Граф коммитов

4639 Коммитов

Автор SHA1 Сообщение Дата
KarimAllah Ahmed 3712caeb14 KVM/nVMX: Set the CPU_BASED_USE_MSR_BITMAPS if we have a valid L02 MSR bitmap
We either clear the CPU_BASED_USE_MSR_BITMAPS and end up intercepting all
MSR accesses or create a valid L02 MSR bitmap and use that. This decision
has to be made every time we evaluate whether we are going to generate the
L02 MSR bitmap.

Before commit:

  d28b387fb7 ("KVM/VMX: Allow direct access to MSR_IA32_SPEC_CTRL")

... this was probably OK since the decision was always identical.

This is no longer the case now since the MSR bitmap might actually
change once we decide to not intercept SPEC_CTRL and PRED_CMD.

Signed-off-by: KarimAllah Ahmed <karahmed@amazon.de>
Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
Acked-by: Paolo Bonzini <pbonzini@redhat.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Arjan van de Ven <arjan@linux.intel.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: David Woodhouse <dwmw2@infradead.org>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: arjan.van.de.ven@intel.com
Cc: dave.hansen@intel.com
Cc: jmattson@google.com
Cc: kvm@vger.kernel.org
Cc: sironi@amazon.de
Link: http://lkml.kernel.org/r/1518305967-31356-6-git-send-email-dwmw@amazon.co.uk
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2018-02-13 09:00:17 +01:00
KarimAllah Ahmed 206587a9fb X86/nVMX: Properly set spec_ctrl and pred_cmd before merging MSRs
These two variables should check whether SPEC_CTRL and PRED_CMD are
supposed to be passed through to L2 guests or not. While
msr_write_intercepted_l01 would return 'true' if it is not passed through.

So just invert the result of msr_write_intercepted_l01 to implement the
correct semantics.

Signed-off-by: KarimAllah Ahmed <karahmed@amazon.de>
Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
Reviewed-by: Jim Mattson <jmattson@google.com>
Acked-by: Paolo Bonzini <pbonzini@redhat.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Arjan van de Ven <arjan@linux.intel.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: David Woodhouse <dwmw2@infradead.org>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: arjan.van.de.ven@intel.com
Cc: dave.hansen@intel.com
Cc: kvm@vger.kernel.org
Cc: sironi@amazon.de
Fixes: 086e7d4118cc ("KVM: VMX: Allow direct access to MSR_IA32_SPEC_CTRL")
Link: http://lkml.kernel.org/r/1518305967-31356-5-git-send-email-dwmw@amazon.co.uk
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2018-02-13 09:00:06 +01:00
David Woodhouse 928a4c3948 KVM/x86: Reduce retpoline performance impact in slot_handle_level_range(), by always inlining iterator helper methods
With retpoline, tight loops of "call this function for every XXX" are
very much pessimised by taking a prediction miss *every* time. This one
is by far the biggest contributor to the guest launch time with retpoline.

By marking the iterator slot_handle_…() functions always_inline, we can
ensure that the indirect function call can be optimised away into a
direct call and it actually generates slightly smaller code because
some of the other conditionals can get optimised away too.

Performance is now pretty close to what we see with nospectre_v2 on
the command line.

Suggested-by: Linus Torvalds <torvalds@linux-foundation.org>
Tested-by: Filippo Sironi <sironi@amazon.de>
Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
Reviewed-by: Filippo Sironi <sironi@amazon.de>
Acked-by: Paolo Bonzini <pbonzini@redhat.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Arjan van de Ven <arjan@linux.intel.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: David Woodhouse <dwmw2@infradead.org>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: arjan.van.de.ven@intel.com
Cc: dave.hansen@intel.com
Cc: jmattson@google.com
Cc: karahmed@amazon.de
Cc: kvm@vger.kernel.org
Cc: rkrcmar@redhat.com
Link: http://lkml.kernel.org/r/1518305967-31356-4-git-send-email-dwmw@amazon.co.uk
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2018-02-13 08:59:45 +01:00
Linus Torvalds 15303ba5d1 KVM changes for 4.16
ARM:
 - Include icache invalidation optimizations, improving VM startup time
 
 - Support for forwarded level-triggered interrupts, improving
   performance for timers and passthrough platform devices
 
 - A small fix for power-management notifiers, and some cosmetic changes
 
 PPC:
 - Add MMIO emulation for vector loads and stores
 
 - Allow HPT guests to run on a radix host on POWER9 v2.2 CPUs without
   requiring the complex thread synchronization of older CPU versions
 
 - Improve the handling of escalation interrupts with the XIVE interrupt
   controller
 
 - Support decrement register migration
 
 - Various cleanups and bugfixes.
 
 s390:
 - Cornelia Huck passed maintainership to Janosch Frank
 
 - Exitless interrupts for emulated devices
 
 - Cleanup of cpuflag handling
 
 - kvm_stat counter improvements
 
 - VSIE improvements
 
 - mm cleanup
 
 x86:
 - Hypervisor part of SEV
 
 - UMIP, RDPID, and MSR_SMI_COUNT emulation
 
 - Paravirtualized TLB shootdown using the new KVM_VCPU_PREEMPTED bit
 
 - Allow guests to see TOPOEXT, GFNI, VAES, VPCLMULQDQ, and more AVX512
   features
 
 - Show vcpu id in its anonymous inode name
 
 - Many fixes and cleanups
 
 - Per-VCPU MSR bitmaps (already merged through x86/pti branch)
 
