commit d800c65c2d upstream.
We have two io-wq creation paths:
- On queue enqueue
- When a worker goes to sleep
The latter invokes worker creation with the wqe->lock held, but that can
run into problems if we end up exiting and need to cancel the queued work.
syzbot caught this:
============================================
WARNING: possible recursive locking detected
5.16.0-rc4-syzkaller #0 Not tainted
--------------------------------------------
iou-wrk-6468/6471 is trying to acquire lock:
ffff88801aa98018 (&wqe->lock){+.+.}-{2:2}, at: io_worker_cancel_cb+0xb7/0x210 fs/io-wq.c:187
but task is already holding lock:
ffff88801aa98018 (&wqe->lock){+.+.}-{2:2}, at: io_wq_worker_sleeping+0xb6/0x140 fs/io-wq.c:700
other info that might help us debug this:
Possible unsafe locking scenario:
CPU0
----
lock(&wqe->lock);
lock(&wqe->lock);
*** DEADLOCK ***
May be due to missing lock nesting notation
1 lock held by iou-wrk-6468/6471:
#0: ffff88801aa98018 (&wqe->lock){+.+.}-{2:2}, at: io_wq_worker_sleeping+0xb6/0x140 fs/io-wq.c:700
stack backtrace:
CPU: 1 PID: 6471 Comm: iou-wrk-6468 Not tainted 5.16.0-rc4-syzkaller #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011
Call Trace:
<TASK>
__dump_stack lib/dump_stack.c:88 [inline]
dump_stack_lvl+0x1dc/0x2d8 lib/dump_stack.c:106
print_deadlock_bug kernel/locking/lockdep.c:2956 [inline]
check_deadlock kernel/locking/lockdep.c:2999 [inline]
validate_chain+0x5984/0x8240 kernel/locking/lockdep.c:3788
__lock_acquire+0x1382/0x2b00 kernel/locking/lockdep.c:5027
lock_acquire+0x19f/0x4d0 kernel/locking/lockdep.c:5637
__raw_spin_lock include/linux/spinlock_api_smp.h:133 [inline]
_raw_spin_lock+0x2a/0x40 kernel/locking/spinlock.c:154
io_worker_cancel_cb+0xb7/0x210 fs/io-wq.c:187
io_wq_cancel_tw_create fs/io-wq.c:1220 [inline]
io_queue_worker_create+0x3cf/0x4c0 fs/io-wq.c:372
io_wq_worker_sleeping+0xbe/0x140 fs/io-wq.c:701
sched_submit_work kernel/sched/core.c:6295 [inline]
schedule+0x67/0x1f0 kernel/sched/core.c:6323
schedule_timeout+0xac/0x300 kernel/time/timer.c:1857
wait_woken+0xca/0x1b0 kernel/sched/wait.c:460
unix_msg_wait_data net/unix/unix_bpf.c:32 [inline]
unix_bpf_recvmsg+0x7f9/0xe20 net/unix/unix_bpf.c:77
unix_stream_recvmsg+0x214/0x2c0 net/unix/af_unix.c:2832
sock_recvmsg_nosec net/socket.c:944 [inline]
sock_recvmsg net/socket.c:962 [inline]
sock_read_iter+0x3a7/0x4d0 net/socket.c:1035
call_read_iter include/linux/fs.h:2156 [inline]
io_iter_do_read fs/io_uring.c:3501 [inline]
io_read fs/io_uring.c:3558 [inline]
io_issue_sqe+0x144c/0x9590 fs/io_uring.c:6671
io_wq_submit_work+0x2d8/0x790 fs/io_uring.c:6836
io_worker_handle_work+0x808/0xdd0 fs/io-wq.c:574
io_wqe_worker+0x395/0x870 fs/io-wq.c:630
ret_from_fork+0x1f/0x30
We can safely drop the lock before doing work creation, making the two
contexts the same in that regard.
Reported-by: syzbot+b18b8be69df33a3918e9@syzkaller.appspotmail.com
Fixes: 71a8538754 ("io-wq: check for wq exit after adding new worker task_work")
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 71a8538754 upstream.
We check IO_WQ_BIT_EXIT before attempting to create a new worker, and
wq exit cancels pending work if we have any. But it's possible to have
a race between the two, where creation checks exit finding it not set,
but we're in the process of exiting. The exit side will cancel pending
creation task_work, but there's a gap where we add task_work after we've
canceled existing creations at exit time.
Fix this by checking the EXIT bit post adding the creation task_work.
If it's set, run the same cancelation that exit does.
