Граф коммитов

427 Коммитов

Автор SHA1 Сообщение Дата
Michal Hocko 6cc2baf600 mm, memory_hotplug: drop pointless block alignment checks from __offline_pages
This function is never called from a context which would provide
misaligned pfn range so drop the pointless check.

Link: http://lkml.kernel.org/r/20181107101830.17405-4-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Reviewed-by: Anshuman Khandual <anshuman.khandual@arm.com>
Cc: Baoquan He <bhe@redhat.com>
Cc: Oscar Salvador <OSalvador@suse.com>
Cc: William Kucharski <william.kucharski@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-12-28 12:11:46 -08:00
Michal Hocko dd33ad7b25 memory_hotplug: cond_resched in __remove_pages
We have received a bug report that unbinding a large pmem (>1TB) can
result in a soft lockup:

  NMI watchdog: BUG: soft lockup - CPU#9 stuck for 23s! [ndctl:4365]
  [...]
  Supported: Yes
  CPU: 9 PID: 4365 Comm: ndctl Not tainted 4.12.14-94.40-default #1 SLE12-SP4
  Hardware name: Intel Corporation S2600WFD/S2600WFD, BIOS SE5C620.86B.01.00.0833.051120182255 05/11/2018
  task: ffff9cce7d4410c0 task.stack: ffffbe9eb1bc4000
  RIP: 0010:__put_page+0x62/0x80
  Call Trace:
   devm_memremap_pages_release+0x152/0x260
   release_nodes+0x18d/0x1d0
   device_release_driver_internal+0x160/0x210
   unbind_store+0xb3/0xe0
   kernfs_fop_write+0x102/0x180
   __vfs_write+0x26/0x150
   vfs_write+0xad/0x1a0
   SyS_write+0x42/0x90
   do_syscall_64+0x74/0x150
   entry_SYSCALL_64_after_hwframe+0x3d/0xa2
  RIP: 0033:0x7fd13166b3d0

It has been reported on an older (4.12) kernel but the current upstream
code doesn't cond_resched in the hot remove code at all and the given
range to remove might be really large.  Fix the issue by calling
cond_resched once per memory section.

Link: http://lkml.kernel.org/r/20181031125840.23982-1-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Acked-by: Johannes Thumshirn <jthumshirn@suse.de>
Cc: Dan Williams <dan.j.williams@gmail.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-11-03 10:09:38 -07:00
David Hildenbrand 381eab4a6e mm/memory_hotplug: fix online/offline_pages called w.o. mem_hotplug_lock
There seem to be some problems as result of 30467e0b3b ("mm, hotplug:
fix concurrent memory hot-add deadlock"), which tried to fix a possible
lock inversion reported and discussed in [1] due to the two locks
	a) device_lock()
	b) mem_hotplug_lock

While add_memory() first takes b), followed by a) during
bus_probe_device(), onlining of memory from user space first took a),
followed by b), exposing a possible deadlock.

In [1], and it was decided to not make use of device_hotplug_lock, but
rather to enforce a locking order.

The problems I spotted related to this:

1. Memory block device attributes: While .state first calls
   mem_hotplug_begin() and the calls device_online() - which takes
   device_lock() - .online does no longer call mem_hotplug_begin(), so
   effectively calls online_pages() without mem_hotplug_lock.

2. device_online() should be called under device_hotplug_lock, however
   onlining memory during add_memory() does not take care of that.

In addition, I think there is also something wrong about the locking in

3. arch/powerpc/platforms/powernv/memtrace.c calls offline_pages()
   without locks. This was introduced after 30467e0b3b. And skimming over
   the code, I assume it could need some more care in regards to locking
   (e.g. device_online() called without device_hotplug_lock. This will
   be addressed in the following patches.

Now that we hold the device_hotplug_lock when
- adding memory (e.g. via add_memory()/add_memory_resource())
- removing memory (e.g. via remove_memory())
- device_online()/device_offline()

We can move mem_hotplug_lock usage back into
online_pages()/offline_pages().

Why is mem_hotplug_lock still needed? Essentially to make
get_online_mems()/put_online_mems() be very fast (relying on
device_hotplug_lock would be very slow), and to serialize against
addition of memory that does not create memory block devices (hmm).

[1] http://driverdev.linuxdriverproject.org/pipermail/ driverdev-devel/
    2015-February/065324.html

This patch is partly based on a patch by Vitaly Kuznetsov.

Link: http://lkml.kernel.org/r/20180925091457.28651-4-david@redhat.com
Signed-off-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Pavel Tatashin <pavel.tatashin@microsoft.com>
Reviewed-by: Rashmica Gupta <rashmica.g@gmail.com>
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: "Rafael J. Wysocki" <rjw@rjwysocki.net>
Cc: Len Brown <lenb@kernel.org>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: "K. Y. Srinivasan" <kys@microsoft.com>
Cc: Haiyang Zhang <haiyangz@microsoft.com>
Cc: Stephen Hemminger <sthemmin@microsoft.com>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: Rashmica Gupta <rashmica.g@gmail.com>
Cc: Michael Neuling <mikey@neuling.org>
Cc: Balbir Singh <bsingharora@gmail.com>
Cc: Kate Stewart <kstewart@linuxfoundation.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Philippe Ombredanne <pombredanne@nexb.com>
Cc: Pavel Tatashin <pavel.tatashin@microsoft.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: YASUAKI ISHIMATSU <yasu.isimatu@gmail.com>
Cc: Mathieu Malaterre <malat@debian.org>
Cc: John Allen <jallen@linux.vnet.ibm.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Nathan Fontenot <nfont@linux.vnet.ibm.com>
Cc: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-10-31 08:54:17 -07:00
David Hildenbrand 8df1d0e4a2 mm/memory_hotplug: make add_memory() take the device_hotplug_lock
add_memory() currently does not take the device_hotplug_lock, however
is aleady called under the lock from
	arch/powerpc/platforms/pseries/hotplug-memory.c
	drivers/acpi/acpi_memhotplug.c
to synchronize against CPU hot-remove and similar.

In general, we should hold the device_hotplug_lock when adding memory to
synchronize against online/offline request (e.g.  from user space) - which
already resulted in lock inversions due to device_lock() and
mem_hotplug_lock - see 30467e0b3b ("mm, hotplug: fix concurrent memory
hot-add deadlock").  add_memory()/add_memory_resource() will create memory
block devices, so this really feels like the right thing to do.

Holding the device_hotplug_lock makes sure that a memory block device
can really only be accessed (e.g. via .online/.state) from user space,
once the memory has been fully added to the system.

The lock is not held yet in
	drivers/xen/balloon.c
	arch/powerpc/platforms/powernv/memtrace.c
	drivers/s390/char/sclp_cmd.c
	drivers/hv/hv_balloon.c
So, let's either use the locked variants or take the lock.

Don't export add_memory_resource(), as it once was exported to be used by
XEN, which is never built as a module.  If somebody requires it, we also
have to export a locked variant (as device_hotplug_lock is never
exported).

Link: http://lkml.kernel.org/r/20180925091457.28651-3-david@redhat.com
Signed-off-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Pavel Tatashin <pavel.tatashin@microsoft.com>
Reviewed-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Reviewed-by: Rashmica Gupta <rashmica.g@gmail.com>
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: "Rafael J. Wysocki" <rjw@rjwysocki.net>
Cc: Len Brown <lenb@kernel.org>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: Nathan Fontenot <nfont@linux.vnet.ibm.com>
Cc: John Allen <jallen@linux.vnet.ibm.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Mathieu Malaterre <malat@debian.org>
Cc: Pavel Tatashin <pavel.tatashin@microsoft.com>
Cc: YASUAKI ISHIMATSU <yasu.isimatu@gmail.com>
Cc: Balbir Singh <bsingharora@gmail.com>
Cc: Haiyang Zhang <haiyangz@microsoft.com>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Kate Stewart <kstewart@linuxfoundation.org>
Cc: "K. Y. Srinivasan" <kys@microsoft.com>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Michael Neuling <mikey@neuling.org>
Cc: Philippe Ombredanne <pombredanne@nexb.com>
Cc: Stephen Hemminger <sthemmin@microsoft.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-10-31 08:54:17 -07:00
David Hildenbrand d15e59260f mm/memory_hotplug: make remove_memory() take the device_hotplug_lock
Patch series "mm: online/offline_pages called w.o. mem_hotplug_lock", v3.

Reading through the code and studying how mem_hotplug_lock is to be used,
I noticed that there are two places where we can end up calling
device_online()/device_offline() - online_pages()/offline_pages() without
the mem_hotplug_lock.  And there are other places where we call
device_online()/device_offline() without the device_hotplug_lock.

While e.g.
	echo "online" > /sys/devices/system/memory/memory9/state
is fine, e.g.
	echo 1 > /sys/devices/system/memory/memory9/online
Will not take the mem_hotplug_lock. However the device_lock() and
device_hotplug_lock.

E.g.  via memory_probe_store(), we can end up calling
add_memory()->online_pages() without the device_hotplug_lock.  So we can
have concurrent callers in online_pages().  We e.g.  touch in
online_pages() basically unprotected zone->present_pages then.

Looks like there is a longer history to that (see Patch #2 for details),
and fixing it to work the way it was intended is not really possible.  We
would e.g.  have to take the mem_hotplug_lock in device/base/core.c, which
sounds wrong.

Summary: We had a lock inversion on mem_hotplug_lock and device_lock().
More details can be found in patch 3 and patch 6.

I propose the general rules (documentation added in patch 6):

1. add_memory/add_memory_resource() must only be called with
   device_hotplug_lock.
2. remove_memory() must only be called with device_hotplug_lock. This is
   already documented and holds for all callers.
3. device_online()/device_offline() must only be called with
   device_hotplug_lock. This is already documented and true for now in core
   code. Other callers (related to memory hotplug) have to be fixed up.
4. mem_hotplug_lock is taken inside of add_memory/remove_memory/
   online_pages/offline_pages.

To me, this looks way cleaner than what we have right now (and easier to
verify).  And looking at the documentation of remove_memory, using
lock_device_hotplug also for add_memory() feels natural.

This patch (of 6):

remove_memory() is exported right now but requires the
device_hotplug_lock, which is not exported.  So let's provide a variant
that takes the lock and only export that one.

The lock is already held in
	arch/powerpc/platforms/pseries/hotplug-memory.c
	drivers/acpi/acpi_memhotplug.c
	arch/powerpc/platforms/powernv/memtrace.c

Apart from that, there are not other users in the tree.

Link: http://lkml.kernel.org/r/20180925091457.28651-2-david@redhat.com
Signed-off-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Pavel Tatashin <pavel.tatashin@microsoft.com>
Reviewed-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Reviewed-by: Rashmica Gupta <rashmica.g@gmail.com>
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: "Rafael J. Wysocki" <rjw@rjwysocki.net>
Cc: Len Brown <lenb@kernel.org>
Cc: Rashmica Gupta <rashmica.g@gmail.com>
Cc: Michael Neuling <mikey@neuling.org>
Cc: Balbir Singh <bsingharora@gmail.com>
Cc: Nathan Fontenot <nfont@linux.vnet.ibm.com>
Cc: John Allen <jallen@linux.vnet.ibm.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: YASUAKI ISHIMATSU <yasu.isimatu@gmail.com>
Cc: Mathieu Malaterre <malat@debian.org>
Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Cc: Haiyang Zhang <haiyangz@microsoft.com>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Juergen Gross <jgross@suse.com>
Cc: Kate Stewart <kstewart@linuxfoundation.org>
Cc: "K. Y. Srinivasan" <kys@microsoft.com>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Philippe Ombredanne <pombredanne@nexb.com>
Cc: Stephen Hemminger <sthemmin@microsoft.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-10-31 08:54:17 -07:00
Mike Rapoport 57c8a661d9 mm: remove include/linux/bootmem.h
Move remaining definitions and declarations from include/linux/bootmem.h
into include/linux/memblock.h and remove the redundant header.

The includes were replaced with the semantic patch below and then
semi-automated removal of duplicated '#include <linux/memblock.h>

@@
@@
- #include <linux/bootmem.h>
+ #include <linux/memblock.h>

[sfr@canb.auug.org.au: dma-direct: fix up for the removal of linux/bootmem.h]
  Link: http://lkml.kernel.org/r/20181002185342.133d1680@canb.auug.org.au
[sfr@canb.auug.org.au: powerpc: fix up for removal of linux/bootmem.h]
  Link: http://lkml.kernel.org/r/20181005161406.73ef8727@canb.auug.org.au
[sfr@canb.auug.org.au: x86/kaslr, ACPI/NUMA: fix for linux/bootmem.h removal]
  Link: http://lkml.kernel.org/r/20181008190341.5e396491@canb.auug.org.au
Link: http://lkml.kernel.org/r/1536927045-23536-30-git-send-email-rppt@linux.vnet.ibm.com
Signed-off-by: Mike Rapoport <rppt@linux.vnet.ibm.com>
Signed-off-by: Stephen Rothwell <sfr@canb.auug.org.au>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Chris Zankel <chris@zankel.net>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: Greentime Hu <green.hu@gmail.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Guan Xuetao <gxt@pku.edu.cn>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: "James E.J. Bottomley" <jejb@parisc-linux.org>
Cc: Jonas Bonn <jonas@southpole.se>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Ley Foon Tan <lftan@altera.com>
Cc: Mark Salter <msalter@redhat.com>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Matt Turner <mattst88@gmail.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Michal Simek <monstr@monstr.eu>
Cc: Palmer Dabbelt <palmer@sifive.com>
Cc: Paul Burton <paul.burton@mips.com>
Cc: Richard Kuo <rkuo@codeaurora.org>
Cc: Richard Weinberger <richard@nod.at>
Cc: Rich Felker <dalias@libc.org>
Cc: Russell King <linux@armlinux.org.uk>
Cc: Serge Semin <fancer.lancer@gmail.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Vineet Gupta <vgupta@synopsys.com>
Cc: Yoshinori Sato <ysato@users.sourceforge.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-10-31 08:54:16 -07:00
Oscar Salvador 86b27beae5 mm/memory_hotplug.c: clean up node_states_check_changes_offline()
This patch, as the previous one, gets rid of the wrong if statements.
While at it, I realized that the comments are sometimes very confusing,
to say the least, and wrong.
For example:

___
zone_last = ZONE_MOVABLE;

/*
 * check whether node_states[N_HIGH_MEMORY] will be changed
 * If we try to offline the last present @nr_pages from the node,
 * we can determind we will need to clear the node from
 * node_states[N_HIGH_MEMORY].
 */

for (; zt <= zone_last; zt++)
        present_pages += pgdat->node_zones[zt].present_pages;
if (nr_pages >= present_pages)
        arg->status_change_nid = zone_to_nid(zone);
else
        arg->status_change_nid = -1;
___

In case the node gets empry, it must be removed from N_MEMORY.  We already
check N_HIGH_MEMORY a bit above within the CONFIG_HIGHMEM ifdef code.  Not
to say that status_change_nid is for N_MEMORY, and not for N_HIGH_MEMORY.

So I re-wrote some of the comments to what I think is better.

[osalvador@suse.de: address feedback from Pavel]
  Link: http://lkml.kernel.org/r/20180921132634.10103-5-osalvador@techadventures.net
Link: http://lkml.kernel.org/r/20180919100819.25518-6-osalvador@techadventures.net
Signed-off-by: Oscar Salvador <osalvador@suse.de>
Reviewed-by: Pavel Tatashin <pavel.tatashin@microsoft.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Cc: <yasu.isimatu@gmail.com>
Cc: Mathieu Malaterre <malat@debian.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-10-26 16:26:33 -07:00
Oscar Salvador 8efe33f40f mm/memory_hotplug.c: simplify node_states_check_changes_online
While looking at node_states_check_changes_online, I stumbled upon some
confusing things.

Right after entering the function, we find this:

if (N_MEMORY == N_NORMAL_MEMORY)
        zone_last = ZONE_MOVABLE;

This is wrong.
N_MEMORY cannot really be equal to N_NORMAL_MEMORY.
My guess is that this wanted to be something like:

if (N_NORMAL_MEMORY == N_HIGH_MEMORY)

to check if we have CONFIG_HIGHMEM.

Later on, in the CONFIG_HIGHMEM block, we have:

if (N_MEMORY == N_HIGH_MEMORY)
        zone_last = ZONE_MOVABLE;

Again, this is wrong, and will never be evaluated to true.

Besides removing these wrong if statements, I simplified the function a
bit.

[osalvador@suse.de: address feedback from Pavel]
  Link: http://lkml.kernel.org/r/20180921132634.10103-4-osalvador@techadventures.net
Link: http://lkml.kernel.org/r/20180919100819.25518-5-osalvador@techadventures.net
Signed-off-by: Oscar Salvador <osalvador@suse.de>
Reviewed-by: Pavel Tatashin <pavel.tatashin@microsoft.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Cc: Mathieu Malaterre <malat@debian.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: <yasu.isimatu@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-10-26 16:26:33 -07:00
Oscar Salvador cf01f6f5e3 mm/memory_hotplug.c: tidy up node_states_clear_node()
node_states_clear has the following if statements:

if ((N_MEMORY != N_NORMAL_MEMORY) &&
    (arg->status_change_nid_high >= 0))
        ...

if ((N_MEMORY != N_HIGH_MEMORY) &&
    (arg->status_change_nid >= 0))
        ...

N_MEMORY can never be equal to neither N_NORMAL_MEMORY nor
N_HIGH_MEMORY.

Similar problem was found in [1].
Since this is wrong, let us get rid of it.

[1] https://patchwork.kernel.org/patch/10579155/

Link: http://lkml.kernel.org/r/20180919100819.25518-4-osalvador@techadventures.net
Signed-off-by: Oscar Salvador <osalvador@suse.de>
Reviewed-by: Pavel Tatashin <pavel.tatashin@microsoft.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Cc: Mathieu Malaterre <malat@debian.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: <yasu.isimatu@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-10-26 16:26:33 -07:00
Oscar Salvador 83d83612d7 mm/memory_hotplug.c: spare unnecessary calls to node_set_state
In node_states_check_changes_online, we check if the node will have to be
set for any of the N_*_MEMORY states after the pages have been onlined.

Later on, we perform the activation in node_states_set_node.  Currently,
in node_states_set_node we set the node to N_MEMORY unconditionally.

This means that we call node_set_state for N_MEMORY every time pages go
online, but we only need to do it if the node has not yet been set for
N_MEMORY.

Fix this by checking status_change_nid.

Link: http://lkml.kernel.org/r/20180919100819.25518-2-osalvador@techadventures.net
Signed-off-by: Oscar Salvador <osalvador@suse.de>
Reviewed-by: Pavel Tatashin <pavel.tatashin@microsoft.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Cc: <yasu.isimatu@gmail.com>
Cc: Mathieu Malaterre <malat@debian.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-10-26 16:26:33 -07:00
Aneesh Kumar K.V 464c7ffbcb mm/hugetlb: filter out hugetlb pages if HUGEPAGE migration is not supported.
When scanning for movable pages, filter out Hugetlb pages if hugepage
migration is not supported.  Without this we hit infinte loop in
__offline_pages() where we do

	pfn = scan_movable_pages(start_pfn, end_pfn);
	if (pfn) { /* We have movable pages */
		ret = do_migrate_range(pfn, end_pfn);
		goto repeat;
	}

Fix this by checking hugepage_migration_supported both in
has_unmovable_pages which is the primary backoff mechanism for page
offlining and for consistency reasons also into scan_movable_pages
because it doesn't make any sense to return a pfn to non-migrateable
huge page.

This issue was revealed by, but not caused by 72b39cfc4d ("mm,
memory_hotplug: do not fail offlining too early").

Link: http://lkml.kernel.org/r/20180824063314.21981-1-aneesh.kumar@linux.ibm.com
Fixes: 72b39cfc4d ("mm, memory_hotplug: do not fail offlining too early")
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com>
Reported-by: Haren Myneni <haren@linux.vnet.ibm.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Reviewed-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-09-04 16:45:02 -07:00
Oscar Salvador 03e85f9d5f mm/page_alloc: Introduce free_area_init_core_hotplug
Currently, whenever a new node is created/re-used from the memhotplug
path, we call free_area_init_node()->free_area_init_core().  But there is
some code that we do not really need to run when we are coming from such
path.

free_area_init_core() performs the following actions:

1) Initializes pgdat internals, such as spinlock, waitqueues and more.
2) Account # nr_all_pages and # nr_kernel_pages. These values are used later on
   when creating hash tables.
3) Account number of managed_pages per zone, substracting dma_reserved and
   memmap pages.
4) Initializes some fields of the zone structure data
5) Calls init_currently_empty_zone to initialize all the freelists
6) Calls memmap_init to initialize all pages belonging to certain zone

When called from memhotplug path, free_area_init_core() only performs
actions #1 and #4.

Action #2 is pointless as the zones do not have any pages since either the
node was freed, or we are re-using it, eitherway all zones belonging to
this node should have 0 pages.  For the same reason, action #3 results
always in manages_pages being 0.

Action #5 and #6 are performed later on when onlining the pages:
 online_pages()->move_pfn_range_to_zone()->init_currently_empty_zone()
 online_pages()->move_pfn_range_to_zone()->memmap_init_zone()

This patch does two things:

First, moves the node/zone initializtion to their own function, so it
allows us to create a small version of free_area_init_core, where we only
perform:

1) Initialization of pgdat internals, such as spinlock, waitqueues and more
4) Initialization of some fields of the zone structure data

These two functions are: pgdat_init_internals() and zone_init_internals().

The second thing this patch does, is to introduce
free_area_init_core_hotplug(), the memhotplug version of
free_area_init_core():

Currently, we call free_area_init_node() from the memhotplug path.  In
there, we set some pgdat's fields, and call calculate_node_totalpages().
calculate_node_totalpages() calculates the # of pages the node has.

Since the node is either new, or we are re-using it, the zones belonging
to this node should not have any pages, so there is no point to calculate
this now.

Actually, we re-set these values to 0 later on with the calls to:

reset_node_managed_pages()
reset_node_present_pages()

The # of pages per node and the # of pages per zone will be calculated when
onlining the pages:

online_pages()->move_pfn_range()->move_pfn_range_to_zone()->resize_zone_range()
online_pages()->move_pfn_range()->move_pfn_range_to_zone()->resize_pgdat_range()

Also, since free_area_init_core/free_area_init_node will now only get called during early init, let us replace
__paginginit with __init, so their code gets freed up.

[osalvador@techadventures.net: fix section usage]
  Link: http://lkml.kernel.org/r/20180731101752.GA473@techadventures.net
[osalvador@suse.de: v6]
  Link: http://lkml.kernel.org/r/20180801122348.21588-6-osalvador@techadventures.net
Link: http://lkml.kernel.org/r/20180730101757.28058-5-osalvador@techadventures.net
Signed-off-by: Oscar Salvador <osalvador@suse.de>
Reviewed-by: Pavel Tatashin <pasha.tatashin@oracle.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Pasha Tatashin <Pavel.Tatashin@microsoft.com>
Cc: Aaron Lu <aaron.lu@intel.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-08-22 10:52:45 -07:00
Oscar Salvador 4fbce63391 mm/memory_hotplug.c: make register_mem_sect_under_node() a callback of walk_memory_range()
link_mem_sections() and walk_memory_range() share most of the code, so
we can use convert link_mem_sections() into a dummy function that calls
walk_memory_range() with a callback to register_mem_sect_under_node().

This patch converts register_mem_sect_under_node() in order to match a
walk_memory_range's callback, getting rid of the check_nid argument and
checking instead if the system is still boothing, since we only have to
check for the nid if the system is in such state.

Link: http://lkml.kernel.org/r/20180622111839.10071-4-osalvador@techadventures.net
Signed-off-by: Oscar Salvador <osalvador@suse.de>
Suggested-by: Pavel Tatashin <pasha.tatashin@oracle.com>
Tested-by: Reza Arbab <arbab@linux.vnet.ibm.com>
Tested-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Reviewed-by: Pavel Tatashin <pavel.tatashin@microsoft.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-08-17 16:20:29 -07:00
Oscar Salvador d5b6f6a361 mm/memory_hotplug.c: call register_mem_sect_under_node()
When hotplugging memory, it is possible that two calls are being made to
register_mem_sect_under_node().

One comes from __add_section()->hotplug_memory_register() and the other
from add_memory_resource()->link_mem_sections() if we had to register a
new node.

In case we had to register a new node, hotplug_memory_register() will
only handle/allocate the memory_block's since
register_mem_sect_under_node() will return right away because the node
it is not online yet.

I think it is better if we leave hotplug_memory_register() to
handle/allocate only memory_block's and make link_mem_sections() to call
register_mem_sect_under_node().

So this patch removes the call to register_mem_sect_under_node() from
hotplug_memory_register(), and moves the call to link_mem_sections() out
of the condition, so it will always be called.  In this way we only have
one place where the memory sections are registered.

Link: http://lkml.kernel.org/r/20180622111839.10071-3-osalvador@techadventures.net
Signed-off-by: Oscar Salvador <osalvador@suse.de>
Reviewed-by: Pavel Tatashin <pasha.tatashin@oracle.com>
Tested-by: Reza Arbab <arbab@linux.vnet.ibm.com>
Tested-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Cc: Pasha Tatashin <Pavel.Tatashin@microsoft.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-08-17 16:20:29 -07:00
Oscar Salvador b9ff036082 mm/memory_hotplug.c: make add_memory_resource use __try_online_node
This is a small cleanup for the memhotplug code.  A lot more could be
done, but it is better to start somewhere.  I tried to unify/remove
duplicated code.

The following is what this patchset does:

1) add_memory_resource() has code to allocate a node in case it was
   offline.  Since try_online_node has some code for that as well, I just
   made add_memory_resource() to use that so we can remove duplicated
   code..  This is better explained in patch 1/4.

2) register_mem_sect_under_node() will be called only from
   link_mem_sections()

3) Make register_mem_sect_under_node() a callback of
   walk_memory_range()

4) Drop unnecessary checks from register_mem_sect_under_node()

I have done some tests and I could not see anything broken because of
this patchset.

add_memory_resource() contains code to allocate a new node in case it is
necessary.  Since try_online_node() also has some code for this purpose,
let us make use of that and remove duplicate code.

This introduces __try_online_node(), which is called by
add_memory_resource() and try_online_node().  __try_online_node() has
two new parameters, start_addr of the node, and if the node should be
onlined and registered right away.  This is always wanted if we are
calling from do_cpu_up(), but not when we are calling from memhotplug
code.  Nothing changes from the point of view of the users of
try_online_node(), since try_online_node passes start_addr=0 and
online_node=true to __try_online_node().

Link: http://lkml.kernel.org/r/20180622111839.10071-2-osalvador@techadventures.net
Signed-off-by: Oscar Salvador <osalvador@suse.de>
Reviewed-by: Pavel Tatashin <pasha.tatashin@oracle.com>
Tested-by: Reza Arbab <arbab@linux.vnet.ibm.com>
Tested-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Cc: Pasha Tatashin <Pavel.Tatashin@microsoft.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Pavel Tatashin <pasha.tatashin@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-08-17 16:20:29 -07:00
Mathieu Malaterre fb52bbaee5 mm: move is_pageblock_removable_nolock() to mm/memory_hotplug.c
is_pageblock_removable_nolock() is not used outside of
mm/memory_hotplug.c.  Move it next to unique caller
is_mem_section_removable() and make it static.

Remove prototype in <linux/memory_hotplug.h> to silence gcc warning (W=1):

  mm/page_alloc.c:7704:6: warning: no previous prototype for `is_pageblock_removable_nolock' [-Wmissing-prototypes]

Link: http://lkml.kernel.org/r/20180509190001.24789-1-malat@debian.org
Signed-off-by: Mathieu Malaterre <malat@debian.org>
Suggested-by: Michal Hocko <mhocko@kernel.org>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-06-07 17:34:36 -07:00
Jonathan Cameron a21558618c mm/memory_hotplug: fix leftover use of struct page during hotplug
The case of a new numa node got missed in avoiding using the node info
from page_struct during hotplug.  In this path we have a call to
register_mem_sect_under_node (which allows us to specify it is hotplug
so don't change the node), via link_mem_sections which unfortunately
does not.

Fix is to pass check_nid through link_mem_sections as well and disable
it in the new numa node path.

Note the bug only 'sometimes' manifests depending on what happens to be
in the struct page structures - there are lots of them and it only needs
to match one of them.

The result of the bug is that (with a new memory only node) we never
successfully call register_mem_sect_under_node so don't get the memory
associated with the node in sysfs and meminfo for the node doesn't
report it.

It came up whilst testing some arm64 hotplug patches, but appears to be
universal.  Whilst I'm triggering it by removing then reinserting memory
to a node with no other elements (thus making the node disappear then
appear again), it appears it would happen on hotplugging memory where
there was none before and it doesn't seem to be related the arm64
patches.

These patches call __add_pages (where most of the issue was fixed by
Pavel's patch).  If there is a node at the time of the __add_pages call
then all is well as it calls register_mem_sect_under_node from there
with check_nid set to false.  Without a node that function returns
having not done the sysfs related stuff as there is no node to use.
This is expected but it is the resulting path that fails...

Exact path to the problem is as follows:

 mm/memory_hotplug.c: add_memory_resource()

   The node is not online so we enter the 'if (new_node)' twice, on the
   second such block there is a call to link_mem_sections which calls
   into

  drivers/node.c: link_mem_sections() which calls

  drivers/node.c: register_mem_sect_under_node() which calls
     get_nid_for_pfn and keeps trying until the output of that matches
     the expected node (passed all the way down from
     add_memory_resource)

It is effectively the same fix as the one referred to in the fixes tag
just in the code path for a new node where the comments point out we
have to rerun the link creation because it will have failed in
register_new_memory (as there was no node at the time).  (actually that
comment is wrong now as we don't have register_new_memory any more it
got renamed to hotplug_memory_register in Pavel's patch).

