third option, choosing to treat unknown
vendors as neither Intel nor AMD means that checks on AMD compatibility
would yield Intel behavior, and checks for Intel compatibility would yield
AMD behavior.  And that's far worse as it would effectively yield random
behavior depending on whether KVM checked for AMD vs. Intel vs. !AMD vs.
!Intel.  And practically speaking, all x86 CPUs follow either Intel or AMD
architecture, i.e. "supporting" an unknown third architecture adds no
value.

Deliberately don't convert any of the existing guest_cpuid_is_intel()
checks, as the Intel side of things is messier due to some flows explicitly
checking for exactly vendor==Intel, versus some flows assuming anything
that isn't "AMD compatible" gets Intel behavior.  The Intel code will be
cleaned up in the future.

Cc: stable@vger.kernel.org
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-ID: <20240405235603.1173076-2-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2024-04-27 17:05:28 +02:00
Eric Biggers 4291a6233b x86/cpufeatures: Fix dependencies for GFNI, VAES, and VPCLMULQDQ
[ Upstream commit 9543f6e26634537997b6e909c20911b7bf4876de ]

Fix cpuid_deps[] to list the correct dependencies for GFNI, VAES, and
VPCLMULQDQ.  These features don't depend on AVX512, and there exist CPUs
that support these features but not AVX512.  GFNI actually doesn't even
depend on AVX.

This prevents GFNI from being unnecessarily disabled if AVX is disabled
to mitigate the GDS vulnerability.

This also prevents all three features from being unnecessarily disabled
if AVX512VL (or its dependency AVX512F) were to be disabled, but it
looks like there isn't any case where this happens anyway.

Fixes: c128dbfa0f ("x86/cpufeatures: Enable new SSE/AVX/AVX512 CPU features")
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Acked-by: Dave Hansen <dave.hansen@linux.intel.com>
Link: https://lore.kernel.org/r/20240417060434.47101-1-ebiggers@kernel.org
Signed-off-by: Sasha Levin <sashal@kernel.org>
2024-04-27 17:05:26 +02:00
Josh Poimboeuf 0be237b6b7 x86/bugs: Fix BHI retpoline check
[ Upstream commit 69129794d94c544810e68b2b4eaa7e44063f9bf2 ]

Confusingly, X86_FEATURE_RETPOLINE doesn't mean retpolines are enabled,
as it also includes the original "AMD retpoline" which isn't a retpoline
at all.

Also replace cpu_feature_enabled() with boot_cpu_has() because this is
before alternatives are patched and cpu_feature_enabled()'s fallback
path is slower than plain old boot_cpu_has().

Fixes: ec9404e40e8f ("x86/bhi: Add BHI mitigation knob")
Signed-off-by: Josh Poimboeuf <jpoimboe@kernel.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Pawan Gupta <pawan.kumar.gupta@linux.intel.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: https://lore.kernel.org/r/ad3807424a3953f0323c011a643405619f2a4927.1712944776.git.jpoimboe@kernel.org
Signed-off-by: Sasha Levin <sashal@kernel.org>
2024-04-27 17:05:26 +02:00
Josh Poimboeuf b2bf58581b x86/bugs: Replace CONFIG_SPECTRE_BHI_{ON,OFF} with CONFIG_MITIGATION_SPECTRE_BHI
commit 4f511739c54b549061993b53fc0380f48dfca23b upstream.

For consistency with the other CONFIG_MITIGATION_* options, replace the
CONFIG_SPECTRE_BHI_{ON,OFF} options with a single
CONFIG_MITIGATION_SPECTRE_BHI option.

[ mingo: Fix ]

Signed-off-by: Josh Poimboeuf <jpoimboe@kernel.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Cc: Sean Christopherson <seanjc@google.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Nikolay Borisov <nik.borisov@suse.com>
Link: https://lore.kernel.org/r/3833812ea63e7fdbe36bf8b932e63f70d18e2a2a.1712813475.git.jpoimboe@kernel.org
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2024-04-17 11:15:17 +02:00
Josh Poimboeuf d315f5eba5 x86/bugs: Remove CONFIG_BHI_MITIGATION_AUTO and spectre_bhi=auto
commit 36d4fe147c870f6d3f6602befd7ef44393a1c87a upstream.

Unlike most other mitigations' "auto" options, spectre_bhi=auto only
mitigates newer systems, which is confusing and not particularly useful.

Remove it.

Signed-off-by: Josh Poimboeuf <jpoimboe@kernel.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Nikolay Borisov <nik.borisov@suse.com>
Cc: Sean Christopherson <seanjc@google.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: https://lore.kernel.org/r/412e9dc87971b622bbbaf64740ebc1f140bff343.1712813475.git.jpoimboe@kernel.org
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2024-04-17 11:15:17 +02:00
Josh Poimboeuf ebba2270ab x86/bugs: Clarify that syscall hardening isn't a BHI mitigation
commit 5f882f3b0a8bf0788d5a0ee44b1191de5319bb8a upstream.

While syscall hardening helps prevent some BHI attacks, there's still
other low-hanging fruit remaining.  Don't classify it as a mitigation
and make it clear that the system may still be vulnerable if it doesn't
have a HW or SW mitigation enabled.

Fixes: ec9404e40e8f ("x86/bhi: Add BHI mitigation knob")
Signed-off-by: Josh Poimboeuf <jpoimboe@kernel.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Sean Christopherson <seanjc@google.com>
Link: https://lore.kernel.org/r/b5951dae3fdee7f1520d5136a27be3bdfe95f88b.1712813475.git.jpoimboe@kernel.org
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2024-04-17 11:15:17 +02:00
Josh Poimboeuf e47d1cbde7 x86/bugs: Fix BHI handling of RRSBA
commit 1cea8a280dfd1016148a3820676f2f03e3f5b898 upstream.