Reported-and-tested-by: syzbot+b60c982cb0efc5e05a47@syzkaller.appspotmail.com
Reviewed-by: Hao Xu <haoxu@linux.alibaba.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit e47498afec upstream.
There's a small race here where the task_work could finish and drop
the worker itself, so that by the time that task_work_add() returns
with a successful addition we've already put the worker.
The worker callbacks clear this bit themselves, so we don't actually
need to manually clear it in the caller. Get rid of it.
Reported-by: syzbot+b60c982cb0efc5e05a47@syzkaller.appspotmail.com
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit a226abcd5d ]
We don't want to be retrying task_work creation failure if there's
an actual signal pending for the parent task. If we do, then we can
enter an infinite loop of perpetually retrying and each retry failing
with -ERESTARTNOINTR because a signal is pending.
Fixes: 3146cba99a ("io-wq: make worker creation resilient against signals")
Reported-by: Florian Fischer <florian.fl.fischer@fau.de>
Link: https://lore.kernel.org/io-uring/20211202165606.mqryio4yzubl7ms5@pasture/
Tested-by: Florian Fischer <florian.fl.fischer@fau.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 71c9ce27bb ]
In io-wq.c:io_wq_max_workers(), new_count[] was changed right after each
node's value was set. This caused the following node getting the setting
of the previous one.
Returned values are copied from node 0.
Fixes: 2e480058dd ("io-wq: provide a way to limit max number of workers")
Signed-off-by: Beld Zhang <beldzhang@gmail.com>
[axboe: minor fixups]
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Signed-off-by: Sasha Levin <sashal@kernel.org>
commit d3e3c102d1 upstream.
We need to ensure that we serialize the stalled and hash bits with the
wait_queue wait handler, or we could be racing with someone modifying
the hashed state after we find it busy, but before we then give up and
wait for it to be cleared. This can cause random delays or stalls when
handling buffered writes for many files, where some of these files cause
hash collisions between the worker threads.
Cc: stable@vger.kernel.org
Reported-by: Daniel Black <daniel@mariadb.org>
Fixes: e941894eae ("io-wq: make buffered file write hashed work map per-ctx")
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 1d5f5ea7cb upstream.
INFO: task iou-wrk-6609:6612 blocked for more than 143 seconds.
Not tainted 5.15.0-rc5-syzkaller #0
"echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message.
task:iou-wrk-6609 state:D stack:27944 pid: 6612 ppid: 6526 flags:0x00004006
Call Trace:
context_switch kernel/sched/core.c:4940 [inline]
__schedule+0xb44/0x5960 kernel/sched/core.c:6287
schedule+0xd3/0x270 kernel/sched/core.c:6366
schedule_timeout+0x1db/0x2a0 kernel/time/timer.c:1857
do_wait_for_common kernel/sched/completion.c:85 [inline]
__wait_for_common kernel/sched/completion.c:106 [inline]
wait_for_common kernel/sched/completion.c:117 [inline]
wait_for_completion+0x176/0x280 kernel/sched/completion.c:138
io_worker_exit fs/io-wq.c:183 [inline]
io_wqe_worker+0x66d/0xc40 fs/io-wq.c:597
ret_from_fork+0x1f/0x30 arch/x86/entry/entry_64.S:295
io-wq worker may submit a task_work to the master task and upon
io_worker_exit() wait for the tw to get executed. The problem appears
when the master task is waiting in coredump.c:
468 freezer_do_not_count();
469 wait_for_completion(&core_state->startup);
470 freezer_count();
Apparently having some dependency on children threads getting everything
stuck. Workaround it by cancelling the taks_work callback that causes it
before going into io_worker_exit() waiting.
p.s. probably a better option is to not submit tw elevating the refcount
in the first place, but let's leave this excercise for the future.
Cc: stable@vger.kernel.org
Reported-and-tested-by: syzbot+27d62ee6f256b186883e@syzkaller.appspotmail.com
Signed-off-by: Pavel Begunkov <asml.silence@gmail.com>
Link: https://lore.kernel.org/r/142a716f4ed936feae868959059154362bfa8c19.1635509451.git.asml.silence@gmail.com
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
First, fix nr_workers checks against max_workers, with max_worker
registration, it may pretty easily happen that nr_workers > max_workers.
Also, synchronise writing to acct->max_worker with wqe->lock. It's not
an actual problem, but as we don't care about io_wqe_create_worker(),
it's better than WRITE_ONCE()/READ_ONCE().