 - Stable KVM clock when nesting on Hyper-V (merged through x86/hyperv)
 -----BEGIN PGP SIGNATURE-----
 
 iQEcBAABCAAGBQJafvMtAAoJEED/6hsPKofo6YcH/Rzf2RmshrWaC3q82yfIV0Qz
 Z8N8yJHSaSdc3Jo6cmiVj0zelwAxdQcyjwlT7vxt5SL2yML+/Q0st9Hc3EgGGXPm
 Il99eJEl+2MYpZgYZqV8ff3mHS5s5Jms+7BITAeh6Rgt+DyNbykEAvzt+MCHK9cP
 xtsIZQlvRF7HIrpOlaRzOPp3sK2/MDZJ1RBE7wYItK3CUAmsHim/LVYKzZkRTij3
 /9b4LP1yMMbziG+Yxt1o682EwJB5YIat6fmDG9uFeEVI5rWWN7WFubqs8gCjYy/p
 FX+BjpOdgTRnX+1m9GIj0Jlc/HKMXryDfSZS07Zy4FbGEwSiI5SfKECub4mDhuE=
 =C/uD
 -----END PGP SIGNATURE-----

Merge tag 'kvm-4.16-1' of git://git.kernel.org/pub/scm/virt/kvm/kvm

Pull KVM updates from Radim Krčmář:
 "ARM:

   - icache invalidation optimizations, improving VM startup time

   - support for forwarded level-triggered interrupts, improving
     performance for timers and passthrough platform devices

   - a small fix for power-management notifiers, and some cosmetic
     changes

  PPC:

   - add MMIO emulation for vector loads and stores

   - allow HPT guests to run on a radix host on POWER9 v2.2 CPUs without
     requiring the complex thread synchronization of older CPU versions

   - improve the handling of escalation interrupts with the XIVE
     interrupt controller

   - support decrement register migration

   - various cleanups and bugfixes.

  s390:

   - Cornelia Huck passed maintainership to Janosch Frank

   - exitless interrupts for emulated devices

   - cleanup of cpuflag handling

   - kvm_stat counter improvements

   - VSIE improvements

   - mm cleanup

  x86:

   - hypervisor part of SEV

   - UMIP, RDPID, and MSR_SMI_COUNT emulation

   - paravirtualized TLB shootdown using the new KVM_VCPU_PREEMPTED bit

   - allow guests to see TOPOEXT, GFNI, VAES, VPCLMULQDQ, and more
     AVX512 features

   - show vcpu id in its anonymous inode name

   - many fixes and cleanups

   - per-VCPU MSR bitmaps (already merged through x86/pti branch)

   - stable KVM clock when nesting on Hyper-V (merged through
     x86/hyperv)"

* tag 'kvm-4.16-1' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (197 commits)
  KVM: PPC: Book3S: Add MMIO emulation for VMX instructions
  KVM: PPC: Book3S HV: Branch inside feature section
  KVM: PPC: Book3S HV: Make HPT resizing work on POWER9
  KVM: PPC: Book3S HV: Fix handling of secondary HPTEG in HPT resizing code
  KVM: PPC: Book3S PR: Fix broken select due to misspelling
  KVM: x86: don't forget vcpu_put() in kvm_arch_vcpu_ioctl_set_sregs()
  KVM: PPC: Book3S PR: Fix svcpu copying with preemption enabled
  KVM: PPC: Book3S HV: Drop locks before reading guest memory
  kvm: x86: remove efer_reload entry in kvm_vcpu_stat
  KVM: x86: AMD Processor Topology Information
  x86/kvm/vmx: do not use vm-exit instruction length for fast MMIO when running nested
  kvm: embed vcpu id to dentry of vcpu anon inode
  kvm: Map PFN-type memory regions as writable (if possible)
  x86/kvm: Make it compile on 32bit and with HYPYERVISOR_GUEST=n
  KVM: arm/arm64: Fixup userspace irqchip static key optimization
  KVM: arm/arm64: Fix userspace_irqchip_in_use counting
  KVM: arm/arm64: Fix incorrect timer_is_pending logic
  MAINTAINERS: update KVM/s390 maintainers
  MAINTAINERS: add Halil as additional vfio-ccw maintainer
  MAINTAINERS: add David as a reviewer for KVM/s390
  ...
2018-02-10 13:16:35 -08:00
Radim Krčmář 80132f4c0c Merge branch 'msr-bitmaps' of git://git.kernel.org/pub/scm/virt/kvm/kvm
This topic branch allocates separate MSR bitmaps for each VCPU.
This is required for the IBRS enablement to choose, on a per-VM
basis, whether to intercept the SPEC_CTRL and PRED_CMD MSRs;
the IBRS enablement comes in through the tip tree.
2018-02-09 21:35:35 +01:00
Linus Torvalds 35277995e1 Merge branch 'x86-pti-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull spectre/meltdown updates from Thomas Gleixner:
 "The next round of updates related to melted spectrum:

   - The initial set of spectre V1 mitigations:

       - Array index speculation blocker and its usage for syscall,
         fdtable and the n180211 driver.

       - Speculation barrier and its usage in user access functions

   - Make indirect calls in KVM speculation safe

   - Blacklisting of known to be broken microcodes so IPBP/IBSR are not
     touched.

   - The initial IBPB support and its usage in context switch

   - The exposure of the new speculation MSRs to KVM guests.

   - A fix for a regression in x86/32 related to the cpu entry area

   - Proper whitelisting for known to be safe CPUs from the mitigations.

   - objtool fixes to deal proper with retpolines and alternatives

   - Exclude __init functions from retpolines which speeds up the boot
     process.

   - Removal of the syscall64 fast path and related cleanups and
     simplifications

   - Removal of the unpatched paravirt mode which is yet another source
     of indirect unproteced calls.