The ARCH_CAP_RRSBA check isn't correct: RRSBA may have already been
disabled by the Spectre v2 mitigation (or can otherwise be disabled by
the BHI mitigation itself if needed).  In that case retpolines are fine.

Fixes: ec9404e40e8f ("x86/bhi: Add BHI mitigation knob")
Signed-off-by: Josh Poimboeuf <jpoimboe@kernel.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Sean Christopherson <seanjc@google.com>
Link: https://lore.kernel.org/r/6f56f13da34a0834b69163467449be7f58f253dc.1712813475.git.jpoimboe@kernel.org
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2024-04-17 11:15:17 +02:00
Ingo Molnar b4f2718f3d x86/bugs: Rename various 'ia32_cap' variables to 'x86_arch_cap_msr'
commit d0485730d2189ffe5d986d4e9e191f1e4d5ffd24 upstream.

So we are using the 'ia32_cap' value in a number of places,
which got its name from MSR_IA32_ARCH_CAPABILITIES MSR register.

But there's very little 'IA32' about it - this isn't 32-bit only
code, nor does it originate from there, it's just a historic
quirk that many Intel MSR names are prefixed with IA32_.

This is already clear from the helper method around the MSR:
x86_read_arch_cap_msr(), which doesn't have the IA32 prefix.

So rename 'ia32_cap' to 'x86_arch_cap_msr' to be consistent with
its role and with the naming of the helper function.

Signed-off-by: Ingo Molnar <mingo@kernel.org>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Nikolay Borisov <nik.borisov@suse.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Sean Christopherson <seanjc@google.com>
Link: https://lore.kernel.org/r/9592a18a814368e75f8f4b9d74d3883aa4fd1eaf.1712813475.git.jpoimboe@kernel.org
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2024-04-17 11:15:17 +02:00
Josh Poimboeuf c768db14db x86/bugs: Cache the value of MSR_IA32_ARCH_CAPABILITIES
commit cb2db5bb04d7f778fbc1a1ea2507aab436f1bff3 upstream.

There's no need to keep reading MSR_IA32_ARCH_CAPABILITIES over and
over.  It's even read in the BHI sysfs function which is a big no-no.
Just read it once and cache it.

Fixes: ec9404e40e8f ("x86/bhi: Add BHI mitigation knob")
Signed-off-by: Josh Poimboeuf <jpoimboe@kernel.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Nikolay Borisov <nik.borisov@suse.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Sean Christopherson <seanjc@google.com>
Link: https://lore.kernel.org/r/9592a18a814368e75f8f4b9d74d3883aa4fd1eaf.1712813475.git.jpoimboe@kernel.org
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2024-04-17 11:15:17 +02:00
Daniel Sneddon 2c761457ef x86/bugs: Fix return type of spectre_bhi_state()
commit 04f4230e2f86a4e961ea5466eda3db8c1762004d upstream.

The definition of spectre_bhi_state() incorrectly returns a const char
* const. This causes the a compiler warning when building with W=1:

 warning: type qualifiers ignored on function return type [-Wignored-qualifiers]
 2812 | static const char * const spectre_bhi_state(void)

Remove the const qualifier from the pointer.

Fixes: ec9404e40e8f ("x86/bhi: Add BHI mitigation knob")
Reported-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Daniel Sneddon <daniel.sneddon@linux.intel.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: https://lore.kernel.org/r/20240409230806.1545822-1-daniel.sneddon@linux.intel.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2024-04-17 11:15:17 +02:00
Adam Dunlap 69843741d6 x86/apic: Force native_apic_mem_read() to use the MOV instruction
commit 5ce344beaca688f4cdea07045e0b8f03dc537e74 upstream.

When done from a virtual machine, instructions that touch APIC memory
must be emulated. By convention, MMIO accesses are typically performed
via io.h helpers such as readl() or writeq() to simplify instruction
emulation/decoding (ex: in KVM hosts and SEV guests) [0].

Currently, native_apic_mem_read() does not follow this convention,
allowing the compiler to emit instructions other than the MOV
instruction generated by readl(). In particular, when the kernel is
compiled with clang and run as a SEV-ES or SEV-SNP guest, the compiler
would emit a TESTL instruction which is not supported by the SEV-ES
emulator, causing a boot failure in that environment. It is likely the
same problem would happen in a TDX guest as that uses the same
instruction emulator as SEV-ES.

To make sure all emulators can emulate APIC memory reads via MOV, use
the readl() function in native_apic_mem_read(). It is expected that any
emulator would support MOV in any addressing mode as it is the most
generic and is what is usually emitted currently.

The TESTL instruction is emitted when native_apic_mem_read() is inlined
into apic_mem_wait_icr_idle(). The emulator comes from
insn_decode_mmio() in arch/x86/lib/insn-eval.c. It's not worth it to
extend insn_decode_mmio() to support more instructions since, in theory,
the compiler could choose to output nearly any instruction for such
reads which would bloat the emulator beyond reason.

  [0] https://lore.kernel.org/all/20220405232939.73860-12-kirill.shutemov@linux.intel.com/

  [ bp: Massage commit message, fix typos. ]

Signed-off-by: Adam Dunlap <acdunlap@google.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Ard Biesheuvel <ardb@kernel.org>
Tested-by: Kevin Loughlin <kevinloughlin@google.com>
Cc: <stable@vger.kernel.org>
Link: https://lore.kernel.org/r/20240318230927.2191933-1-acdunlap@google.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2024-04-17 11:15:16 +02:00
Namhyung Kim e8f4a290ab perf/x86: Fix out of range data
commit dec8ced871e17eea46f097542dd074d022be4bd1 upstream.