Link: http://lkml.kernel.org/r/20180504085311.1240-1-Jonathan.Cameron@huawei.com
Fixes: fc44f7f923 ("mm/memory_hotplug: don't read nid from struct page during hotplug")
Signed-off-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Reviewed-by: Pavel Tatashin <pasha.tatashin@oracle.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-05-25 18:12:11 -07:00
Michal Hocko 94723aafb9 mm: unclutter THP migration
THP migration is hacked into the generic migration with rather
surprising semantic.  The migration allocation callback is supposed to
check whether the THP can be migrated at once and if that is not the
case then it allocates a simple page to migrate.  unmap_and_move then
fixes that up by spliting the THP into small pages while moving the head
page to the newly allocated order-0 page.  Remaning pages are moved to
the LRU list by split_huge_page.  The same happens if the THP allocation
fails.  This is really ugly and error prone [1].

I also believe that split_huge_page to the LRU lists is inherently wrong
because all tail pages are not migrated.  Some callers will just work
around that by retrying (e.g.  memory hotplug).  There are other pfn
walkers which are simply broken though.  e.g. madvise_inject_error will
migrate head and then advances next pfn by the huge page size.
do_move_page_to_node_array, queue_pages_range (migrate_pages, mbind),
will simply split the THP before migration if the THP migration is not
supported then falls back to single page migration but it doesn't handle
tail pages if the THP migration path is not able to allocate a fresh THP
so we end up with ENOMEM and fail the whole migration which is a
questionable behavior.  Page compaction doesn't try to migrate large
pages so it should be immune.

This patch tries to unclutter the situation by moving the special THP
handling up to the migrate_pages layer where it actually belongs.  We
simply split the THP page into the existing list if unmap_and_move fails
with ENOMEM and retry.  So we will _always_ migrate all THP subpages and
specific migrate_pages users do not have to deal with this case in a
special way.

[1] http://lkml.kernel.org/r/20171121021855.50525-1-zi.yan@sent.com

Link: http://lkml.kernel.org/r/20180103082555.14592-4-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Reviewed-by: Zi Yan <zi.yan@cs.rutgers.edu>
Cc: Andrea Reale <ar@linux.vnet.ibm.com>
Cc: Anshuman Khandual <khandual@linux.vnet.ibm.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-04-11 10:28:32 -07:00
Michal Hocko 666feb21a0 mm, migrate: remove reason argument from new_page_t
No allocation callback is using this argument anymore.  new_page_node
used to use this parameter to convey node_id resp.  migration error up
to move_pages code (do_move_page_to_node_array).  The error status never
made it into the final status field and we have a better way to
communicate node id to the status field now.  All other allocation
callbacks simply ignored the argument so we can drop it finally.

[mhocko@suse.com: fix migration callback]
  Link: http://lkml.kernel.org/r/20180105085259.GH2801@dhcp22.suse.cz
[akpm@linux-foundation.org: fix alloc_misplaced_dst_page()]
[mhocko@kernel.org: fix build]
  Link: http://lkml.kernel.org/r/20180103091134.GB11319@dhcp22.suse.cz
Link: http://lkml.kernel.org/r/20180103082555.14592-3-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Reviewed-by: Zi Yan <zi.yan@cs.rutgers.edu>
Cc: Andrea Reale <ar@linux.vnet.ibm.com>
Cc: Anshuman Khandual <khandual@linux.vnet.ibm.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-04-11 10:28:32 -07:00
Mike Rapoport e8b098fc57 mm: kernel-doc: add missing parameter descriptions
Link: http://lkml.kernel.org/r/1519585191-10180-4-git-send-email-rppt@linux.vnet.ibm.com
Signed-off-by: Mike Rapoport <rppt@linux.vnet.ibm.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-04-05 21:36:27 -07:00
Pavel Tatashin d0dc12e86b mm/memory_hotplug: optimize memory hotplug
During memory hotplugging we traverse struct pages three times:

1. memset(0) in sparse_add_one_section()
2. loop in __add_section() to set do: set_page_node(page, nid); and
   SetPageReserved(page);
3. loop in memmap_init_zone() to call __init_single_pfn()

This patch removes the first two loops, and leaves only loop 3.  All
struct pages are initialized in one place, the same as it is done during
boot.

The benefits:

 - We improve memory hotplug performance because we are not evicting the
   cache several times and also reduce loop branching overhead.

 - Remove condition from hotpath in __init_single_pfn(), that was added
   in order to fix the problem that was reported by Bharata in the above
   email thread, thus also improve performance during normal boot.

 - Make memory hotplug more similar to the boot memory initialization
   path because we zero and initialize struct pages only in one
   function.

 - Simplifies memory hotplug struct page initialization code, and thus
   enables future improvements, such as multi-threading the
   initialization of struct pages in order to improve hotplug
   performance even further on larger machines.

[pasha.tatashin@oracle.com: v5]
  Link: http://lkml.kernel.org/r/20180228030308.1116-7-pasha.tatashin@oracle.com
Link: http://lkml.kernel.org/r/20180215165920.8570-7-pasha.tatashin@oracle.com
Signed-off-by: Pavel Tatashin <pasha.tatashin@oracle.com>
Reviewed-by: Ingo Molnar <mingo@kernel.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Baoquan He <bhe@redhat.com>
Cc: Bharata B Rao <bharata@linux.vnet.ibm.com>
Cc: Daniel Jordan <daniel.m.jordan@oracle.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Steven Sistare <steven.sistare@oracle.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-04-05 21:36:25 -07:00
Pavel Tatashin fc44f7f923 mm/memory_hotplug: don't read nid from struct page during hotplug
During memory hotplugging the probe routine will leave struct pages
uninitialized, the same as it is currently done during boot.  Therefore,
we do not want to access the inside of struct pages before
__init_single_page() is called during onlining.

Because during hotplug we know that pages in one memory block belong to
the same numa node, we can skip the checking.  We should keep checking
for the boot case.

[pasha.tatashin@oracle.com: s/register_new_memory()/hotplug_memory_register()]
  Link: http://lkml.kernel.org/r/20180228030308.1116-6-pasha.tatashin@oracle.com
Link: http://lkml.kernel.org/r/20180215165920.8570-6-pasha.tatashin@oracle.com
Signed-off-by: Pavel Tatashin <pasha.tatashin@oracle.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Reviewed-by: Ingo Molnar <mingo@kernel.org>
Cc: Baoquan He <bhe@redhat.com>
Cc: Bharata B Rao <bharata@linux.vnet.ibm.com>
Cc: Daniel Jordan <daniel.m.jordan@oracle.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Steven Sistare <steven.sistare@oracle.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-04-05 21:36:25 -07:00
Pavel Tatashin ba32558523 mm/memory_hotplug: enforce block size aligned range check
Patch series "optimize memory hotplug", v3.

This patchset:

 - Improves hotplug performance by eliminating a number of struct page
   traverses during memory hotplug.

 - Fixes some issues with hotplugging, where boundaries were not
   properly checked. And on x86 block size was not properly aligned with
   end of memory

 - Also, potentially improves boot performance by eliminating condition
   from __init_single_page().

 - Adds robustness by verifying that that struct pages are correctly
   poisoned when flags are accessed.

The following experiments were performed on Xeon(R) CPU E7-8895 v3 @
2.60GHz with 1T RAM:

booting in qemu with 960G of memory, time to initialize struct pages:

no-kvm:
	TRY1		TRY2
BEFORE:	39.433668	39.39705
AFTER:	36.903781	36.989329

with-kvm:
BEFORE:	10.977447	11.103164
AFTER:	10.929072	10.751885

Hotplug 896G memory:
no-kvm:
	TRY1		TRY2
BEFORE: 848.740000	846.910000
AFTER:  783.070000	786.560000

with-kvm:
	TRY1		TRY2
BEFORE: 34.410000	33.57
AFTER:	29.810000	29.580000

This patch (of 6):

Start qemu with the following arguments:

  -m 64G,slots=2,maxmem=66G -object memory-backend-ram,id=mem1,size=2G

Which: boots machine with 64G, and adds a device mem1 with 2G which can
be hotplugged later.

Also make sure that config has the following turned on:
  CONFIG_MEMORY_HOTPLUG
  CONFIG_MEMORY_HOTPLUG_DEFAULT_ONLINE
  CONFIG_ACPI_HOTPLUG_MEMORY

Using the qemu monitor hotplug the memory (make sure config has (qemu)
device_add pc-dimm,id=dimm1,memdev=mem1

The operation will fail with the following trace:

    WARNING: CPU: 0 PID: 91 at drivers/base/memory.c:205
    pages_correctly_reserved+0xe6/0x110
    Modules linked in:
    CPU: 0 PID: 91 Comm: systemd-udevd Not tainted 4.16.0-rc1_pt_master #29
    Hardware name: QEMU Standard PC (i440FX + PIIX, 1996),
    BIOS rel-1.11.0-0-g63451fca13-prebuilt.qemu-project.org 04/01/2014
    RIP: 0010:pages_correctly_reserved+0xe6/0x110
    Call Trace:
     memory_subsys_online+0x44/0xa0
     device_online+0x51/0x80
     store_mem_state+0x5e/0xe0
     kernfs_fop_write+0xfa/0x170
     __vfs_write+0x2e/0x150
     vfs_write+0xa8/0x1a0
     SyS_write+0x4d/0xb0
     do_syscall_64+0x5d/0x110
     entry_SYSCALL_64_after_hwframe+0x21/0x86
    ---[ end trace 6203bc4f1a5d30e8 ]---

The problem is detected in: drivers/base/memory.c

   static bool pages_correctly_reserved(unsigned long start_pfn)
   205                 if (WARN_ON_ONCE(!pfn_valid(pfn)))

This function loops through every section in the newly added memory
block and verifies that the first pfn is valid, meaning section exists,
has mapping (struct page array), and is online.

The block size on x86 is usually 128M, but when machine is booted with
more than 64G of memory, the block size is changed to 2G: $ cat
/sys/devices/system/memory/block_size_bytes 80000000

or

   $ dmesg | grep "block size"
   [    0.086469] x86/mm: Memory block size: 2048MB

During memory hotplug, and hotremove we verify that the range is section
size aligned, but we actually must verify that it is block size aligned,
because that is the proper unit for hotplug operations.  See:
Documentation/memory-hotplug.txt

So, when the start_pfn of newly added memory is not block size aligned,
we can get a memory block that has only part of it with properly
populated sections.

In our case the start_pfn starts from the last_pfn (end of physical
memory).

   $ dmesg | grep last_pfn
   [    0.000000] e820: last_pfn = 0x1040000 max_arch_pfn = 0x400000000

0x1040000 == 65G, and so is not 2G aligned!

The fix is to enforce that memory that is hotplugged and hotremoved is
block size aligned.

With this fix, running the above sequence yield to the following result:

   (qemu) device_add pc-dimm,id=dimm1,memdev=mem1
   Block size [0x80000000] unaligned hotplug range: start 0x1040000000,
   							size 0x80000000
   acpi PNP0C80:00: add_memory failed
   acpi PNP0C80:00: acpi_memory_enable_device() error
   acpi PNP0C80:00: Enumeration failure

Link: http://lkml.kernel.org/r/20180213193159.14606-2-pasha.tatashin@oracle.com
Signed-off-by: Pavel Tatashin <pasha.tatashin@oracle.com>
Reviewed-by: Ingo Molnar <mingo@kernel.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Baoquan He <bhe@redhat.com>
Cc: Bharata B Rao <bharata@linux.vnet.ibm.com>
Cc: Daniel Jordan <daniel.m.jordan@oracle.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Steven Sistare <steven.sistare@oracle.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-04-05 21:36:25 -07:00
Linus Torvalds 3ff1b28caa libnvdimm for 4.16
* Require struct page by default for filesystem DAX to remove a number of
   surprising failure cases.  This includes failures with direct I/O, gdb and
   fork(2).
 
 * Add support for the new Platform Capabilities Structure added to the NFIT in
   ACPI 6.2a.  This new table tells us whether the platform supports flushing
   of CPU and memory controller caches on unexpected power loss events.
 
 * Revamp vmem_altmap and dev_pagemap handling to clean up code and better
   support future future PCI P2P uses.
 
 * Deprecate the ND_IOCTL_SMART_THRESHOLD command whose payload has become
   out-of-sync with recent versions of the NVDIMM_FAMILY_INTEL spec, and
   instead rely on the generic ND_CMD_CALL approach used by the two other IOCTL
   families, NVDIMM_FAMILY_{HPE,MSFT}.
 
 * Enhance nfit_test so we can test some of the new things added in version 1.6
   of the DSM specification.  This includes testing firmware download and
   simulating the Last Shutdown State (LSS) status.
 -----BEGIN PGP SIGNATURE-----
 
 iQIcBAABAgAGBQJaeOg0AAoJEJ/BjXdf9fLBAFoQAI/IgcgJ2h9lfEpgjBRTC44t
 2p8dxwT1Ofw3Y1aR/tI8nYRXjRtAGuP4UIeRVnb1CL/N7PagJyoMGU+6hmzg+ptY
 c7cEDvw6nZOhrFwXx/xn7R53sYG8zH+UE6+jTR/PP/G4mQJfFCg4iF9R72Y7z0n7
 aurf82Kz137NPUy6dNr4V9bmPMJWAaOci9WOj5SKddR5ZSNbjoxylTwQRvre5y4r
 7HQTScEkirABOdSf1JoXTSUXCH/RC9UFFXR03ScHstGb1HjCj3KdcicVc50Q++Ub
 qsEudhE6i44PEW1Hh4Qkg6hjHMEa8qHP+ShBuRuVaUmlghYTQn66niJAYLZilwdz
 EVjE7vR+toHA5g3YCalEmYVutUEhIDkh/xfpd7vM6ZorUGJy95a2elEJs2fHBffC
 gEhnCip7FROPcK5RDNUM8hBgnG/q5wwWPQMKY+6rKDZQx3mXssCrKp2Vlx7kBwMG
 rpblkEpYjPonbLEHxsSU8yTg9Uq55ciIWgnOToffcjZvjbihi8WUVlHcwHUMPf/o
 DWElg+4qmG0Sdd4S2NeAGwTl1Ewrf2RrtUGMjHtH4OUFs1wo6ZmfrxFzzMfoZ1Od
 ko/s65v4uwtTzECh2o+XQaNsReR5YETXxmA40N/Jpo7/7twABIoZ/ASvj/3ZBYj+
 sie+u2rTod8/gQWSfHpJ
 =MIMX
 -----END PGP SIGNATURE-----

Merge tag 'libnvdimm-for-4.16' of git://git.kernel.org/pub/scm/linux/kernel/git/nvdimm/nvdimm

Pull libnvdimm updates from Ross Zwisler:

 - Require struct page by default for filesystem DAX to remove a number
   of surprising failure cases. This includes failures with direct I/O,
   gdb and fork(2).

 - Add support for the new Platform Capabilities Structure added to the
   NFIT in ACPI 6.2a. This new table tells us whether the platform
   supports flushing of CPU and memory controller caches on unexpected
   power loss events.

 - Revamp vmem_altmap and dev_pagemap handling to clean up code and
   better support future future PCI P2P uses.

 - Deprecate the ND_IOCTL_SMART_THRESHOLD command whose payload has
   become out-of-sync with recent versions of the NVDIMM_FAMILY_INTEL
   spec, and instead rely on the generic ND_CMD_CALL approach used by
   the two other IOCTL families, NVDIMM_FAMILY_{HPE,MSFT}.

 - Enhance nfit_test so we can test some of the new things added in
   version 1.6 of the DSM specification. This includes testing firmware
   download and simulating the Last Shutdown State (LSS) status.

* tag 'libnvdimm-for-4.16' of git://git.kernel.org/pub/scm/linux/kernel/git/nvdimm/nvdimm: (37 commits)
  libnvdimm, namespace: remove redundant initialization of 'nd_mapping'
  acpi, nfit: fix register dimm error handling
  libnvdimm, namespace: make min namespace size 4K
  tools/testing/nvdimm: force nfit_test to depend on instrumented modules
  libnvdimm/nfit_test: adding support for unit testing enable LSS status
  libnvdimm/nfit_test: add firmware download emulation
  nfit-test: Add platform cap support from ACPI 6.2a to test
  libnvdimm: expose platform persistence attribute for nd_region
  acpi: nfit: add persistent memory control flag for nd_region
  acpi: nfit: Add support for detect platform CPU cache flush on power loss
  device-dax: Fix trailing semicolon
  libnvdimm, btt: fix uninitialized err_lock
  dax: require 'struct page' by default for filesystem dax
  ext2: auto disable dax instead of failing mount
  ext4: auto disable dax instead of failing mount
  mm, dax: introduce pfn_t_special()
  mm: Fix devm_memremap_pages() collision handling
  mm: Fix memory size alignment in devm_memremap_pages_release()
  memremap: merge find_dev_pagemap into get_dev_pagemap
  memremap: change devm_memremap_pages interface to use struct dev_pagemap
  ...
2018-02-06 10:41:33 -08:00
Oscar Salvador 9ac9322d7c mm: memory_hotplug: remove second __nr_to_section in register_page_bootmem_info_section()
In register_page_bootmem_info_section() we call __nr_to_section() in
order to get the mem_section struct at the beginning of the function.
Since we already got it, there is no need for a second call to
__nr_to_section().

Link: http://lkml.kernel.org/r/20171207102914.GA12396@techadventures.net
Signed-off-by: Oscar Salvador <osalvador@techadventures.net>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-01-31 17:18:37 -08:00
Oscar Salvador dc88c88904 mm/memory_hotplug.c: remove unnecesary check from register_page_bootmem_info_section()
When we call register_page_bootmem_info_section() having
CONFIG_SPARSEMEM_VMEMMAP enabled, we check if the pfn is valid.

This check is redundant as we already checked this in
register_page_bootmem_info_node() before calling
register_page_bootmem_info_section(), so let's get rid of it.

Link: http://lkml.kernel.org/r/20171205143422.GA31458@techadventures.net
Signed-off-by: Oscar Salvador <osalvador@techadventures.net>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-01-31 17:18:37 -08:00
Michal Hocko 9852a72123 mm: drop hotplug lock from lru_add_drain_all()
Pulling cpu hotplug locks inside the mm core function like
lru_add_drain_all just asks for problems and the recent lockdep splat
[1] just proves this.  While the usage in that particular case might be
wrong we should avoid the locking as lru_add_drain_all() is used in many
places.  It seems that this is not all that hard to achieve actually.

We have done the same thing for drain_all_pages which is analogous by
commit a459eeb7b8 ("mm, page_alloc: do not depend on cpu hotplug locks
inside the allocator").  All we have to care about is to handle

      - the work item might be executed on a different cpu in worker from
        unbound pool so it doesn't run on pinned on the cpu

      - we have to make sure that we do not race with page_alloc_cpu_dead
        calling lru_add_drain_cpu

the first part is already handled because the worker calls lru_add_drain
which disables preemption when calling lru_add_drain_cpu on the local
cpu it is draining.  The later is true because page_alloc_cpu_dead is
called on the controlling CPU after the hotplugged CPU vanished
completely.

[1] http://lkml.kernel.org/r/089e0825eec8955c1f055c83d476@google.com

[add a cpu hotplug locking interaction as per tglx]
Link: http://lkml.kernel.org/r/20171116120535.23765-1-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Tejun Heo <tj@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Mel Gorman <mgorman@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-01-31 17:18:36 -08:00
Christoph Hellwig a99583e780 mm: pass the vmem_altmap to memmap_init_zone
Pass the vmem_altmap two levels down instead of needing a lookup.

Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
2018-01-08 11:46:23 -08:00
Christoph Hellwig 24b6d41643 mm: pass the vmem_altmap to vmemmap_free
We can just pass this on instead of having to do a radix tree lookup
without proper locking a few levels into the callchain.

Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
2018-01-08 11:46:23 -08:00
Christoph Hellwig da024512a1 mm: pass the vmem_altmap to arch_remove_memory and __remove_pages
We can just pass this on instead of having to do a radix tree lookup
without proper locking 2 levels into the callchain.

Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
2018-01-08 11:46:23 -08:00
Christoph Hellwig 7b73d978a5 mm: pass the vmem_altmap to vmemmap_populate
We can just pass this on instead of having to do a radix tree lookup
without proper locking a few levels into the callchain.

Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
2018-01-08 11:46:23 -08:00
Christoph Hellwig 24e6d5a59a mm: pass the vmem_altmap to arch_add_memory and __add_pages
We can just pass this on instead of having to do a radix tree lookup
without proper locking 2 levels into the callchain.

Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
2018-01-08 11:46:23 -08:00
Christoph Hellwig 55ce6e23eb mm: don't export __add_pages
This function isn't used by any modules, and is only to be called
from core MM code.  This includes the calls for the add_pages wrapper
that might be inlined.

Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
2018-01-08 11:46:23 -08:00
Fan Du 1b7176aea0 memory hotplug: fix comments when adding section
Here, pfn_to_node should be page_to_nid.

Link: http://lkml.kernel.org/r/1510735205-22540-1-git-send-email-fan.du@intel.com
Signed-off-by: Fan Du <fan.du@intel.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-11-15 18:21:07 -08:00
Michal Hocko ecde0f3e7f mm, memory_hotplug: remove timeout from __offline_memory
We have a hardcoded 120s timeout after which the memory offline fails
basically since the hot remove has been introduced.  This is essentially
a policy implemented in the kernel.  Moreover there is no way to adjust
the timeout and so we are sometimes facing memory offline failures if
the system is under a heavy memory pressure or very intensive CPU
workload on large machines.

It is not very clear what purpose the timeout actually serves.  The
offline operation is interruptible by a signal so if userspace wants
some timeout based termination this can be done trivially by sending a
signal.

If there is a strong usecase to do this from the kernel then we should
do it properly and have a it tunable from the userspace with the timeout
disabled by default along with the explanation who uses it and for what
purporse.

Link: http://lkml.kernel.org/r/20170918070834.13083-3-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Reza Arbab <arbab@linux.vnet.ibm.com>
Cc: Yasuaki Ishimatsu <yasu.isimatu@gmail.com>
Cc: Xishi Qiu <qiuxishi@huawei.com>
Cc: Igor Mammedov <imammedo@redhat.com>
Cc: Vitaly Kuznetsov <vkuznets@redhat.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-11-15 18:21:02 -08:00
Michal Hocko 72b39cfc4d mm, memory_hotplug: do not fail offlining too early
Patch series "mm, memory_hotplug: redefine memory offline retry logic", v2.

While testing memory hotplug on a large 4TB machine we have noticed that
memory offlining is just too eager to fail.  The primary reason is that
the retry logic is just too easy to give up.  We have 4 ways out of the
offline

	- we have a permanent failure (isolation or memory notifiers fail,
	  or hugetlb pages cannot be dropped)
	- userspace sends a signal
	- a hardcoded 120s timeout expires
	- page migration fails 5 times

This is way too convoluted and it doesn't scale very well.  We have seen
both temporary migration failures as well as 120s being triggered.
After removing those restrictions we were able to pass stress testing
during memory hot remove without any other negative side effects
observed.  Therefore I suggest dropping both hard coded policies.  I
couldn't have found any specific reason for them in the changelog.  I
neither didn't get any response [1] from Kamezawa.  If we need some
upper bound - e.g.  timeout based - then we should have a proper and
user defined policy for that.  In any case there should be a clear use
case when introducing it.

This patch (of 2):

Memory offlining can fail too eagerly under heavy memory pressure.

  page:ffffea22a646bd00 count:255 mapcount:252 mapping:ffff88ff926c9f38 index:0x3
  flags: 0x9855fe40010048(uptodate|active|mappedtodisk)
  page dumped because: isolation failed
  page->mem_cgroup:ffff8801cd662000
  memory offlining [mem 0x18b580000000-0x18b5ffffffff] failed

Isolation has failed here because the page is not on LRU.  Most probably
because it was on the pcp LRU cache or it has been removed from the LRU
already but it hasn't been freed yet.  In both cases the page doesn't
look non-migrable so retrying more makes sense.

__offline_pages seems rather cluttered when it comes to the retry logic.
We have 5 retries at maximum and a timeout.  We could argue whether the
timeout makes sense but failing just because of a race when somebody
isoltes a page from LRU or puts it on a pcp LRU lists is just wrong.  It
only takes it to race with a process which unmaps some pages and remove
them from the LRU list and we can fail the whole offline because of
something that is a temporary condition and actually not harmful for the
offline.

Please note that unmovable pages should be already excluded during
start_isolate_page_range.  We could argue that has_unmovable_pages is
racy and MIGRATE_MOVABLE check doesn't provide any hard guarantee either
but kernel zones (aka < ZONE_MOVABLE) will very likely detect unmovable
pages in most cases and movable zone shouldn't contain unmovable pages
at all.  Some of those pages might be pinned but not for ever because
that would be a bug on its own.  In any case the context is still
interruptible and so the userspace can easily bail out when the
operation takes too long.  This is certainly better behavior than a
hardcoded retry loop which is racy.

Fix this by removing the max retry count and only rely on the timeout
resp. interruption by a signal from the userspace.  Also retry rather
than fail when check_pages_isolated sees some !free pages because those
could be a result of the race as well.

Link: http://lkml.kernel.org/r/20170918070834.13083-2-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Reza Arbab <arbab@linux.vnet.ibm.com>
Cc: Yasuaki Ishimatsu <yasu.isimatu@gmail.com>
Cc: Xishi Qiu <qiuxishi@huawei.com>
Cc: Igor Mammedov <imammedo@redhat.com>
Cc: Vitaly Kuznetsov <vkuznets@redhat.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-11-15 18:21:02 -08:00
YASUAKI ISHIMATSU d09b0137d2 mm/memory_hotplug: define find_{smallest|biggest}_section_pfn as unsigned long
find_{smallest|biggest}_section_pfn()s find the smallest/biggest section
and return the pfn of the section.  But the functions are defined as int.
So the functions always return 0x00000000 - 0xffffffff.  It means if
memory address is over 16TB, the functions does not work correctly.

To handle 64 bit value, the patch defines
find_{smallest|biggest}_section_pfn() as unsigned long.

Fixes: 815121d2b5 ("memory_hotplug: clear zone when removing the memory")
Link: http://lkml.kernel.org/r/d9d5593a-d0a4-c4be-ab08-493df59a85c6@gmail.com
Signed-off-by: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Xishi Qiu <qiuxishi@huawei.com>
Cc: Reza Arbab <arbab@linux.vnet.ibm.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-10-03 17:54:26 -07:00
YASUAKI ISHIMATSU 1dd2bfc868 mm/memory_hotplug: change pfn_to_section_nr/section_nr_to_pfn macro to inline function
pfn_to_section_nr() and section_nr_to_pfn() are defined as macro.
pfn_to_section_nr() has no issue even if it is defined as macro.  But
section_nr_to_pfn() has overflow issue if sec is defined as int.

section_nr_to_pfn() just shifts sec by PFN_SECTION_SHIFT.  If sec is
defined as unsigned long, section_nr_to_pfn() returns pfn as 64 bit value.
But if sec is defined as int, section_nr_to_pfn() returns pfn as 32 bit
value.

__remove_section() calculates start_pfn using section_nr_to_pfn() and
scn_nr defined as int.  So if hot-removed memory address is over 16TB,
overflow issue occurs and section_nr_to_pfn() does not calculate correct
pfn.

To make callers use proper arg, the patch changes the macros to inline
functions.

Fixes: 815121d2b5 ("memory_hotplug: clear zone when removing the memory")
Link: http://lkml.kernel.org/r/e643a387-e573-6bbf-d418-c60c8ee3d15e@gmail.com
Signed-off-by: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Xishi Qiu <qiuxishi@huawei.com>
Cc: Reza Arbab <arbab@linux.vnet.ibm.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-10-03 17:54:25 -07:00
Michal Hocko f64ac5e6e3 mm, memory_hotplug: add scheduling point to __add_pages
Patch series "mm, memory_hotplug: fix few soft lockups in memory
hotadd".

Johannes has noticed few soft lockups when adding a large nvdimm device.
All of them were caused by a long loop without any explicit cond_resched
which is a problem for !PREEMPT kernels.

The fix is quite straightforward.  Just make sure that cond_resched gets
called from time to time.

This patch (of 3):

__add_pages gets a pfn range to add and there is no upper bound for a
single call.  This is usually a memory block aligned size for the
regular memory hotplug - smaller sizes are usual for memory balloning
drivers, or the whole NUMA node for physical memory online.  There is no
explicit scheduling point in that code path though.