   - A new and undisputed version of the module mismatch warning

   - A couple of cleanup and correctness fixes all over the place

  Yet another step towards full mitigation. There are a few things still
  missing like the RBS underflow mitigation for Skylake and other small
  details, but that's being worked on.

  That said, I'm taking a belated christmas vacation for a week and hope
  that everything is magically solved when I'm back on Feb 12th"

* 'x86-pti-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (37 commits)
  KVM/SVM: Allow direct access to MSR_IA32_SPEC_CTRL
  KVM/VMX: Allow direct access to MSR_IA32_SPEC_CTRL
  KVM/VMX: Emulate MSR_IA32_ARCH_CAPABILITIES
  KVM/x86: Add IBPB support
  KVM/x86: Update the reverse_cpuid list to include CPUID_7_EDX
  x86/speculation: Fix typo IBRS_ATT, which should be IBRS_ALL
  x86/pti: Mark constant arrays as __initconst
  x86/spectre: Simplify spectre_v2 command line parsing
  x86/retpoline: Avoid retpolines for built-in __init functions
  x86/kvm: Update spectre-v1 mitigation
  KVM: VMX: make MSR bitmaps per-VCPU
  x86/paravirt: Remove 'noreplace-paravirt' cmdline option
  x86/speculation: Use Indirect Branch Prediction Barrier in context switch
  x86/cpuid: Fix up "virtual" IBRS/IBPB/STIBP feature bits on Intel
  x86/spectre: Fix spelling mistake: "vunerable"-> "vulnerable"
  x86/spectre: Report get_user mitigation for spectre_v1
  nl80211: Sanitize array index in parse_txq_params
  vfs, fdtable: Prevent bounds-check bypass via speculative execution
  x86/syscall: Sanitize syscall table de-references under speculation
  x86/get_user: Use pointer masking to limit speculation
  ...
2018-02-04 11:45:55 -08:00
Linus Torvalds 617aebe6a9 Currently, hardened usercopy performs dynamic bounds checking on slab
cache objects. This is good, but still leaves a lot of kernel memory
 available to be copied to/from userspace in the face of bugs. To further
 restrict what memory is available for copying, this creates a way to
 whitelist specific areas of a given slab cache object for copying to/from
 userspace, allowing much finer granularity of access control. Slab caches
 that are never exposed to userspace can declare no whitelist for their
 objects, thereby keeping them unavailable to userspace via dynamic copy
 operations. (Note, an implicit form of whitelisting is the use of constant
 sizes in usercopy operations and get_user()/put_user(); these bypass all
 hardened usercopy checks since these sizes cannot change at runtime.)
 
 This new check is WARN-by-default, so any mistakes can be found over the
 next several releases without breaking anyone's system.
 
 The series has roughly the following sections:
 - remove %p and improve reporting with offset
 - prepare infrastructure and whitelist kmalloc
 - update VFS subsystem with whitelists
 - update SCSI subsystem with whitelists
 - update network subsystem with whitelists
 - update process memory with whitelists
 - update per-architecture thread_struct with whitelists
 - update KVM with whitelists and fix ioctl bug
 - mark all other allocations as not whitelisted
 - update lkdtm for more sensible test overage
 -----BEGIN PGP SIGNATURE-----
 Version: GnuPG v1
 Comment: Kees Cook <kees@outflux.net>
 
 iQIcBAABCgAGBQJabvleAAoJEIly9N/cbcAmO1kQAJnjVPutnLSbnUteZxtsv7W4
 43Cggvokfxr6l08Yh3hUowNxZVKjhF9uwMVgRRg9Nl5WdYCN+vCQbHz+ZdzGJXKq
 cGqdKWgexMKX+aBdNDrK7BphUeD46sH7JWR+a/lDV/BgPxBCm9i5ZZCgXbPP89AZ
 NpLBji7gz49wMsnm/x135xtNlZ3dG0oKETzi7MiR+NtKtUGvoIszSKy5JdPZ4m8q
 9fnXmHqmwM6uQFuzDJPt1o+D1fusTuYnjI7EgyrJRRhQ+BB3qEFZApXnKNDRS9Dm
 uB7jtcwefJCjlZVCf2+PWTOEifH2WFZXLPFlC8f44jK6iRW2Nc+wVRisJ3vSNBG1
 gaRUe/FSge68eyfQj5OFiwM/2099MNkKdZ0fSOjEBeubQpiFChjgWgcOXa5Bhlrr
 C4CIhFV2qg/tOuHDAF+Q5S96oZkaTy5qcEEwhBSW15ySDUaRWFSrtboNt6ZVOhug
 d8JJvDCQWoNu1IQozcbv6xW/Rk7miy8c0INZ4q33YUvIZpH862+vgDWfTJ73Zy9H
 jR/8eG6t3kFHKS1vWdKZzOX1bEcnd02CGElFnFYUEewKoV7ZeeLsYX7zodyUAKyi
 Yp5CImsDbWWTsptBg6h9nt2TseXTxYCt2bbmpJcqzsqSCUwOQNQ4/YpuzLeG0ihc
 JgOmUnQNJWCTwUUw5AS1
 =tzmJ
 -----END PGP SIGNATURE-----

Merge tag 'usercopy-v4.16-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/kees/linux

Pull hardened usercopy whitelisting from Kees Cook:
 "Currently, hardened usercopy performs dynamic bounds checking on slab
  cache objects. This is good, but still leaves a lot of kernel memory
  available to be copied to/from userspace in the face of bugs.

  To further restrict what memory is available for copying, this creates
  a way to whitelist specific areas of a given slab cache object for
  copying to/from userspace, allowing much finer granularity of access
  control.