On x86 each struct cpu_hw_events maintains a table for counter assignment but
it missed to update one for the deleted event in x86_pmu_del().  This
can make perf_clear_dirty_counters() reset used counter if it's called
before event scheduling or enabling.  Then it would return out of range
data which doesn't make sense.

The following code can reproduce the problem.

  $ cat repro.c
  #include <pthread.h>
  #include <stdio.h>
  #include <stdlib.h>
  #include <unistd.h>
  #include <linux/perf_event.h>
  #include <sys/ioctl.h>
  #include <sys/mman.h>
  #include <sys/syscall.h>

  struct perf_event_attr attr = {
  	.type = PERF_TYPE_HARDWARE,
  	.config = PERF_COUNT_HW_CPU_CYCLES,
  	.disabled = 1,
  };

  void *worker(void *arg)
  {
  	int cpu = (long)arg;
  	int fd1 = syscall(SYS_perf_event_open, &attr, -1, cpu, -1, 0);
  	int fd2 = syscall(SYS_perf_event_open, &attr, -1, cpu, -1, 0);
  	void *p;

  	do {
  		ioctl(fd1, PERF_EVENT_IOC_ENABLE, 0);
  		p = mmap(NULL, 4096, PROT_READ, MAP_SHARED, fd1, 0);
  		ioctl(fd2, PERF_EVENT_IOC_ENABLE, 0);

  		ioctl(fd2, PERF_EVENT_IOC_DISABLE, 0);
  		munmap(p, 4096);
  		ioctl(fd1, PERF_EVENT_IOC_DISABLE, 0);
  	} while (1);

  	return NULL;
  }

  int main(void)
  {
  	int i;
  	int n = sysconf(_SC_NPROCESSORS_ONLN);
  	pthread_t *th = calloc(n, sizeof(*th));

  	for (i = 0; i < n; i++)
  		pthread_create(&th[i], NULL, worker, (void *)(long)i);
  	for (i = 0; i < n; i++)
  		pthread_join(th[i], NULL);

  	free(th);
  	return 0;
  }

And you can see the out of range data using perf stat like this.
Probably it'd be easier to see on a large machine.

  $ gcc -o repro repro.c -pthread
  $ ./repro &
  $ sudo perf stat -A -I 1000 2>&1 | awk '{ if (length($3) > 15) print }'
       1.001028462 CPU6   196,719,295,683,763      cycles                           # 194290.996 GHz                       (71.54%)
       1.001028462 CPU3   396,077,485,787,730      branch-misses                    # 15804359784.80% of all branches      (71.07%)
       1.001028462 CPU17  197,608,350,727,877      branch-misses                    # 14594186554.56% of all branches      (71.22%)
       2.020064073 CPU4   198,372,472,612,140      cycles                           # 194681.113 GHz                       (70.95%)
       2.020064073 CPU6   199,419,277,896,696      cycles                           # 195720.007 GHz                       (70.57%)
       2.020064073 CPU20  198,147,174,025,639      cycles                           # 194474.654 GHz                       (71.03%)
       2.020064073 CPU20  198,421,240,580,145      stalled-cycles-frontend          #  100.14% frontend cycles idle        (70.93%)
       3.037443155 CPU4   197,382,689,923,416      cycles                           # 194043.065 GHz                       (71.30%)
       3.037443155 CPU20  196,324,797,879,414      cycles                           # 193003.773 GHz                       (71.69%)
       3.037443155 CPU5   197,679,956,608,205      stalled-cycles-backend           # 1315606428.66% backend cycles idle   (71.19%)
       3.037443155 CPU5   198,571,860,474,851      instructions                     # 13215422.58  insn per cycle

It should move the contents in the cpuc->assign as well.

Fixes: 5471eea5d3 ("perf/x86: Reset the dirty counter to prevent the leak for an RDPMC task")
Signed-off-by: Namhyung Kim <namhyung@kernel.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Kan Liang <kan.liang@linux.intel.com>
Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/r/20240306061003.1894224-1-namhyung@kernel.org
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2024-04-17 11:15:16 +02:00
David Hildenbrand 7cfee26d19 x86/mm/pat: fix VM_PAT handling in COW mappings
commit 04c35ab3bdae7fefbd7c7a7355f29fa03a035221 upstream.

PAT handling won't do the right thing in COW mappings: the first PTE (or,
in fact, all PTEs) can be replaced during write faults to point at anon
folios.  Reliably recovering the correct PFN and cachemode using
follow_phys() from PTEs will not work in COW mappings.

Using follow_phys(), we might just get the address+protection of the anon
folio (which is very wrong), or fail on swap/nonswap entries, failing
follow_phys() and triggering a WARN_ON_ONCE() in untrack_pfn() and
track_pfn_copy(), not properly calling free_pfn_range().

In free_pfn_range(), we either wouldn't call memtype_free() or would call
it with the wrong range, possibly leaking memory.

To fix that, let's update follow_phys() to refuse returning anon folios,
and fallback to using the stored PFN inside vma->vm_pgoff for COW mappings
if we run into that.

We will now properly handle untrack_pfn() with COW mappings, where we
don't need the cachemode.  We'll have to fail fork()->track_pfn_copy() if
the first page was replaced by an anon folio, though: we'd have to store
the cachemode in the VMA to make this work, likely growing the VMA size.