This can lead to long latencies while __add_pages is executed and we
have even seen a soft lockup report during nvdimm initialization with
!PREEMPT kernel

  NMI watchdog: BUG: soft lockup - CPU#11 stuck for 23s! [kworker/u641:3:832]
  [...]
  Workqueue: events_unbound async_run_entry_fn
  task: ffff881809270f40 ti: ffff881809274000 task.ti: ffff881809274000
  RIP: _raw_spin_unlock_irqrestore+0x11/0x20
  RSP: 0018:ffff881809277b10  EFLAGS: 00000286
  [...]
  Call Trace:
    sparse_add_one_section+0x13d/0x18e
    __add_pages+0x10a/0x1d0
    arch_add_memory+0x4a/0xc0
    devm_memremap_pages+0x29d/0x430
    pmem_attach_disk+0x2fd/0x3f0 [nd_pmem]
    nvdimm_bus_probe+0x64/0x110 [libnvdimm]
    driver_probe_device+0x1f7/0x420
    bus_for_each_drv+0x52/0x80
    __device_attach+0xb0/0x130
    bus_probe_device+0x87/0xa0
    device_add+0x3fc/0x5f0
    nd_async_device_register+0xe/0x40 [libnvdimm]
    async_run_entry_fn+0x43/0x150
    process_one_work+0x14e/0x410
    worker_thread+0x116/0x490
    kthread+0xc7/0xe0
    ret_from_fork+0x3f/0x70
  DWARF2 unwinder stuck at ret_from_fork+0x3f/0x70

Fix this by adding cond_resched once per each memory section in the
given pfn range.  Each section is constant amount of work which itself
is not too expensive but many of them will just add up.

Link: http://lkml.kernel.org/r/20170918121410.24466-2-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Reported-by: Johannes Thumshirn <jthumshirn@suse.de>
Tested-by: Johannes Thumshirn <jthumshirn@suse.de>
Cc: Dan Williams <dan.j.williams@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-10-03 17:54:25 -07:00
Jérôme Glisse 5042db43cc mm/ZONE_DEVICE: new type of ZONE_DEVICE for unaddressable memory
HMM (heterogeneous memory management) need struct page to support
migration from system main memory to device memory.  Reasons for HMM and
migration to device memory is explained with HMM core patch.

This patch deals with device memory that is un-addressable memory (ie CPU
can not access it).  Hence we do not want those struct page to be manage
like regular memory.  That is why we extend ZONE_DEVICE to support
different types of memory.

A persistent memory type is define for existing user of ZONE_DEVICE and a
new device un-addressable type is added for the un-addressable memory
type.  There is a clear separation between what is expected from each
memory type and existing user of ZONE_DEVICE are un-affected by new
requirement and new use of the un-addressable type.  All specific code
path are protect with test against the memory type.

Because memory is un-addressable we use a new special swap type for when a
page is migrated to device memory (this reduces the number of maximum swap
file).

The main two additions beside memory type to ZONE_DEVICE is two callbacks.
First one, page_free() is call whenever page refcount reach 1 (which
means the page is free as ZONE_DEVICE page never reach a refcount of 0).
This allow device driver to manage its memory and associated struct page.

The second callback page_fault() happens when there is a CPU access to an
address that is back by a device page (which are un-addressable by the
CPU).  This callback is responsible to migrate the page back to system
main memory.  Device driver can not block migration back to system memory,
HMM make sure that such page can not be pin into device memory.

If device is in some error condition and can not migrate memory back then
a CPU page fault to device memory should end with SIGBUS.

[arnd@arndb.de: fix warning]
  Link: http://lkml.kernel.org/r/20170823133213.712917-1-arnd@arndb.de
Link: http://lkml.kernel.org/r/20170817000548.32038-8-jglisse@redhat.com
Signed-off-by: Jérôme Glisse <jglisse@redhat.com>
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Acked-by: Dan Williams <dan.j.williams@intel.com>
Cc: Ross Zwisler <ross.zwisler@linux.intel.com>
Cc: Aneesh Kumar <aneesh.kumar@linux.vnet.ibm.com>
Cc: Balbir Singh <bsingharora@gmail.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: David Nellans <dnellans@nvidia.com>
Cc: Evgeny Baskakov <ebaskakov@nvidia.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Mark Hairgrove <mhairgrove@nvidia.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Sherry Cheung <SCheung@nvidia.com>
Cc: Subhash Gutti <sgutti@nvidia.com>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Bob Liu <liubo95@huawei.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-09-08 18:26:46 -07:00
Naoya Horiguchi 8135d8926c mm: memory_hotplug: memory hotremove supports thp migration
This patch enables thp migration for memory hotremove.

Link: http://lkml.kernel.org/r/20170717193955.20207-11-zi.yan@sent.com
Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Signed-off-by: Zi Yan <zi.yan@cs.rutgers.edu>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Anshuman Khandual <khandual@linux.vnet.ibm.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: David Nellans <dnellans@nvidia.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Michal Hocko <mhocko@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-09-08 18:26:45 -07:00
Michal Hocko b93e0f329e mm, memory_hotplug: get rid of zonelists_mutex
zonelists_mutex was introduced by commit 4eaf3f6439 ("mem-hotplug: fix
potential race while building zonelist for new populated zone") to
protect zonelist building from races.  This is no longer needed though
because both memory online and offline are fully serialized.  New users
have grown since then.

Notably setup_per_zone_wmarks wants to prevent from races between memory
hotplug, khugepaged setup and manual min_free_kbytes update via sysctl
(see cfd3da1e49 ("mm: Serialize access to min_free_kbytes").  Let's
add a private lock for that purpose.  This will not prevent from seeing
halfway through memory hotplug operation but that shouldn't be a big
deal becuse memory hotplug will update watermarks explicitly so we will
eventually get a full picture.  The lock just makes sure we won't race
when updating watermarks leading to weird results.

Also __build_all_zonelists manipulates global data so add a private lock
for it as well.  This doesn't seem to be necessary today but it is more
robust to have a lock there.

While we are at it make sure we document that memory online/offline
depends on a full serialization either via mem_hotplug_begin() or
device_lock.

Link: http://lkml.kernel.org/r/20170721143915.14161-9-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Joonsoo Kim <js1304@gmail.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Shaohua Li <shaohua.li@intel.com>
Cc: Toshi Kani <toshi.kani@hpe.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Haicheng Li <haicheng.li@linux.intel.com>
Cc: Wu Fengguang <fengguang.wu@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-09-06 17:27:26 -07:00
Michal Hocko 34ad129657 mm, memory_hotplug: remove explicit build_all_zonelists from try_online_node
try_online_node calls hotadd_new_pgdat which already calls
build_all_zonelists.  So the additional call is redundant.  Even though
hotadd_new_pgdat will only initialize zonelists of the new node this is
the right thing to do because such a node doesn't have any memory so
other zonelists would ignore all the zones from this node anyway.

Link: http://lkml.kernel.org/r/20170721143915.14161-6-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Toshi Kani <toshi.kani@hpe.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Joonsoo Kim <js1304@gmail.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Shaohua Li <shaohua.li@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-09-06 17:27:26 -07:00
Michal Hocko 72675e131e mm, memory_hotplug: drop zone from build_all_zonelists
build_all_zonelists gets a zone parameter to initialize zone's pagesets.
There is only a single user which gives a non-NULL zone parameter and
that one doesn't really need the rest of the build_all_zonelists (see
commit 6dcd73d701 ("memory-hotplug: allocate zone's pcp before
onlining pages")).

Therefore remove setup_zone_pageset from build_all_zonelists and call it
from its only user directly.  This will also remove a pointless zonlists
rebuilding which is always good.

Link: http://lkml.kernel.org/r/20170721143915.14161-5-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Joonsoo Kim <js1304@gmail.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Shaohua Li <shaohua.li@intel.com>
Cc: Toshi Kani <toshi.kani@hpe.com>
Cc: Wen Congyang <wency@cn.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-09-06 17:27:25 -07:00
Michal Hocko c6f03e2903 mm, memory_hotplug: remove zone restrictions
Historically we have enforced that any kernel zone (e.g ZONE_NORMAL) has
to precede the Movable zone in the physical memory range.  The purpose
of the movable zone is, however, not bound to any physical memory
restriction.  It merely defines a class of migrateable and reclaimable
memory.

There are users (e.g.  CMA) who might want to reserve specific physical
memory ranges for their own purpose.  Moreover our pfn walkers have to
be prepared for zones overlapping in the physical range already because
we do support interleaving NUMA nodes and therefore zones can interleave
as well.  This means we can allow each memory block to be associated
with a different zone.

Loosen the current onlining semantic and allow explicit onlining type on
any memblock.  That means that online_{kernel,movable} will be allowed
regardless of the physical address of the memblock as long as it is
offline of course.  This might result in moveble zone overlapping with
other kernel zones.  Default onlining then becomes a bit tricky but
still sensible.  echo online > memoryXY/state will online the given
block to

	1) the default zone if the given range is outside of any zone
	2) the enclosing zone if such a zone doesn't interleave with
	   any other zone
        3) the default zone if more zones interleave for this range

where default zone is movable zone only if movable_node is enabled
otherwise it is a kernel zone.

Here is an example of the semantic with (movable_node is not present but
it work in an analogous way). We start with following memblocks, all of
them offline:

  memory34/valid_zones:Normal Movable
  memory35/valid_zones:Normal Movable
  memory36/valid_zones:Normal Movable
  memory37/valid_zones:Normal Movable
  memory38/valid_zones:Normal Movable
  memory39/valid_zones:Normal Movable
  memory40/valid_zones:Normal Movable
  memory41/valid_zones:Normal Movable

Now, we online block 34 in default mode and block 37 as movable

  root@test1:/sys/devices/system/node/node1# echo online > memory34/state
  root@test1:/sys/devices/system/node/node1# echo online_movable > memory37/state
  memory34/valid_zones:Normal
  memory35/valid_zones:Normal Movable
  memory36/valid_zones:Normal Movable
  memory37/valid_zones:Movable
  memory38/valid_zones:Normal Movable
  memory39/valid_zones:Normal Movable
  memory40/valid_zones:Normal Movable
  memory41/valid_zones:Normal Movable

As we can see all other blocks can still be onlined both into Normal and
Movable zones and the Normal is default because the Movable zone spans
only block37 now.

  root@test1:/sys/devices/system/node/node1# echo online_movable > memory41/state
  memory34/valid_zones:Normal
  memory35/valid_zones:Normal Movable
  memory36/valid_zones:Normal Movable
  memory37/valid_zones:Movable
  memory38/valid_zones:Movable Normal
  memory39/valid_zones:Movable Normal
  memory40/valid_zones:Movable Normal
  memory41/valid_zones:Movable

Now the default zone for blocks 37-41 has changed because movable zone
spans that range.

  root@test1:/sys/devices/system/node/node1# echo online_kernel > memory39/state
  memory34/valid_zones:Normal
  memory35/valid_zones:Normal Movable
  memory36/valid_zones:Normal Movable
  memory37/valid_zones:Movable
  memory38/valid_zones:Normal Movable
  memory39/valid_zones:Normal
  memory40/valid_zones:Movable Normal
  memory41/valid_zones:Movable

Note that the block 39 now belongs to the zone Normal and so block38
falls into Normal by default as well.

For completness

  root@test1:/sys/devices/system/node/node1# for i in memory[34]?
  do
	echo online > $i/state 2>/dev/null
  done

  memory34/valid_zones:Normal
  memory35/valid_zones:Normal
  memory36/valid_zones:Normal
  memory37/valid_zones:Movable
  memory38/valid_zones:Normal
  memory39/valid_zones:Normal
  memory40/valid_zones:Movable
  memory41/valid_zones:Movable

Implementation wise the change is quite straightforward.  We can get rid
of allow_online_pfn_range altogether.  online_pages allows only offline
nodes already.  The original default_zone_for_pfn will become
default_kernel_zone_for_pfn.  New default_zone_for_pfn implements the
above semantic.  zone_for_pfn_range is slightly reorganized to implement
kernel and movable online type explicitly and MMOP_ONLINE_KEEP becomes a
catch all default behavior.

Link: http://lkml.kernel.org/r/20170714121233.16861-3-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Acked-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Reza Arbab <arbab@linux.vnet.ibm.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Yasuaki Ishimatsu <yasu.isimatu@gmail.com>
Cc: Xishi Qiu <qiuxishi@huawei.com>
Cc: Kani Toshimitsu <toshi.kani@hpe.com>
Cc: <slaoub@gmail.com>
Cc: Daniel Kiper <daniel.kiper@oracle.com>
Cc: Igor Mammedov <imammedo@redhat.com>
Cc: Vitaly Kuznetsov <vkuznets@redhat.com>
Cc: Wei Yang <richard.weiyang@gmail.com>
Cc: <linux-api@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-09-06 17:27:25 -07:00
Michal Hocko e5e6893026 mm, memory_hotplug: display allowed zones in the preferred ordering
Prior to commit f1dd2cd13c ("mm, memory_hotplug: do not associate
hotadded memory to zones until online") we used to allow to change the
valid zone types of a memory block if it is adjacent to a different zone
type.

This fact was reflected in memoryNN/valid_zones by the ordering of
printed zones.  The first one was default (echo online > memoryNN/state)
and the other one could be onlined explicitly by online_{movable,kernel}.

This behavior was removed by the said patch and as such the ordering was
not all that important.  In most cases a kernel zone would be default
anyway.  The only exception is movable_node handled by "mm,
memory_hotplug: support movable_node for hotpluggable nodes".

Let's reintroduce this behavior again because later patch will remove
the zone overlap restriction and so user will be allowed to online
kernel resp.  movable block regardless of its placement.  Original
behavior will then become significant again because it would be
non-trivial for users to see what is the default zone to online into.

Implementation is really simple.  Pull out zone selection out of
move_pfn_range into zone_for_pfn_range helper and use it in
show_valid_zones to display the zone for default onlining and then both
kernel and movable if they are allowed.  Default online zone is not
duplicated.

Link: http://lkml.kernel.org/r/20170714121233.16861-2-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Acked-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Reza Arbab <arbab@linux.vnet.ibm.com>
Cc: Yasuaki Ishimatsu <yasu.isimatu@gmail.com>
Cc: Xishi Qiu <qiuxishi@huawei.com>
Cc: Kani Toshimitsu <toshi.kani@hpe.com>
Cc: <slaoub@gmail.com>
Cc: Daniel Kiper <daniel.kiper@oracle.com>
Cc: Igor Mammedov <imammedo@redhat.com>
Cc: Vitaly Kuznetsov <vkuznets@redhat.com>
Cc: Wei Yang <richard.weiyang@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-09-06 17:27:25 -07:00
Thomas Gleixner 3f906ba236 mm/memory-hotplug: switch locking to a percpu rwsem
Andrey reported a potential deadlock with the memory hotplug lock and
the cpu hotplug lock.

The reason is that memory hotplug takes the memory hotplug lock and then
calls stop_machine() which calls get_online_cpus().  That's the reverse
lock order to get_online_cpus(); get_online_mems(); in mm/slub_common.c

The problem has been there forever.  The reason why this was never
reported is that the cpu hotplug locking had this homebrewn recursive
reader writer semaphore construct which due to the recursion evaded the
full lock dep coverage.  The memory hotplug code copied that construct
verbatim and therefor has similar issues.

Three steps to fix this:

1) Convert the memory hotplug locking to a per cpu rwsem so the
   potential issues get reported proper by lockdep.

2) Lock the online cpus in mem_hotplug_begin() before taking the memory
   hotplug rwsem and use stop_machine_cpuslocked() in the page_alloc
   code to avoid recursive locking.

3) The cpu hotpluck locking in #2 causes a recursive locking of the cpu
   hotplug lock via __offline_pages() -> lru_add_drain_all(). Solve this
   by invoking lru_add_drain_all_cpuslocked() instead.

Link: http://lkml.kernel.org/r/20170704093421.506836322@linutronix.de
Reported-by: Andrey Ryabinin <aryabinin@virtuozzo.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-07-10 16:32:33 -07:00
John Hubbard a52149f129 mm/memory_hotplug.c: remove unused local zone_type from __remove_zone()
__remove_zone() sets up up zone_type, but never uses it for anything.
This does not cause a warning, due to the (necessary) use of
-Wno-unused-but-set-variable.  However, it's noise, so just delete it.

Link: http://lkml.kernel.org/r/20170624043421.24465-2-jhubbard@nvidia.com
Signed-off-by: John Hubbard <jhubbard@nvidia.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-07-10 16:32:32 -07:00
Michal Hocko 8b91323889 mm: unify new_node_page and alloc_migrate_target
Commit 394e31d2ce ("mem-hotplug: alloc new page from a nearest
neighbor node when mem-offline") has duplicated a large part of
alloc_migrate_target with some hotplug specific special casing.

To be more precise it tried to enfore the allocation from a different
node than the original page.  As a result the two function diverged in
their shared logic, e.g.  the hugetlb allocation strategy.

Let's unify the two and express different NUMA requirements by the given
nodemask.  new_node_page will simply exclude the node it doesn't care
about and alloc_migrate_target will use all the available nodes.
alloc_migrate_target will then learn to migrate hugetlb pages more
sanely and use preallocated pool when possible.

Please note that alloc_migrate_target used to call alloc_page resp.
alloc_pages_current so the memory policy of the current context which is
quite strange when we consider that it is used in the context of
alloc_contig_range which just tries to migrate pages which stand in the
way.

Link: http://lkml.kernel.org/r/20170608074553.22152-4-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Xishi Qiu <qiuxishi@huawei.com>
Cc: zhong jiang <zhongjiang@huawei.com>
Cc: Joonsoo Kim <js1304@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-07-10 16:32:31 -07:00
Michal Hocko 4db9b2efe9 hugetlb, memory_hotplug: prefer to use reserved pages for migration
new_node_page will try to use the origin's next NUMA node as the
migration destination for hugetlb pages.  If such a node doesn't have
any preallocated pool it falls back to __alloc_buddy_huge_page_no_mpol
to allocate a surplus page instead.  This is quite subotpimal for any
configuration when hugetlb pages are no distributed to all NUMA nodes
evenly.  Say we have a hotplugable node 4 and spare hugetlb pages are
node 0

  /sys/devices/system/node/node0/hugepages/hugepages-2048kB/nr_hugepages:10000
  /sys/devices/system/node/node1/hugepages/hugepages-2048kB/nr_hugepages:0
  /sys/devices/system/node/node2/hugepages/hugepages-2048kB/nr_hugepages:0
  /sys/devices/system/node/node3/hugepages/hugepages-2048kB/nr_hugepages:0
  /sys/devices/system/node/node4/hugepages/hugepages-2048kB/nr_hugepages:10000
  /sys/devices/system/node/node5/hugepages/hugepages-2048kB/nr_hugepages:0
  /sys/devices/system/node/node6/hugepages/hugepages-2048kB/nr_hugepages:0
  /sys/devices/system/node/node7/hugepages/hugepages-2048kB/nr_hugepages:0

Now we consume the whole pool on node 4 and try to offline this node.
All the allocated pages should be moved to node0 which has enough
preallocated pages to hold them.  With the current implementation
offlining very likely fails because hugetlb allocations during runtime
are much less reliable.

Fix this by reusing the nodemask which excludes migration source and try
to find a first node which has a page in the preallocated pool first and
fall back to __alloc_buddy_huge_page_no_mpol only when the whole pool is
consumed.

[akpm@linux-foundation.org: remove bogus arg from alloc_huge_page_nodemask() stub]
Link: http://lkml.kernel.org/r/20170608074553.22152-3-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Xishi Qiu <qiuxishi@huawei.com>
Cc: zhong jiang <zhongjiang@huawei.com>
Cc: Joonsoo Kim <js1304@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-07-10 16:32:31 -07:00
Michal Hocko 7f252f277b mm, memory_hotplug: simplify empty node mask handling in new_node_page
new_node_page tries to allocate the target page on a different NUMA node
than the source page.  This makes sense in most cases during the hotplug
because we are likely to offline the whole numa node.  But there are
cases where there are no other nodes to fallback (e.g.  when offlining
parts of the only existing node) and we have to fallback to allocating
from the source node.  The current code does that but it can be
simplified by checking the nmask and updating it before we even try to
allocate rather than special casing it.

This patch shouldn't introduce any functional change.

Link: http://lkml.kernel.org/r/20170608074553.22152-2-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Xishi Qiu <qiuxishi@huawei.com>
Cc: zhong jiang <zhongjiang@huawei.com>
Cc: Joonsoo Kim <js1304@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-07-10 16:32:31 -07:00
Michal Hocko 9f123ab544 mm, memory_hotplug: support movable_node for hotpluggable nodes
movable_node kernel parameter allows making hotpluggable NUMA nodes to
put all the hotplugable memory into movable zone which allows more or
less reliable memory hotremove.  At least this is the case for the NUMA
nodes present during the boot (see find_zone_movable_pfns_for_nodes).

This is not the case for the memory hotplug, though.

	echo online > /sys/devices/system/memory/memoryXYZ/state

will default to a kernel zone (usually ZONE_NORMAL) unless the
particular memblock is already in the movable zone range which is not
the case normally when onlining the memory from the udev rule context
for a freshly hotadded NUMA node.  The only option currently is to have
a special udev rule to echo online_movable to all memblocks belonging to
such a node which is rather clumsy.  Not to mention this is inconsistent
as well because what ended up in the movable zone during the boot will
end up in a kernel zone after hotremove & hotadd without special care.

It would be nice to reuse memblock_is_hotpluggable but the runtime
hotplug doesn't have that information available because the boot and
hotplug paths are not shared and it would be really non trivial to make
them use the same code path because the runtime hotplug doesn't play
with the memblock allocator at all.

Teach move_pfn_range that MMOP_ONLINE_KEEP can use the movable zone if
movable_node is enabled and the range doesn't overlap with the existing
normal zone.  This should provide a reasonable default onlining
strategy.

Strictly speaking the semantic is not identical with the boot time
initialization because find_zone_movable_pfns_for_nodes covers only the
hotplugable range as described by the BIOS/FW.  From my experience this
is usually a full node though (except for Node0 which is special and
never goes away completely).  If this turns out to be a problem in the
real life we can tweak the code to store hotplug flag into memblocks but
let's keep this simple now.

Link: http://lkml.kernel.org/r/20170612111227.GI7476@dhcp22.suse.cz
Signed-off-by: Michal Hocko <mhocko@suse.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Reza Arbab <arbab@linux.vnet.ibm.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Yasuaki Ishimatsu <yasu.isimatu@gmail.com>
Cc: <qiuxishi@huawei.com>
Cc: Kani Toshimitsu <toshi.kani@hpe.com>
Cc: <slaoub@gmail.com>
Cc: Joonsoo Kim <js1304@gmail.com>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Daniel Kiper <daniel.kiper@oracle.com>
Cc: Igor Mammedov <imammedo@redhat.com>
Cc: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-07-10 16:32:31 -07:00
Gustavo A. R. Silva dbac61a3f2 mm/memory_hotplug.c: add NULL check to avoid potential NULL pointer dereference
The NULL check at line 1226: if (!pgdat), implies that pointer pgdat
might be NULL.

rollback_node_hotadd() dereferences this pointer.  Add NULL check to
avoid a potential NULL pointer dereference.

Addresses-Coverity-ID: 1369133
Link: http://lkml.kernel.org/r/20170530212436.GA6195@embeddedgus
Signed-off-by: Gustavo A. R. Silva <garsilva@embeddedor.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-07-10 16:32:30 -07:00
Michal Hocko 4932381ee2 mm, memory_hotplug: move movable_node to the hotplug proper
movable_node_is_enabled is defined in memblock proper while it is
initialized from the memory hotplug proper.  This is quite messy and it
makes a dependency between the two so move movable_node along with the
helper functions to memory_hotplug.

To make it more entertaining the kernel parameter is ignored unless
CONFIG_HAVE_MEMBLOCK_NODE_MAP=y because we do not have the node
information for each memblock otherwise.  So let's warn when the option
is disabled.

Link: http://lkml.kernel.org/r/20170529114141.536-4-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Acked-by: Reza Arbab <arbab@linux.vnet.ibm.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Jerome Glisse <jglisse@redhat.com>
Cc: Yasuaki Ishimatsu <yasu.isimatu@gmail.com>
Cc: Xishi Qiu <qiuxishi@huawei.com>
Cc: Kani Toshimitsu <toshi.kani@hpe.com>
Cc: Chen Yucong <slaoub@gmail.com>
Cc: Joonsoo Kim <js1304@gmail.com>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Daniel Kiper <daniel.kiper@oracle.com>
Cc: Igor Mammedov <imammedo@redhat.com>
Cc: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-07-06 16:24:35 -07:00
Michal Hocko f70029bbaa mm, memory_hotplug: drop CONFIG_MOVABLE_NODE
Commit 20b2f52b73 ("numa: add CONFIG_MOVABLE_NODE for
movable-dedicated node") has introduced CONFIG_MOVABLE_NODE without a
good explanation on why it is actually useful.

It makes a lot of sense to make movable node semantic opt in but we
already have that because the feature has to be explicitly enabled on
the kernel command line.  A config option on top only makes the
configuration space larger without a good reason.  It also adds an
additional ifdefery that pollutes the code.

Just drop the config option and make it de-facto always enabled.  This
shouldn't introduce any change to the semantic.

Link: http://lkml.kernel.org/r/20170529114141.536-3-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Acked-by: Reza Arbab <arbab@linux.vnet.ibm.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Jerome Glisse <jglisse@redhat.com>
Cc: Yasuaki Ishimatsu <yasu.isimatu@gmail.com>
Cc: Xishi Qiu <qiuxishi@huawei.com>
Cc: Kani Toshimitsu <toshi.kani@hpe.com>
Cc: Chen Yucong <slaoub@gmail.com>
Cc: Joonsoo Kim <js1304@gmail.com>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Daniel Kiper <daniel.kiper@oracle.com>
Cc: Igor Mammedov <imammedo@redhat.com>
Cc: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-07-06 16:24:35 -07:00
Michal Hocko 57c0a17238 mm, memory_hotplug: drop artificial restriction on online/offline
Patch series "remove CONFIG_MOVABLE_NODE".

I am continuing to clean up the memory hotplug code and
CONFIG_MOVABLE_NODE seems dubious at best.  The following two patches
simply removes the flag and make it de-facto always enabled.

The current semantic of the config option is twofold 1) it automatically
binds hotplugable nodes to have memory in zone_movable by default when
movable_node is enabled 2) forbids memory hotplug to online all the
memory as movable when !CONFIG_MOVABLE_NODE.

The later restriction is quite dubious because there is no clear cut of
how much normal memory do we need for a reasonable system operation.  A
single memory block which is sufficient to allow further movable onlines
is far from sufficient (e.g a node with >2GB and memblocks 128MB will
fill up this zone with struct pages leaving nothing for other
allocations).  Removing the config option will not only reduce the
configuration space it also removes quite some code.

The semantic of the movable_node command line parameter is preserved.

The first patch removes the restriction mentioned above and the second
one simply removes all the CONFIG_MOVABLE_NODE related stuff.  The last
patch moves movable_node flag handling to memory_hotplug proper where it
belongs.

[1] http://lkml.kernel.org/r/20170524122411.25212-1-mhocko@kernel.org

This patch (of 3):

Commit 74d42d8fe1 ("memory_hotplug: ensure every online node has
NORMAL memory") has introduced a restriction that every numa node has to
have at least some memory in !movable zones before a first movable
memory can be onlined if !CONFIG_MOVABLE_NODE.

Likewise can_offline_normal checks the amount of normal memory in
!movable zones and it disallows to offline memory if there is no normal
memory left with a justification that "memory-management acts bad when
we have nodes which is online but don't have any normal memory".

While it is true that not having _any_ memory for kernel allocations on
a NUMA node is far from great and such a node would be quite subotimal
because all kernel allocations will have to fallback to another NUMA
node but there is no reason to disallow such a configuration in
principle.

Besides that there is not really a big difference to have one memblock
for ZONE_NORMAL available or none.  With 128MB size memblocks the system
might trash on the kernel allocations requests anyway.  It is really
hard to draw a line on how much normal memory is really sufficient so we
have to rely on administrator to configure system sanely therefore drop
the artificial restriction and remove can_offline_normal and
can_online_high_movable altogether.

Link: http://lkml.kernel.org/r/20170529114141.536-2-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Reza Arbab <arbab@linux.vnet.ibm.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Jerome Glisse <jglisse@redhat.com>
Cc: Yasuaki Ishimatsu <yasu.isimatu@gmail.com>
Cc: Xishi Qiu <qiuxishi@huawei.com>
Cc: Kani Toshimitsu <toshi.kani@hpe.com>
Cc: Chen Yucong <slaoub@gmail.com>
Cc: Joonsoo Kim <js1304@gmail.com>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Daniel Kiper <daniel.kiper@oracle.com>
Cc: Igor Mammedov <imammedo@redhat.com>
Cc: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-07-06 16:24:35 -07:00
Vlastimil Babka 04ec6264f2 mm, page_alloc: pass preferred nid instead of zonelist to allocator
The main allocator function __alloc_pages_nodemask() takes a zonelist
pointer as one of its parameters.  All of its callers directly or
indirectly obtain the zonelist via node_zonelist() using a preferred
node id and gfp_mask.  We can make the code a bit simpler by doing the
zonelist lookup in __alloc_pages_nodemask(), passing it a preferred node
id instead (gfp_mask is already another parameter).

There are some code size benefits thanks to removal of inlined
node_zonelist():

  bloat-o-meter add/remove: 2/2 grow/shrink: 4/36 up/down: 399/-1351 (-952)

This will also make things simpler if we proceed with converting cpusets
to zonelists.

Link: http://lkml.kernel.org/r/20170517081140.30654-4-vbabka@suse.cz
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Reviewed-by: Christoph Lameter <cl@linux.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Dimitri Sivanich <sivanich@sgi.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Anshuman Khandual <khandual@linux.vnet.ibm.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Li Zefan <lizefan@huawei.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-07-06 16:24:34 -07:00
Michal Hocko 559bfc7d1b mm, memory_hotplug: remove unused cruft after memory hotplug rework
zone_for_memory doesn't have any user anymore as well as the whole zone
shifting infrastructure so drop them all.

This shouldn't introduce any functional changes.