  Slab caches that are never exposed to userspace can declare no
  whitelist for their objects, thereby keeping them unavailable to
  userspace via dynamic copy operations. (Note, an implicit form of
  whitelisting is the use of constant sizes in usercopy operations and
  get_user()/put_user(); these bypass all hardened usercopy checks since
  these sizes cannot change at runtime.)

  This new check is WARN-by-default, so any mistakes can be found over
  the next several releases without breaking anyone's system.

  The series has roughly the following sections:
   - remove %p and improve reporting with offset
   - prepare infrastructure and whitelist kmalloc
   - update VFS subsystem with whitelists
   - update SCSI subsystem with whitelists
   - update network subsystem with whitelists
   - update process memory with whitelists
   - update per-architecture thread_struct with whitelists
   - update KVM with whitelists and fix ioctl bug
   - mark all other allocations as not whitelisted
   - update lkdtm for more sensible test overage"

* tag 'usercopy-v4.16-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/kees/linux: (38 commits)
  lkdtm: Update usercopy tests for whitelisting
  usercopy: Restrict non-usercopy caches to size 0
  kvm: x86: fix KVM_XEN_HVM_CONFIG ioctl
  kvm: whitelist struct kvm_vcpu_arch
  arm: Implement thread_struct whitelist for hardened usercopy
  arm64: Implement thread_struct whitelist for hardened usercopy
  x86: Implement thread_struct whitelist for hardened usercopy
  fork: Provide usercopy whitelisting for task_struct
  fork: Define usercopy region in thread_stack slab caches
  fork: Define usercopy region in mm_struct slab caches
  net: Restrict unwhitelisted proto caches to size 0
  sctp: Copy struct sctp_sock.autoclose to userspace using put_user()
  sctp: Define usercopy region in SCTP proto slab cache
  caif: Define usercopy region in caif proto slab cache
  ip: Define usercopy region in IP proto slab cache
  net: Define usercopy region in struct proto slab cache
  scsi: Define usercopy region in scsi_sense_cache slab cache
  cifs: Define usercopy region in cifs_request slab cache
  vxfs: Define usercopy region in vxfs_inode slab cache
  ufs: Define usercopy region in ufs_inode_cache slab cache
  ...
2018-02-03 16:25:42 -08:00
KarimAllah Ahmed b2ac58f905 KVM/SVM: Allow direct access to MSR_IA32_SPEC_CTRL
[ Based on a patch from Paolo Bonzini <pbonzini@redhat.com> ]

... basically doing exactly what we do for VMX:

- Passthrough SPEC_CTRL to guests (if enabled in guest CPUID)
- Save and restore SPEC_CTRL around VMExit and VMEntry only if the guest
  actually used it.

Signed-off-by: KarimAllah Ahmed <karahmed@amazon.de>
Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Darren Kenny <darren.kenny@oracle.com>
Reviewed-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Jun Nakajima <jun.nakajima@intel.com>
Cc: kvm@vger.kernel.org
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Tim Chen <tim.c.chen@linux.intel.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Asit Mallick <asit.k.mallick@intel.com>
Cc: Arjan Van De Ven <arjan.van.de.ven@intel.com>
Cc: Greg KH <gregkh@linuxfoundation.org>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Ashok Raj <ashok.raj@intel.com>
Link: https://lkml.kernel.org/r/1517669783-20732-1-git-send-email-karahmed@amazon.de
2018-02-03 23:06:52 +01:00
KarimAllah Ahmed d28b387fb7 KVM/VMX: Allow direct access to MSR_IA32_SPEC_CTRL
[ Based on a patch from Ashok Raj <ashok.raj@intel.com> ]

Add direct access to MSR_IA32_SPEC_CTRL for guests. This is needed for
guests that will only mitigate Spectre V2 through IBRS+IBPB and will not
be using a retpoline+IBPB based approach.

To avoid the overhead of saving and restoring the MSR_IA32_SPEC_CTRL for
guests that do not actually use the MSR, only start saving and restoring
when a non-zero is written to it.

No attempt is made to handle STIBP here, intentionally. Filtering STIBP
may be added in a future patch, which may require trapping all writes
if we don't want to pass it through directly to the guest.

[dwmw2: Clean up CPUID bits, save/restore manually, handle reset]

Signed-off-by: KarimAllah Ahmed <karahmed@amazon.de>
Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Darren Kenny <darren.kenny@oracle.com>
Reviewed-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Reviewed-by: Jim Mattson <jmattson@google.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Jun Nakajima <jun.nakajima@intel.com>
Cc: kvm@vger.kernel.org
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Tim Chen <tim.c.chen@linux.intel.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Asit Mallick <asit.k.mallick@intel.com>
Cc: Arjan Van De Ven <arjan.van.de.ven@intel.com>
Cc: Greg KH <gregkh@linuxfoundation.org>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Ashok Raj <ashok.raj@intel.com>
Link: https://lkml.kernel.org/r/1517522386-18410-5-git-send-email-karahmed@amazon.de
2018-02-03 23:06:52 +01:00
KarimAllah Ahmed 28c1c9fabf KVM/VMX: Emulate MSR_IA32_ARCH_CAPABILITIES
Intel processors use MSR_IA32_ARCH_CAPABILITIES MSR to indicate RDCL_NO
(bit 0) and IBRS_ALL (bit 1). This is a read-only MSR. By default the
contents will come directly from the hardware, but user-space can still
override it.