For now, lets keep it simple and let track_pfn_copy() just fail in that
case: it would have failed in the past with swap/nonswap entries already,
and it would have done the wrong thing with anon folios.

Simple reproducer to trigger the WARN_ON_ONCE() in untrack_pfn():

<--- C reproducer --->
 #include <stdio.h>
 #include <sys/mman.h>
 #include <unistd.h>
 #include <liburing.h>

 int main(void)
 {
         struct io_uring_params p = {};
         int ring_fd;
         size_t size;
         char *map;

         ring_fd = io_uring_setup(1, &p);
         if (ring_fd < 0) {
                 perror("io_uring_setup");
                 return 1;
         }
         size = p.sq_off.array + p.sq_entries * sizeof(unsigned);

         /* Map the submission queue ring MAP_PRIVATE */
         map = mmap(0, size, PROT_READ | PROT_WRITE, MAP_PRIVATE,
                    ring_fd, IORING_OFF_SQ_RING);
         if (map == MAP_FAILED) {
                 perror("mmap");
                 return 1;
         }

         /* We have at least one page. Let's COW it. */
         *map = 0;
         pause();
         return 0;
 }
<--- C reproducer --->

On a system with 16 GiB RAM and swap configured:
 # ./iouring &
 # memhog 16G
 # killall iouring
[  301.552930] ------------[ cut here ]------------
[  301.553285] WARNING: CPU: 7 PID: 1402 at arch/x86/mm/pat/memtype.c:1060 untrack_pfn+0xf4/0x100
[  301.553989] Modules linked in: binfmt_misc nft_fib_inet nft_fib_ipv4 nft_fib_ipv6 nft_fib nft_reject_g
[  301.558232] CPU: 7 PID: 1402 Comm: iouring Not tainted 6.7.5-100.fc38.x86_64 #1
[  301.558772] Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS rel-1.16.3-0-ga6ed6b701f0a-prebu4
[  301.559569] RIP: 0010:untrack_pfn+0xf4/0x100
[  301.559893] Code: 75 c4 eb cf 48 8b 43 10 8b a8 e8 00 00 00 3b 6b 28 74 b8 48 8b 7b 30 e8 ea 1a f7 000
[  301.561189] RSP: 0018:ffffba2c0377fab8 EFLAGS: 00010282
[  301.561590] RAX: 00000000ffffffea RBX: ffff9208c8ce9cc0 RCX: 000000010455e047
[  301.562105] RDX: 07fffffff0eb1e0a RSI: 0000000000000000 RDI: ffff9208c391d200
[  301.562628] RBP: 0000000000000000 R08: ffffba2c0377fab8 R09: 0000000000000000
[  301.563145] R10: ffff9208d2292d50 R11: 0000000000000002 R12: 00007fea890e0000
[  301.563669] R13: 0000000000000000 R14: ffffba2c0377fc08 R15: 0000000000000000
[  301.564186] FS:  0000000000000000(0000) GS:ffff920c2fbc0000(0000) knlGS:0000000000000000
[  301.564773] CS:  0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[  301.565197] CR2: 00007fea88ee8a20 CR3: 00000001033a8000 CR4: 0000000000750ef0
[  301.565725] PKRU: 55555554
[  301.565944] Call Trace:
[  301.566148]  <TASK>
[  301.566325]  ? untrack_pfn+0xf4/0x100
[  301.566618]  ? __warn+0x81/0x130
[  301.566876]  ? untrack_pfn+0xf4/0x100
[  301.567163]  ? report_bug+0x171/0x1a0
[  301.567466]  ? handle_bug+0x3c/0x80
[  301.567743]  ? exc_invalid_op+0x17/0x70
[  301.568038]  ? asm_exc_invalid_op+0x1a/0x20
[  301.568363]  ? untrack_pfn+0xf4/0x100
[  301.568660]  ? untrack_pfn+0x65/0x100
[  301.568947]  unmap_single_vma+0xa6/0xe0
[  301.569247]  unmap_vmas+0xb5/0x190
[  301.569532]  exit_mmap+0xec/0x340
[  301.569801]  __mmput+0x3e/0x130
[  301.570051]  do_exit+0x305/0xaf0
...

Link: https://lkml.kernel.org/r/20240403212131.929421-3-david@redhat.com
Signed-off-by: David Hildenbrand <david@redhat.com>
Reported-by: Wupeng Ma <mawupeng1@huawei.com>
Closes: https://lkml.kernel.org/r/20240227122814.3781907-1-mawupeng1@huawei.com
Fixes: b1a86e15dc ("x86, pat: remove the dependency on 'vm_pgoff' in track/untrack pfn vma routines")
Fixes: 5899329b19 ("x86: PAT: implement track/untrack of pfnmap regions for x86 - v3")
Acked-by: Ingo Molnar <mingo@kernel.org>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Borislav Petkov <bp@alien8.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2024-04-13 13:01:47 +02:00
Greg Kroah-Hartman 8d8dc7ee5b x86: set SPECTRE_BHI_ON as default
commit 2bb69f5fc72183e1c62547d900f560d0e9334925 upstream.

Part of a merge commit from Linus that adjusted the default setting of
SPECTRE_BHI_ON.

Cc: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2024-04-10 16:19:44 +02:00
Daniel Sneddon a976b129dc KVM: x86: Add BHI_NO
commit ed2e8d49b54d677f3123668a21a57822d679651f upstream.

Intel processors that aren't vulnerable to BHI will set
MSR_IA32_ARCH_CAPABILITIES[BHI_NO] = 1;. Guests may use this BHI_NO bit to
determine if they need to implement BHI mitigations or not.  Allow this bit
to be passed to the guests.