Link: http://lkml.kernel.org/r/20170515085827.16474-15-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Balbir Singh <bsingharora@gmail.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Daniel Kiper <daniel.kiper@oracle.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Igor Mammedov <imammedo@redhat.com>
Cc: Jerome Glisse <jglisse@redhat.com>
Cc: Joonsoo Kim <js1304@gmail.com>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Reza Arbab <arbab@linux.vnet.ibm.com>
Cc: Tobias Regnery <tobias.regnery@gmail.com>
Cc: Toshi Kani <toshi.kani@hpe.com>
Cc: Vitaly Kuznetsov <vkuznets@redhat.com>
Cc: Xishi Qiu <qiuxishi@huawei.com>
Cc: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-07-06 16:24:32 -07:00
Michal Hocko cdf72f2504 mm, memory_hotplug: fix the section mismatch warning
Tobias has reported following section mismatches introduced by "mm,
memory_hotplug: do not associate hotadded memory to zones until online".

  WARNING: mm/built-in.o(.text+0x5a1c2): Section mismatch in reference from the function move_pfn_range_to_zone() to the function .meminit.text:memmap_init_zone()
  The function move_pfn_range_to_zone() references
  the function __meminit memmap_init_zone().
  This is often because move_pfn_range_to_zone lacks a __meminit
  annotation or the annotation of memmap_init_zone is wrong.

  WARNING: mm/built-in.o(.text+0x5a25b): Section mismatch in reference from the function move_pfn_range_to_zone() to the function .meminit.text:init_currently_empty_zone()
  The function move_pfn_range_to_zone() references
  the function __meminit init_currently_empty_zone().
  This is often because move_pfn_range_to_zone lacks a __meminit
  annotation or the annotation of init_currently_empty_zone is wrong.

  WARNING: vmlinux.o(.text+0x188aa2): Section mismatch in reference from the function move_pfn_range_to_zone() to the function .meminit.text:memmap_init_zone()
  The function move_pfn_range_to_zone() references
  the function __meminit memmap_init_zone().
  This is often because move_pfn_range_to_zone lacks a __meminit
  annotation or the annotation of memmap_init_zone is wrong.

  WARNING: vmlinux.o(.text+0x188b3b): Section mismatch in reference from the function move_pfn_range_to_zone() to the function .meminit.text:init_currently_empty_zone()
  The function move_pfn_range_to_zone() references
  the function __meminit init_currently_empty_zone().
  This is often because move_pfn_range_to_zone lacks a __meminit
  annotation or the annotation of init_currently_empty_zone is wrong.

Both memmap_init_zone and init_currently_empty_zone are marked __meminit
but move_pfn_range_to_zone is used outside of __meminit sections (e.g.
devm_memremap_pages) so we have to hide it from the checker by __ref
annotation.

Link: http://lkml.kernel.org/r/20170515085827.16474-14-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Reported-by: Tobias Regnery <tobias.regnery@gmail.com>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Balbir Singh <bsingharora@gmail.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Daniel Kiper <daniel.kiper@oracle.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Igor Mammedov <imammedo@redhat.com>
Cc: Jerome Glisse <jglisse@redhat.com>
Cc: Joonsoo Kim <js1304@gmail.com>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Reza Arbab <arbab@linux.vnet.ibm.com>
Cc: Toshi Kani <toshi.kani@hpe.com>
Cc: Vitaly Kuznetsov <vkuznets@redhat.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Xishi Qiu <qiuxishi@huawei.com>
Cc: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-07-06 16:24:32 -07:00
Michal Hocko 3d79a728f9 mm, memory_hotplug: replace for_device by want_memblock in arch_add_memory
arch_add_memory gets for_device argument which then controls whether we
want to create memblocks for created memory sections.  Simplify the
logic by telling whether we want memblocks directly rather than going
through pointless negation.  This also makes the api easier to
understand because it is clear what we want rather than nothing telling
for_device which can mean anything.

This shouldn't introduce any functional change.

Link: http://lkml.kernel.org/r/20170515085827.16474-13-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Tested-by: Dan Williams <dan.j.williams@intel.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Balbir Singh <bsingharora@gmail.com>
Cc: Daniel Kiper <daniel.kiper@oracle.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Igor Mammedov <imammedo@redhat.com>
Cc: Jerome Glisse <jglisse@redhat.com>
Cc: Joonsoo Kim <js1304@gmail.com>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Reza Arbab <arbab@linux.vnet.ibm.com>
Cc: Tobias Regnery <tobias.regnery@gmail.com>
Cc: Toshi Kani <toshi.kani@hpe.com>
Cc: Vitaly Kuznetsov <vkuznets@redhat.com>
Cc: Xishi Qiu <qiuxishi@huawei.com>
Cc: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-07-06 16:24:32 -07:00
Michal Hocko c246a213f5 mm, memory_hotplug: do not assume ZONE_NORMAL is default kernel zone
Heiko Carstens has noticed that he can generate overlapping zones for
ZONE_DMA and ZONE_NORMAL:

  DMA      [mem 0x0000000000000000-0x000000007fffffff]
  Normal   [mem 0x0000000080000000-0x000000017fffffff]

  $ cat /sys/devices/system/memory/block_size_bytes
  10000000
  $ cat /sys/devices/system/memory/memory5/valid_zones
  DMA
  $ echo 0 > /sys/devices/system/memory/memory5/online
  $ cat /sys/devices/system/memory/memory5/valid_zones
  Normal
  $ echo 1 > /sys/devices/system/memory/memory5/online
  Normal

  $ cat /proc/zoneinfo
  Node 0, zone      DMA
  spanned  524288        <-----
  present  458752
  managed  455078
  start_pfn:           0 <-----

  Node 0, zone   Normal
  spanned  720896
  present  589824
  managed  571648
  start_pfn:           327680 <-----

The reason is that we assume that the default zone for kernel onlining
is ZONE_NORMAL.  This was a simplification introduced by the memory
hotplug rework and it is easily fixable by checking the range overlap in
the zone order and considering the first matching zone as the default
one.  If there is no such zone then assume ZONE_NORMAL as we have been
doing so far.

Fixes: "mm, memory_hotplug: do not associate hotadded memory to zones until online"
Link: http://lkml.kernel.org/r/20170601083746.4924-3-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Reported-by: Heiko Carstens <heiko.carstens@de.ibm.com>
Tested-by: Heiko Carstens <heiko.carstens@de.ibm.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Reza Arbab <arbab@linux.vnet.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-07-06 16:24:32 -07:00
Michal Hocko a69578a154 mm, memory_hotplug: fix MMOP_ONLINE_KEEP behavior
Heiko Carstens has noticed that the MMOP_ONLINE_KEEP is broken currently

  $ grep . memory3?/valid_zones
  memory34/valid_zones:Normal Movable
  memory35/valid_zones:Normal Movable
  memory36/valid_zones:Normal Movable
  memory37/valid_zones:Normal Movable

  $ echo online_movable > memory34/state
  $ grep . memory3?/valid_zones
  memory34/valid_zones:Movable
  memory35/valid_zones:Movable
  memory36/valid_zones:Movable
  memory37/valid_zones:Movable

  $ echo online > memory36/state
  $ grep . memory3?/valid_zones
  memory34/valid_zones:Movable
  memory36/valid_zones:Normal
  memory37/valid_zones:Movable

so we have effectively punched a hole into the movable zone.

The problem is that move_pfn_range() check for MMOP_ONLINE_KEEP is
wrong.  It only checks whether the given range is already part of the
movable zone which is not the case here as only memory34 is in the zone.
Fix this by using allow_online_pfn_range(..., MMOP_ONLINE_KERNEL) if
that is false then we can be sure that movable onlining is the right
thing to do.

Fixes: "mm, memory_hotplug: do not associate hotadded memory to zones until online"
Link: http://lkml.kernel.org/r/20170601083746.4924-2-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Reported-by: Heiko Carstens <heiko.carstens@de.ibm.com>
Tested-by: Heiko Carstens <heiko.carstens@de.ibm.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Reza Arbab <arbab@linux.vnet.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-07-06 16:24:32 -07:00
Michal Hocko f1dd2cd13c mm, memory_hotplug: do not associate hotadded memory to zones until online
The current memory hotplug implementation relies on having all the
struct pages associate with a zone/node during the physical hotplug
phase (arch_add_memory->__add_pages->__add_section->__add_zone).  In the
vast majority of cases this means that they are added to ZONE_NORMAL.
This has been so since 9d99aaa31f ("[PATCH] x86_64: Support memory
hotadd without sparsemem") and it wasn't a big deal back then because
movable onlining didn't exist yet.

Much later memory hotplug wanted to (ab)use ZONE_MOVABLE for movable
onlining 511c2aba8f ("mm, memory-hotplug: dynamic configure movable
memory and portion memory") and then things got more complicated.
Rather than reconsidering the zone association which was no longer
needed (because the memory hotplug already depended on SPARSEMEM) a
convoluted semantic of zone shifting has been developed.  Only the
currently last memblock or the one adjacent to the zone_movable can be
onlined movable.  This essentially means that the online type changes as
the new memblocks are added.

Let's simulate memory hot online manually
  $ echo 0x100000000 > /sys/devices/system/memory/probe
  $ grep . /sys/devices/system/memory/memory32/valid_zones
  Normal Movable

  $ echo $((0x100000000+(128<<20))) > /sys/devices/system/memory/probe
  $ grep . /sys/devices/system/memory/memory3?/valid_zones
  /sys/devices/system/memory/memory32/valid_zones:Normal
  /sys/devices/system/memory/memory33/valid_zones:Normal Movable

  $ echo $((0x100000000+2*(128<<20))) > /sys/devices/system/memory/probe
  $ grep . /sys/devices/system/memory/memory3?/valid_zones
  /sys/devices/system/memory/memory32/valid_zones:Normal
  /sys/devices/system/memory/memory33/valid_zones:Normal
  /sys/devices/system/memory/memory34/valid_zones:Normal Movable

  $ echo online_movable > /sys/devices/system/memory/memory34/state
  $ grep . /sys/devices/system/memory/memory3?/valid_zones
  /sys/devices/system/memory/memory32/valid_zones:Normal
  /sys/devices/system/memory/memory33/valid_zones:Normal Movable
  /sys/devices/system/memory/memory34/valid_zones:Movable Normal

This is an awkward semantic because an udev event is sent as soon as the
block is onlined and an udev handler might want to online it based on
some policy (e.g.  association with a node) but it will inherently race
with new blocks showing up.

This patch changes the physical online phase to not associate pages with
any zone at all.  All the pages are just marked reserved and wait for
the onlining phase to be associated with the zone as per the online
request.  There are only two requirements

	- existing ZONE_NORMAL and ZONE_MOVABLE cannot overlap

	- ZONE_NORMAL precedes ZONE_MOVABLE in physical addresses

the latter one is not an inherent requirement and can be changed in the
future.  It preserves the current behavior and made the code slightly
simpler.  This is subject to change in future.

This means that the same physical online steps as above will lead to the
following state: Normal Movable

  /sys/devices/system/memory/memory32/valid_zones:Normal Movable
  /sys/devices/system/memory/memory33/valid_zones:Normal Movable

  /sys/devices/system/memory/memory32/valid_zones:Normal Movable
  /sys/devices/system/memory/memory33/valid_zones:Normal Movable
  /sys/devices/system/memory/memory34/valid_zones:Normal Movable

  /sys/devices/system/memory/memory32/valid_zones:Normal Movable
  /sys/devices/system/memory/memory33/valid_zones:Normal Movable
  /sys/devices/system/memory/memory34/valid_zones:Movable

Implementation:
The current move_pfn_range is reimplemented to check the above
requirements (allow_online_pfn_range) and then updates the respective
zone (move_pfn_range_to_zone), the pgdat and links all the pages in the
pfn range with the zone/node.  __add_pages is updated to not require the
zone and only initializes sections in the range.  This allowed to
simplify the arch_add_memory code (s390 could get rid of quite some of
code).

devm_memremap_pages is the only user of arch_add_memory which relies on
the zone association because it only hooks into the memory hotplug only
half way.  It uses it to associate the new memory with ZONE_DEVICE but
doesn't allow it to be {on,off}lined via sysfs.  This means that this
particular code path has to call move_pfn_range_to_zone explicitly.

The original zone shifting code is kept in place and will be removed in
the follow up patch for an easier review.

Please note that this patch also changes the original behavior when
offlining a memory block adjacent to another zone (Normal vs.  Movable)
used to allow to change its movable type.  This will be handled later.

[richard.weiyang@gmail.com: simplify zone_intersects()]
  Link: http://lkml.kernel.org/r/20170616092335.5177-1-richard.weiyang@gmail.com
[richard.weiyang@gmail.com: remove duplicate call for set_page_links]
  Link: http://lkml.kernel.org/r/20170616092335.5177-2-richard.weiyang@gmail.com
[akpm@linux-foundation.org: remove unused local `i']
Link: http://lkml.kernel.org/r/20170515085827.16474-12-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Signed-off-by: Wei Yang <richard.weiyang@gmail.com>
Tested-by: Dan Williams <dan.j.williams@intel.com>
Tested-by: Reza Arbab <arbab@linux.vnet.ibm.com>
Acked-by: Heiko Carstens <heiko.carstens@de.ibm.com> # For s390 bits
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Balbir Singh <bsingharora@gmail.com>
Cc: Daniel Kiper <daniel.kiper@oracle.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Igor Mammedov <imammedo@redhat.com>
Cc: Jerome Glisse <jglisse@redhat.com>
Cc: Joonsoo Kim <js1304@gmail.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Tobias Regnery <tobias.regnery@gmail.com>
Cc: Toshi Kani <toshi.kani@hpe.com>
Cc: Vitaly Kuznetsov <vkuznets@redhat.com>
Cc: Xishi Qiu <qiuxishi@huawei.com>
Cc: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-07-06 16:24:32 -07:00
Michal Hocko 2d070eab2e mm: consider zone which is not fully populated to have holes
__pageblock_pfn_to_page has two users currently, set_zone_contiguous
which checks whether the given zone contains holes and
pageblock_pfn_to_page which then carefully returns a first valid page
from the given pfn range for the given zone.  This doesn't handle zones
which are not fully populated though.  Memory pageblocks can be offlined
or might not have been onlined yet.  In such a case the zone should be
considered to have holes otherwise pfn walkers can touch and play with
offline pages.

Current callers of pageblock_pfn_to_page in compaction seem to work
properly right now because they only isolate PageBuddy
(isolate_freepages_block) or PageLRU resp.  __PageMovable
(isolate_migratepages_block) which will be always false for these pages.
It would be safer to skip these pages altogether, though.

In order to do this patch adds a new memory section state
(SECTION_IS_ONLINE) which is set in memory_present (during boot time) or
in online_pages_range during the memory hotplug.  Similarly
offline_mem_sections clears the bit and it is called when the memory
range is offlined.

pfn_to_online_page helper is then added which check the mem section and
only returns a page if it is onlined already.

Use the new helper in __pageblock_pfn_to_page and skip the whole page
block in such a case.

[mhocko@suse.com: check valid section number in pfn_to_online_page (Vlastimil),
 mark sections online after all struct pages are initialized in
 online_pages_range (Vlastimil)]
  Link: http://lkml.kernel.org/r/20170518164210.GD18333@dhcp22.suse.cz
Link: http://lkml.kernel.org/r/20170515085827.16474-8-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Balbir Singh <bsingharora@gmail.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Daniel Kiper <daniel.kiper@oracle.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Igor Mammedov <imammedo@redhat.com>
Cc: Jerome Glisse <jglisse@redhat.com>
Cc: Joonsoo Kim <js1304@gmail.com>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Reza Arbab <arbab@linux.vnet.ibm.com>
Cc: Tobias Regnery <tobias.regnery@gmail.com>
Cc: Toshi Kani <toshi.kani@hpe.com>
Cc: Vitaly Kuznetsov <vkuznets@redhat.com>
Cc: Xishi Qiu <qiuxishi@huawei.com>
Cc: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-07-06 16:24:32 -07:00
Michal Hocko 9037a99343 mm, memory_hotplug: split up register_one_node()
Memory hotplug (add_memory_resource) has to reinitialize node
infrastructure if the node is offline (one which went through the
complete add_memory(); remove_memory() cycle).  That involves node
registration to the kobj infrastructure (register_node), the proper
association with cpus (register_cpu_under_node) and finally creation of
node<->memblock symlinks (link_mem_sections).

The last part requires to know node_start_pfn and node_spanned_pages
which we currently have but a leter patch will postpone this
initialization to the onlining phase which happens later.  In fact we do
not need to rely on the early pgdat initialization even now because the
currently hot added pfn range is currently known.

Split register_one_node into core which does all the common work for the
boot time NUMA initialization and the hotplug (__register_one_node).
register_one_node keeps the full initialization while hotplug calls
__register_one_node and manually calls link_mem_sections for the proper
range.

This shouldn't introduce any functional change.

Link: http://lkml.kernel.org/r/20170515085827.16474-6-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Balbir Singh <bsingharora@gmail.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Daniel Kiper <daniel.kiper@oracle.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Igor Mammedov <imammedo@redhat.com>
Cc: Jerome Glisse <jglisse@redhat.com>
Cc: Joonsoo Kim <js1304@gmail.com>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Reza Arbab <arbab@linux.vnet.ibm.com>
Cc: Tobias Regnery <tobias.regnery@gmail.com>
Cc: Toshi Kani <toshi.kani@hpe.com>
Cc: Vitaly Kuznetsov <vkuznets@redhat.com>
Cc: Xishi Qiu <qiuxishi@huawei.com>
Cc: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-07-06 16:24:32 -07:00
Michal Hocko 1b862aecfb mm, memory_hotplug: get rid of is_zone_device_section
Device memory hotplug hooks into regular memory hotplug only half way.
It needs memory sections to track struct pages but there is no
need/desire to associate those sections with memory blocks and export
them to the userspace via sysfs because they cannot be onlined anyway.

This is currently expressed by for_device argument to arch_add_memory
which then makes sure to associate the given memory range with
ZONE_DEVICE.  register_new_memory then relies on is_zone_device_section
to distinguish special memory hotplug from the regular one.  While this
works now, later patches in this series want to move __add_zone outside
of arch_add_memory path so we have to come up with something else.

Add want_memblock down the __add_pages path and use it to control
whether the section->memblock association should be done.
arch_add_memory then just trivially want memblock for everything but
for_device hotplug.

remove_memory_section doesn't need is_zone_device_section either.  We
can simply skip all the memblock specific cleanup if there is no
memblock for the given section.

This shouldn't introduce any functional change.

Link: http://lkml.kernel.org/r/20170515085827.16474-5-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Tested-by: Dan Williams <dan.j.williams@intel.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Balbir Singh <bsingharora@gmail.com>
Cc: Daniel Kiper <daniel.kiper@oracle.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Igor Mammedov <imammedo@redhat.com>
Cc: Jerome Glisse <jglisse@redhat.com>
Cc: Joonsoo Kim <js1304@gmail.com>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Reza Arbab <arbab@linux.vnet.ibm.com>
Cc: Tobias Regnery <tobias.regnery@gmail.com>
Cc: Toshi Kani <toshi.kani@hpe.com>
Cc: Vitaly Kuznetsov <vkuznets@redhat.com>
Cc: Xishi Qiu <qiuxishi@huawei.com>
Cc: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-07-06 16:24:32 -07:00
Michal Hocko c8f9565716 mm, memory_hotplug: use node instead of zone in can_online_high_movable
The primary purpose of this helper is to query the node state so use the
node id directly.  This is a preparatory patch for later changes.

This shouldn't introduce any functional change

Link: http://lkml.kernel.org/r/20170515085827.16474-3-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Reviewed-by: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Balbir Singh <bsingharora@gmail.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Daniel Kiper <daniel.kiper@oracle.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Igor Mammedov <imammedo@redhat.com>
Cc: Jerome Glisse <jglisse@redhat.com>
Cc: Joonsoo Kim <js1304@gmail.com>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Reza Arbab <arbab@linux.vnet.ibm.com>
Cc: Tobias Regnery <tobias.regnery@gmail.com>
Cc: Toshi Kani <toshi.kani@hpe.com>
Cc: Vitaly Kuznetsov <vkuznets@redhat.com>
Cc: Xishi Qiu <qiuxishi@huawei.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-07-06 16:24:32 -07:00
Michal Hocko dc0bbf3b7f mm: remove return value from init_currently_empty_zone
Patch series "mm: make movable onlining suck less", v4.

Movable onlining is a real hack with many downsides - mainly
reintroduction of lowmem/highmem issues we used to have on 32b systems -
but it is the only way to make the memory hotremove more reliable which
is something that people are asking for.

The current semantic of memory movable onlinening is really cumbersome,
however.  The main reason for this is that the udev driven approach is
basically unusable because udev races with the memory probing while only
the last memory block or the one adjacent to the existing zone_movable
are allowed to be onlined movable.  In short the criterion for the
successful online_movable changes under udev's feet.  A reliable udev
approach would require a 2 phase approach where the first successful
movable online would have to check all the previous blocks and online
them in descending order.  This is hard to be considered sane.

This patchset aims at making the onlining semantic more usable.  First
of all it allows to online memory movable as long as it doesn't clash
with the existing ZONE_NORMAL.  That means that ZONE_NORMAL and
ZONE_MOVABLE cannot overlap.  Currently I preserve the original ordering
semantic so the zone always precedes the movable zone but I have plans
to remove this restriction in future because it is not really necessary.

First 3 patches are cleanups which should be ready to be merged right
away (unless I have missed something subtle of course).

Patch 4 deals with ZONE_DEVICE dependencies down the __add_pages path.

Patch 5 deals with implicit assumptions of register_one_node on pgdat
initialization.

Patches 6-10 deal with offline holes in the zone for pfn walkers.  I
hope I got all of them right but people familiar with compaction should
double check this.

Patch 11 is the core of the change.  In order to make it easier to
review I have tried it to be as minimalistic as possible and the large
code removal is moved to patch 14.

Patch 12 is a trivial follow up cleanup.  Patch 13 fixes sparse warnings
and finally patch 14 removes the unused code.

I have tested the patches in kvm:
  # qemu-system-x86_64 -enable-kvm -monitor pty -m 2G,slots=4,maxmem=4G -numa node,mem=1G -numa node,mem=1G ...

and then probed the additional memory by
  (qemu) object_add memory-backend-ram,id=mem1,size=1G
  (qemu) device_add pc-dimm,id=dimm1,memdev=mem1

Then I have used this simple script to probe the memory block by hand
  # cat probe_memblock.sh
  #!/bin/sh

  BLOCK_NR=$1

  # echo $((0x100000000+$BLOCK_NR*(128<<20))) > /sys/devices/system/memory/probe

  # for i in $(seq 10); do sh probe_memblock.sh $i; done
  # grep . /sys/devices/system/memory/memory3?/valid_zones 2>/dev/null
  /sys/devices/system/memory/memory33/valid_zones:Normal Movable
  /sys/devices/system/memory/memory34/valid_zones:Normal Movable
  /sys/devices/system/memory/memory35/valid_zones:Normal Movable
  /sys/devices/system/memory/memory36/valid_zones:Normal Movable
  /sys/devices/system/memory/memory37/valid_zones:Normal Movable
  /sys/devices/system/memory/memory38/valid_zones:Normal Movable
  /sys/devices/system/memory/memory39/valid_zones:Normal Movable

The main difference to the original implementation is that all new
memblocks can be both online_kernel and online_movable initially because
there is no clash obviously.  For the comparison the original
implementation would have

  /sys/devices/system/memory/memory33/valid_zones:Normal
  /sys/devices/system/memory/memory34/valid_zones:Normal
  /sys/devices/system/memory/memory35/valid_zones:Normal
  /sys/devices/system/memory/memory36/valid_zones:Normal
  /sys/devices/system/memory/memory37/valid_zones:Normal
  /sys/devices/system/memory/memory38/valid_zones:Normal
  /sys/devices/system/memory/memory39/valid_zones:Normal Movable

Now
  # echo online_movable > /sys/devices/system/memory/memory34/state
  # grep . /sys/devices/system/memory/memory3?/valid_zones 2>/dev/null
  /sys/devices/system/memory/memory33/valid_zones:Normal Movable
  /sys/devices/system/memory/memory34/valid_zones:Movable
  /sys/devices/system/memory/memory35/valid_zones:Movable
  /sys/devices/system/memory/memory36/valid_zones:Movable
  /sys/devices/system/memory/memory37/valid_zones:Movable
  /sys/devices/system/memory/memory38/valid_zones:Movable
  /sys/devices/system/memory/memory39/valid_zones:Movable

Block 33 can still be online both kernel and movable while all
the remaining can be only movable.

/proc/zonelist says
  Node 0, zone   Normal
    pages free     0
          min      0
          low      0
          high     0
          spanned  0
          present  0
  --
  Node 0, zone  Movable
    pages free     32753
          min      85
          low      117
          high     149
          spanned  32768
          present  32768

A new memblock at a lower address will result in a new memblock (32)
which will still allow both Normal and Movable.

  # sh probe_memblock.sh 0
  # grep . /sys/devices/system/memory/memory3[2-5]/valid_zones 2>/dev/null
  /sys/devices/system/memory/memory32/valid_zones:Normal Movable
  /sys/devices/system/memory/memory33/valid_zones:Normal Movable
  /sys/devices/system/memory/memory34/valid_zones:Movable
  /sys/devices/system/memory/memory35/valid_zones:Movable

and online_kernel will convert it to the zone normal properly
while 33 can be still onlined both ways.

  # echo online_kernel > /sys/devices/system/memory/memory32/state
  # grep . /sys/devices/system/memory/memory3[2-5]/valid_zones 2>/dev/null
  /sys/devices/system/memory/memory32/valid_zones:Normal
  /sys/devices/system/memory/memory33/valid_zones:Normal Movable
  /sys/devices/system/memory/memory34/valid_zones:Movable
  /sys/devices/system/memory/memory35/valid_zones:Movable

/proc/zoneinfo will now tell
  Node 0, zone   Normal
    pages free     65441
          min      165
          low      230
          high     295
          spanned  65536
          present  65536
  --
  Node 0, zone  Movable
    pages free     32740
          min      82
          low      114
          high     146
          spanned  32768
          present  32768

so both zones have one memblock spanned and present.

Onlining 39 should associate this block to the movable zone

  # echo online > /sys/devices/system/memory/memory39/state

/proc/zoneinfo will now tell
  Node 0, zone   Normal
    pages free     32765
          min      80
          low      112
          high     144
          spanned  32768
          present  32768
  --
  Node 0, zone  Movable
    pages free     65501
          min      160
          low      225
          high     290
          spanned  196608
          present  65536

so we will have a movable zone which spans 6 memblocks, 2 present and 4
representing a hole.

Offlining both movable blocks will lead to the zone with no present
pages which is the expected behavior I believe.

  # echo offline > /sys/devices/system/memory/memory39/state
  # echo offline > /sys/devices/system/memory/memory34/state
  # grep -A6 "Movable\|Normal" /proc/zoneinfo
  Node 0, zone   Normal
    pages free     32735
          min      90
          low      122
          high     154
          spanned  32768
          present  32768
  --
  Node 0, zone  Movable
    pages free     0
          min      0
          low      0
          high     0
          spanned  196608
          present  0

As a bonus we will get a nice cleanup in the memory hotplug codebase.

This patch (of 16):

init_currently_empty_zone doesn't have any error to return yet it is
still an int and callers try to be defensive and try to handle potential
error.  Remove this nonsense and simplify all callers.

This patch shouldn't have any visible effect

Link: http://lkml.kernel.org/r/20170515085827.16474-2-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Reviewed-by: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com>
Acked-by: Balbir Singh <bsingharora@gmail.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Daniel Kiper <daniel.kiper@oracle.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Igor Mammedov <imammedo@redhat.com>
Cc: Jerome Glisse <jglisse@redhat.com>
Cc: Joonsoo Kim <js1304@gmail.com>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Reza Arbab <arbab@linux.vnet.ibm.com>
Cc: Tobias Regnery <tobias.regnery@gmail.com>
Cc: Toshi Kani <toshi.kani@hpe.com>
Cc: Vitaly Kuznetsov <vkuznets@redhat.com>
Cc: Xishi Qiu <qiuxishi@huawei.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-07-06 16:24:32 -07:00
Mel Gorman e716f2eb24 mm, vmscan: prevent kswapd sleeping prematurely due to mismatched classzone_idx
kswapd is woken to reclaim a node based on a failed allocation request
from any eligible zone.  Once reclaiming in balance_pgdat(), it will
continue reclaiming until there is an eligible zone available for the
zone it was woken for.  kswapd tracks what zone it was recently woken
for in pgdat->kswapd_classzone_idx.  If it has not been woken recently,
this zone will be 0.

However, the decision on whether to sleep is made on
kswapd_classzone_idx which is 0 without a recent wakeup request and that
classzone does not account for lowmem reserves.  This allows kswapd to
sleep when a low small zone such as ZONE_DMA is balanced for a GFP_DMA
request even if a stream of allocations cannot use that zone.  While
kswapd may be woken again shortly in the near future there are two
consequences -- the pgdat bits that control congestion are cleared
prematurely and direct reclaim is more likely as kswapd slept
prematurely.