[dwmw2: The bit in kvm_cpuid_7_0_edx_x86_features can be unconditional]

Signed-off-by: KarimAllah Ahmed <karahmed@amazon.de>
Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Paolo Bonzini <pbonzini@redhat.com>
Reviewed-by: Darren Kenny <darren.kenny@oracle.com>
Reviewed-by: Jim Mattson <jmattson@google.com>
Reviewed-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Jun Nakajima <jun.nakajima@intel.com>
Cc: kvm@vger.kernel.org
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Asit Mallick <asit.k.mallick@intel.com>
Cc: Arjan Van De Ven <arjan.van.de.ven@intel.com>
Cc: Greg KH <gregkh@linuxfoundation.org>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Tim Chen <tim.c.chen@linux.intel.com>
Cc: Ashok Raj <ashok.raj@intel.com>
Link: https://lkml.kernel.org/r/1517522386-18410-4-git-send-email-karahmed@amazon.de
2018-02-03 23:06:52 +01:00
Ashok Raj 15d4507152 KVM/x86: Add IBPB support
The Indirect Branch Predictor Barrier (IBPB) is an indirect branch
control mechanism. It keeps earlier branches from influencing
later ones.

Unlike IBRS and STIBP, IBPB does not define a new mode of operation.
It's a command that ensures predicted branch targets aren't used after
the barrier. Although IBRS and IBPB are enumerated by the same CPUID
enumeration, IBPB is very different.

IBPB helps mitigate against three potential attacks:

* Mitigate guests from being attacked by other guests.
  - This is addressed by issing IBPB when we do a guest switch.

* Mitigate attacks from guest/ring3->host/ring3.
  These would require a IBPB during context switch in host, or after
  VMEXIT. The host process has two ways to mitigate
  - Either it can be compiled with retpoline
  - If its going through context switch, and has set !dumpable then
    there is a IBPB in that path.
    (Tim's patch: https://patchwork.kernel.org/patch/10192871)
  - The case where after a VMEXIT you return back to Qemu might make
    Qemu attackable from guest when Qemu isn't compiled with retpoline.
  There are issues reported when doing IBPB on every VMEXIT that resulted
  in some tsc calibration woes in guest.

* Mitigate guest/ring0->host/ring0 attacks.
  When host kernel is using retpoline it is safe against these attacks.
  If host kernel isn't using retpoline we might need to do a IBPB flush on
  every VMEXIT.

Even when using retpoline for indirect calls, in certain conditions 'ret'
can use the BTB on Skylake-era CPUs. There are other mitigations
available like RSB stuffing/clearing.

* IBPB is issued only for SVM during svm_free_vcpu().
  VMX has a vmclear and SVM doesn't.  Follow discussion here:
  https://lkml.org/lkml/2018/1/15/146

Please refer to the following spec for more details on the enumeration
and control.

Refer here to get documentation about mitigations.

https://software.intel.com/en-us/side-channel-security-support

[peterz: rebase and changelog rewrite]
[karahmed: - rebase
           - vmx: expose PRED_CMD if guest has it in CPUID
           - svm: only pass through IBPB if guest has it in CPUID
           - vmx: support !cpu_has_vmx_msr_bitmap()]
           - vmx: support nested]
[dwmw2: Expose CPUID bit too (AMD IBPB only for now as we lack IBRS)
        PRED_CMD is a write-only MSR]

Signed-off-by: Ashok Raj <ashok.raj@intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
Signed-off-by: KarimAllah Ahmed <karahmed@amazon.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: kvm@vger.kernel.org
Cc: Asit Mallick <asit.k.mallick@intel.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Arjan Van De Ven <arjan.van.de.ven@intel.com>
Cc: Greg KH <gregkh@linuxfoundation.org>
Cc: Jun Nakajima <jun.nakajima@intel.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Tim Chen <tim.c.chen@linux.intel.com>
Link: http://lkml.kernel.org/r/1515720739-43819-6-git-send-email-ashok.raj@intel.com
Link: https://lkml.kernel.org/r/1517522386-18410-3-git-send-email-karahmed@amazon.de
2018-02-03 23:06:51 +01:00
KarimAllah Ahmed b7b27aa011 KVM/x86: Update the reverse_cpuid list to include CPUID_7_EDX
[dwmw2: Stop using KF() for bits in it, too]
Signed-off-by: KarimAllah Ahmed <karahmed@amazon.de>
Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Paolo Bonzini <pbonzini@redhat.com>
Reviewed-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Reviewed-by: Jim Mattson <jmattson@google.com>
Cc: kvm@vger.kernel.org
Cc: Radim Krčmář <rkrcmar@redhat.com>
Link: https://lkml.kernel.org/r/1517522386-18410-2-git-send-email-karahmed@amazon.de
2018-02-03 23:06:51 +01:00
Thomas Gleixner a96223f192 Merge branch 'msr-bitmaps' of git://git.kernel.org/pub/scm/virt/kvm/kvm into x86/pti
Pull the KVM prerequisites so the IBPB patches apply.
2018-02-03 22:30:16 +01:00
Eric Biggers 8dbfb2bf1b KVM: x86: don't forget vcpu_put() in kvm_arch_vcpu_ioctl_set_sregs()
Due to a bad merge resolution between commit f298103359 ("KVM/x86:
Check input paging mode when cs.l is set") and commit b4ef9d4e8c
("KVM: Move vcpu_load to arch-specific kvm_arch_vcpu_ioctl_set_sregs"),
there is a case in kvm_arch_vcpu_ioctl_set_sregs() where vcpu_put() is
not called after vcpu_get().  Fix it.

Reported-by: syzbot <syzkaller@googlegroups.com>
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
2018-02-02 17:49:55 +01:00
Radim Krčmář 7bf14c28ee Merge branch 'x86/hyperv' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Topic branch for stable KVM clockource under Hyper-V.