Fixes: 2e480058dd ("io-wq: provide a way to limit max number of workers")
Reported-by: Beld Zhang <beldzhang@gmail.com>
Signed-off-by: Pavel Begunkov <asml.silence@gmail.com>
Link: https://lore.kernel.org/r/11f90e6b49410b7d1a88f5d04fb8d95bb86b8cf3.1634671835.git.asml.silence@gmail.com
Signed-off-by: Jens Axboe <axboe@kernel.dk>
io-wq threads block all signals, except SIGKILL and SIGSTOP. We should not
need any extra checking of signal_pending or fatal_signal_pending, rely
exclusively on whether or not get_signal() tells us to exit.
The original debugging of this issue led to the false positive that we
were exiting on non-fatal signals, but that is not the case. The issue
was around races with nr_workers accounting.
Fixes: 87c1696655 ("io-wq: ensure we exit if thread group is exiting")
Fixes: 15e20db2e0 ("io-wq: only exit on fatal signals")
Reported-by: Eric W. Biederman <ebiederm@xmission.com>
Reported-by: Linus Torvalds <torvalds@linux-foundation.org>
Acked-by: "Eric W. Biederman" <ebiederm@xmission.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Dave reports that a coredumping workload gets stuck in 5.15-rc2, and
identified the culprit in the Fixes line below. The problem is that
relying solely on fatal_signal_pending() to gate whether to exit or not
fails miserably if a process gets eg SIGILL sent. Don't exclusively
rely on fatal signals, also check if the thread group is exiting.
Fixes: 15e20db2e0 ("io-wq: only exit on fatal signals")
Reported-by: Dave Chinner <david@fromorbit.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
The items passed in the array pointed by the arg parameter
of IORING_REGISTER_IOWQ_MAX_WORKERS io_uring_register operation
carry certain semantics: they refer to different io-wq worker categories;
provide IO_WQ_* constants in the UAPI, so these categories can be referenced
in the user space code.
Suggested-by: Jens Axboe <axboe@kernel.dk>
Complements: 2e480058dd ("io-wq: provide a way to limit max number of workers")
Signed-off-by: Eugene Syromiatnikov <esyr@redhat.com>
Link: https://lore.kernel.org/r/20210913154415.GA12890@asgard.redhat.com
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Given max_worker is 1, and we currently have 1 running and it is
exiting. There may be race like:
io_wqe_enqueue worker1
no work there and timeout
unlock(wqe->lock)
->insert work
-->io_worker_exit
lock(wqe->lock)
->if(!nr_workers) //it's still 1
unlock(wqe->lock)
goto run_cancel
lock(wqe->lock)
nr_workers--
->dec_running
->worker creation fails
unlock(wqe->lock)
We enqueued one work but there is no workers, causes hung.
Signed-off-by: Hao Xu <haoxu@linux.alibaba.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
We check for the func with an OR condition, which means it always ends
up being false and we never match the task_work we want to cancel. In
the unexpected case that we do exit with that pending, we can trigger
a hang waiting for a worker to exit, but it was never created. syzbot
reports that as such:
INFO: task syz-executor687:8514 blocked for more than 143 seconds.
Not tainted 5.14.0-syzkaller #0
"echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message.
task:syz-executor687 state:D stack:27296 pid: 8514 ppid: 8479 flags:0x00024004
Call Trace:
context_switch kernel/sched/core.c:4940 [inline]
__schedule+0x940/0x26f0 kernel/sched/core.c:6287
schedule+0xd3/0x270 kernel/sched/core.c:6366
schedule_timeout+0x1db/0x2a0 kernel/time/timer.c:1857
do_wait_for_common kernel/sched/completion.c:85 [inline]
__wait_for_common kernel/sched/completion.c:106 [inline]
wait_for_common kernel/sched/completion.c:117 [inline]
wait_for_completion+0x176/0x280 kernel/sched/completion.c:138
io_wq_exit_workers fs/io-wq.c:1162 [inline]
io_wq_put_and_exit+0x40c/0xc70 fs/io-wq.c:1197
io_uring_clean_tctx fs/io_uring.c:9607 [inline]
io_uring_cancel_generic+0x5fe/0x740 fs/io_uring.c:9687
io_uring_files_cancel include/linux/io_uring.h:16 [inline]
do_exit+0x265/0x2a30 kernel/exit.c:780
do_group_exit+0x125/0x310 kernel/exit.c:922
get_signal+0x47f/0x2160 kernel/signal.c:2868
arch_do_signal_or_restart+0x2a9/0x1c40 arch/x86/kernel/signal.c:865
handle_signal_work kernel/entry/common.c:148 [inline]
exit_to_user_mode_loop kernel/entry/common.c:172 [inline]
exit_to_user_mode_prepare+0x17d/0x290 kernel/entry/common.c:209
__syscall_exit_to_user_mode_work kernel/entry/common.c:291 [inline]
syscall_exit_to_user_mode+0x19/0x60 kernel/entry/common.c:302
do_syscall_64+0x42/0xb0 arch/x86/entry/common.c:86
entry_SYSCALL_64_after_hwframe+0x44/0xae
RIP: 0033:0x445cd9
RSP: 002b:00007fc657f4b308 EFLAGS: 00000246 ORIG_RAX: 00000000000000ca
RAX: 0000000000000001 RBX: 00000000004cb448 RCX: 0000000000445cd9
RDX: 00000000000f4240 RSI: 0000000000000081 RDI: 00000000004cb44c
RBP: 00000000004cb440 R08: 000000000000000e R09: 0000000000000000
R10: 0000000000000000 R11: 0000000000000246 R12: 000000000049b154
R13: 0000000000000003 R14: 00007fc657f4b400 R15: 0000000000022000
While in there, also decrement accr->nr_workers. This isn't strictly
needed as we're exiting, but let's make sure the accounting matches up.