This patch flips kswapd_classzone_idx to default to MAX_NR_ZONES (an
invalid index) when there has been no recent wakeups.  If there are no
wakeups, it'll decide whether to sleep based on the highest possible
zone available (MAX_NR_ZONES - 1).  It then becomes critical that the
"pgdat balanced" decisions during reclaim and when deciding to sleep are
the same.  If there is a mismatch, kswapd can stay awake continually
trying to balance tiny zones.

simoop was used to evaluate it again.  Two of the preparation patches
regressed the workload so they are included as the second set of
results.  Otherwise this patch looks artifically excellent

                                         4.11.0-rc1            4.11.0-rc1            4.11.0-rc1
                                            vanilla              clear-v2          keepawake-v2
Amean    p50-Read             21670074.18 (  0.00%) 19786774.76 (  8.69%) 22668332.52 ( -4.61%)
Amean    p95-Read             25456267.64 (  0.00%) 24101956.27 (  5.32%) 26738688.00 ( -5.04%)
Amean    p99-Read             29369064.73 (  0.00%) 27691872.71 (  5.71%) 30991404.52 ( -5.52%)
Amean    p50-Write                1390.30 (  0.00%)     1011.91 ( 27.22%)      924.91 ( 33.47%)
Amean    p95-Write              412901.57 (  0.00%)    34874.98 ( 91.55%)     1362.62 ( 99.67%)
Amean    p99-Write             6668722.09 (  0.00%)   575449.60 ( 91.37%)    16854.04 ( 99.75%)
Amean    p50-Allocation          78714.31 (  0.00%)    84246.26 ( -7.03%)    74729.74 (  5.06%)
Amean    p95-Allocation         175533.51 (  0.00%)   400058.43 (-127.91%)   101609.74 ( 42.11%)
Amean    p99-Allocation         247003.02 (  0.00%) 10905600.00 (-4315.17%)   125765.57 ( 49.08%)

With this patch on top, write and allocation latencies are massively
improved.  The read latencies are slightly impaired but it's worth
noting that this is mostly due to the IO scheduler and not directly
related to reclaim.  The vmstats are a bit of a mix but the relevant
ones are as follows;

                            4.10.0-rc7  4.10.0-rc7  4.10.0-rc7
                          mmots-20170209 clear-v1r25keepawake-v1r25
Swap Ins                             0           0           0
Swap Outs                            0         608           0
Direct pages scanned           6910672     3132699     6357298
Kswapd pages scanned          57036946    82488665    56986286
Kswapd pages reclaimed        55993488    63474329    55939113
Direct pages reclaimed         6905990     2964843     6352115
Kswapd efficiency                  98%         76%         98%
Kswapd velocity              12494.375   17597.507   12488.065
Direct efficiency                  99%         94%         99%
Direct velocity               1513.835     668.306    1393.148
Page writes by reclaim           0.000 4410243.000       0.000
Page writes file                     0     4409635           0
Page writes anon                     0         608           0
Page reclaim immediate         1036792    14175203     1042571

                            4.11.0-rc1  4.11.0-rc1  4.11.0-rc1
                               vanilla  clear-v2  keepawake-v2
Swap Ins                             0          12           0
Swap Outs                            0         838           0
Direct pages scanned           6579706     3237270     6256811
Kswapd pages scanned          61853702    79961486    54837791
Kswapd pages reclaimed        60768764    60755788    53849586
Direct pages reclaimed         6579055     2987453     6256151
Kswapd efficiency                  98%         75%         98%
Page writes by reclaim           0.000 4389496.000       0.000
Page writes file                     0     4388658           0
Page writes anon                     0         838           0
Page reclaim immediate         1073573    14473009      982507

Swap-outs are equivalent to baseline.

Direct reclaim is reduced but not eliminated.  It's worth noting that
there are two periods of direct reclaim for this workload.  The first is
when it switches from preparing the files for the actual test itself.
It's a lot of file IO followed by a lot of allocs that reclaims heavily
for a brief window.  While direct reclaim is lower with clear-v2, it is
due to kswapd scanning aggressively and trying to reclaim the world
which is not the right thing to do.  With the patches applied, there is
still direct reclaim but the phase change from "creating work files" to
starting multiple threads that allocate a lot of anonymous memory faster
than kswapd can reclaim.

Scanning/reclaim efficiency is restored by this patch.

Page writes from reclaim context are back at 0 which is ideal.

Pages immediately reclaimed after IO completes is slightly improved but
it is expected this will vary slightly.

On UMA, there is almost no change so this is not expected to be a
universal win.

[mgorman@suse.de: fix ->kswapd_classzone_idx initialization]
  Link: http://lkml.kernel.org/r/20170406174538.5msrznj6nt6qpbx5@suse.de
Link: http://lkml.kernel.org/r/20170309075657.25121-4-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Hillf Danton <hillf.zj@alibaba-inc.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Shantanu Goel <sgoel01@yahoo.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-05-03 15:52:09 -07:00
Heiko Carstens 55adc1d05d mm: add private lock to serialize memory hotplug operations
Commit bfc8c90139 ("mem-hotplug: implement get/put_online_mems")
introduced new functions get/put_online_mems() and mem_hotplug_begin/end()
in order to allow similar semantics for memory hotplug like for cpu
hotplug.

The corresponding functions for cpu hotplug are get/put_online_cpus()
and cpu_hotplug_begin/done() for cpu hotplug.

The commit however missed to introduce functions that would serialize
memory hotplug operations like they are done for cpu hotplug with
cpu_maps_update_begin/done().

This basically leaves mem_hotplug.active_writer unprotected and allows
concurrent writers to modify it, which may lead to problems as outlined
by commit f931ab479d ("mm: fix devm_memremap_pages crash, use
mem_hotplug_{begin, done}").

That commit was extended again with commit b5d24fda9c ("mm,
devm_memremap_pages: hold device_hotplug lock over mem_hotplug_{begin,
done}") which serializes memory hotplug operations for some call sites
by using the device_hotplug lock.

In addition with commit 3fc2192410 ("mm: validate device_hotplug is held
for memory hotplug") a sanity check was added to mem_hotplug_begin() to
verify that the device_hotplug lock is held.

This in turn triggers the following warning on s390:

WARNING: CPU: 6 PID: 1 at drivers/base/core.c:643 assert_held_device_hotplug+0x4a/0x58
 Call Trace:
  assert_held_device_hotplug+0x40/0x58)
  mem_hotplug_begin+0x34/0xc8
  add_memory_resource+0x7e/0x1f8
  add_memory+0xda/0x130
  add_memory_merged+0x15c/0x178
  sclp_detect_standby_memory+0x2ae/0x2f8
  do_one_initcall+0xa2/0x150
  kernel_init_freeable+0x228/0x2d8
  kernel_init+0x2a/0x140
  kernel_thread_starter+0x6/0xc

One possible fix would be to add more lock_device_hotplug() and
unlock_device_hotplug() calls around each call site of
mem_hotplug_begin/end().  But that would give the device_hotplug lock
additional semantics it better should not have (serialize memory hotplug
operations).

Instead add a new memory_add_remove_lock which has the similar semantics
like cpu_add_remove_lock for cpu hotplug.

To keep things hopefully a bit easier the lock will be locked and unlocked
within the mem_hotplug_begin/end() functions.

Link: http://lkml.kernel.org/r/20170314125226.16779-2-heiko.carstens@de.ibm.com
Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com>
Reported-by: Sebastian Ott <sebott@linux.vnet.ibm.com>
Acked-by: Dan Williams <dan.j.williams@intel.com>
Acked-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Ben Hutchings <ben@decadent.org.uk>
Cc: Gerald Schaefer <gerald.schaefer@de.ibm.com>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-03-16 16:56:18 -07:00
Ingo Molnar 174cd4b1e5 sched/headers: Prepare to move signal wakeup & sigpending methods from <linux/sched.h> into <linux/sched/signal.h>
Fix up affected files that include this signal functionality via sched.h.

Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-03-02 08:42:32 +01:00
Nathan Fontenot dc18d706a4 memory-hotplug: use dev_online for memhp_auto_online
Commit 31bc3858ea ("add automatic onlining policy for the newly added
memory") provides the capability to have added memory automatically
onlined during add, but this appears to be slightly broken.

The current implementation uses walk_memory_range() to call
online_memory_block, which uses memory_block_change_state() to online
the memory.  Instead, we should be calling device_online() for the
memory block in online_memory_block().  This would online the memory
(the memory bus online routine memory_subsys_online() called from
device_online calls memory_block_change_state()) and properly update the
device struct offline flag.

As a result of the current implementation, attempting to remove a memory
block after adding it using auto online fails.  This is because doing a
remove, for instance

  echo offline > /sys/devices/system/memory/memoryXXX/state

uses device_offline() which checks the dev->offline flag.

Link: http://lkml.kernel.org/r/20170222220744.8119.19687.stgit@ltcalpine2-lp14.aus.stglabs.ibm.com
Signed-off-by: Nathan Fontenot <nfont@linux.vnet.ibm.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Michael Roth <mdroth@linux.vnet.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-02-24 17:46:56 -08:00
zhong jiang d6d8c8a482 mm/memory_hotplug.c: fix overflow in test_pages_in_a_zone()
When mainline introduced commit a96dfddbcc ("base/memory, hotplug: fix
a kernel oops in show_valid_zones()"), it obtained the valid start and
end pfn from the given pfn range.  The valid start pfn can fix the
actual issue, but it introduced another issue.  The valid end pfn will
may exceed the given end_pfn.

Although the incorrect overflow will not result in actual problem at
present, but I think it need to be fixed.

[toshi.kani@hpe.com: remove assumption that end_pfn is aligned by MAX_ORDER_NR_PAGES]
Fixes: a96dfddbcc ("base/memory, hotplug: fix a kernel oops in show_valid_zones()")
Link: http://lkml.kernel.org/r/1486467299-22648-1-git-send-email-zhongjiang@huawei.com
Signed-off-by: zhong jiang <zhongjiang@huawei.com>
Signed-off-by: Toshi Kani <toshi.kani@hpe.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Mel Gorman <mgorman@techsingularity.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-02-24 17:46:56 -08:00
Yisheng Xie 0efadf48bc mm/hotplug: enable memory hotplug for non-lru movable pages
We had considered all of the non-lru pages as unmovable before commit
bda807d444 ("mm: migrate: support non-lru movable page migration").
But now some of non-lru pages like zsmalloc, virtio-balloon pages also
become movable.  So we can offline such blocks by using non-lru page
migration.

This patch straightforwardly adds non-lru migration code, which means
adding non-lru related code to the functions which scan over pfn and
collect pages to be migrated and isolate them before migration.

Signed-off-by: Yisheng Xie <xieyisheng1@huawei.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Hanjun Guo <guohanjun@huawei.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Reza Arbab <arbab@linux.vnet.ibm.com>
Cc: Taku Izumi <izumi.taku@jp.fujitsu.com>
Cc: Vitaly Kuznetsov <vkuznets@redhat.com>
Cc: Xishi Qiu <qiuxishi@huawei.com>
Cc: Yisheng Xie <xieyisheng1@huawei.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-02-24 17:46:55 -08:00
Andrew Morton 997126bbc5 mm/memory_hotplug.c: unexport __remove_pages()
It has no modular callers.

Cc: Dan Williams <dan.j.williams@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-02-24 17:46:53 -08:00
Dan Williams 3fc2192410 mm: validate device_hotplug is held for memory hotplug
mem_hotplug_begin() assumes that it can set mem_hotplug.active_writer
and run the hotplug process without racing another thread.  Validate
this assumption with a lockdep assertion.

Link: http://lkml.kernel.org/r/148693886229.16345.1770484669403334689.stgit@dwillia2-desk3.amr.corp.intel.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Reported-by: Ben Hutchings <ben@decadent.org.uk>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Toshi Kani <toshi.kani@hpe.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Logan Gunthorpe <logang@deltatee.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Masayoshi Mizuma <m.mizuma@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-02-24 17:46:53 -08:00
Yasuaki Ishimatsu ddffe98d16 mm/memory_hotplug: set magic number to page->freelist instead of page->lru.next
To identify that pages of page table are allocated from bootmem
allocator, magic number sets to page->lru.next.

But page->lru list is initialized in reserve_bootmem_region().  So when
calling free_pagetable(), the function cannot find the magic number of
pages.  And free_pagetable() frees the pages by free_reserved_page() not
put_page_bootmem().

But if the pages are allocated from bootmem allocator and used as page
table, the pages have private flag.  So before freeing the pages, we
should clear the private flag by put_page_bootmem().

Before applying the commit 7bfec6f47b ("mm, page_alloc: check multiple
page fields with a single branch"), we could find the following visible
issue:

  BUG: Bad page state in process kworker/u1024:1
  page:ffffea103cfd8040 count:0 mapcount:0 mappi
  flags: 0x6fffff80000800(private)
  page dumped because: PAGE_FLAGS_CHECK_AT_FREE flag(s) set
  bad because of flags: 0x800(private)
  <snip>
  Call Trace:
  [...] dump_stack+0x63/0x87
  [...] bad_page+0x114/0x130
  [...] free_pages_prepare+0x299/0x2d0
  [...] free_hot_cold_page+0x31/0x150
  [...] __free_pages+0x25/0x30
  [...] free_pagetable+0x6f/0xb4
  [...] remove_pagetable+0x379/0x7ff
  [...] vmemmap_free+0x10/0x20
  [...] sparse_remove_one_section+0x149/0x180
  [...] __remove_pages+0x2e9/0x4f0
  [...] arch_remove_memory+0x63/0xc0
  [...] remove_memory+0x8c/0xc0
  [...] acpi_memory_device_remove+0x79/0xa5
  [...] acpi_bus_trim+0x5a/0x8d
  [...] acpi_bus_trim+0x38/0x8d
  [...] acpi_device_hotplug+0x1b7/0x418
  [...] acpi_hotplug_work_fn+0x1e/0x29
  [...] process_one_work+0x152/0x400
  [...] worker_thread+0x125/0x4b0
  [...] kthread+0xd8/0xf0
  [...] ret_from_fork+0x22/0x40

And the issue still silently occurs.

Until freeing the pages of page table allocated from bootmem allocator,
the page->freelist is never used.  So the patch sets magic number to
page->freelist instead of page->lru.next.

[isimatu.yasuaki@jp.fujitsu.com: fix merge issue]
  Link: http://lkml.kernel.org/r/722b1cc4-93ac-dd8b-2be2-7a7e313b3b0b@gmail.com
Link: http://lkml.kernel.org/r/2c29bd9f-5b67-02d0-18a3-8828e78bbb6f@gmail.com
Signed-off-by: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Xishi Qiu <qiuxishi@huawei.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-02-22 16:41:29 -08:00
Toshi Kani a96dfddbcc base/memory, hotplug: fix a kernel oops in show_valid_zones()
Reading a sysfs "memoryN/valid_zones" file leads to the following oops
when the first page of a range is not backed by struct page.
show_valid_zones() assumes that 'start_pfn' is always valid for
page_zone().

 BUG: unable to handle kernel paging request at ffffea017a000000
 IP: show_valid_zones+0x6f/0x160

This issue may happen on x86-64 systems with 64GiB or more memory since
their memory block size is bumped up to 2GiB.  [1] An example of such
systems is desribed below.  0x3240000000 is only aligned by 1GiB and
this memory block starts from 0x3200000000, which is not backed by
struct page.

 BIOS-e820: [mem 0x0000003240000000-0x000000603fffffff] usable

Since test_pages_in_a_zone() already checks holes, fix this issue by
extending this function to return 'valid_start' and 'valid_end' for a
given range.  show_valid_zones() then proceeds with the valid range.

[1] 'Commit bdee237c03 ("x86: mm: Use 2GB memory block size on
    large-memory x86-64 systems")'

Link: http://lkml.kernel.org/r/20170127222149.30893-3-toshi.kani@hpe.com
Signed-off-by: Toshi Kani <toshi.kani@hpe.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Zhang Zhen <zhenzhang.zhang@huawei.com>
Cc: Reza Arbab <arbab@linux.vnet.ibm.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: <stable@vger.kernel.org>	[4.4+]

Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-02-03 14:13:19 -08:00
Toshi Kani deb88a2a19 mm/memory_hotplug.c: check start_pfn in test_pages_in_a_zone()
Patch series "fix a kernel oops when reading sysfs valid_zones", v2.

A sysfs memory file is created for each 2GiB memory block on x86-64 when
the system has 64GiB or more memory.  [1] When the start address of a
memory block is not backed by struct page, i.e.  a memory range is not
aligned by 2GiB, reading its 'valid_zones' attribute file leads to a
kernel oops.  This issue was observed on multiple x86-64 systems with
more than 64GiB of memory.  This patch-set fixes this issue.

Patch 1 first fixes an issue in test_pages_in_a_zone(), which does not
test the start section.

Patch 2 then fixes the kernel oops by extending test_pages_in_a_zone()
to return valid [start, end).

Note for stable kernels: The memory block size change was made by commit
bdee237c03 ("x86: mm: Use 2GB memory block size on large-memory x86-64
systems"), which was accepted to 3.9.  However, this patch-set depends
on (and fixes) the change to test_pages_in_a_zone() made by commit
5f0f2887f4 ("mm/memory_hotplug.c: check for missing sections in
test_pages_in_a_zone()"), which was accepted to 4.4.

So, I recommend that we backport it up to 4.4.

[1] 'Commit bdee237c03 ("x86: mm: Use 2GB memory block size on
    large-memory x86-64 systems")'

This patch (of 2):

test_pages_in_a_zone() does not check 'start_pfn' when it is aligned by
section since 'sec_end_pfn' is set equal to 'pfn'.  Since this function
is called for testing the range of a sysfs memory file, 'start_pfn' is
always aligned by section.

Fix it by properly setting 'sec_end_pfn' to the next section pfn.

Also make sure that this function returns 1 only when the range belongs
to a zone.

Link: http://lkml.kernel.org/r/20170127222149.30893-2-toshi.kani@hpe.com
Signed-off-by: Toshi Kani <toshi.kani@hpe.com>
Cc: Andrew Banman <abanman@sgi.com>
Cc: Reza Arbab <arbab@linux.vnet.ibm.com>
Cc: Greg KH <greg@kroah.com>
Cc: <stable@vger.kernel.org>	[4.4+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-02-03 14:13:19 -08:00
Yasuaki Ishimatsu 8a1f780e7f memory_hotplug: make zone_can_shift() return a boolean value
online_{kernel|movable} is used to change the memory zone to
ZONE_{NORMAL|MOVABLE} and online the memory.

To check that memory zone can be changed, zone_can_shift() is used.
Currently the function returns minus integer value, plus integer
value and 0. When the function returns minus or plus integer value,
it means that the memory zone can be changed to ZONE_{NORNAL|MOVABLE}.

But when the function returns 0, there are two meanings.

One of the meanings is that the memory zone does not need to be changed.
For example, when memory is in ZONE_NORMAL and onlined by online_kernel
the memory zone does not need to be changed.

Another meaning is that the memory zone cannot be changed. When memory
is in ZONE_NORMAL and onlined by online_movable, the memory zone may
not be changed to ZONE_MOVALBE due to memory online limitation(see
Documentation/memory-hotplug.txt). In this case, memory must not be
onlined.

The patch changes the return type of zone_can_shift() so that memory
online operation fails when memory zone cannot be changed as follows:

Before applying patch:
   # grep -A 35 "Node 2" /proc/zoneinfo
   Node 2, zone   Normal
   <snip>
      node_scanned  0
           spanned  8388608
           present  7864320
           managed  7864320
   # echo online_movable > memory4097/state
   # grep -A 35 "Node 2" /proc/zoneinfo
   Node 2, zone   Normal
   <snip>
      node_scanned  0
           spanned  8388608
           present  8388608
           managed  8388608

   online_movable operation succeeded. But memory is onlined as
   ZONE_NORMAL, not ZONE_MOVABLE.

After applying patch:
   # grep -A 35 "Node 2" /proc/zoneinfo
   Node 2, zone   Normal
   <snip>
      node_scanned  0
           spanned  8388608
           present  7864320
           managed  7864320
   # echo online_movable > memory4097/state
   bash: echo: write error: Invalid argument
   # grep -A 35 "Node 2" /proc/zoneinfo
   Node 2, zone   Normal
   <snip>
      node_scanned  0
           spanned  8388608
           present  7864320
           managed  7864320

   online_movable operation failed because of failure of changing
   the memory zone from ZONE_NORMAL to ZONE_MOVABLE

Fixes: df429ac039 ("memory-hotplug: more general validation of zone during online")
Link: http://lkml.kernel.org/r/2f9c3837-33d7-b6e5-59c0-6ca4372b2d84@gmail.com
Signed-off-by: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com>
Reviewed-by: Reza Arbab <arbab@linux.vnet.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-01-24 16:26:14 -08:00
Reza Arbab 39fa104d5b mm: remove x86-only restriction of movable_node
In commit c5320926e3 ("mem-hotplug: introduce movable_node boot
option"), the memblock allocation direction is changed to bottom-up and
then back to top-down like this:

1. memblock_set_bottom_up(true), called by cmdline_parse_movable_node().
2. memblock_set_bottom_up(false), called by x86's numa_init().

Even though (1) occurs in generic mm code, it is wrapped by #ifdef
CONFIG_MOVABLE_NODE, which depends on X86_64.

This means that when we extend CONFIG_MOVABLE_NODE to non-x86 arches,
things will be unbalanced.  (1) will happen for them, but (2) will not.

This toggle was added in the first place because x86 has a delay between
adding memblocks and marking them as hotpluggable.  Since other arches
do this marking either immediately or not at all, they do not require
the bottom-up toggle.

So, resolve things by moving (1) from cmdline_parse_movable_node() to
x86's setup_arch(), immediately after the movable_node parameter has
been parsed.

Link: http://lkml.kernel.org/r/1479160961-25840-3-git-send-email-arbab@linux.vnet.ibm.com
Signed-off-by: Reza Arbab <arbab@linux.vnet.ibm.com>
Acked-by: Balbir Singh <bsingharora@gmail.com>
Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Alistair Popple <apopple@au1.ibm.com>
Cc: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Bharata B Rao <bharata@linux.vnet.ibm.com>
Cc: Frank Rowand <frowand.list@gmail.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Nathan Fontenot <nfont@linux.vnet.ibm.com>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Rob Herring <robh+dt@kernel.org>
Cc: Stewart Smith <stewart@linux.vnet.ibm.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-12-12 18:55:07 -08:00
Linus Torvalds 9db4f36e82 mm: remove unused variable in memory hotplug
When I removed the per-zone bitlock hashed waitqueues in commit
9dcb8b685f ("mm: remove per-zone hashtable of bitlock waitqueues"), I
removed all the magic hotplug memory initialization of said waitqueues
too.

But when I actually _tested_ the resulting build, I stupidly assumed
that "allmodconfig" would enable memory hotplug.  And it doesn't,
because it enables KASAN instead, which then disables hotplug memory
support.

As a result, my build test of the per-zone waitqueues was totally
broken, and I didn't notice that the compiler warns about the now unused
iterator variable 'i'.

I guess I should be happy that that seems to be the worst breakage from
my clearly horribly failed test coverage.

Reported-by: Stephen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-10-27 15:49:12 -07:00
Linus Torvalds 9dcb8b685f mm: remove per-zone hashtable of bitlock waitqueues
The per-zone waitqueues exist because of a scalability issue with the
page waitqueues on some NUMA machines, but it turns out that they hurt
normal loads, and now with the vmalloced stacks they also end up
breaking gfs2 that uses a bit_wait on a stack object:

     wait_on_bit(&gh->gh_iflags, HIF_WAIT, TASK_UNINTERRUPTIBLE)

where 'gh' can be a reference to the local variable 'mount_gh' on the
stack of fill_super().

The reason the per-zone hash table breaks for this case is that there is
no "zone" for virtual allocations, and trying to look up the physical
page to get at it will fail (with a BUG_ON()).

It turns out that I actually complained to the mm people about the
per-zone hash table for another reason just a month ago: the zone lookup
also hurts the regular use of "unlock_page()" a lot, because the zone
lookup ends up forcing several unnecessary cache misses and generates
horrible code.

As part of that earlier discussion, we had a much better solution for
the NUMA scalability issue - by just making the page lock have a
separate contention bit, the waitqueue doesn't even have to be looked at
for the normal case.

Peter Zijlstra already has a patch for that, but let's see if anybody
even notices.  In the meantime, let's fix the actual gfs2 breakage by
simplifying the bitlock waitqueues and removing the per-zone issue.

Reported-by: Andreas Gruenbacher <agruenba@redhat.com>
Tested-by: Bob Peterson <rpeterso@redhat.com>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Steven Whitehouse <swhiteho@redhat.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-10-27 09:27:57 -07:00
Gerald Schaefer 082d5b6b60 mm/hugetlb: check for reserved hugepages during memory offline
In dissolve_free_huge_pages(), free hugepages will be dissolved without
making sure that there are enough of them left to satisfy hugepage
reservations.

Fix this by adding a return value to dissolve_free_huge_pages() and
checking h->free_huge_pages vs.  h->resv_huge_pages.  Note that this may
lead to the situation where dissolve_free_huge_page() returns an error
and all free hugepages that were dissolved before that error are lost,
while the memory block still cannot be set offline.

Fixes: c8721bbb ("mm: memory-hotplug: enable memory hotplug to handle hugepage")
Link: http://lkml.kernel.org/r/20160926172811.94033-3-gerald.schaefer@de.ibm.com
Signed-off-by: Gerald Schaefer <gerald.schaefer@de.ibm.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: "Kirill A . Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: "Aneesh Kumar K . V" <aneesh.kumar@linux.vnet.ibm.com>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Rui Teng <rui.teng@linux.vnet.ibm.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-10-07 18:46:29 -07:00
Li Zhong 231e97e2b8 mem-hotplug: use nodes that contain memory as mask in new_node_page()
9bb627be47 ("mem-hotplug: don't clear the only node in new_node_page()")
prevents allocating from an empty nodemask, but as David points out, it is
still wrong.  As node_online_map may include memoryless nodes, only
allocating from these nodes is meaningless.

This patch uses node_states[N_MEMORY] mask to prevent the above case.

Fixes: 9bb627be47 ("mem-hotplug: don't clear the only node in new_node_page()")
Fixes: 394e31d2ce ("mem-hotplug: alloc new page from a nearest neighbor node when mem-offline")
Link: http://lkml.kernel.org/r/1474447117.28370.6.camel@TP420
Signed-off-by: Li Zhong <zhong@linux.vnet.ibm.com>
Suggested-by: David Rientjes <rientjes@google.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: John Allen <jallen@linux.vnet.ibm.com>
Cc: Xishi Qiu <qiuxishi@huawei.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Tetsuo Handa <penguin-kernel@i-love.sakura.ne.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-09-28 16:19:02 -07:00
Li Zhong 9bb627be47 mem-hotplug: don't clear the only node in new_node_page()
Commit 394e31d2ce ("mem-hotplug: alloc new page from a nearest
neighbor node when mem-offline") introduced new_node_page() for memory
hotplug.

In new_node_page(), the nid is cleared before calling
__alloc_pages_nodemask().  But if it is the only node of the system, and
the first round allocation fails, it will not be able to get memory from
an empty nodemask, and will trigger oom.

The patch checks whether it is the last node on the system, and if it
is, then don't clear the nid in the nodemask.

Fixes: 394e31d2ce ("mem-hotplug: alloc new page from a nearest neighbor node when mem-offline")
Link: http://lkml.kernel.org/r/1473044391.4250.19.camel@TP420
Signed-off-by: Li Zhong <zhong@linux.vnet.ibm.com>
Reported-by: John Allen <jallen@linux.vnet.ibm.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Xishi Qiu <qiuxishi@huawei.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-09-19 15:36:16 -07:00
Reza Arbab 5830169f47 mm/memory_hotplug.c: initialize per_cpu_nodestats for hotadded pgdats
The following oops occurs after a pgdat is hotadded:

  Unable to handle kernel paging request for data at address 0x00c30001
  Faulting instruction address: 0xc00000000022f8f4
  Oops: Kernel access of bad area, sig: 11 [#1]
  SMP NR_CPUS=2048 NUMA pSeries
  Modules linked in: ip6t_rpfilter ip6t_REJECT nf_reject_ipv6 ipt_REJECT nf_reject_ipv4 xt_conntrack ebtable_nat ebtable_broute bridge stp llc ebtable_filter ebtables ip6table_nat nf_conntrack_ipv6 nf_defrag_ipv6 nf_nat_ipv6 ip6table_mangle ip6table_security ip6table_raw ip6table_filter ip6_tables iptable_nat nf_conntrack_ipv4 nf_defrag_ipv4 nf_nat_ipv4 nf_nat nf_conntrack iptable_mangle iptable_security iptable_raw iptable_filter nls_utf8 isofs sg virtio_balloon uio_pdrv_genirq uio ip_tables xfs libcrc32c sr_mod cdrom sd_mod virtio_net ibmvscsi scsi_transport_srp virtio_pci virtio_ring virtio dm_mirror dm_region_hash dm_log dm_mod
  CPU: 0 PID: 0 Comm: swapper/0 Tainted: G        W 4.8.0-rc1-device #110
  task: c000000000ef3080 task.stack: c000000000f6c000
  NIP: c00000000022f8f4 LR: c00000000022f948 CTR: 0000000000000000
  REGS: c000000000f6fa50 TRAP: 0300   Tainted: G        W (4.8.0-rc1-device)
  MSR: 800000010280b033 <SF,VEC,VSX,EE,FP,ME,IR,DR,RI,LE,TM[E]>  CR: 84002028  XER: 20000000
  CFAR: d000000001d2013c DAR: 0000000000c30001 DSISR: 40000000 SOFTE: 0
  NIP refresh_cpu_vm_stats+0x1a4/0x2f0
  LR refresh_cpu_vm_stats+0x1f8/0x2f0
  Call Trace:
    refresh_cpu_vm_stats+0x1f8/0x2f0 (unreliable)

Add per_cpu_nodestats initialization to the hotplug codepath.