Thanks to Christoffer Dall for resolving the ARM conflict.
2018-02-01 15:04:17 +01:00
Dan Williams 085331dfc6 x86/kvm: Update spectre-v1 mitigation
Commit 75f139aaf8 "KVM: x86: Add memory barrier on vmcs field lookup"
added a raw 'asm("lfence");' to prevent a bounds check bypass of
'vmcs_field_to_offset_table'.

The lfence can be avoided in this path by using the array_index_nospec()
helper designed for these types of fixes.

Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Paolo Bonzini <pbonzini@redhat.com>
Cc: Andrew Honig <ahonig@google.com>
Cc: kvm@vger.kernel.org
Cc: Jim Mattson <jmattson@google.com>
Link: https://lkml.kernel.org/r/151744959670.6342.3001723920950249067.stgit@dwillia2-desk3.amr.corp.intel.com
2018-02-01 10:59:10 +01:00
Paolo Bonzini 904e14fb7c KVM: VMX: make MSR bitmaps per-VCPU
Place the MSR bitmap in struct loaded_vmcs, and update it in place
every time the x2apic or APICv state can change.  This is rare and
the loop can handle 64 MSRs per iteration, in a similar fashion as
nested_vmx_prepare_msr_bitmap.

This prepares for choosing, on a per-VM basis, whether to intercept
the SPEC_CTRL and PRED_CMD MSRs.

Cc: stable@vger.kernel.org       # prereq for Spectre mitigation
Suggested-by: Jim Mattson <jmattson@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-01-31 12:40:45 -05:00
Longpeng(Mike) 87cedc6be5 kvm: x86: remove efer_reload entry in kvm_vcpu_stat
The efer_reload is never used since
commit 26bb0981b3 ("KVM: VMX: Use shared msr infrastructure"),
so remove it.

Signed-off-by: Longpeng(Mike) <longpeng2@huawei.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
2018-01-31 18:25:35 +01:00
Stanislav Lanci 806793f5f7 KVM: x86: AMD Processor Topology Information
This patch allow to enable x86 feature TOPOEXT. This is needed to provide
information about SMT on AMD Zen CPUs to the guest.

Signed-off-by: Stanislav Lanci <pixo@polepetko.eu>
Tested-by: Nick Sarnie <commendsarnex@gmail.com>
Reviewed-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Babu Moger <babu.moger@amd.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
2018-01-31 18:25:34 +01:00
Vitaly Kuznetsov d391f12070 x86/kvm/vmx: do not use vm-exit instruction length for fast MMIO when running nested
I was investigating an issue with seabios >= 1.10 which stopped working
for nested KVM on Hyper-V. The problem appears to be in
handle_ept_violation() function: when we do fast mmio we need to skip
the instruction so we do kvm_skip_emulated_instruction(). This, however,
depends on VM_EXIT_INSTRUCTION_LEN field being set correctly in VMCS.
However, this is not the case.

Intel's manual doesn't mandate VM_EXIT_INSTRUCTION_LEN to be set when
EPT MISCONFIG occurs. While on real hardware it was observed to be set,
some hypervisors follow the spec and don't set it; we end up advancing
IP with some random value.

I checked with Microsoft and they confirmed they don't fill
VM_EXIT_INSTRUCTION_LEN on EPT MISCONFIG.

Fix the issue by doing instruction skip through emulator when running
nested.

Fixes: 68c3b4d167
Suggested-by: Radim Krčmář <rkrcmar@redhat.com>
Suggested-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Acked-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
2018-01-31 18:25:34 +01:00
Thomas Gleixner 5fa4ec9cb2 x86/kvm: Make it compile on 32bit and with HYPYERVISOR_GUEST=n
The reenlightment support for hyperv slapped a direct reference to
x86_hyper_type into the kvm code which results in the following build
failure when CONFIG_HYPERVISOR_GUEST=n:

arch/x86/kvm/x86.c:6259:6: error: ‘x86_hyper_type’ undeclared (first use in this function)
arch/x86/kvm/x86.c:6259:6: note: each undeclared identifier is reported only once for each function it appears in

Use the proper helper function to cure that.

The 32bit compile fails because of:

arch/x86/kvm/x86.c:5936:13: warning: ‘kvm_hyperv_tsc_notifier’ defined but not used [-Wunused-function]

which is a real trainwreck engineering artwork. The callsite is wrapped
into #ifdef CONFIG_X86_64, but the function itself has the #ifdef inside
the function body. Make the function itself wrapped into the ifdef to cure
that.

Qualiteee....

Fixes: 0092e4346f ("x86/kvm: Support Hyper-V reenlightenment")
Reported-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Vitaly Kuznetsov <vkuznets@redhat.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Stephen Hemminger <sthemmin@microsoft.com>
Cc: kvm@vger.kernel.org
Cc: Radim Krčmář <rkrcmar@redhat.com>
Cc: Haiyang Zhang <haiyangz@microsoft.com>
Cc: "Michael Kelley (EOSG)" <Michael.H.Kelley@microsoft.com>
Cc: Roman Kagan <rkagan@virtuozzo.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: devel@linuxdriverproject.org
Cc: "K. Y. Srinivasan" <kys@microsoft.com>
Cc: Cathy Avery <cavery@redhat.com>
Cc: Mohammed Gamal <mmorsy@redhat.com>
2018-01-31 10:29:40 +01:00
Vitaly Kuznetsov 0092e4346f x86/kvm: Support Hyper-V reenlightenment
When running nested KVM on Hyper-V guests its required to update
masterclocks for all guests when L1 migrates to a host with different TSC
frequency.