Signed-off-by: Daniel Sneddon <daniel.sneddon@linux.intel.com>
Signed-off-by: Pawan Gupta <pawan.kumar.gupta@linux.intel.com>
Signed-off-by: Daniel Sneddon <daniel.sneddon@linux.intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Alexandre Chartre <alexandre.chartre@oracle.com>
Reviewed-by: Josh Poimboeuf <jpoimboe@kernel.org>
Signed-off-by: Daniel Sneddon <daniel.sneddon@linux.intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2024-04-10 16:19:44 +02:00
Pawan Gupta c2b9e03889 x86/bhi: Mitigate KVM by default
commit 95a6ccbdc7199a14b71ad8901cb788ba7fb5167b upstream.

BHI mitigation mode spectre_bhi=auto does not deploy the software
mitigation by default. In a cloud environment, it is a likely scenario
where userspace is trusted but the guests are not trusted. Deploying
system wide mitigation in such cases is not desirable.

Update the auto mode to unconditionally mitigate against malicious
guests. Deploy the software sequence at VMexit in auto mode also, when
hardware mitigation is not available. Unlike the force =on mode,
software sequence is not deployed at syscalls in auto mode.

Suggested-by: Alexandre Chartre <alexandre.chartre@oracle.com>
Signed-off-by: Pawan Gupta <pawan.kumar.gupta@linux.intel.com>
Signed-off-by: Daniel Sneddon <daniel.sneddon@linux.intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Alexandre Chartre <alexandre.chartre@oracle.com>
Reviewed-by: Josh Poimboeuf <jpoimboe@kernel.org>
Signed-off-by: Daniel Sneddon <daniel.sneddon@linux.intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2024-04-10 16:19:44 +02:00
Pawan Gupta f825494f2c x86/bhi: Add BHI mitigation knob
commit ec9404e40e8f36421a2b66ecb76dc2209fe7f3ef upstream.

Branch history clearing software sequences and hardware control
BHI_DIS_S were defined to mitigate Branch History Injection (BHI).

Add cmdline spectre_bhi={on|off|auto} to control BHI mitigation:

 auto - Deploy the hardware mitigation BHI_DIS_S, if available.
 on   - Deploy the hardware mitigation BHI_DIS_S, if available,
        otherwise deploy the software sequence at syscall entry and
	VMexit.
 off  - Turn off BHI mitigation.

The default is auto mode which does not deploy the software sequence
mitigation.  This is because of the hardening done in the syscall
dispatch path, which is the likely target of BHI.

Signed-off-by: Pawan Gupta <pawan.kumar.gupta@linux.intel.com>
Signed-off-by: Daniel Sneddon <daniel.sneddon@linux.intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Alexandre Chartre <alexandre.chartre@oracle.com>
Reviewed-by: Josh Poimboeuf <jpoimboe@kernel.org>
Signed-off-by: Daniel Sneddon <daniel.sneddon@linux.intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2024-04-10 16:19:44 +02:00
Pawan Gupta aa6247c9da x86/bhi: Enumerate Branch History Injection (BHI) bug
commit be482ff9500999f56093738f9219bbabc729d163 upstream.

Mitigation for BHI is selected based on the bug enumeration. Add bits
needed to enumerate BHI bug.

Signed-off-by: Pawan Gupta <pawan.kumar.gupta@linux.intel.com>
Signed-off-by: Daniel Sneddon <daniel.sneddon@linux.intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Alexandre Chartre <alexandre.chartre@oracle.com>
Reviewed-by: Josh Poimboeuf <jpoimboe@kernel.org>
Signed-off-by: Daniel Sneddon <daniel.sneddon@linux.intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2024-04-10 16:19:44 +02:00
Daniel Sneddon a9ca0e34a4 x86/bhi: Define SPEC_CTRL_BHI_DIS_S
commit 0f4a837615ff925ba62648d280a861adf1582df7 upstream.

Newer processors supports a hardware control BHI_DIS_S to mitigate
Branch History Injection (BHI). Setting BHI_DIS_S protects the kernel
from userspace BHI attacks without having to manually overwrite the
branch history.

Define MSR_SPEC_CTRL bit BHI_DIS_S and its enumeration CPUID.BHI_CTRL.
Mitigation is enabled later.

Signed-off-by: Daniel Sneddon <daniel.sneddon@linux.intel.com>
Signed-off-by: Pawan Gupta <pawan.kumar.gupta@linux.intel.com>
Signed-off-by: Daniel Sneddon <daniel.sneddon@linux.intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Alexandre Chartre <alexandre.chartre@oracle.com>
Reviewed-by: Josh Poimboeuf <jpoimboe@kernel.org>
Signed-off-by: Daniel Sneddon <daniel.sneddon@linux.intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2024-04-10 16:19:43 +02:00
Pawan Gupta bd53ec80f2 x86/bhi: Add support for clearing branch history at syscall entry
commit 7390db8aea0d64e9deb28b8e1ce716f5020c7ee5 upstream.

Branch History Injection (BHI) attacks may allow a malicious application to
influence indirect branch prediction in kernel by poisoning the branch
history. eIBRS isolates indirect branch targets in ring0.  The BHB can
still influence the choice of indirect branch predictor entry, and although
branch predictor entries are isolated between modes when eIBRS is enabled,
the BHB itself is not isolated between modes.

Alder Lake and new processors supports a hardware control BHI_DIS_S to
mitigate BHI.  For older processors Intel has released a software sequence
to clear the branch history on parts that don't support BHI_DIS_S. Add
support to execute the software sequence at syscall entry and VMexit to
overwrite the branch history.