Link: http://lkml.kernel.org/r/1470931473-7090-1-git-send-email-arbab@linux.vnet.ibm.com
Signed-off-by: Reza Arbab <arbab@linux.vnet.ibm.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Paul Mackerras <paulus@ozlabs.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-08-11 16:58:14 -07:00
Xishi Qiu 394e31d2ce mem-hotplug: alloc new page from a nearest neighbor node when mem-offline
If we offline a node, alloc the new page from a nearest neighbor node
instead of the current node or other remote nodes, because re-migrate is
a waste of time and the distance of the remote nodes is often very
large.

Also use GFP_HIGHUSER_MOVABLE to alloc new page if the zone is movable
zone or highmem zone.

Link: http://lkml.kernel.org/r/5795E18B.5060302@huawei.com
Signed-off-by: Xishi Qiu <qiuxishi@huawei.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-07-28 16:07:41 -07:00
Mel Gorman 38087d9b03 mm, vmscan: simplify the logic deciding whether kswapd sleeps
kswapd goes through some complex steps trying to figure out if it should
stay awake based on the classzone_idx and the requested order.  It is
unnecessarily complex and passes in an invalid classzone_idx to
balance_pgdat().  What matters most of all is whether a larger order has
been requsted and whether kswapd successfully reclaimed at the previous
order.  This patch irons out the logic to check just that and the end
result is less headache inducing.

Link: http://lkml.kernel.org/r/1467970510-21195-10-git-send-email-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Hillf Danton <hillf.zj@alibaba-inc.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Rik van Riel <riel@surriel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-07-28 16:07:41 -07:00
Mel Gorman 599d0c954f mm, vmscan: move LRU lists to node
This moves the LRU lists from the zone to the node and related data such
as counters, tracing, congestion tracking and writeback tracking.

Unfortunately, due to reclaim and compaction retry logic, it is
necessary to account for the number of LRU pages on both zone and node
logic.  Most reclaim logic is based on the node counters but the retry
logic uses the zone counters which do not distinguish inactive and
active sizes.  It would be possible to leave the LRU counters on a
per-zone basis but it's a heavier calculation across multiple cache
lines that is much more frequent than the retry checks.

Other than the LRU counters, this is mostly a mechanical patch but note
that it introduces a number of anomalies.  For example, the scans are
per-zone but using per-node counters.  We also mark a node as congested
when a zone is congested.  This causes weird problems that are fixed
later but is easier to review.

In the event that there is excessive overhead on 32-bit systems due to
the nodes being on LRU then there are two potential solutions

1. Long-term isolation of highmem pages when reclaim is lowmem

   When pages are skipped, they are immediately added back onto the LRU
   list. If lowmem reclaim persisted for long periods of time, the same
   highmem pages get continually scanned. The idea would be that lowmem
   keeps those pages on a separate list until a reclaim for highmem pages
   arrives that splices the highmem pages back onto the LRU. It potentially
   could be implemented similar to the UNEVICTABLE list.

   That would reduce the skip rate with the potential corner case is that
   highmem pages have to be scanned and reclaimed to free lowmem slab pages.

2. Linear scan lowmem pages if the initial LRU shrink fails

   This will break LRU ordering but may be preferable and faster during
   memory pressure than skipping LRU pages.

Link: http://lkml.kernel.org/r/1467970510-21195-4-git-send-email-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Hillf Danton <hillf.zj@alibaba-inc.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Rik van Riel <riel@surriel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-07-28 16:07:41 -07:00
Reza Arbab df429ac039 memory-hotplug: more general validation of zone during online
When memory is onlined, we are only able to rezone from ZONE_MOVABLE to
ZONE_KERNEL, or from (ZONE_MOVABLE - 1) to ZONE_MOVABLE.

To be more flexible, use the following criteria instead; to online
memory from zone X into zone Y,

* Any zones between X and Y must be unused.
* If X is lower than Y, the onlined memory must lie at the end of X.
* If X is higher than Y, the onlined memory must lie at the start of X.

Add zone_can_shift() to make this determination.

Link: http://lkml.kernel.org/r/1462816419-4479-3-git-send-email-arbab@linux.vnet.ibm.com
Signed-off-by: Reza Arbab <arbab@linux.vnet.ibm.com>
Reviewd-by: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Daniel Kiper <daniel.kiper@oracle.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Tang Chen <tangchen@cn.fujitsu.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: David Vrabel <david.vrabel@citrix.com>
Cc: Vitaly Kuznetsov <vkuznets@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Andrew Banman <abanman@sgi.com>
Cc: Chen Yucong <slaoub@gmail.com>
Cc: Yasunori Goto <y-goto@jp.fujitsu.com>
Cc: Zhang Zhen <zhenzhang.zhang@huawei.com>
Cc: Shaohua Li <shaohua.li@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-07-26 16:19:19 -07:00
Reza Arbab e51e6c8f80 memory-hotplug: add move_pfn_range()
Add move_pfn_range(), a wrapper to call move_pfn_range_left() or
move_pfn_range_right().

No functional change. This will be utilized by a later patch.

Link: http://lkml.kernel.org/r/1462816419-4479-2-git-send-email-arbab@linux.vnet.ibm.com
Signed-off-by: Reza Arbab <arbab@linux.vnet.ibm.com>
Reviewed-by: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Daniel Kiper <daniel.kiper@oracle.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Tang Chen <tangchen@cn.fujitsu.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: David Vrabel <david.vrabel@citrix.com>
Cc: Vitaly Kuznetsov <vkuznets@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Andrew Banman <abanman@sgi.com>
Cc: Chen Yucong <slaoub@gmail.com>
Cc: Yasunori Goto <y-goto@jp.fujitsu.com>
Cc: Zhang Zhen <zhenzhang.zhang@huawei.com>
Cc: Shaohua Li <shaohua.li@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-07-26 16:19:19 -07:00
Linus Torvalds 7ded384a12 mm: fix section mismatch warning
The register_page_bootmem_info_node() function needs to be marked __init
in order to avoid a new warning introduced by commit f65e91df25 ("mm:
use early_pfn_to_nid in register_page_bootmem_info_node").

Otherwise you'll get a warning about how a non-init function calls
early_pfn_to_nid (which is __meminit)

Cc: Yang Shi <yang.shi@linaro.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-27 15:23:32 -07:00
Yang Shi f65e91df25 mm: use early_pfn_to_nid in register_page_bootmem_info_node
register_page_bootmem_info_node() is invoked in mem_init(), so it will
be called before page_alloc_init_late() if DEFERRED_STRUCT_PAGE_INIT is
enabled.  But, pfn_to_nid() depends on memmap which won't be fully setup
until page_alloc_init_late() is done, so replace pfn_to_nid() by
early_pfn_to_nid().

Link: http://lkml.kernel.org/r/1464210007-30930-1-git-send-email-yang.shi@linaro.org
Signed-off-by: Yang Shi <yang.shi@linaro.org>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-27 14:49:37 -07:00
Vitaly Kuznetsov 86dd995d63 memory_hotplug: introduce memhp_default_state= command line parameter
CONFIG_MEMORY_HOTPLUG_DEFAULT_ONLINE specifies the default value for the
memory hotplug onlining policy.  Add a command line parameter to make it
possible to override the default.  It may come handy for debug and
testing purposes.

Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: David Vrabel <david.vrabel@citrix.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Igor Mammedov <imammedo@redhat.com>
Cc: Lennart Poettering <lennart@poettering.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-19 19:12:14 -07:00
Vitaly Kuznetsov 8604d9e534 memory_hotplug: introduce CONFIG_MEMORY_HOTPLUG_DEFAULT_ONLINE
This patchset continues the work I started with commit 31bc3858ea
("memory-hotplug: add automatic onlining policy for the newly added
memory").

Initially I was going to stop there and bring the policy setting logic
to userspace.  I met two issues on this way:

 1) It is possible to have memory hotplugged at boot (e.g.  with QEMU).
    These blocks stay offlined if we turn the onlining policy on by
    userspace.

 2) My attempt to bring this policy setting to systemd failed, systemd
    maintainers suggest to change the default in kernel or ...  to use
    tmpfiles.d to alter the policy (which looks like a hack to me):
        https://github.com/systemd/systemd/pull/2938

Here I suggest to add a config option to set the default value for the
policy and a kernel command line parameter to make the override.

This patch (of 2):

Introduce config option to set the default value for memory hotplug
onlining policy (/sys/devices/system/memory/auto_online_blocks).  The
reason one would want to turn this option on are to have early onlining
for hotpluggable memory available at boot and to not require any
userspace actions to make memory hotplug work.

[akpm@linux-foundation.org: tweak Kconfig text]
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: David Vrabel <david.vrabel@citrix.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Igor Mammedov <imammedo@redhat.com>
Cc: Lennart Poettering <lennart@poettering.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-19 19:12:14 -07:00
Yaowei Bai c98940f6fa mm/memory_hotplug: is_mem_section_removable() can return bool
Make is_mem_section_removable() return bool to improve readability due
to this particular function only using either one or zero as its return
value.

Signed-off-by: Yaowei Bai <baiyaowei@cmss.chinamobile.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-19 19:12:14 -07:00
Joe Perches 756a025f00 mm: coalesce split strings
Kernel style prefers a single string over split strings when the string is
'user-visible'.

Miscellanea:

 - Add a missing newline
 - Realign arguments

Signed-off-by: Joe Perches <joe@perches.com>
Acked-by: Tejun Heo <tj@kernel.org>	[percpu]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-17 15:09:34 -07:00
Chen Yucong e33e33b4d1 mm, memory hotplug: print debug message in the proper way for online_pages
online_pages() simply returns an error value if
memory_notify(MEM_GOING_ONLINE, &arg) return a value that is not what we
want for successfully onlining target pages.  This patch arms to print
more failure information like offline_pages() in online_pages.

This patch also converts printk(KERN_<LEVEL>) to pr_<level>(), and moves
__offline_pages() to not print failure information with KERN_INFO
according to David Rientjes's suggestion[1].

[1] https://lkml.org/lkml/2016/2/24/1094

Signed-off-by: Chen Yucong <slaoub@gmail.com>
Acked-by: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-17 15:09:34 -07:00
Joonsoo Kim fe896d1878 mm: introduce page reference manipulation functions
The success of CMA allocation largely depends on the success of
migration and key factor of it is page reference count.  Until now, page
reference is manipulated by direct calling atomic functions so we cannot
follow up who and where manipulate it.  Then, it is hard to find actual
reason of CMA allocation failure.  CMA allocation should be guaranteed
to succeed so finding offending place is really important.

In this patch, call sites where page reference is manipulated are
converted to introduced wrapper function.  This is preparation step to
add tracepoint to each page reference manipulation function.  With this
facility, we can easily find reason of CMA allocation failure.  There is
no functional change in this patch.

In addition, this patch also converts reference read sites.  It will
help a second step that renames page._count to something else and
prevents later attempt to direct access to it (Suggested by Andrew).

Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Acked-by: Michal Nazarewicz <mina86@mina86.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Sergey Senozhatsky <sergey.senozhatsky.work@gmail.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-17 15:09:34 -07:00
Vlastimil Babka e888ca3545 mm, memory hotplug: small cleanup in online_pages()
We can reuse the nid we've determined instead of repeated pfn_to_nid()
usages.  Also zone_to_nid() should be a bit cheaper in general than
pfn_to_nid().

Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: David Rientjes <rientjes@google.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-17 15:09:34 -07:00
Vlastimil Babka 698b1b3064 mm, compaction: introduce kcompactd
Memory compaction can be currently performed in several contexts:

 - kswapd balancing a zone after a high-order allocation failure
 - direct compaction to satisfy a high-order allocation, including THP
   page fault attemps
 - khugepaged trying to collapse a hugepage
 - manually from /proc

The purpose of compaction is two-fold.  The obvious purpose is to
satisfy a (pending or future) high-order allocation, and is easy to
evaluate.  The other purpose is to keep overal memory fragmentation low
and help the anti-fragmentation mechanism.  The success wrt the latter
purpose is more

The current situation wrt the purposes has a few drawbacks:

 - compaction is invoked only when a high-order page or hugepage is not
   available (or manually).  This might be too late for the purposes of
   keeping memory fragmentation low.
 - direct compaction increases latency of allocations.  Again, it would
   be better if compaction was performed asynchronously to keep
   fragmentation low, before the allocation itself comes.
 - (a special case of the previous) the cost of compaction during THP
   page faults can easily offset the benefits of THP.
 - kswapd compaction appears to be complex, fragile and not working in
   some scenarios.  It could also end up compacting for a high-order
   allocation request when it should be reclaiming memory for a later
   order-0 request.

To improve the situation, we should be able to benefit from an
equivalent of kswapd, but for compaction - i.e. a background thread
which responds to fragmentation and the need for high-order allocations
(including hugepages) somewhat proactively.

One possibility is to extend the responsibilities of kswapd, which could
however complicate its design too much.  It should be better to let
kswapd handle reclaim, as order-0 allocations are often more critical
than high-order ones.

Another possibility is to extend khugepaged, but this kthread is a
single instance and tied to THP configs.

This patch goes with the option of a new set of per-node kthreads called
kcompactd, and lays the foundations, without introducing any new
tunables.  The lifecycle mimics kswapd kthreads, including the memory
hotplug hooks.

For compaction, kcompactd uses the standard compaction_suitable() and
ompact_finished() criteria and the deferred compaction functionality.
Unlike direct compaction, it uses only sync compaction, as there's no
allocation latency to minimize.

This patch doesn't yet add a call to wakeup_kcompactd.  The kswapd
compact/reclaim loop for high-order pages will be replaced by waking up
kcompactd in the next patch with the description of what's wrong with
the old approach.

Waking up of the kcompactd threads is also tied to kswapd activity and
follows these rules:
 - we don't want to affect any fastpaths, so wake up kcompactd only from
   the slowpath, as it's done for kswapd
 - if kswapd is doing reclaim, it's more important than compaction, so
   don't invoke kcompactd until kswapd goes to sleep
 - the target order used for kswapd is passed to kcompactd

Future possible future uses for kcompactd include the ability to wake up
kcompactd on demand in special situations, such as when hugepages are
not available (currently not done due to __GFP_NO_KSWAPD) or when a
fragmentation event (i.e.  __rmqueue_fallback()) occurs.  It's also
possible to perform periodic compaction with kcompactd.

[arnd@arndb.de: fix build errors with kcompactd]
[paul.gortmaker@windriver.com: don't use modular references for non modular code]
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: David Rientjes <rientjes@google.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com>
Cc: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-17 15:09:34 -07:00
Joonsoo Kim 7cf91a98e6 mm/compaction: speed up pageblock_pfn_to_page() when zone is contiguous
There is a performance drop report due to hugepage allocation and in
there half of cpu time are spent on pageblock_pfn_to_page() in
compaction [1].

In that workload, compaction is triggered to make hugepage but most of
pageblocks are un-available for compaction due to pageblock type and
skip bit so compaction usually fails.  Most costly operations in this
case is to find valid pageblock while scanning whole zone range.  To
check if pageblock is valid to compact, valid pfn within pageblock is
required and we can obtain it by calling pageblock_pfn_to_page().  This
function checks whether pageblock is in a single zone and return valid
pfn if possible.  Problem is that we need to check it every time before
scanning pageblock even if we re-visit it and this turns out to be very
expensive in this workload.

Although we have no way to skip this pageblock check in the system where
hole exists at arbitrary position, we can use cached value for zone
continuity and just do pfn_to_page() in the system where hole doesn't
exist.  This optimization considerably speeds up in above workload.

Before vs After
  Max: 1096 MB/s vs 1325 MB/s
  Min: 635 MB/s 1015 MB/s
  Avg: 899 MB/s 1194 MB/s

Avg is improved by roughly 30% [2].

[1]: http://www.spinics.net/lists/linux-mm/msg97378.html
[2]: https://lkml.org/lkml/2015/12/9/23

[akpm@linux-foundation.org: don't forget to restore zone->contiguous on error path, per Vlastimil]
Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Reported-by: Aaron Lu <aaron.lu@intel.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Tested-by: Aaron Lu <aaron.lu@intel.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Rik van Riel <riel@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-15 16:55:16 -07:00
Vitaly Kuznetsov 31bc3858ea memory-hotplug: add automatic onlining policy for the newly added memory
Currently, all newly added memory blocks remain in 'offline' state
unless someone onlines them, some linux distributions carry special udev
rules like:

  SUBSYSTEM=="memory", ACTION=="add", ATTR{state}=="offline", ATTR{state}="online"

to make this happen automatically.  This is not a great solution for
virtual machines where memory hotplug is being used to address high
memory pressure situations as such onlining is slow and a userspace
process doing this (udev) has a chance of being killed by the OOM killer
as it will probably require to allocate some memory.

Introduce default policy for the newly added memory blocks in
/sys/devices/system/memory/auto_online_blocks file with two possible
values: "offline" which preserves the current behavior and "online"
which causes all newly added memory blocks to go online as soon as
they're added.  The default is "offline".

Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Reviewed-by: Daniel Kiper <daniel.kiper@oracle.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Daniel Kiper <daniel.kiper@oracle.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Tang Chen <tangchen@cn.fujitsu.com>
Cc: David Vrabel <david.vrabel@citrix.com>
Acked-by: David Rientjes <rientjes@google.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Xishi Qiu <qiuxishi@huawei.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: "K. Y. Srinivasan" <kys@microsoft.com>
Cc: Igor Mammedov <imammedo@redhat.com>
Cc: Kay Sievers <kay@vrfy.org>
Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-15 16:55:16 -07:00
Toshi Kani 782b86641e xen, mm: Set IORESOURCE_SYSTEM_RAM to System RAM
Set IORESOURCE_SYSTEM_RAM in struct resource.flags of "System
RAM" entries.

Signed-off-by: Toshi Kani <toshi.kani@hpe.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Acked-by: David Vrabel <david.vrabel@citrix.com> # xen
Cc: Andrew Banman <abanman@sgi.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: Gu Zheng <guz.fnst@cn.fujitsu.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Luis R. Rodriguez <mcgrof@suse.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Tang Chen <tangchen@cn.fujitsu.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Toshi Kani <toshi.kani@hp.com>
Cc: linux-arch@vger.kernel.org
Cc: linux-mm <linux-mm@kvack.org>
Cc: xen-devel@lists.xenproject.org
Link: http://lkml.kernel.org/r/1453841853-11383-9-git-send-email-bp@alien8.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-01-30 09:49:58 +01:00
Dan Williams 4b94ffdc41 x86, mm: introduce vmem_altmap to augment vmemmap_populate()
In support of providing struct page for large persistent memory
capacities, use struct vmem_altmap to change the default policy for
allocating memory for the memmap array.  The default vmemmap_populate()
allocates page table storage area from the page allocator.  Given
persistent memory capacities relative to DRAM it may not be feasible to
store the memmap in 'System Memory'.  Instead vmem_altmap represents
pre-allocated "device pages" to satisfy vmemmap_alloc_block_buf()
requests.

Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Reported-by: kbuild test robot <lkp@intel.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-15 17:56:32 -08:00
Vitaly Kuznetsov 6f754ba4cf memory-hotplug: don't BUG() in register_memory_resource()
Out of memory condition is not a bug and while we can't add new memory
in such case crashing the system seems wrong.  Propagating the return
value from register_memory_resource() requires interface change.

Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Reviewed-by: Igor Mammedov <imammedo@redhat.com>
Acked-by: David Rientjes <rientjes@google.com>
Cc: Tang Chen <tangchen@cn.fujitsu.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Xishi Qiu <qiuxishi@huawei.com>
Cc: Sheng Yong <shengyong1@huawei.com>
Cc: Zhu Guihua <zhugh.fnst@cn.fujitsu.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: David Vrabel <david.vrabel@citrix.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-14 16:00:49 -08:00
Andrew Banman 5f0f2887f4 mm/memory_hotplug.c: check for missing sections in test_pages_in_a_zone()
test_pages_in_a_zone() does not account for the possibility of missing
sections in the given pfn range.  pfn_valid_within always returns 1 when
CONFIG_HOLES_IN_ZONE is not set, allowing invalid pfns from missing
sections to pass the test, leading to a kernel oops.

Wrap an additional pfn loop with PAGES_PER_SECTION granularity to check
for missing sections before proceeding into the zone-check code.

This also prevents a crash from offlining memory devices with missing
sections.  Despite this, it may be a good idea to keep the related patch
'[PATCH 3/3] drivers: memory: prohibit offlining of memory blocks with
missing sections' because missing sections in a memory block may lead to
other problems not covered by the scope of this fix.

Signed-off-by: Andrew Banman <abanman@sgi.com>
Acked-by: Alex Thorlton <athorlton@sgi.com>
Cc: Russ Anderson <rja@sgi.com>
Cc: Alex Thorlton <athorlton@sgi.com>
Cc: Yinghai Lu <yinghai@kernel.org>
Cc: Greg KH <greg@kroah.com>
Cc: Seth Jennings <sjennings@variantweb.net>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-12-29 17:45:49 -08:00
Yaowei Bai b171e40930 mm/page_alloc: remove unused parameter in init_currently_empty_zone()
Commit a2f3aa0257 ("[PATCH] Fix sparsemem on Cell") fixed an oops
experienced on the Cell architecture when init-time functions,
early_*(), are called at runtime by introducing an 'enum memmap_context'
parameter to memmap_init_zone() and init_currently_empty_zone().  This
parameter is intended to be used to tell whether the call of these two
functions is being made on behalf of a hotplug event, or happening at
boot-time.  However, init_currently_empty_zone() does not use this
parameter at all, so remove it.

Signed-off-by: Yaowei Bai <bywxiaobai@163.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-11-05 19:34:48 -08:00
David Vrabel 62cedb9f13 mm: memory hotplug with an existing resource
Add add_memory_resource() to add memory using an existing "System RAM"
resource.  This is useful if the memory region is being located by
finding a free resource slot with allocate_resource().

Xen guests will make use of this in their balloon driver to hotplug
arbitrary amounts of memory in response to toolstack requests.

Signed-off-by: David Vrabel <david.vrabel@citrix.com>
Reviewed-by: Daniel Kiper <daniel.kiper@oracle.com>
Reviewed-by: Tang Chen <tangchen@cn.fujitsu.com>
2015-10-23 14:19:58 +01:00
Linus Torvalds 12f03ee606 libnvdimm for 4.3:
1/ Introduce ZONE_DEVICE and devm_memremap_pages() as a generic
    mechanism for adding device-driver-discovered memory regions to the
    kernel's direct map.  This facility is used by the pmem driver to
    enable pfn_to_page() operations on the page frames returned by DAX
    ('direct_access' in 'struct block_device_operations'). For now, the
    'memmap' allocation for these "device" pages comes from "System
    RAM".  Support for allocating the memmap from device memory will
    arrive in a later kernel.
 
 2/ Introduce memremap() to replace usages of ioremap_cache() and
    ioremap_wt().  memremap() drops the __iomem annotation for these
    mappings to memory that do not have i/o side effects.  The
    replacement of ioremap_cache() with memremap() is limited to the
    pmem driver to ease merging the api change in v4.3.  Completion of
    the conversion is targeted for v4.4.
 
 3/ Similar to the usage of memcpy_to_pmem() + wmb_pmem() in the pmem
    driver, update the VFS DAX implementation and PMEM api to provide
    persistence guarantees for kernel operations on a DAX mapping.
 
 4/ Convert the ACPI NFIT 'BLK' driver to map the block apertures as
    cacheable to improve performance.
 
 5/ Miscellaneous updates and fixes to libnvdimm including support
    for issuing "address range scrub" commands, clarifying the optimal
    'sector size' of pmem devices, a clarification of the usage of the
    ACPI '_STA' (status) property for DIMM devices, and other minor
    fixes.
 -----BEGIN PGP SIGNATURE-----
 Version: GnuPG v1
 
 iQIcBAABAgAGBQJV6Nx7AAoJEB7SkWpmfYgCWyYQAI5ju6Gvw27RNFtPovHcZUf5
 JGnxXejI6/AqeTQ+IulgprxtEUCrXOHjCDA5dkjr1qvsoqK1qxug+vJHOZLgeW0R
 OwDtmdW4Qrgeqm+CPoxETkorJ8wDOc8mol81kTiMgeV3UqbYeeHIiTAmwe7VzZ0C
 nNdCRDm5g8dHCjTKcvK3rvozgyoNoWeBiHkPe76EbnxDICxCB5dak7XsVKNMIVFQ
 NuYlnw6IYN7+rMHgpgpRux38NtIW8VlYPWTmHExejc2mlioWMNBG/bmtwLyJ6M3e
 zliz4/cnonTMUaizZaVozyinTa65m7wcnpjK+vlyGV2deDZPJpDRvSOtB0lH30bR
 1gy+qrKzuGKpaN6thOISxFLLjmEeYwzYd7SvC9n118r32qShz+opN9XX0WmWSFlA
 sajE1ehm4M7s5pkMoa/dRnAyR8RUPu4RNINdQ/Z9jFfAOx+Q26rLdQXwf9+uqbEb
 bIeSQwOteK5vYYCstvpAcHSMlJAglzIX5UfZBvtEIJN7rlb0VhmGWfxAnTu+ktG1
 o9cqAt+J4146xHaFwj5duTsyKhWb8BL9+xqbKPNpXEp+PbLsrnE/+WkDLFD67jxz
 dgIoK60mGnVXp+16I2uMqYYDgAyO5zUdmM4OygOMnZNa1mxesjbDJC6Wat1Wsndn
 slsw6DkrWT60CRE42nbK
 =o57/
 -----END PGP SIGNATURE-----

Merge tag 'libnvdimm-for-4.3' of git://git.kernel.org/pub/scm/linux/kernel/git/nvdimm/nvdimm

Pull libnvdimm updates from Dan Williams:
 "This update has successfully completed a 0day-kbuild run and has
  appeared in a linux-next release.  The changes outside of the typical
  drivers/nvdimm/ and drivers/acpi/nfit.[ch] paths are related to the
  removal of IORESOURCE_CACHEABLE, the introduction of memremap(), and
  the introduction of ZONE_DEVICE + devm_memremap_pages().

  Summary:

   - Introduce ZONE_DEVICE and devm_memremap_pages() as a generic
     mechanism for adding device-driver-discovered memory regions to the
     kernel's direct map.

     This facility is used by the pmem driver to enable pfn_to_page()
     operations on the page frames returned by DAX ('direct_access' in
     'struct block_device_operations').

     For now, the 'memmap' allocation for these "device" pages comes
     from "System RAM".  Support for allocating the memmap from device
     memory will arrive in a later kernel.

   - Introduce memremap() to replace usages of ioremap_cache() and
     ioremap_wt().  memremap() drops the __iomem annotation for these
     mappings to memory that do not have i/o side effects.  The
     replacement of ioremap_cache() with memremap() is limited to the
     pmem driver to ease merging the api change in v4.3.

     Completion of the conversion is targeted for v4.4.

   - Similar to the usage of memcpy_to_pmem() + wmb_pmem() in the pmem
     driver, update the VFS DAX implementation and PMEM api to provide
     persistence guarantees for kernel operations on a DAX mapping.

   - Convert the ACPI NFIT 'BLK' driver to map the block apertures as
     cacheable to improve performance.

   - Miscellaneous updates and fixes to libnvdimm including support for
     issuing "address range scrub" commands, clarifying the optimal
     'sector size' of pmem devices, a clarification of the usage of the
     ACPI '_STA' (status) property for DIMM devices, and other minor
     fixes"

* tag 'libnvdimm-for-4.3' of git://git.kernel.org/pub/scm/linux/kernel/git/nvdimm/nvdimm: (34 commits)
  libnvdimm, pmem: direct map legacy pmem by default
  libnvdimm, pmem: 'struct page' for pmem
  libnvdimm, pfn: 'struct page' provider infrastructure
  x86, pmem: clarify that ARCH_HAS_PMEM_API implies PMEM mapped WB
  add devm_memremap_pages
  mm: ZONE_DEVICE for "device memory"
  mm: move __phys_to_pfn and __pfn_to_phys to asm/generic/memory_model.h
  dax: drop size parameter to ->direct_access()
  nd_blk: change aperture mapping from WC to WB
  nvdimm: change to use generic kvfree()
  pmem, dax: have direct_access use __pmem annotation
  dax: update I/O path to do proper PMEM flushing
  pmem: add copy_from_iter_pmem() and clear_pmem()
  pmem, x86: clean up conditional pmem includes
  pmem: remove layer when calling arch_has_wmb_pmem()
  pmem, x86: move x86 PMEM API to new pmem.h header
  libnvdimm, e820: make CONFIG_X86_PMEM_LEGACY a tristate option
  pmem: switch to devm_ allocations
  devres: add devm_memremap
  libnvdimm, btt: write and validate parent_uuid
  ...
2015-09-08 14:35:59 -07:00
Tang Chen 7f36e3e56d memory-hotplug: add hot-added memory ranges to memblock before allocate node_data for a node.
Commit f9126ab924 ("memory-hotplug: fix wrong edge when hot add a new
node") hot-added memory range to memblock, after creating pgdat for new
node.

But there is a problem:

  add_memory()
  |--> hotadd_new_pgdat()
       |--> free_area_init_node()
            |--> get_pfn_range_for_nid()
                 |--> find start_pfn and end_pfn in memblock
  |--> ......
  |--> memblock_add_node(start, size, nid)    --------    Here, just too late.

get_pfn_range_for_nid() will find that start_pfn and end_pfn are both 0.
As a result, when adding memory, dmesg will give the following wrong
message.