Fixes: 3146cba99a ("io-wq: make worker creation resilient against signals")
Reported-by: syzbot+f62d3e0a4ea4f38f5326@syzkaller.appspotmail.com
Signed-off-by: Jens Axboe <axboe@kernel.dk>
WARNING: CPU: 0 PID: 10392 at fs/io_uring.c:1151 req_ref_put_and_test
fs/io_uring.c:1151 [inline]
WARNING: CPU: 0 PID: 10392 at fs/io_uring.c:1151 req_ref_put_and_test
fs/io_uring.c:1146 [inline]
WARNING: CPU: 0 PID: 10392 at fs/io_uring.c:1151
io_req_complete_post+0xf5b/0x1190 fs/io_uring.c:1794
Modules linked in:
Call Trace:
tctx_task_work+0x1e5/0x570 fs/io_uring.c:2158
task_work_run+0xe0/0x1a0 kernel/task_work.c:164
tracehook_notify_signal include/linux/tracehook.h:212 [inline]
handle_signal_work kernel/entry/common.c:146 [inline]
exit_to_user_mode_loop kernel/entry/common.c:172 [inline]
exit_to_user_mode_prepare+0x232/0x2a0 kernel/entry/common.c:209
__syscall_exit_to_user_mode_work kernel/entry/common.c:291 [inline]
syscall_exit_to_user_mode+0x19/0x60 kernel/entry/common.c:302
do_syscall_64+0x42/0xb0 arch/x86/entry/common.c:86
entry_SYSCALL_64_after_hwframe+0x44/0xae
When io_wqe_enqueue() -> io_wqe_create_worker() fails, we can't just
call io_run_cancel() to clean up the request, it's already enqueued via
io_wqe_insert_work() and will be executed either by some other worker
during cancellation (e.g. in io_wq_put_and_exit()).
Reported-by: Hao Sun <sunhao.th@gmail.com>
Fixes: 3146cba99a ("io-wq: make worker creation resilient against signals")
Signed-off-by: Pavel Begunkov <asml.silence@gmail.com>
Link: https://lore.kernel.org/r/93b9de0fcf657affab0acfd675d4abcd273ee863.1631092071.git.asml.silence@gmail.com
Signed-off-by: Jens Axboe <axboe@kernel.dk>
If a task is queueing async work and also handling signals, then we can
run into the case where create_io_thread() is interrupted and returns
failure because of that. If this happens for creating the first worker
in a group, then that worker will never get created and we can hang the
ring.
If we do get a fork failure, retry from task_work. With signals we have
to be a bit careful as we cannot simply queue as task_work, as we'll
still have signals pending at that point. Punt over a normal workqueue
first and then create from task_work after that.
Lastly, ensure that we handle fatal worker creations. Worker creation
failures are normally not fatal, only if we fail to create one in an empty
worker group can we not make progress. Right now that is ignored, ensure
that we handle that and run cancel on the work item.
There are two paths that create new workers - one is the "existing worker
going to sleep", and the other is "no workers found for this work, create
one". The former is never fatal, as workers do exist in the group. Only
the latter needs to be carefully handled.
Signed-off-by: Jens Axboe <axboe@kernel.dk>
It makes the logic easier to follow if we just get rid of the fixed worker
flag, and simply ensure that we never exit the last worker in the group.
This also means that no particular worker is special.