Implement the procedure in the following way:
  - Pause all guests.
  - Tell the host (Hyper-V) to stop emulating TSC accesses.
  - Update the gtod copy, recompute clocks.
  - Unpause all guests.

This is somewhat similar to cpufreq but there are two important differences:
 - TSC emulation can only be disabled globally (on all CPUs)
 - The new TSC frequency is not known until emulation is turned off so
   there is no way to 'prepare' for the event upfront.

Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Paolo Bonzini <pbonzini@redhat.com>
Cc: Stephen Hemminger <sthemmin@microsoft.com>
Cc: kvm@vger.kernel.org
Cc: Radim Krčmář <rkrcmar@redhat.com>
Cc: Haiyang Zhang <haiyangz@microsoft.com>
Cc: "Michael Kelley (EOSG)" <Michael.H.Kelley@microsoft.com>
Cc: Roman Kagan <rkagan@virtuozzo.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: devel@linuxdriverproject.org
Cc: "K. Y. Srinivasan" <kys@microsoft.com>
Cc: Cathy Avery <cavery@redhat.com>
Cc: Mohammed Gamal <mmorsy@redhat.com>
Link: https://lkml.kernel.org/r/20180124132337.30138-8-vkuznets@redhat.com
2018-01-30 23:55:34 +01:00
Vitaly Kuznetsov b0c39dc68e x86/kvm: Pass stable clocksource to guests when running nested on Hyper-V
Currently, KVM is able to work in 'masterclock' mode passing
PVCLOCK_TSC_STABLE_BIT to guests when the clocksource which is used on the
host is TSC.

When running nested on Hyper-V the guest normally uses a different one: TSC
page which is resistant to TSC frequency changes on events like L1
migration. Add support for it in KVM.

The only non-trivial change is in vgettsc(): when updating the gtod copy
both the clock readout and tsc value have to be updated now.

Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Paolo Bonzini <pbonzini@redhat.com>
Cc: Stephen Hemminger <sthemmin@microsoft.com>
Cc: kvm@vger.kernel.org
Cc: Radim Krčmář <rkrcmar@redhat.com>
Cc: Haiyang Zhang <haiyangz@microsoft.com>
Cc: "Michael Kelley (EOSG)" <Michael.H.Kelley@microsoft.com>
Cc: Roman Kagan <rkagan@virtuozzo.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: devel@linuxdriverproject.org
Cc: "K. Y. Srinivasan" <kys@microsoft.com>
Cc: Cathy Avery <cavery@redhat.com>
Cc: Mohammed Gamal <mmorsy@redhat.com>
Link: https://lkml.kernel.org/r/20180124132337.30138-7-vkuznets@redhat.com
2018-01-30 23:55:34 +01:00
Ingo Molnar 7e86548e2c Linux 4.15
-----BEGIN PGP SIGNATURE-----
 
 iQEcBAABAgAGBQJabj6pAAoJEHm+PkMAQRiGs8cIAJQFkCWnbz86e3vG4DuWhyA8
 CMGHCQdUOxxFGa/ixhIiuetbC0x+JVHAjV2FwVYbAQfaZB3pfw2iR1ncQxpAP1AI
 oLU9vBEqTmwKMPc9CM5rRfnLFWpGcGwUNzgPdxD5yYqGDtcM8K840mF6NdkYe5AN
 xU8rv1wlcFPF4A5pvHCH0pvVmK4VxlVFk/2H67TFdxBs4PyJOnSBnf+bcGWgsKO6
 hC8XIVtcKCH2GfFxt5d0Vgc5QXJEpX1zn2mtCa1MwYRjN2plgYfD84ha0xE7J0B0
 oqV/wnjKXDsmrgVpncr3txd4+zKJFNkdNRE4eLAIupHo2XHTG4HvDJ5dBY2NhGU=
 =sOml
 -----END PGP SIGNATURE-----

Merge tag 'v4.15' into x86/pti, to be able to merge dependent changes

Time has come to switch PTI development over to a v4.15 base - we'll still
try to make sure that all PTI fixes backport cleanly to v4.14 and earlier.

Signed-off-by: Ingo Molnar <mingo@kernel.org>
2018-01-30 15:08:27 +01:00
Linus Torvalds 6304672b7f Merge branch 'x86-pti-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86/pti updates from Thomas Gleixner:
 "Another set of melted spectrum related changes:

   - Code simplifications and cleanups for RSB and retpolines.

   - Make the indirect calls in KVM speculation safe.

   - Whitelist CPUs which are known not to speculate from Meltdown and
     prepare for the new CPUID flag which tells the kernel that a CPU is
     not affected.

   - A less rigorous variant of the module retpoline check which merily
     warns when a non-retpoline protected module is loaded and reflects
     that fact in the sysfs file.

   - Prepare for Indirect Branch Prediction Barrier support.