For now, branch history is not cleared at interrupt entry, as malicious
applications are not believed to have sufficient control over the
registers, since previous register state is cleared at interrupt
entry. Researchers continue to poke at this area and it may become
necessary to clear at interrupt entry as well in the future.

This mitigation is only defined here. It is enabled later.

Signed-off-by: Pawan Gupta <pawan.kumar.gupta@linux.intel.com>
Co-developed-by: Daniel Sneddon <daniel.sneddon@linux.intel.com>
Signed-off-by: Daniel Sneddon <daniel.sneddon@linux.intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Alexandre Chartre <alexandre.chartre@oracle.com>
Reviewed-by: Josh Poimboeuf <jpoimboe@kernel.org>
Signed-off-by: Daniel Sneddon <daniel.sneddon@linux.intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2024-04-10 16:19:43 +02:00
Linus Torvalds 55516b355b x86/syscall: Don't force use of indirect calls for system calls
commit 1e3ad78334a69b36e107232e337f9d693dcc9df2 upstream.

Make <asm/syscall.h> build a switch statement instead, and the compiler can
either decide to generate an indirect jump, or - more likely these days due
to mitigations - just a series of conditional branches.

Yes, the conditional branches also have branch prediction, but the branch
prediction is much more controlled, in that it just causes speculatively
running the wrong system call (harmless), rather than speculatively running
possibly wrong random less controlled code gadgets.

This doesn't mitigate other indirect calls, but the system call indirection
is the first and most easily triggered case.

Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Daniel Sneddon <daniel.sneddon@linux.intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Josh Poimboeuf <jpoimboe@kernel.org>
Signed-off-by: Daniel Sneddon <daniel.sneddon@linux.intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2024-04-10 16:19:43 +02:00
Josh Poimboeuf 276fb9a658 x86/bugs: Change commas to semicolons in 'spectre_v2' sysfs file
commit 0cd01ac5dcb1e18eb18df0f0d05b5de76522a437 upstream.

Change the format of the 'spectre_v2' vulnerabilities sysfs file
slightly by converting the commas to semicolons, so that mitigations for
future variants can be grouped together and separated by commas.

Signed-off-by: Josh Poimboeuf <jpoimboe@kernel.org>
Signed-off-by: Daniel Sneddon <daniel.sneddon@linux.intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Daniel Sneddon <daniel.sneddon@linux.intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2024-04-10 16:19:43 +02:00
Borislav Petkov (AMD) 1f7e13d3e8 x86/retpoline: Do the necessary fixup to the Zen3/4 srso return thunk for !SRSO
Commit 0e110732473e14d6520e49d75d2c88ef7d46fe67 upstream.

The srso_alias_untrain_ret() dummy thunk in the !CONFIG_MITIGATION_SRSO
case is there only for the altenative in CALL_UNTRAIN_RET to have
a symbol to resolve.

However, testing with kernels which don't have CONFIG_MITIGATION_SRSO
enabled, leads to the warning in patch_return() to fire:

  missing return thunk: srso_alias_untrain_ret+0x0/0x10-0x0: eb 0e 66 66 2e
  WARNING: CPU: 0 PID: 0 at arch/x86/kernel/alternative.c:826 apply_returns (arch/x86/kernel/alternative.c:826

Put in a plain "ret" there so that gcc doesn't put a return thunk in
in its place which special and gets checked.

In addition:

  ERROR: modpost: "srso_alias_untrain_ret" [arch/x86/kvm/kvm-amd.ko] undefined!
  make[2]: *** [scripts/Makefile.modpost:145: Module.symvers] Chyba 1
  make[1]: *** [/usr/src/linux-6.8.3/Makefile:1873: modpost] Chyba 2
  make: *** [Makefile:240: __sub-make] Chyba 2

since !SRSO builds would use the dummy return thunk as reported by
petr.pisar@atlas.cz, https://bugzilla.kernel.org/show_bug.cgi?id=218679.

Reported-by: kernel test robot <oliver.sang@intel.com>
Closes: https://lore.kernel.org/oe-lkp/202404020901.da75a60f-oliver.sang@intel.com
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Link: https://lore.kernel.org/all/202404020901.da75a60f-oliver.sang@intel.com/
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2024-04-10 16:19:43 +02:00
Borislav Petkov (AMD) ff137c5c0d x86/bugs: Fix the SRSO mitigation on Zen3/4
Commit 4535e1a4174c4111d92c5a9a21e542d232e0fcaa upstream.

The original version of the mitigation would patch in the calls to the
untraining routines directly.  That is, the alternative() in UNTRAIN_RET
will patch in the CALL to srso_alias_untrain_ret() directly.

However, even if commit e7c25c441e ("x86/cpu: Cleanup the untrain
mess") meant well in trying to clean up the situation, due to micro-
architectural reasons, the untraining routine srso_alias_untrain_ret()
must be the target of a CALL instruction and not of a JMP instruction as
it is done now.

Reshuffle the alternative macros to accomplish that.

Fixes: e7c25c441e ("x86/cpu: Cleanup the untrain mess")
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Reviewed-by: Ingo Molnar <mingo@kernel.org>
Cc: stable@kernel.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2024-04-10 16:19:43 +02:00
Borislav Petkov (AMD) f860595512 x86/mce: Make sure to grab mce_sysfs_mutex in set_bank()
commit 3ddf944b32f88741c303f0b21459dbb3872b8bc5 upstream.

Modifying a MCA bank's MCA_CTL bits which control which error types to
be reported is done over

  /sys/devices/system/machinecheck/
  ├── machinecheck0
  │   ├── bank0
  │   ├── bank1
  │   ├── bank10
  │   ├── bank11
  ...

sysfs nodes by writing the new bit mask of events to enable.