Just track the last timeout state, and if we have hit it and no work
is pending, check if there are other workers. If yes, then we can exit
this one safely.
Signed-off-by: Jens Axboe <axboe@kernel.dk>
If the application uses io_uring and also relies heavily on signals
for communication, that can cause io-wq workers to spuriously exit
just because the parent has a signal pending. Just ignore signals
unless they are fatal.
Signed-off-by: Jens Axboe <axboe@kernel.dk>
We've got a few issues that all boil down to the fact that we have one
list of pending work items, yet two different types of workers to
serve them. This causes some oddities around workers switching type and
even hashed work vs regular work on the same bounded list.
Just separate them out cleanly, similarly to how we already do
accounting of what is running. That provides a clean separation and
removes some corner cases that can cause stalls when handling IO
that is punted to io-wq.
Fixes: ecc53c48c1 ("io-wq: check max_worker limits if a worker transitions bound state")
Signed-off-by: Jens Axboe <axboe@kernel.dk>
We need to set the stalled bit early, before we drop the lock for adding
us to the stall hash queue. If not, then we can race with new work being
queued between adding us to the stall hash and io_worker_handle_work()
marking us stalled.
Signed-off-by: Jens Axboe <axboe@kernel.dk>
A previous commit removed the IRQ safety of the worker and wqe locks,
but that left one spot of the hash wait lock now being done without
already having IRQs disabled.
Ensure that we use the right locking variant for the hashed waitqueue
lock.
Fixes: a9a4aa9fbf ("io-wq: wqe and worker locks no longer need to be IRQ safe")
Signed-off-by: Jens Axboe <axboe@kernel.dk>
The attempt to find and activate a free worker for new work is currently
combined with creating a new one if we don't find one, but that opens
io-wq up to a race where the worker that is found and activated can
put itself to sleep without knowing that it has been selected to perform
this new work.
Fix this by moving the activation into where we add the new work item,
then we can retain it within the wqe->lock scope and elimiate the race
with the worker itself checking inside the lock, but sleeping outside of
it.
Cc: stable@vger.kernel.org
Reported-by: Andres Freund <andres@anarazel.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
When new work is added, io_wqe_enqueue() checks if we need to wake or
create a new worker. But that check is done outside the lock that
otherwise synchronizes us with a worker going to sleep, so we can end
up in the following situation:
CPU0 CPU1
lock
insert work
unlock
atomic_read(nr_running) != 0
lock
atomic_dec(nr_running)
no wakeup needed
Hold the wqe lock around the "need to wakeup" check. Then we can also get
rid of the temporary work_flags variable, as we know the work will remain
valid as long as we hold the lock.
Cc: stable@vger.kernel.org
Reported-by: Andres Freund <andres@anarazel.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
io_uring no longer queues async work off completion handlers that run in
hard or soft interrupt context, and that use case was the only reason that
io-wq had to use IRQ safe locks for wqe and worker locks.
Signed-off-by: Jens Axboe <axboe@kernel.dk>
For the two places where new workers are created, we diligently check if
we are allowed to create a new worker. If we're currently at the limit
of how many workers of a given type we can have, then we don't create
any new ones.
If you have a mixed workload with various types of bound and unbounded
work, then it can happen that a worker finishes one type of work and
is then transitioned to the other type. For this case, we don't check
if we are actually allowed to do so. This can cause io-wq to temporarily
exceed the allowed number of workers for a given type.
When retrieving work, check that the types match. If they don't, check
if we are allowed to transition to the other type. If not, then don't
handle the new work.
Cc: stable@vger.kernel.org
Reported-by: Johannes Lundberg <johalun0@gmail.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
io-wq divides work into two categories:
1) Work that completes in a bounded time, like reading from a regular file
or a block device. This type of work is limited based on the size of
the SQ ring.
2) Work that may never complete, we call this unbounded work. The amount
of workers here is just limited by RLIMIT_NPROC.
For various uses cases, it's handy to have the kernel limit the maximum
amount of pending workers for both categories. Provide a way to do with
with a new IORING_REGISTER_IOWQ_MAX_WORKERS operation.
IORING_REGISTER_IOWQ_MAX_WORKERS takes an array of two integers and sets
the max worker count to what is being passed in for each category. The
old values are returned into that same array. If 0 is being passed in for
either category, it simply returns the current value.
The value is capped at RLIMIT_NPROC. This actually isn't that important
as it's more of a hint, if we're exceeding the value then our attempt
to fork a new worker will fail. This happens naturally already if more
than one node is in the system, as these values are per-node internally
for io-wq.