  Initmem setup node 5 [mem 0x0000000000000000-0xffffffffffffffff]
  On node 5 totalpages: 0
  Built 5 zonelists in Node order, mobility grouping on.  Total pages: 32588823
  Policy zone: Normal
  init_memory_mapping: [mem 0x60000000000-0x607ffffffff]

The solution is simple, just add the memory range to memblock a little
earlier, before hotadd_new_pgdat().

[akpm@linux-foundation.org: coding-style fixes]
Signed-off-by: Tang Chen <tangchen@cn.fujitsu.com>
Cc: Xishi Qiu <qiuxishi@huawei.com>
Cc: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com>
Cc: Kamezawa Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Taku Izumi <izumi.taku@jp.fujitsu.com>
Cc: Gu Zheng <guz.fnst@cn.fujitsu.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: David Rientjes <rientjes@google.com>
Cc: <stable@vger.kernel.org>	[4.2.x]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-09-04 16:54:41 -07:00
Dan Williams 033fbae988 mm: ZONE_DEVICE for "device memory"
While pmem is usable as a block device or via DAX mappings to userspace
there are several usage scenarios that can not target pmem due to its
lack of struct page coverage. In preparation for "hot plugging" pmem
into the vmemmap add ZONE_DEVICE as a new zone to tag these pages
separately from the ones that are subject to standard page allocations.
Importantly "device memory" can be removed at will by userspace
unbinding the driver of the device.

Having a separate zone prevents allocation and otherwise marks these
pages that are distinct from typical uniform memory.  Device memory has
different lifetime and performance characteristics than RAM.  However,
since we have run out of ZONES_SHIFT bits this functionality currently
depends on sacrificing ZONE_DMA.

Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Jerome Glisse <j.glisse@gmail.com>
[hch: various simplifications in the arch interface]
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
2015-08-27 19:40:58 -04:00
Xishi Qiu f9126ab924 memory-hotplug: fix wrong edge when hot add a new node
When we add a new node, the edge of memory may be wrong.

e.g. system has 4 nodes, and node3 is movable, node3 mem:[24G-32G],

1. hotremove the node3,
2. then hotadd node3 with a part of memory, mem:[26G-30G],
3. call hotadd_new_pgdat()
        free_area_init_node()
                get_pfn_range_for_nid()
4. it will return wrong start_pfn and end_pfn, because we have not
update the memblock.

This patch also fixes a BUG_ON during hot-addition, please see
http://marc.info/?l=linux-kernel&m=142961156129456&w=2

Signed-off-by: Xishi Qiu <qiuxishi@huawei.com>
Cc: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com>
Cc: Kamezawa Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Taku Izumi <izumi.taku@jp.fujitsu.com>
Cc: Tang Chen <tangchen@cn.fujitsu.com>
Cc: Gu Zheng <guz.fnst@cn.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-08-14 15:56:32 -07:00
Mel Gorman e298ff75f1 mm: initialize hotplugged pages as reserved
Commit 92923ca3aa ("mm: meminit: only set page reserved in the
memblock region") broke memory hotplug which expects the memmap for
newly added sections to be reserved until onlined by
online_pages_range().  This patch marks hotplugged pages as reserved
when adding new zones.

Signed-off-by: Mel Gorman <mgorman@suse.de>
Reported-by: David Vrabel <david.vrabel@citrix.com>
Tested-by: David Vrabel <david.vrabel@citrix.com>
Cc: Nathan Zimmer <nzimmer@sgi.com>
Cc: Robin Holt <holt@sgi.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-08-07 04:39:41 +03:00
Zhu Guihua c435a39057 mm/memory hotplug: print the last vmemmap region at the end of hot add memory
When hot add two nodes continuously, we found the vmemmap region info is
a bit messed.  The last region of node 2 is printed when node 3 hot
added, like the following:

  Initmem setup node 2 [mem 0x0000000000000000-0xffffffffffffffff]
   On node 2 totalpages: 0
   Built 2 zonelists in Node order, mobility grouping on.  Total pages: 16090539
   Policy zone: Normal
   init_memory_mapping: [mem 0x40000000000-0x407ffffffff]
    [mem 0x40000000000-0x407ffffffff] page 1G
    [ffffea1000000000-ffffea10001fffff] PMD -> [ffff8a077d800000-ffff8a077d9fffff] on node 2
    [ffffea1000200000-ffffea10003fffff] PMD -> [ffff8a077de00000-ffff8a077dffffff] on node 2
  ...
    [ffffea101f600000-ffffea101f9fffff] PMD -> [ffff8a074ac00000-ffff8a074affffff] on node 2
    [ffffea101fa00000-ffffea101fdfffff] PMD -> [ffff8a074a800000-ffff8a074abfffff] on node 2
  Initmem setup node 3 [mem 0x0000000000000000-0xffffffffffffffff]
   On node 3 totalpages: 0
   Built 3 zonelists in Node order, mobility grouping on.  Total pages: 16090539
   Policy zone: Normal
   init_memory_mapping: [mem 0x60000000000-0x607ffffffff]
    [mem 0x60000000000-0x607ffffffff] page 1G
    [ffffea101fe00000-ffffea101fffffff] PMD -> [ffff8a074a400000-ffff8a074a5fffff] on node 2 <=== node 2 ???
    [ffffea1800000000-ffffea18001fffff] PMD -> [ffff8a074a600000-ffff8a074a7fffff] on node 3
    [ffffea1800200000-ffffea18005fffff] PMD -> [ffff8a074a000000-ffff8a074a3fffff] on node 3
    [ffffea1800600000-ffffea18009fffff] PMD -> [ffff8a0749c00000-ffff8a0749ffffff] on node 3
  ...

The cause is the last region was missed at the and of hot add memory,
and p_start, p_end, node_start were not reset, so when hot add memory to
a new node, it will consider they are not contiguous blocks and print
the previous one.  So we print the last vmemmap region at the end of hot
add memory to avoid the confusion.

Signed-off-by: Zhu Guihua <zhugh.fnst@cn.fujitsu.com>
Reviewed-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-06-24 17:49:45 -07:00
Gu Zheng 85bd839983 mm/memory_hotplug.c: set zone->wait_table to null after freeing it
Izumi found the following oops when hot re-adding a node:

    BUG: unable to handle kernel paging request at ffffc90008963690
    IP: __wake_up_bit+0x20/0x70
    Oops: 0000 [#1] SMP
    CPU: 68 PID: 1237 Comm: rs:main Q:Reg Not tainted 4.1.0-rc5 #80
    Hardware name: FUJITSU PRIMEQUEST2800E/SB, BIOS PRIMEQUEST 2000 Series BIOS Version 1.87 04/28/2015
    task: ffff880838df8000 ti: ffff880017b94000 task.ti: ffff880017b94000
    RIP: 0010:[<ffffffff810dff80>]  [<ffffffff810dff80>] __wake_up_bit+0x20/0x70
    RSP: 0018:ffff880017b97be8  EFLAGS: 00010246
    RAX: ffffc90008963690 RBX: 00000000003c0000 RCX: 000000000000a4c9
    RDX: 0000000000000000 RSI: ffffea101bffd500 RDI: ffffc90008963648
    RBP: ffff880017b97c08 R08: 0000000002000020 R09: 0000000000000000
    R10: 0000000000000000 R11: 0000000000000000 R12: ffff8a0797c73800
    R13: ffffea101bffd500 R14: 0000000000000001 R15: 00000000003c0000
    FS:  00007fcc7ffff700(0000) GS:ffff880874800000(0000) knlGS:0000000000000000
    CS:  0010 DS: 0000 ES: 0000 CR0: 0000000080050033
    CR2: ffffc90008963690 CR3: 0000000836761000 CR4: 00000000001407e0
    Call Trace:
      unlock_page+0x6d/0x70
      generic_write_end+0x53/0xb0
      xfs_vm_write_end+0x29/0x80 [xfs]
      generic_perform_write+0x10a/0x1e0
      xfs_file_buffered_aio_write+0x14d/0x3e0 [xfs]
      xfs_file_write_iter+0x79/0x120 [xfs]
      __vfs_write+0xd4/0x110
      vfs_write+0xac/0x1c0
      SyS_write+0x58/0xd0
      system_call_fastpath+0x12/0x76
    Code: 5d c3 66 0f 1f 84 00 00 00 00 00 0f 1f 44 00 00 55 48 89 e5 48 83 ec 20 65 48 8b 04 25 28 00 00 00 48 89 45 f8 31 c0 48 8d 47 48 <48> 39 47 48 48 c7 45 e8 00 00 00 00 48 c7 45 f0 00 00 00 00 48
    RIP  [<ffffffff810dff80>] __wake_up_bit+0x20/0x70
     RSP <ffff880017b97be8>
    CR2: ffffc90008963690

Reproduce method (re-add a node)::
  Hot-add nodeA --> remove nodeA --> hot-add nodeA (panic)

This seems an use-after-free problem, and the root cause is
zone->wait_table was not set to *NULL* after free it in
try_offline_node.

When hot re-add a node, we will reuse the pgdat of it, so does the zone
struct, and when add pages to the target zone, it will init the zone
first (including the wait_table) if the zone is not initialized.  The
judgement of zone initialized is based on zone->wait_table:

	static inline bool zone_is_initialized(struct zone *zone)
	{
		return !!zone->wait_table;
	}

so if we do not set the zone->wait_table to *NULL* after free it, the
memory hotplug routine will skip the init of new zone when hot re-add
the node, and the wait_table still points to the freed memory, then we
will access the invalid address when trying to wake up the waiting
people after the i/o operation with the page is done, such as mentioned
above.

Signed-off-by: Gu Zheng <guz.fnst@cn.fujitsu.com>
Reported-by: Taku Izumi <izumi.taku@jp.fujitsu.com>
Reviewed by: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Tang Chen <tangchen@cn.fujitsu.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-06-10 16:43:43 -07:00
Naoya Horiguchi 7e1f049efb mm: hugetlb: cleanup using paeg_huge_active()
Now we have an easy access to hugepages' activeness, so existing helpers to
get the information can be cleaned up.

[akpm@linux-foundation.org: s/PageHugeActive/page_huge_active/]
Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Hugh Dickins <hughd@google.com>
Reviewed-by: Michal Hocko <mhocko@suse.cz>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-04-15 16:35:19 -07:00
David Rientjes 30467e0b3b mm, hotplug: fix concurrent memory hot-add deadlock
There's a deadlock when concurrently hot-adding memory through the probe
interface and switching a memory block from offline to online.

When hot-adding memory via the probe interface, add_memory() first takes
mem_hotplug_begin() and then device_lock() is later taken when registering
the newly initialized memory block.  This creates a lock dependency of (1)
mem_hotplug.lock (2) dev->mutex.

When switching a memory block from offline to online, dev->mutex is first
grabbed in device_online() when the write(2) transitions an existing
memory block from offline to online, and then online_pages() will take
mem_hotplug_begin().

This creates a lock inversion between mem_hotplug.lock and dev->mutex.
Vitaly reports that this deadlock can happen when kworker handling a probe
event races with systemd-udevd switching a memory block's state.

This patch requires the state transition to take mem_hotplug_begin()
before dev->mutex.  Hot-adding memory via the probe interface creates a
memory block while holding mem_hotplug_begin(), there is no way to take
dev->mutex first in this case.

online_pages() and offline_pages() are only called when transitioning
memory block state.  We now require that mem_hotplug_begin() is taken
before calling them -- this requires exporting the mem_hotplug_begin() and
mem_hotplug_done() to generic code.  In all hot-add and hot-remove cases,
mem_hotplug_begin() is done prior to device_online().  This is all that is
needed to avoid the deadlock.

Signed-off-by: David Rientjes <rientjes@google.com>
Reported-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Tested-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: "Rafael J. Wysocki" <rjw@rjwysocki.net>
Cc: "K. Y. Srinivasan" <kys@microsoft.com>
Cc: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com>
Cc: Tang Chen <tangchen@cn.fujitsu.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Zhang Zhen <zhenzhang.zhang@huawei.com>
Cc: Vladimir Davydov <vdavydov@parallels.com>
Cc: Wang Nan <wangnan0@huawei.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-04-14 16:49:00 -07:00
Sheng Yong 19c07d5e04 memory hotplug: use macro to switch between section and pfn
Use macro section_nr_to_pfn() to switch between section and pfn, instead
of open-coding it.  No semantic changes.

Signed-off-by: Sheng Yong <shengyong1@huawei.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-04-14 16:49:00 -07:00
Gu Zheng b0dc3a342a mm/memory hotplug: postpone the reset of obsolete pgdat
Qiu Xishi reported the following BUG when testing hot-add/hot-remove node under
stress condition:

  BUG: unable to handle kernel paging request at 0000000000025f60
  IP: next_online_pgdat+0x1/0x50
  PGD 0
  Oops: 0000 [#1] SMP
  ACPI: Device does not support D3cold
  Modules linked in: fuse nls_iso8859_1 nls_cp437 vfat fat loop dm_mod coretemp mperf crc32c_intel ghash_clmulni_intel aesni_intel ablk_helper cryptd lrw gf128mul glue_helper aes_x86_64 pcspkr microcode igb dca i2c_algo_bit ipv6 megaraid_sas iTCO_wdt i2c_i801 i2c_core iTCO_vendor_support tg3 sg hwmon ptp lpc_ich pps_core mfd_core acpi_pad rtc_cmos button ext3 jbd mbcache sd_mod crc_t10dif scsi_dh_alua scsi_dh_rdac scsi_dh_hp_sw scsi_dh_emc scsi_dh ahci libahci libata scsi_mod [last unloaded: rasf]
  CPU: 23 PID: 238 Comm: kworker/23:1 Tainted: G           O 3.10.15-5885-euler0302 #1
  Hardware name: HUAWEI TECHNOLOGIES CO.,LTD. Huawei N1/Huawei N1, BIOS V100R001 03/02/2015
  Workqueue: events vmstat_update
  task: ffffa800d32c0000 ti: ffffa800d32ae000 task.ti: ffffa800d32ae000
  RIP: 0010: next_online_pgdat+0x1/0x50
  RSP: 0018:ffffa800d32afce8  EFLAGS: 00010286
  RAX: 0000000000001440 RBX: ffffffff81da53b8 RCX: 0000000000000082
  RDX: 0000000000000000 RSI: 0000000000000082 RDI: 0000000000000000
  RBP: ffffa800d32afd28 R08: ffffffff81c93bfc R09: ffffffff81cbdc96
  R10: 00000000000040ec R11: 00000000000000a0 R12: ffffa800fffb3440
  R13: ffffa800d32afd38 R14: 0000000000000017 R15: ffffa800e6616800
  FS:  0000000000000000(0000) GS:ffffa800e6600000(0000) knlGS:0000000000000000
  CS:  0010 DS: 0000 ES: 0000 CR0: 0000000080050033
  CR2: 0000000000025f60 CR3: 0000000001a0b000 CR4: 00000000001407e0
  DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
  DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
  Call Trace:
    refresh_cpu_vm_stats+0xd0/0x140
    vmstat_update+0x11/0x50
    process_one_work+0x194/0x3d0
    worker_thread+0x12b/0x410
    kthread+0xc6/0xd0
    ret_from_fork+0x7c/0xb0

The cause is the "memset(pgdat, 0, sizeof(*pgdat))" at the end of
try_offline_node, which will reset all the content of pgdat to 0, as the
pgdat is accessed lock-free, so that the users still using the pgdat
will panic, such as the vmstat_update routine.

process A:				offline node XX:

vmstat_updat()
   refresh_cpu_vm_stats()
     for_each_populated_zone()
       find online node XX
     cond_resched()
					offline cpu and memory, then try_offline_node()
					node_set_offline(nid), and memset(pgdat, 0, sizeof(*pgdat))
       zone = next_zone(zone)
         pg_data_t *pgdat = zone->zone_pgdat;  // here pgdat is NULL now
           next_online_pgdat(pgdat)
             next_online_node(pgdat->node_id);  // NULL pointer access

So the solution here is postponing the reset of obsolete pgdat from
try_offline_node() to hotadd_new_pgdat(), and just resetting
pgdat->nr_zones and pgdat->classzone_idx to be 0 rather than the memset
0 to avoid breaking pointer information in pgdat.

Signed-off-by: Gu Zheng <guz.fnst@cn.fujitsu.com>
Reported-by: Xishi Qiu <qiuxishi@huawei.com>
Suggested-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com>
Cc: Taku Izumi <izumi.taku@jp.fujitsu.com>
Cc: Tang Chen <tangchen@cn.fujitsu.com>
Cc: Xie XiuQi <xiexiuqi@huawei.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-03-25 16:20:30 -07:00
Vlastimil Babka c05543293e mm, memory_hotplug/failure: drain single zone pcplists
Memory hotplug and failure mechanisms have several places where pcplists
are drained so that pages are returned to the buddy allocator and can be
e.g. prepared for offlining.  This is always done in the context of a
single zone, we can reduce the pcplists drain to the single zone, which
is now possible.

The change should make memory offlining due to hotremove or failure
faster and not disturbing unrelated pcplists anymore.

Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Rik van Riel <riel@redhat.com>
Cc: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com>
Cc: Zhang Yanfei <zhangyanfei@cn.fujitsu.com>
Cc: Xishi Qiu <qiuxishi@huawei.com>
Cc: Vladimir Davydov <vdavydov@parallels.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Michal Nazarewicz <mina86@mina86.com>
Cc: Marek Szyprowski <m.szyprowski@samsung.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-12-10 17:41:05 -08:00
Vlastimil Babka 93481ff0e5 mm: introduce single zone pcplists drain
The functions for draining per-cpu pages back to buddy allocators
currently always operate on all zones.  There are however several cases
where the drain is only needed in the context of a single zone, and
spilling other pcplists is a waste of time both due to the extra
spilling and later refilling.

This patch introduces new zone pointer parameter to drain_all_pages()
and changes the dummy parameter of drain_local_pages() to be also a zone
pointer.  When NULL is passed, the functions operate on all zones as
usual.  Passing a specific zone pointer reduces the work to the single
zone.

All callers are updated to pass the NULL pointer in this patch.
Conversion to single zone (where appropriate) is done in further
patches.

Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Rik van Riel <riel@redhat.com>
Cc: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com>
Cc: Zhang Yanfei <zhangyanfei@cn.fujitsu.com>
Cc: Xishi Qiu <qiuxishi@huawei.com>
Cc: Vladimir Davydov <vdavydov@parallels.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Michal Nazarewicz <mina86@mina86.com>
Cc: Marek Szyprowski <m.szyprowski@samsung.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-12-10 17:41:05 -08:00
Tang Chen 0bd8542008 mem-hotplug: reset node present pages when hot-adding a new pgdat
When memory is hot-added, all the memory is in offline state.  So clear
all zones' present_pages because they will be updated in online_pages()
and offline_pages().  Otherwise, /proc/zoneinfo will corrupt:

When the memory of node2 is offline:

  # cat /proc/zoneinfo
  ......
  Node 2, zone   Movable
  ......
        spanned  8388608
        present  8388608
        managed  0

When we online memory on node2:

  # cat /proc/zoneinfo
  ......
  Node 2, zone   Movable
  ......
        spanned  8388608
        present  16777216
        managed  8388608

Signed-off-by: Tang Chen <tangchen@cn.fujitsu.com>
Reviewed-by: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com>
Cc: <stable@vger.kernel.org>	[3.16+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-11-13 16:17:06 -08:00
Tang Chen f784a3f196 mem-hotplug: reset node managed pages when hot-adding a new pgdat
In free_area_init_core(), zone->managed_pages is set to an approximate
value for lowmem, and will be adjusted when the bootmem allocator frees
pages into the buddy system.

But free_area_init_core() is also called by hotadd_new_pgdat() when
hot-adding memory.  As a result, zone->managed_pages of the newly added
node's pgdat is set to an approximate value in the very beginning.

Even if the memory on that node has node been onlined,
/sys/device/system/node/nodeXXX/meminfo has wrong value:

  hot-add node2 (memory not onlined)
  cat /sys/device/system/node/node2/meminfo
  Node 2 MemTotal:       33554432 kB
  Node 2 MemFree:               0 kB
  Node 2 MemUsed:        33554432 kB
  Node 2 Active:                0 kB

This patch fixes this problem by reset node managed pages to 0 after
hot-adding a new node.

1. Move reset_managed_pages_done from reset_node_managed_pages() to
   reset_all_zones_managed_pages()
2. Make reset_node_managed_pages() non-static
3. Call reset_node_managed_pages() in hotadd_new_pgdat() after pgdat
   is initialized

Signed-off-by: Tang Chen <tangchen@cn.fujitsu.com>
Signed-off-by: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com>
Cc: <stable@vger.kernel.org>	[3.16+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-11-13 16:17:06 -08:00
Yasuaki Ishimatsu 35dca71c1f memory-hotplug: clear pgdat which is allocated by bootmem in try_offline_node()
When hot adding the same memory after hot removal, the following
messages are shown:

  WARNING: CPU: 20 PID: 6 at mm/page_alloc.c:4968 free_area_init_node+0x3fe/0x426()
  ...
  Call Trace:
    dump_stack+0x46/0x58
    warn_slowpath_common+0x81/0xa0
    warn_slowpath_null+0x1a/0x20
    free_area_init_node+0x3fe/0x426
    hotadd_new_pgdat+0x90/0x110
    add_memory+0xd4/0x200
    acpi_memory_device_add+0x1aa/0x289
    acpi_bus_attach+0xfd/0x204
    acpi_bus_attach+0x178/0x204
    acpi_bus_scan+0x6a/0x90
    acpi_device_hotplug+0xe8/0x418
    acpi_hotplug_work_fn+0x1f/0x2b
    process_one_work+0x14e/0x3f0
    worker_thread+0x11b/0x510
    kthread+0xe1/0x100
    ret_from_fork+0x7c/0xb0

The detaled explanation is as follows:

When hot removing memory, pgdat is set to 0 in try_offline_node().  But
if the pgdat is allocated by bootmem allocator, the clearing step is
skipped.

And when hot adding the same memory, the uninitialized pgdat is reused.
But free_area_init_node() checks wether pgdat is set to zero.  As a
result, free_area_init_node() hits WARN_ON().

This patch clears pgdat which is allocated by bootmem allocator in
try_offline_node().

Signed-off-by: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com>
Cc: Zhang Zhen <zhenzhang.zhang@huawei.com>
Cc: Wang Nan <wangnan0@huawei.com>
Cc: Tang Chen <tangchen@cn.fujitsu.com>
Reviewed-by: Toshi Kani <toshi.kani@hp.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-10-29 16:33:14 -07:00
Zhang Zhen ed2f240094 memory-hotplug: add sysfs valid_zones attribute
Currently memory-hotplug has two limits:

1. If the memory block is in ZONE_NORMAL, you can change it to
   ZONE_MOVABLE, but this memory block must be adjacent to ZONE_MOVABLE.

2. If the memory block is in ZONE_MOVABLE, you can change it to
   ZONE_NORMAL, but this memory block must be adjacent to ZONE_NORMAL.

With this patch, we can easy to know a memory block can be onlined to
which zone, and don't need to know the above two limits.

Updated the related Documentation.

[akpm@linux-foundation.org: use conventional comment layout]
[akpm@linux-foundation.org: fix build with CONFIG_MEMORY_HOTREMOVE=n]
[akpm@linux-foundation.org: remove unused local zone_prev]
Signed-off-by: Zhang Zhen <zhenzhang.zhang@huawei.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Toshi Kani <toshi.kani@hp.com>
Cc: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Wang Nan <wangnan0@huawei.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-10-09 22:25:52 -04:00
Wang Nan 6326440077 memory-hotplug: add zone_for_memory() for selecting zone for new memory
This series of patches fixes a problem when adding memory in bad manner.
For example: for a x86_64 machine booted with "mem=400M" and with 2GiB
memory installed, following commands cause problem:

  # echo 0x40000000 > /sys/devices/system/memory/probe
 [   28.613895] init_memory_mapping: [mem 0x40000000-0x47ffffff]
  # echo 0x48000000 > /sys/devices/system/memory/probe
 [   28.693675] init_memory_mapping: [mem 0x48000000-0x4fffffff]
  # echo online_movable > /sys/devices/system/memory/memory9/state
  # echo 0x50000000 > /sys/devices/system/memory/probe
 [   29.084090] init_memory_mapping: [mem 0x50000000-0x57ffffff]
  # echo 0x58000000 > /sys/devices/system/memory/probe
 [   29.151880] init_memory_mapping: [mem 0x58000000-0x5fffffff]
  # echo online_movable > /sys/devices/system/memory/memory11/state
  # echo online> /sys/devices/system/memory/memory8/state
  # echo online> /sys/devices/system/memory/memory10/state
  # echo offline> /sys/devices/system/memory/memory9/state
 [   30.558819] Offlined Pages 32768
  # free
              total       used       free     shared    buffers     cached
 Mem:        780588 18014398509432020     830552          0          0      51180
 -/+ buffers/cache: 18014398509380840     881732
 Swap:            0          0          0

This is because the above commands probe higher memory after online a
section with online_movable, which causes ZONE_HIGHMEM (or ZONE_NORMAL
for systems without ZONE_HIGHMEM) overlaps ZONE_MOVABLE.

After the second online_movable, the problem can be observed from
zoneinfo:

  # cat /proc/zoneinfo
  ...
  Node 0, zone  Movable
    pages free     65491
          min      250
          low      312
          high     375
          scanned  0
          spanned  18446744073709518848
          present  65536
          managed  65536
  ...

This series of patches solve the problem by checking ZONE_MOVABLE when
choosing zone for new memory.  If new memory is inside or higher than
ZONE_MOVABLE, makes it go there instead.

After applying this series of patches, following are free and zoneinfo
result (after offlining memory9):

  bash-4.2# free
                total       used       free     shared    buffers     cached
   Mem:        780956      80112     700844          0          0      51180
   -/+ buffers/cache:      28932     752024
   Swap:            0          0          0

  bash-4.2# cat /proc/zoneinfo

  Node 0, zone      DMA
    pages free     3389
          min      14
          low      17
          high     21
          scanned  0
          spanned  4095
          present  3998
          managed  3977
      nr_free_pages 3389
  ...
    start_pfn:         1
    inactive_ratio:    1
  Node 0, zone    DMA32
    pages free     73724
          min      341
          low      426
          high     511
          scanned  0
          spanned  98304
          present  98304
          managed  92958
      nr_free_pages 73724
    ...
    start_pfn:         4096
    inactive_ratio:    1
  Node 0, zone   Normal
    pages free     32630
          min      120
          low      150
          high     180
          scanned  0
          spanned  32768
          present  32768
          managed  32768
      nr_free_pages 32630
  ...
    start_pfn:         262144
    inactive_ratio:    1
  Node 0, zone  Movable
    pages free     65476
          min      241
          low      301
          high     361
          scanned  0
          spanned  98304
          present  65536
          managed  65536
      nr_free_pages 65476
  ...
    start_pfn:         294912
    inactive_ratio:    1

This patch (of 7):

Introduce zone_for_memory() in arch independent code for
arch_add_memory() use.

Many arch_add_memory() function simply selects ZONE_HIGHMEM or
ZONE_NORMAL and add new memory into it.  However, with the existance of
ZONE_MOVABLE, the selection method should be carefully considered: if
new, higher memory is added after ZONE_MOVABLE is setup, the default
zone and ZONE_MOVABLE may overlap each other.

should_add_memory_movable() checks the status of ZONE_MOVABLE.  If it
has already contain memory, compare the address of new memory and
movable memory.  If new memory is higher than movable, it should be
added into ZONE_MOVABLE instead of default zone.

Signed-off-by: Wang Nan <wangnan0@huawei.com>
Cc: Zhang Yanfei <zhangyanfei@cn.fujitsu.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Yinghai Lu <yinghai@kernel.org>
Cc: "Mel Gorman" <mgorman@suse.de>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: "Luck, Tony" <tony.luck@intel.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Chris Metcalf <cmetcalf@tilera.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-08-06 18:01:21 -07:00
Tang Chen 4f7c6b49c4 mem-hotplug: introduce MMOP_OFFLINE to replace the hard coding -1
In store_mem_state(), we have:

  ...
  334         else if (!strncmp(buf, "offline", min_t(int, count, 7)))
  335                 online_type = -1;
  ...
  355         case -1:
  356                 ret = device_offline(&mem->dev);
  357                 break;
  ...

Here, "offline" is hard coded as -1.

This patch does the following renaming:

 ONLINE_KEEP     ->  MMOP_ONLINE_KEEP
 ONLINE_KERNEL   ->  MMOP_ONLINE_KERNEL
 ONLINE_MOVABLE  ->  MMOP_ONLINE_MOVABLE

and introduces MMOP_OFFLINE = -1 to avoid hard coding.

Signed-off-by: Tang Chen <tangchen@cn.fujitsu.com>
Cc: Hu Tao <hutao@cn.fujitsu.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Lai Jiangshan <laijs@cn.fujitsu.com>
Cc: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com>
Cc: Gu Zheng <guz.fnst@cn.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-08-06 18:01:16 -07:00
Fabian Frederick f276540441 mm/memory_hotplug.c: add __meminit to grow_zone_span/grow_pgdat_span
grow_zone_span and grow_pgdat_span are only called by
__meminit __add_zone

Signed-off-by: Fabian Frederick <fabf@skynet.be>
Cc: Toshi Kani <toshi.kani@hp.com>
Acked-by: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-08-06 18:01:15 -07:00
David Rientjes 68711a7463 mm, migration: add destination page freeing callback
Memory migration uses a callback defined by the caller to determine how to
allocate destination pages.  When migration fails for a source page,
however, it frees the destination page back to the system.