When the write is accepted, the kernel deletes all current timers and
reinits all banks.

Doing that in parallel can lead to initializing a timer which is already
armed and in the timer wheel, i.e., in use already:

  ODEBUG: init active (active state 0) object: ffff888063a28000 object
  type: timer_list hint: mce_timer_fn+0x0/0x240 arch/x86/kernel/cpu/mce/core.c:2642
  WARNING: CPU: 0 PID: 8120 at lib/debugobjects.c:514
  debug_print_object+0x1a0/0x2a0 lib/debugobjects.c:514

Fix that by grabbing the sysfs mutex as the rest of the MCA sysfs code
does.

Reported by: Yue Sun <samsun1006219@gmail.com>
Reported by: xingwei lee <xrivendell7@gmail.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Cc: <stable@kernel.org>
Link: https://lore.kernel.org/r/CAEkJfYNiENwQY8yV1LYJ9LjJs%2Bx_-PqMv98gKig55=2vbzffRw@mail.gmail.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2024-04-10 16:19:42 +02:00
Sean Christopherson a9bd6bb6f0 KVM: x86: Mark target gfn of emulated atomic instruction as dirty
commit 910c57dfa4d113aae6571c2a8b9ae8c430975902 upstream.

When emulating an atomic access on behalf of the guest, mark the target
gfn dirty if the CMPXCHG by KVM is attempted and doesn't fault.  This
fixes a bug where KVM effectively corrupts guest memory during live
migration by writing to guest memory without informing userspace that the
page is dirty.

Marking the page dirty got unintentionally dropped when KVM's emulated
CMPXCHG was converted to do a user access.  Before that, KVM explicitly
mapped the guest page into kernel memory, and marked the page dirty during
the unmap phase.

Mark the page dirty even if the CMPXCHG fails, as the old data is written
back on failure, i.e. the page is still written.  The value written is
guaranteed to be the same because the operation is atomic, but KVM's ABI
is that all writes are dirty logged regardless of the value written.  And
more importantly, that's what KVM did before the buggy commit.

Huge kudos to the folks on the Cc list (and many others), who did all the
actual work of triaging and debugging.

Fixes: 1c2361f667 ("KVM: x86: Use __try_cmpxchg_user() to emulate atomic accesses")
Cc: stable@vger.kernel.org
Cc: David Matlack <dmatlack@google.com>
Cc: Pasha Tatashin <tatashin@google.com>
Cc: Michael Krebs <mkrebs@google.com>
base-commit: 6769ea8da8a93ed4630f1ce64df6aafcaabfce64
Reviewed-by: Jim Mattson <jmattson@google.com>
Link: https://lore.kernel.org/r/20240215010004.1456078-2-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2024-04-10 16:19:37 +02:00
Sean Christopherson bd9a25a022 KVM: x86: Bail to userspace if emulation of atomic user access faults
commit 5d6c7de644 upstream.

Exit to userspace when emulating an atomic guest access if the CMPXCHG on
the userspace address faults.  Emulating the access as a write and thus
likely treating it as emulated MMIO is wrong, as KVM has already
confirmed there is a valid, writable memslot.

Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220202004945.2540433-6-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2024-04-10 16:19:37 +02:00
Ingo Molnar b279ddce10 Revert "x86/mm/ident_map: Use gbpages only where full GB page should be mapped."
commit c567f2948f57bdc03ed03403ae0234085f376b7d upstream.

This reverts commit d794734c9bbfe22f86686dc2909c25f5ffe1a572.

While the original change tries to fix a bug, it also unintentionally broke
existing systems, see the regressions reported at:

  https://lore.kernel.org/all/3a1b9909-45ac-4f97-ad68-d16ef1ce99db@pavinjoseph.com/

Since d794734c9bbf was also marked for -stable, let's back it out before
causing more damage.

Note that due to another upstream change the revert was not 100% automatic:

  0a845e0f6348 mm/treewide: replace pud_large() with pud_leaf()

Signed-off-by: Ingo Molnar <mingo@kernel.org>
Cc: <stable@vger.kernel.org>
Cc: Russ Anderson <rja@hpe.com>
Cc: Steve Wahl <steve.wahl@hpe.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Link: https://lore.kernel.org/all/3a1b9909-45ac-4f97-ad68-d16ef1ce99db@pavinjoseph.com/
Fixes: d794734c9bbf ("x86/mm/ident_map: Use gbpages only where full GB page should be mapped.")
Signed-off-by: Steve Wahl <steve.wahl@hpe.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2024-04-10 16:19:37 +02:00
Sean Christopherson 76299c3f11 x86/cpufeatures: Add CPUID_LNX_5 to track recently added Linux-defined word
commit 8cb4a9a82b21623dbb4b3051dd30d98356cf95bc upstream.

Add CPUID_LNX_5 to track cpufeatures' word 21, and add the appropriate
compile-time assert in KVM to prevent direct lookups on the features in
CPUID_LNX_5.  KVM uses X86_FEATURE_* flags to manage guest CPUID, and so
must translate features that are scattered by Linux from the Linux-defined
bit to the hardware-defined bit, i.e. should never try to directly access
scattered features in guest CPUID.

Opportunistically add NR_CPUID_WORDS to enum cpuid_leafs, along with a
compile-time assert in KVM's CPUID infrastructure to ensure that future
additions update cpuid_leafs along with NCAPINTS.

No functional change intended.