Reported-by: Johannes Lundberg <johalun0@gmail.com>
Link: https://github.com/axboe/liburing/issues/420
Signed-off-by: Jens Axboe <axboe@kernel.dk>
We don't need to protect nr_running and worker_refs by wqe->lock, so
narrow the range of raw_spin_lock_irq - raw_spin_unlock_irq
Signed-off-by: Hao Xu <haoxu@linux.alibaba.com>
Link: https://lore.kernel.org/r/20210810125554.99229-1-haoxu@linux.alibaba.com
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Daniel reports that the v5.14-rc4-rt4 kernel throws a BUG when running
stress-ng:
| [ 90.202543] BUG: sleeping function called from invalid context at kernel/locking/spinlock_rt.c:35
| [ 90.202549] in_atomic(): 1, irqs_disabled(): 1, non_block: 0, pid: 2047, name: iou-wrk-2041
| [ 90.202555] CPU: 5 PID: 2047 Comm: iou-wrk-2041 Tainted: G W 5.14.0-rc4-rt4+ #89
| [ 90.202559] Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.14.0-2 04/01/2014
| [ 90.202561] Call Trace:
| [ 90.202577] dump_stack_lvl+0x34/0x44
| [ 90.202584] ___might_sleep.cold+0x87/0x94
| [ 90.202588] rt_spin_lock+0x19/0x70
| [ 90.202593] ___slab_alloc+0xcb/0x7d0
| [ 90.202598] ? newidle_balance.constprop.0+0xf5/0x3b0
| [ 90.202603] ? dequeue_entity+0xc3/0x290
| [ 90.202605] ? io_wqe_dec_running.isra.0+0x98/0xe0
| [ 90.202610] ? pick_next_task_fair+0xb9/0x330
| [ 90.202612] ? __schedule+0x670/0x1410
| [ 90.202615] ? io_wqe_dec_running.isra.0+0x98/0xe0
| [ 90.202618] kmem_cache_alloc_trace+0x79/0x1f0
| [ 90.202621] io_wqe_dec_running.isra.0+0x98/0xe0
| [ 90.202625] io_wq_worker_sleeping+0x37/0x50
| [ 90.202628] schedule+0x30/0xd0
| [ 90.202630] schedule_timeout+0x8f/0x1a0
| [ 90.202634] ? __bpf_trace_tick_stop+0x10/0x10
| [ 90.202637] io_wqe_worker+0xfd/0x320
| [ 90.202641] ? finish_task_switch.isra.0+0xd3/0x290
| [ 90.202644] ? io_worker_handle_work+0x670/0x670
| [ 90.202646] ? io_worker_handle_work+0x670/0x670
| [ 90.202649] ret_from_fork+0x22/0x30
which is due to the RT kernel not liking a GFP_ATOMIC allocation inside
a raw spinlock. Besides that not working on RT, doing any kind of
allocation from inside schedule() is kind of nasty and should be avoided
if at all possible.
This particular path happens when an io-wq worker goes to sleep, and we
need a new worker to handle pending work. We currently allocate a small
data item to hold the information we need to create a new worker, but we
can instead include this data in the io_worker struct itself and just
protect it with a single bit lock. We only really need one per worker
anyway, as we will have run pending work between to sleep cycles.
https://lore.kernel.org/lkml/20210804082418.fbibprcwtzyt5qax@beryllium.lan/
Reported-by: Daniel Wagner <dwagner@suse.de>
Tested-by: Daniel Wagner <dwagner@suse.de>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
There may be cases like:
A B
spin_lock(wqe->lock)
nr_workers is 0
nr_workers++
spin_unlock(wqe->lock)
spin_lock(wqe->lock)
nr_wokers is 1
nr_workers++
spin_unlock(wqe->lock)
create_io_worker()
acct->worker is 1
create_io_worker()
acct->worker is 1
There should be one worker marked IO_WORKER_F_FIXED, but no one is.
Fix this by introduce a new agrument for create_io_worker() to indicate
if it is the first worker.
Fixes: 3d4e4face9 ("io-wq: fix no lock protection of acct->nr_worker")
Signed-off-by: Hao Xu <haoxu@linux.alibaba.com>
Link: https://lore.kernel.org/r/20210808135434.68667-3-haoxu@linux.alibaba.com
Signed-off-by: Jens Axboe <axboe@kernel.dk>
The former patch to add check between nr_workers and max_workers has a
bug, which will cause unconditionally creating io-workers. That's
because the result of the check doesn't affect the call of
create_io_worker(), fix it by bringing in a boolean value for it.