This patch adds a memory migration callback defined by the caller to
determine how to free destination pages.  If a caller, such as memory
compaction, builds its own freelist for migration targets, this can reuse
already freed memory instead of scanning additional memory.

If the caller provides a function to handle freeing of destination pages,
it is called when page migration fails.  If the caller passes NULL then
freeing back to the system will be handled as usual.  This patch
introduces no functional change.

Signed-off-by: David Rientjes <rientjes@google.com>
Reviewed-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Acked-by: Mel Gorman <mgorman@suse.de>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Greg Thelen <gthelen@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-06-04 16:54:06 -07:00
Fabian Frederick c8e861a531 mm/memory_hotplug.c: use PFN_DOWN()
Replace ((x) >> PAGE_SHIFT) with the pfn macro.

Signed-off-by: Fabian Frederick <fabf@skynet.be>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-06-04 16:54:02 -07:00
Vladimir Davydov bfc8c90139 mem-hotplug: implement get/put_online_mems
kmem_cache_{create,destroy,shrink} need to get a stable value of
cpu/node online mask, because they init/destroy/access per-cpu/node
kmem_cache parts, which can be allocated or destroyed on cpu/mem
hotplug.  To protect against cpu hotplug, these functions use
{get,put}_online_cpus.  However, they do nothing to synchronize with
memory hotplug - taking the slab_mutex does not eliminate the
possibility of race as described in patch 2.

What we need there is something like get_online_cpus, but for memory.
We already have lock_memory_hotplug, which serves for the purpose, but
it's a bit of a hammer right now, because it's backed by a mutex.  As a
result, it imposes some limitations to locking order, which are not
desirable, and can't be used just like get_online_cpus.  That's why in
patch 1 I substitute it with get/put_online_mems, which work exactly
like get/put_online_cpus except they block not cpu, but memory hotplug.

[ v1 can be found at https://lkml.org/lkml/2014/4/6/68.  I NAK'ed it by
  myself, because it used an rw semaphore for get/put_online_mems,
  making them dead lock prune.  ]

This patch (of 2):

{un}lock_memory_hotplug, which is used to synchronize against memory
hotplug, is currently backed by a mutex, which makes it a bit of a
hammer - threads that only want to get a stable value of online nodes
mask won't be able to proceed concurrently.  Also, it imposes some
strong locking ordering rules on it, which narrows down the set of its
usage scenarios.

This patch introduces get/put_online_mems, which are the same as
get/put_online_cpus, but for memory hotplug, i.e.  executing a code
inside a get/put_online_mems section will guarantee a stable value of
online nodes, present pages, etc.

lock_memory_hotplug()/unlock_memory_hotplug() are removed altogether.

Signed-off-by: Vladimir Davydov <vdavydov@parallels.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: Tang Chen <tangchen@cn.fujitsu.com>
Cc: Zhang Yanfei <zhangyanfei@cn.fujitsu.com>
Cc: Toshi Kani <toshi.kani@hp.com>
Cc: Xishi Qiu <qiuxishi@huawei.com>
Cc: Jiang Liu <liuj97@gmail.com>
Cc: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Wen Congyang <wency@cn.fujitsu.com>
Cc: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com>
Cc: Lai Jiangshan <laijs@cn.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-06-04 16:53:59 -07:00
Nathan Zimmer ac13c4622b mm/memory_hotplug.c: move register_memory_resource out of the lock_memory_hotplug
We don't need to do register_memory_resource() under
lock_memory_hotplug() since it has its own lock and doesn't make any
callbacks.

Also register_memory_resource return NULL on failure so we don't have
anything to cleanup at this point.

The reason for this rfc is I was doing some experiments with hotplugging
of memory on some of our larger systems.  While it seems to work, it can
be quite slow.  With some preliminary digging I found that
lock_memory_hotplug is clearly ripe for breakup.

It could be broken up per nid or something but it also covers the
online_page_callback.  The online_page_callback shouldn't be very hard
to break out.

Also there is the issue of various structures(wmarks come to mind) that
are only updated under the lock_memory_hotplug that would need to be
dealt with.

Cc: Tang Chen <tangchen@cn.fujitsu.com>
Cc: Wen Congyang <wency@cn.fujitsu.com>
Cc: Kamezawa Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Reviewed-by: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com>
Cc: "Rafael J. Wysocki" <rafael.j.wysocki@intel.com>
Cc: Hedi <hedi@sgi.com>
Cc: Mike Travis <travis@sgi.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-01-23 16:36:52 -08:00
Dave Hansen f0b791a34c mm: print more details for bad_page()
bad_page() is cool in that it prints out a bunch of data about the page.
But, I can never remember which page flags are good and which are bad,
or whether ->index or ->mapping is required to be NULL.

This patch allows bad/dump_page() callers to specify a string about why
they are dumping the page and adds explanation strings to a number of
places.  It also adds a 'bad_flags' argument to bad_page(), which it
then dumps out separately from the flags which are actually set.

This way, the messages will show specifically why the page was bad,
*specifically* which flags it is complaining about, if it was a page
flag combination which was the problem.

[akpm@linux-foundation.org: switch to pr_alert]
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Reviewed-by: Christoph Lameter <cl@linux.com>
Cc: Andi Kleen <andi@firstfloor.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-01-23 16:36:50 -08:00
Santosh Shilimkar 9e43aa2b8d mm/memory_hotplug.c: use memblock apis for early memory allocations
Correct ensure_zone_is_initialized() function description according to
the introduced memblock APIs for early memory allocations.

Signed-off-by: Grygorii Strashko <grygorii.strashko@ti.com>
Signed-off-by: Santosh Shilimkar <santosh.shilimkar@ti.com>
Cc: "Rafael J. Wysocki" <rjw@sisk.pl>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Christoph Lameter <cl@linux-foundation.org>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Paul Walmsley <paul@pwsan.com>
Cc: Pavel Machek <pavel@ucw.cz>
Cc: Russell King <linux@arm.linux.org.uk>
Cc: Tejun Heo <tj@kernel.org>
Cc: Tony Lindgren <tony@atomide.com>
Cc: Yinghai Lu <yinghai@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-01-21 16:19:47 -08:00
Grygorii Strashko 869a84e1ca mm/memblock: remove unnecessary inclusions of bootmem.h
Clean-up to remove depedency with bootmem headers.

Signed-off-by: Grygorii Strashko <grygorii.strashko@ti.com>
Signed-off-by: Santosh Shilimkar <santosh.shilimkar@ti.com>
Reviewed-by: Tejun Heo <tj@kernel.org>
Cc: Yinghai Lu <yinghai@kernel.org>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: "Rafael J. Wysocki" <rjw@sisk.pl>
Cc: Christoph Lameter <cl@linux-foundation.org>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Paul Walmsley <paul@pwsan.com>
Cc: Pavel Machek <pavel@ucw.cz>
Cc: Russell King <linux@arm.linux.org.uk>
Cc: Tony Lindgren <tony@atomide.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-01-21 16:19:46 -08:00
Tang Chen 55ac590c2f memblock, mem_hotplug: make memblock skip hotpluggable regions if needed
Linux kernel cannot migrate pages used by the kernel.  As a result,
hotpluggable memory used by the kernel won't be able to be hot-removed.
To solve this problem, the basic idea is to prevent memblock from
allocating hotpluggable memory for the kernel at early time, and arrange
all hotpluggable memory in ACPI SRAT(System Resource Affinity Table) as
ZONE_MOVABLE when initializing zones.

In the previous patches, we have marked hotpluggable memory regions with
MEMBLOCK_HOTPLUG flag in memblock.memory.

In this patch, we make memblock skip these hotpluggable memory regions
in the default top-down allocation function if movable_node boot option
is specified.

[akpm@linux-foundation.org: coding-style fixes]
Signed-off-by: Tang Chen <tangchen@cn.fujitsu.com>
Signed-off-by: Zhang Yanfei <zhangyanfei@cn.fujitsu.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: "Rafael J . Wysocki" <rjw@sisk.pl>
Cc: Chen Tang <imtangchen@gmail.com>
Cc: Gong Chen <gong.chen@linux.intel.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Jiang Liu <jiang.liu@huawei.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Lai Jiangshan <laijs@cn.fujitsu.com>
Cc: Larry Woodman <lwoodman@redhat.com>
Cc: Len Brown <lenb@kernel.org>
Cc: Liu Jiang <jiang.liu@huawei.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Michal Nazarewicz <mina86@mina86.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Prarit Bhargava <prarit@redhat.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Taku Izumi <izumi.taku@jp.fujitsu.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Thomas Renninger <trenn@suse.de>
Cc: Toshi Kani <toshi.kani@hp.com>
Cc: Vasilis Liaskovitis <vasilis.liaskovitis@profitbricks.com>
Cc: Wanpeng Li <liwanp@linux.vnet.ibm.com>
Cc: Wen Congyang <wency@cn.fujitsu.com>
Cc: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com>
Cc: Yinghai Lu <yinghai@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-01-21 16:19:45 -08:00
Tang Chen c5320926e3 mem-hotplug: introduce movable_node boot option
The hot-Pluggable field in SRAT specifies which memory is hotpluggable.
As we mentioned before, if hotpluggable memory is used by the kernel, it
cannot be hot-removed.  So memory hotplug users may want to set all
hotpluggable memory in ZONE_MOVABLE so that the kernel won't use it.

Memory hotplug users may also set a node as movable node, which has
ZONE_MOVABLE only, so that the whole node can be hot-removed.

But the kernel cannot use memory in ZONE_MOVABLE.  By doing this, the
kernel cannot use memory in movable nodes.  This will cause NUMA
performance down.  And other users may be unhappy.

So we need a way to allow users to enable and disable this functionality.
In this patch, we introduce movable_node boot option to allow users to
choose to not to consume hotpluggable memory at early boot time and later
we can set it as ZONE_MOVABLE.

To achieve this, the movable_node boot option will control the memblock
allocation direction.  That said, after memblock is ready, before SRAT is
parsed, we should allocate memory near the kernel image as we explained in
the previous patches.  So if movable_node boot option is set, the kernel
does the following:

1. After memblock is ready, make memblock allocate memory bottom up.
2. After SRAT is parsed, make memblock behave as default, allocate memory
   top down.

Users can specify "movable_node" in kernel commandline to enable this
functionality.  For those who don't use memory hotplug or who don't want
to lose their NUMA performance, just don't specify anything.  The kernel
will work as before.

Signed-off-by: Tang Chen <tangchen@cn.fujitsu.com>
Signed-off-by: Zhang Yanfei <zhangyanfei@cn.fujitsu.com>
Suggested-by: Kamezawa Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Suggested-by: Ingo Molnar <mingo@kernel.org>
Acked-by: Tejun Heo <tj@kernel.org>
Acked-by: Toshi Kani <toshi.kani@hp.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Wanpeng Li <liwanp@linux.vnet.ibm.com>
Cc: Thomas Renninger <trenn@suse.de>
Cc: Yinghai Lu <yinghai@kernel.org>
Cc: Jiang Liu <jiang.liu@huawei.com>
Cc: Wen Congyang <wency@cn.fujitsu.com>
Cc: Lai Jiangshan <laijs@cn.fujitsu.com>
Cc: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com>
Cc: Taku Izumi <izumi.taku@jp.fujitsu.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Michal Nazarewicz <mina86@mina86.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-11-13 12:09:09 +09:00
Zhang Yanfei 85b35feaec mm/sparsemem: use PAGES_PER_SECTION to remove redundant nr_pages parameter
For below functions,

- sparse_add_one_section()
- kmalloc_section_memmap()
- __kmalloc_section_memmap()
- __kfree_section_memmap()

they are always invoked to operate on one memory section, so it is
redundant to always pass a nr_pages parameter, which is the page numbers
in one section.  So we can directly use predefined macro PAGES_PER_SECTION
instead of passing the parameter.

Signed-off-by: Zhang Yanfei <zhangyanfei@cn.fujitsu.com>
Cc: Wen Congyang <wency@cn.fujitsu.com>
Cc: Tang Chen <tangchen@cn.fujitsu.com>
Cc: Toshi Kani <toshi.kani@hp.com>
Cc: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com>
Cc: Yinghai Lu <yinghai@kernel.org>
Cc: Yasunori Goto <y-goto@jp.fujitsu.com>
Cc: Andy Whitcroft <apw@shadowen.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-11-13 12:09:06 +09:00
Toshi Kani 01b0f19707 cpu/mem hotplug: add try_online_node() for cpu_up()
cpu_up() has #ifdef CONFIG_MEMORY_HOTPLUG code blocks, which call
mem_online_node() to put its node online if offlined and then call
build_all_zonelists() to initialize the zone list.

These steps are specific to memory hotplug, and should be managed in
mm/memory_hotplug.c.  lock_memory_hotplug() should also be held for the
whole steps.

For this reason, this patch replaces mem_online_node() with
try_online_node(), which performs the whole steps with
lock_memory_hotplug() held.  try_online_node() is named after
try_offline_node() as they have similar purpose.

There is no functional change in this patch.

Signed-off-by: Toshi Kani <toshi.kani@hp.com>
Reviewed-by: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-11-13 12:09:04 +09:00
Xishi Qiu 9c2606b77d mm/memory_hotplug.c: use pfn_to_nid() instead of page_to_nid(pfn_to_page())
Use "pfn_to_nid(pfn)" instead of "page_to_nid(pfn_to_page(pfn))".

Signed-off-by: Xishi Qiu <qiuxishi@huawei.com>
Acked-by: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-11-13 12:09:04 +09:00
Xishi Qiu d6de9d5349 mm/memory_hotplug.c: rename the function is_memblock_offlined_cb()
A is_memblock_offlined() return or 1 means memory block is offlined, but
is_memblock_offlined_cb() returning 1 means memory block is not offlined,
this will confuse somebody, so rename the function.

Signed-off-by: Xishi Qiu <qiuxishi@huawei.com>
Acked-by: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-11-13 12:09:04 +09:00
Xishi Qiu 83285c72e0 mm: use pgdat_end_pfn() to simplify the code in others
Use "pgdat_end_pfn()" instead of "pgdat->node_start_pfn +
pgdat->node_spanned_pages".  Simplify the code, no functional change.

Signed-off-by: Xishi Qiu <qiuxishi@huawei.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-11-13 12:09:03 +09:00
Linus Torvalds 02b9735c12 ACPI and power management fixes for 3.12-rc1
1) ACPI-based PCI hotplug (ACPIPHP) fixes related to spurious events
 
   After the recent ACPIPHP changes we've seen some interesting breakage
   on a system that triggers device check notifications during boot for
   non-existing devices.  Although those notifications are really
   spurious, we should be able to deal with them nevertheless and that
   shouldn't introduce too much overhead.  Four commits to make that
   work properly.
 
  2) Memory hotplug and hibernation mutual exclusion rework
 
   This was maent to be a cleanup, but it happens to fix a classical
   ABBA deadlock between system suspend/hibernation and ACPI memory
   hotplug which is possible if they are started roughly at the same
   time.  Three commits rework memory hotplug so that it doesn't
   acquire pm_mutex and make hibernation use device_hotplug_lock
   which prevents it from racing with memory hotplug.
 
  3) ACPI Intel LPSS (Low-Power Subsystem) driver crash fix
 
   The ACPI LPSS driver crashes during boot on Apple Macbook Air with
   Haswell that has slightly unusual BIOS configuration in which one
   of the LPSS device's _CRS method doesn't return all of the information
   expected by the driver.  Fix from Mika Westerberg, for stable.
 
  4) ACPICA fix related to Store->ArgX operation
 
   AML interpreter fix for obscure breakage that causes AML to be
   executed incorrectly on some machines (observed in practice).  From
   Bob Moore.
 
  5) ACPI core fix for PCI ACPI device objects lookup
 
   There still are cases in which there is more than one ACPI device
   object matching a given PCI device and we don't choose the one that
   the BIOS expects us to choose, so this makes the lookup take more
   criteria into account in those cases.
 
  6) Fix to prevent cpuidle from crashing in some rare cases
 
   If the result of cpuidle_get_driver() is NULL, which can happen on
   some systems, cpuidle_driver_ref() will crash trying to use that
   pointer and the Daniel Fu's fix prevents that from happening.
 
  7) cpufreq fixes related to CPU hotplug
 
   Stephen Boyd reported a number of concurrency problems with cpufreq
   related to CPU hotplug which are addressed by a series of fixes
   from Srivatsa S Bhat and Viresh Kumar.
 
  8) cpufreq fix for time conversion in time_in_state attribute
 
   Time conversion carried out by cpufreq when user space attempts to
   read /sys/devices/system/cpu/cpu*/cpufreq/stats/time_in_state won't
   work correcty if cputime_t doesn't map directly to jiffies.  Fix
   from Andreas Schwab.
 
  9) Revert of a troublesome cpufreq commit
 
   Commit 7c30ed5 (cpufreq: make sure frequency transitions are
   serialized) was intended to address some known concurrency problems
   in cpufreq related to the ordering of transitions, but unfortunately
   it introduced several problems of its own, so I decided to revert it
   now and address the original problems later in a more robust way.
 
 10) Intel Haswell CPU models for intel_pstate from Nell Hardcastle.
 
 11) cpufreq fixes related to system suspend/resume
 
   The recent cpufreq changes that made it preserve CPU sysfs attributes
   over suspend/resume cycles introduced a possible NULL pointer
   dereference that caused it to crash during the second attempt to
   suspend.  Three commits from Srivatsa S Bhat fix that problem and a
   couple of related issues.
 
 12) cpufreq locking fix
 
   cpufreq_policy_restore() should acquire the lock for reading, but
   it acquires it for writing.  Fix from Lan Tianyu.
 
 /
 -----BEGIN PGP SIGNATURE-----
 Version: GnuPG v2.0.19 (GNU/Linux)
 
 iQIcBAABCAAGBQJSMbdRAAoJEKhOf7ml8uNsiFkQAKSh1iBXuiUCxBApEGZgoQio
 8lmnuyWdhNQWdjZTnh7ptjpDxdrWhxcoxvoaGABU++reDObjef1QnyrQtdO3r8dl
 oy0C/YGh5kq5SIffIDEwPIb/ipDe/47cgRMW8iBlnViDa1MJBqICuLyefcTRIrKp
 QGvv0owUM2o7TXpA10+qm8zXjv6m5mu1DTtxYI+2Eodhwi54neAqb+aKMspa2thy
 V9KFcVv3Td4rJrNvw6BhXNM81QbaYpRxaK3DRr1T6SM++EKvbqYFA1jgW24YvqTL
 nrCZlDMb6KRww5DCxA/ns9Kx5H+ZyicoRwdtAM3PBYA6MGqsLqPozC/8VKV1fSvZ
 sgUdbUSuLqKRAkOqM1bjKAhi9PdCGBvkQAg2AqbRK6IBl4HJC8xhdb5E6eZ/J42G
 GyNBpKef7wVJwYKXE2hSChZ5dYjqMizNHWxFHf8Xy1dveExbQ2nmSJmaWMy2A3kx
 YOXFkcTV5F6GOIZB8WCRruzUalff9xal4G+iVhGF+AZIOCm7bC+FDXfwIS82uVor
 ej2l+uQLLZCB499IRmM6942ZIAXshmtN7eRfGtKBc6jsbSCEdQDqf1Z7oRwqAD6h
 WkD/k/zz30CyM8y4snOkAXkZgqAQsZodtqfowE3e9OHd51tfcNiqdht+obwCx+eD
 MWXc2xATMAX6NcZTXSZS
 =U/Jw
 -----END PGP SIGNATURE-----

Merge tag 'pm+acpi-fixes-3.12-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm

Pull ACPI and power management fixes from Rafael Wysocki:
 "All of these commits are fixes that have emerged recently and some of
  them fix bugs introduced during this merge window.

  Specifics:

   1) ACPI-based PCI hotplug (ACPIPHP) fixes related to spurious events

      After the recent ACPIPHP changes we've seen some interesting
      breakage on a system that triggers device check notifications
      during boot for non-existing devices.  Although those
      notifications are really spurious, we should be able to deal with
      them nevertheless and that shouldn't introduce too much overhead.
      Four commits to make that work properly.

   2) Memory hotplug and hibernation mutual exclusion rework

      This was maent to be a cleanup, but it happens to fix a classical
      ABBA deadlock between system suspend/hibernation and ACPI memory
      hotplug which is possible if they are started roughly at the same
      time.  Three commits rework memory hotplug so that it doesn't
      acquire pm_mutex and make hibernation use device_hotplug_lock
      which prevents it from racing with memory hotplug.

   3) ACPI Intel LPSS (Low-Power Subsystem) driver crash fix

      The ACPI LPSS driver crashes during boot on Apple Macbook Air with
      Haswell that has slightly unusual BIOS configuration in which one
      of the LPSS device's _CRS method doesn't return all of the
      information expected by the driver.  Fix from Mika Westerberg, for
      stable.

   4) ACPICA fix related to Store->ArgX operation

      AML interpreter fix for obscure breakage that causes AML to be
      executed incorrectly on some machines (observed in practice).
      From Bob Moore.

   5) ACPI core fix for PCI ACPI device objects lookup

      There still are cases in which there is more than one ACPI device
      object matching a given PCI device and we don't choose the one
      that the BIOS expects us to choose, so this makes the lookup take
      more criteria into account in those cases.

   6) Fix to prevent cpuidle from crashing in some rare cases

      If the result of cpuidle_get_driver() is NULL, which can happen on
      some systems, cpuidle_driver_ref() will crash trying to use that
      pointer and the Daniel Fu's fix prevents that from happening.

   7) cpufreq fixes related to CPU hotplug

      Stephen Boyd reported a number of concurrency problems with
      cpufreq related to CPU hotplug which are addressed by a series of
      fixes from Srivatsa S Bhat and Viresh Kumar.

   8) cpufreq fix for time conversion in time_in_state attribute

      Time conversion carried out by cpufreq when user space attempts to
      read /sys/devices/system/cpu/cpu*/cpufreq/stats/time_in_state
      won't work correcty if cputime_t doesn't map directly to jiffies.
      Fix from Andreas Schwab.

   9) Revert of a troublesome cpufreq commit

      Commit 7c30ed5 (cpufreq: make sure frequency transitions are
      serialized) was intended to address some known concurrency
      problems in cpufreq related to the ordering of transitions, but
      unfortunately it introduced several problems of its own, so I
      decided to revert it now and address the original problems later
      in a more robust way.

  10) Intel Haswell CPU models for intel_pstate from Nell Hardcastle.

  11) cpufreq fixes related to system suspend/resume

      The recent cpufreq changes that made it preserve CPU sysfs
      attributes over suspend/resume cycles introduced a possible NULL
      pointer dereference that caused it to crash during the second
      attempt to suspend.  Three commits from Srivatsa S Bhat fix that
      problem and a couple of related issues.

  12) cpufreq locking fix

      cpufreq_policy_restore() should acquire the lock for reading, but
      it acquires it for writing.  Fix from Lan Tianyu"

* tag 'pm+acpi-fixes-3.12-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm: (25 commits)
  cpufreq: Acquire the lock in cpufreq_policy_restore() for reading
  cpufreq: Prevent problems in update_policy_cpu() if last_cpu == new_cpu
  cpufreq: Restructure if/else block to avoid unintended behavior
  cpufreq: Fix crash in cpufreq-stats during suspend/resume
  intel_pstate: Add Haswell CPU models
  Revert "cpufreq: make sure frequency transitions are serialized"
  cpufreq: Use signed type for 'ret' variable, to store negative error values
  cpufreq: Remove temporary fix for race between CPU hotplug and sysfs-writes
  cpufreq: Synchronize the cpufreq store_*() routines with CPU hotplug
  cpufreq: Invoke __cpufreq_remove_dev_finish() after releasing cpu_hotplug.lock
  cpufreq: Split __cpufreq_remove_dev() into two parts
  cpufreq: Fix wrong time unit conversion
  cpufreq: serialize calls to __cpufreq_governor()
  cpufreq: don't allow governor limits to be changed when it is disabled
  ACPI / bind: Prefer device objects with _STA to those without it
  ACPI / hotplug / PCI: Avoid parent bus rescans on spurious device checks
  ACPI / hotplug / PCI: Use _OST to notify firmware about notify status
  ACPI / hotplug / PCI: Avoid doing too much for spurious notifies
  ACPICA: Fix for a Store->ArgX when ArgX contains a reference to a field.
  ACPI / hotplug / PCI: Don't trim devices before scanning the namespace
  ...
2013-09-12 11:22:45 -07:00
Naoya Horiguchi c8721bbbdd mm: memory-hotplug: enable memory hotplug to handle hugepage
Until now we can't offline memory blocks which contain hugepages because a
hugepage is considered as an unmovable page.  But now with this patch
series, a hugepage has become movable, so by using hugepage migration we
can offline such memory blocks.

What's different from other users of hugepage migration is that we need to
decompose all the hugepages inside the target memory block into free buddy
pages after hugepage migration, because otherwise free hugepages remaining
in the memory block intervene the memory offlining.  For this reason we
introduce new functions dissolve_free_huge_page() and
dissolve_free_huge_pages().

Other than that, what this patch does is straightforwardly to add hugepage
migration code, that is, adding hugepage code to the functions which scan
over pfn and collect hugepages to be migrated, and adding a hugepage
allocation function to alloc_migrate_target().

As for larger hugepages (1GB for x86_64), it's not easy to do hotremove
over them because it's larger than memory block.  So we now simply leave
it to fail as it is.

[yongjun_wei@trendmicro.com.cn: remove duplicated include]
Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Acked-by: Andi Kleen <ak@linux.intel.com>
Cc: Hillf Danton <dhillf@gmail.com>
Cc: Wanpeng Li <liwanp@linux.vnet.ibm.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Hugh Dickins <hughd@google.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Rik van Riel <riel@redhat.com>
Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com>
Signed-off-by: Wei Yongjun <yongjun_wei@trendmicro.com.cn>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-09-11 15:57:48 -07:00
Toshi Kani 0f1cfe9d0d mm/hotplug: remove stop_machine() from try_offline_node()
lock_device_hotplug() serializes hotplug & online/offline operations.  The
lock is held in common sysfs online/offline interfaces and ACPI hotplug
code paths.

And here are the code paths:

- CPU & Mem online/offline via sysfs online
	store_online()->lock_device_hotplug()

- Mem online via sysfs state:
	store_mem_state()->lock_device_hotplug()

- ACPI CPU & Mem hot-add:
	acpi_scan_bus_device_check()->lock_device_hotplug()

- ACPI CPU & Mem hot-delete:
	acpi_scan_hot_remove()->lock_device_hotplug()

try_offline_node() off-lines a node if all memory sections and cpus are
removed on the node.  It is called from acpi_processor_remove() and
acpi_memory_remove_memory()->remove_memory() paths, both of which are in
the ACPI hotplug code.

try_offline_node() calls stop_machine() to stop all cpus while checking
all cpu status with the assumption that the caller is not protected from
CPU hotplug or CPU online/offline operations.  However, the caller is
always serialized with lock_device_hotplug().  Also, the code needs to be
properly serialized with a lock, not by stopping all cpus at a random
place with stop_machine().

This patch removes the use of stop_machine() in try_offline_node() and
adds comments to try_offline_node() and remove_memory() that
lock_device_hotplug() is required.

Signed-off-by: Toshi Kani <toshi.kani@hp.com>
Acked-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Tang Chen <tangchen@cn.fujitsu.com>
Cc: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com>
Cc: Wanpeng Li <liwanp@linux.vnet.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-09-11 15:57:41 -07:00
Toshi Kani 27356f54c8 mm/hotplug: verify hotplug memory range
add_memory() and remove_memory() can only handle a memory range aligned
with section.  There are problems when an unaligned range is added and
then deleted as follows:

 - add_memory() with an unaligned range succeeds, but __add_pages()
   called from add_memory() adds a whole section of pages even though
   a given memory range is less than the section size.
 - remove_memory() to the added unaligned range hits BUG_ON() in
   __remove_pages().

This patch changes add_memory() and remove_memory() to check if a given
memory range is aligned with section at the beginning.  As the result,
add_memory() fails with -EINVAL when a given range is unaligned, and does
not add such memory range.  This prevents remove_memory() to be called
with an unaligned range as well.  Note that remove_memory() has to use
BUG_ON() since this function cannot fail.

[akpm@linux-foundation.org: avoid printk warnings]
Signed-off-by: Toshi Kani <toshi.kani@hp.com>
Acked-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Reviewed-by: Tang Chen <tangchen@cn.fujitsu.com>
Reviewed-by: Wanpeng Li <liwanp@linux.vnet.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-09-11 15:57:39 -07:00
Xishi Qiu 139c2d75b4 mm: use zone_is_initialized() instead of if(zone->wait_table)
Use "zone_is_initialized()" instead of "if (zone->wait_table)".
Simplify the code, no functional change.

Signed-off-by: Xishi Qiu <qiuxishi@huawei.com>
Cc: Cody P Schafer <cody@linux.vnet.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-09-11 15:57:39 -07:00
Xishi Qiu 8080fc038e mm: use zone_is_empty() instead of if(zone->spanned_pages)
Use "zone_is_empty()" instead of "if (zone->spanned_pages)".
Simplify the code, no functional change.

Signed-off-by: Xishi Qiu <qiuxishi@huawei.com>
Cc: Cody P Schafer <cody@linux.vnet.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-09-11 15:57:38 -07:00