Fixes: 7f274e609f3d ("x86/cpufeatures: Add new word for scattered features")
Cc: Sandipan Das <sandipan.das@amd.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Acked-by: Dave Hansen <dave.hansen@linux.intel.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2024-04-10 16:19:36 +02:00
Sandipan Das 571d80f8a4 x86/cpufeatures: Add new word for scattered features
commit 7f274e609f3d5f45c22b1dd59053f6764458b492 upstream.

Add a new word for scattered features because all free bits among the
existing Linux-defined auxiliary flags have been exhausted.

Signed-off-by: Sandipan Das <sandipan.das@amd.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lore.kernel.org/r/8380d2a0da469a1f0ad75b8954a79fb689599ff6.1711091584.git.sandipan.das@amd.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2024-04-10 16:19:36 +02:00
Kim Phillips ff5305ec8c x86/cpu: Enable STIBP on AMD if Automatic IBRS is enabled
commit fd470a8bee upstream.

Unlike Intel's Enhanced IBRS feature, AMD's Automatic IBRS does not
provide protection to processes running at CPL3/user mode, see section
"Extended Feature Enable Register (EFER)" in the APM v2 at
https://bugzilla.kernel.org/attachment.cgi?id=304652

Explicitly enable STIBP to protect against cross-thread CPL3
branch target injections on systems with Automatic IBRS enabled.

Also update the relevant documentation.

Fixes: e7862eda30 ("x86/cpu: Support AMD Automatic IBRS")
Reported-by: Tom Lendacky <thomas.lendacky@amd.com>
Signed-off-by: Kim Phillips <kim.phillips@amd.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/r/20230720194727.67022-1-kim.phillips@amd.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2024-04-10 16:19:34 +02:00
Peter Zijlstra 764929accf x86/static_call: Add support for Jcc tail-calls
commit 923510c88d upstream.

Clang likes to create conditional tail calls like:

  0000000000000350 <amd_pmu_add_event>:
  350:       0f 1f 44 00 00          nopl   0x0(%rax,%rax,1) 351: R_X86_64_NONE      __fentry__-0x4
  355:       48 83 bf 20 01 00 00 00         cmpq   $0x0,0x120(%rdi)
  35d:       0f 85 00 00 00 00       jne    363 <amd_pmu_add_event+0x13>     35f: R_X86_64_PLT32     __SCT__amd_pmu_branch_add-0x4
  363:       e9 00 00 00 00          jmp    368 <amd_pmu_add_event+0x18>     364: R_X86_64_PLT32     __x86_return_thunk-0x4

Where 0x35d is a static call site that's turned into a conditional
tail-call using the Jcc class of instructions.

Teach the in-line static call text patching about this.

Notably, since there is no conditional-ret, in that case patch the Jcc
to point at an empty stub function that does the ret -- or the return
thunk when needed.

Reported-by: "Erhard F." <erhard_f@mailbox.org>
Change-Id: I99c8fc3f721e5d1c74f06710b38d4bac5230303a
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
Link: https://lore.kernel.org/r/Y9Kdg9QjHkr9G5b5@hirez.programming.kicks-ass.net
[cascardo: __static_call_validate didn't have the bool tramp argument]
Signed-off-by: Thadeu Lima de Souza Cascardo <cascardo@igalia.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2024-04-10 16:18:49 +02:00
Peter Zijlstra 7339b1ce5e x86/alternatives: Teach text_poke_bp() to patch Jcc.d32 instructions
commit ac0ee0a956 upstream.

In order to re-write Jcc.d32 instructions text_poke_bp() needs to be
taught about them.

The biggest hurdle is that the whole machinery is currently made for 5
byte instructions and extending this would grow struct text_poke_loc
which is currently a nice 16 bytes and used in an array.

However, since text_poke_loc contains a full copy of the (s32)
displacement, it is possible to map the Jcc.d32 2 byte opcodes to
Jcc.d8 1 byte opcode for the int3 emulation.

This then leaves the replacement bytes; fudge that by only storing the
last 5 bytes and adding the rule that 'length == 6' instruction will
be prefixed with a 0x0f byte.

Change-Id: Ie3f72c6b92f865d287c8940e5a87e59d41cfaa27
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
Link: https://lore.kernel.org/r/20230123210607.115718513@infradead.org
[cascardo: there is no emit_call_track_retpoline]
Signed-off-by: Thadeu Lima de Souza Cascardo <cascardo@igalia.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2024-04-10 16:18:49 +02:00
Peter Zijlstra f4ba357b07 x86/alternatives: Introduce int3_emulate_jcc()
commit db7adcfd1c upstream.

Move the kprobe Jcc emulation into int3_emulate_jcc() so it can be
used by more code -- specifically static_call() will need this.

Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
Link: https://lore.kernel.org/r/20230123210607.057678245@infradead.org
Signed-off-by: Thadeu Lima de Souza Cascardo <cascardo@igalia.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2024-04-10 16:18:49 +02:00
Thomas Gleixner 9b4eff016d x86/asm: Differentiate between code and function alignment
commit 8eb5d34e77 upstream.

Create SYM_F_ALIGN to differentiate alignment requirements between
SYM_CODE and SYM_FUNC.

This distinction is useful later when adding padding in front of
functions; IOW this allows following the compiler's
patchable-function-entry option.

[peterz: Changelog]

Change-Id: I4f9bc0507e5c3fdb3e0839806989efc305e0a758
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20220915111143.824822743@infradead.org
[cascardo: adjust for missing commit c4691712b5 ("x86/linkage: Add ENDBR to SYM_FUNC_START*()")]
Signed-off-by: Thadeu Lima de Souza Cascardo <cascardo@igalia.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2024-04-10 16:18:49 +02:00