Fixes: 21698274da ("io-wq: fix lack of acct->nr_workers < acct->max_workers judgement")
Signed-off-by: Hao Xu <haoxu@linux.alibaba.com>
Link: https://lore.kernel.org/r/20210808135434.68667-2-haoxu@linux.alibaba.com
[axboe: drop hunk that isn't strictly needed]
Signed-off-by: Jens Axboe <axboe@kernel.dk>
There should be this judgement before we create an io-worker
Fixes: 685fe7feed ("io-wq: eliminate the need for a manager thread")
Signed-off-by: Hao Xu <haoxu@linux.alibaba.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
There is an acct->nr_worker visit without lock protection. Think about
the case: two callers call io_wqe_wake_worker(), one is the original
context and the other one is an io-worker(by calling
io_wqe_enqueue(wqe, linked)), on two cpus paralelly, this may cause
nr_worker to be larger than max_worker.
Let's fix it by adding lock for it, and let's do nr_workers++ before
create_io_worker. There may be a edge cause that the first caller fails
to create an io-worker, but the second caller doesn't know it and then
quit creating io-worker as well:
say nr_worker = max_worker - 1
cpu 0 cpu 1
io_wqe_wake_worker() io_wqe_wake_worker()
nr_worker < max_worker
nr_worker++
create_io_worker() nr_worker == max_worker
failed return
return
But the chance of this case is very slim.
Fixes: 685fe7feed ("io-wq: eliminate the need for a manager thread")
Signed-off-by: Hao Xu <haoxu@linux.alibaba.com>
[axboe: fix unconditional create_io_worker() call]
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Nadav correctly reports that we have a race between a worker exiting,
and new work being queued. This can lead to work being queued behind
an existing worker that could be sleeping on an event before it can
run to completion, and hence introducing potential big latency gaps
if we hit this race condition:
cpu0 cpu1
---- ----
io_wqe_worker()
schedule_timeout()
// timed out
io_wqe_enqueue()
io_wqe_wake_worker()
// work_flags & IO_WQ_WORK_CONCURRENT
io_wqe_activate_free_worker()
io_worker_exit()
Fix this by having the exiting worker go through the normal decrement
of a running worker, which will spawn a new one if needed.
The free worker activation is modified to only return success if we
were able to find a sleeping worker - if not, we keep looking through
the list. If we fail, we create a new worker as per usual.
Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/io-uring/BFF746C0-FEDE-4646-A253-3021C57C26C9@gmail.com/
Reported-by: Nadav Amit <nadav.amit@gmail.com>
Tested-by: Nadav Amit <nadav.amit@gmail.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Catch an illegal case to queue async from an unrelated task that got
the ring fd passed to it. This should not be possible to hit, but
better be proactive and catch it explicitly. io-wq is extended to
check for early IO_WQ_WORK_CANCEL being set on a work item as well,
so it can run the request through the normal cancelation path.
Signed-off-by: Jens Axboe <axboe@kernel.dk>
io-wq defaults to per-node masks for IO workers. This works fine by
default, but isn't particularly handy for workloads that prefer more
specific affinities, for either performance or isolation reasons.
This adds IORING_REGISTER_IOWQ_AFF that allows the user to pass in a CPU
mask that is then applied to IO thread workers, and an
IORING_UNREGISTER_IOWQ_AFF that simply resets the masks back to the
default of per-node.
Note that no care is given to existing IO threads, they will need to go
through a reschedule before the affinity is correct if they are already
running or sleeping.
Signed-off-by: Jens Axboe <axboe@kernel.dk>
In preparation for allowing user specific CPU masks for IO thread
creation, switch to using a mask embedded in the per-node wqe
structure.
Signed-off-by: Jens Axboe <axboe@kernel.dk>
mm related header files are not needed for io-wq module.
remove them for a small clean-up.
Reviewed-by: Pavel Begunkov <asml.silence@gmail.com>
Signed-off-by: Olivier Langlois <olivier@trillion01.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
The variable ret is being initialized with a value that is never read, the
assignment is redundant and can be removed.
Addresses-Coverity: ("Unused value")
Signed-off-by: Colin Ian King <colin.king@canonical.com>
Link: https://lore.kernel.org/r/20210615143424.60449-1-colin.king@canonical.com
Signed-off-by: Jens Axboe <axboe@kernel.dk>
BUG: KASAN: use-after-free in __wake_up_common+0x637/0x650
Read of size 8 at addr ffff8880304250d8 by task iou-wrk-28796/28802
Call Trace:
__dump_stack [inline]
dump_stack+0x141/0x1d7
print_address_description.constprop.0.cold+0x5b/0x2c6
__kasan_report [inline]
kasan_report.cold+0x7c/0xd8
__wake_up_common+0x637/0x650
__wake_up_common_lock+0xd0/0x130
io_worker_handle_work+0x9dd/0x1790
io_wqe_worker+0xb2a/0xd40
ret_from_fork+0x1f/0x30
Allocated by task 28798:
kzalloc_node [inline]
io_wq_create+0x3c4/0xdd0
io_init_wq_offload [inline]
io_uring_alloc_task_context+0x1bf/0x6b0
__io_uring_add_task_file+0x29a/0x3c0
io_uring_add_task_file [inline]
io_uring_install_fd [inline]
io_uring_create [inline]
io_uring_setup+0x209a/0x2bd0
do_syscall_64+0x3a/0xb0
entry_SYSCALL_64_after_hwframe+0x44/0xae
Freed by task 28798:
kfree+0x106/0x2c0
io_wq_destroy+0x182/0x380
io_wq_put [inline]
io_wq_put_and_exit+0x7a/0xa0
io_uring_clean_tctx [inline]
__io_uring_cancel+0x428/0x530
io_uring_files_cancel
do_exit+0x299/0x2a60
do_group_exit+0x125/0x310
get_signal+0x47f/0x2150
arch_do_signal_or_restart+0x2a8/0x1eb0
handle_signal_work[inline]
exit_to_user_mode_loop [inline]
exit_to_user_mode_prepare+0x171/0x280
__syscall_exit_to_user_mode_work [inline]
syscall_exit_to_user_mode+0x19/0x60
do_syscall_64+0x47/0xb0
entry_SYSCALL_64_after_hwframe
There are the following scenarios, hash waitqueue is shared by
io-wq1 and io-wq2. (note: wqe is worker)
io-wq1:worker2 | locks bit1
io-wq2:worker1 | waits bit1
io-wq1:worker3 | waits bit1
io-wq1:worker2 | completes all wqe bit1 work items
io-wq1:worker2 | drop bit1, exit
io-wq2:worker1 | locks bit1
io-wq1:worker3 | can not locks bit1, waits bit1 and exit
io-wq1 | exit and free io-wq1
io-wq2:worker1 | drops bit1
io-wq1:worker3 | be waked up, even though wqe is freed
After all iou-wrk belonging to io-wq1 have exited, remove wqe
form hash waitqueue, it is guaranteed that there will be no more
wqe belonging to io-wq1 in the hash waitqueue.
Reported-by: syzbot+6cb11ade52aa17095297@syzkaller.appspotmail.com
Signed-off-by: Zqiang <qiang.zhang@windriver.com>
Link: https://lore.kernel.org/r/20210526050826.30500-1-qiang.zhang@windriver.com
Signed-off-by: Jens Axboe <axboe@kernel.dk>
There is an old problem with io-wq cancellation where requests should be
killed and are in io-wq but are not discoverable, e.g. in @next_hashed
or @linked vars of io_worker_handle_work(). It adds some unreliability
to individual request canellation, but also may potentially get
__io_uring_cancel() stuck. For instance:
1) An __io_uring_cancel()'s cancellation round have not found any
request but there are some as desribed.
2) __io_uring_cancel() goes to sleep
3) Then workers wake up and try to execute those hidden requests
that happen to be unbound.
As we already cancel all requests of io-wq there, set IO_WQ_BIT_EXIT
in advance, so preventing 3) from executing unbound requests. The
workers will initially break looping because of getting a signal as they
are threads of the dying/exec()'ing user task.
Cc: stable@vger.kernel.org
Signed-off-by: Pavel Begunkov <asml.silence@gmail.com>
Link: https://lore.kernel.org/r/abfcf8c54cb9e8f7bfbad7e9a0cc5433cc70bdc2.1621781238.git.asml.silence@gmail.com
Signed-off-by: Jens Axboe <axboe@kernel.dk>
A previous commit removed the need for this, but overlooked that we no
longer use it at all. Get rid of it.
Fixes: 685fe7feed ("io-wq: eliminate the need for a manager thread")
Reported-by: kernel test robot <lkp@intel.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Do not include private headers and do not frob in internals.
On top of that, while the previous code restores the affinity, it
doesn't ensure the task actually moves there if it was running,
leading to the fun situation that it can be observed running outside
of its allowed mask for potentially significant time.
Use the proper API instead.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/YG7QkiUzlEbW85TU@hirez.programming.kicks-ass.net
Signed-off-by: Jens Axboe <axboe@kernel.dk>