   - Prepare for exposure of the Speculation Control MSRs to guests, so
     guest OSes which depend on those "features" can use them. Includes
     a blacklist of the broken microcodes. The actual exposure of the
     MSRs through KVM is still being worked on"

* 'x86-pti-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
  x86/speculation: Simplify indirect_branch_prediction_barrier()
  x86/retpoline: Simplify vmexit_fill_RSB()
  x86/cpufeatures: Clean up Spectre v2 related CPUID flags
  x86/cpu/bugs: Make retpoline module warning conditional
  x86/bugs: Drop one "mitigation" from dmesg
  x86/nospec: Fix header guards names
  x86/alternative: Print unadorned pointers
  x86/speculation: Add basic IBPB (Indirect Branch Prediction Barrier) support
  x86/cpufeature: Blacklist SPEC_CTRL/PRED_CMD on early Spectre v2 microcodes
  x86/pti: Do not enable PTI on CPUs which are not vulnerable to Meltdown
  x86/msr: Add definitions for new speculation control MSRs
  x86/cpufeatures: Add AMD feature bits for Speculation Control
  x86/cpufeatures: Add Intel feature bits for Speculation Control
  x86/cpufeatures: Add CPUID_7_EDX CPUID leaf
  module/retpoline: Warn about missing retpoline in module
  KVM: VMX: Make indirect call speculation safe
  KVM: x86: Make indirect calls in emulator speculation safe
2018-01-29 19:08:02 -08:00
Paolo Bonzini f21f165ef9 KVM: VMX: introduce alloc_loaded_vmcs
Group together the calls to alloc_vmcs and loaded_vmcs_init.  Soon we'll also
allocate an MSR bitmap there.

Cc: stable@vger.kernel.org       # prereq for Spectre mitigation
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-01-27 09:43:12 +01:00
Jim Mattson de3a0021a6 KVM: nVMX: Eliminate vmcs02 pool
The potential performance advantages of a vmcs02 pool have never been
realized. To simplify the code, eliminate the pool. Instead, a single
vmcs02 is allocated per VCPU when the VCPU enters VMX operation.

Cc: stable@vger.kernel.org       # prereq for Spectre mitigation
Signed-off-by: Jim Mattson <jmattson@google.com>
Signed-off-by: Mark Kanda <mark.kanda@oracle.com>
Reviewed-by: Ameya More <ameya.more@oracle.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
2018-01-27 09:43:03 +01:00
Peter Zijlstra c940a3fb1e KVM: VMX: Make indirect call speculation safe
Replace indirect call with CALL_NOSPEC.

Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: David Woodhouse <dwmw@amazon.co.uk>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Ashok Raj <ashok.raj@intel.com>
Cc: Greg KH <gregkh@linuxfoundation.org>
Cc: Jun Nakajima <jun.nakajima@intel.com>
Cc: David Woodhouse <dwmw2@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: rga@amazon.de
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Asit Mallick <asit.k.mallick@intel.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Jason Baron <jbaron@akamai.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Arjan Van De Ven <arjan.van.de.ven@intel.com>
Cc: Tim Chen <tim.c.chen@linux.intel.com>
Link: https://lkml.kernel.org/r/20180125095843.645776917@infradead.org
2018-01-25 14:14:42 +01:00
Peter Zijlstra 1a29b5b7f3 KVM: x86: Make indirect calls in emulator speculation safe
Replace the indirect calls with CALL_NOSPEC.

Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: David Woodhouse <dwmw@amazon.co.uk>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Ashok Raj <ashok.raj@intel.com>
Cc: Greg KH <gregkh@linuxfoundation.org>
Cc: Jun Nakajima <jun.nakajima@intel.com>
Cc: David Woodhouse <dwmw2@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: rga@amazon.de
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Asit Mallick <asit.k.mallick@intel.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Jason Baron <jbaron@akamai.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Arjan Van De Ven <arjan.van.de.ven@intel.com>
Cc: Tim Chen <tim.c.chen@linux.intel.com>
Link: https://lkml.kernel.org/r/20180125095843.595615683@infradead.org
2018-01-25 11:30:07 +01:00
Tianyu Lan 37b95951c5 KVM/x86: Fix wrong macro references of X86_CR0_PG_BIT and X86_CR4_PAE_BIT in kvm_valid_sregs()
kvm_valid_sregs() should use X86_CR0_PG and X86_CR4_PAE to check bit
status rather than X86_CR0_PG_BIT and X86_CR4_PAE_BIT. This patch is
to fix it.

Fixes: f29810335965a(KVM/x86: Check input paging mode when cs.l is set)
Reported-by: Jeremi Piotrowski <jeremi.piotrowski@gmail.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Signed-off-by: Tianyu Lan <Tianyu.Lan@microsoft.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
2018-01-17 15:01:11 +01:00
Paolo Bonzini d7231e75f7 KVM: VMX: introduce X2APIC_MSR macro
Remove duplicate expression in nested_vmx_prepare_msr_bitmap, and make
the register names clearer in hardware_setup.

Suggested-by: Jim Mattson <jmattson@google.com>
Reviewed-by: Jim Mattson <jmattson@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
[Resolved rebase conflict after removing Intel PT. - Radim]
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
2018-01-16 16:52:52 +01:00
Paolo Bonzini c992384bde KVM: vmx: speed up MSR bitmap merge
The bulk of the MSR bitmap is either immutable, or can be copied from
the L1 bitmap.  By initializing it at VMXON time, and copying the mutable
parts one long at a time on vmentry (rather than one bit), about 4000
clock cycles (30%) can be saved on a nested VMLAUNCH/VMRESUME.

The resulting for loop only has four iterations, so it is cheap enough
to reinitialize the MSR write bitmaps on every iteration, and it makes
the code simpler.

Suggested-by: Jim Mattson <jmattson@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
2018-01-16 16:52:52 +01:00
Paolo Bonzini 1f6e5b2564 KVM: vmx: simplify MSR bitmap setup
The APICv-enabled MSR bitmap is a superset of the APICv-disabled bitmap.
Make that obvious in vmx_disable_intercept_msr_x2apic.

Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
[Resolved rebase conflict after removing Intel PT. - Radim]
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
2018-01-16 16:52:48 +01:00
Paolo Bonzini 07f36616cd KVM: nVMX: remove unnecessary vmwrite from L2->L1 vmexit
The POSTED_INTR_NV field is constant (though it differs between the vmcs01 and
vmcs02), there is no need to reload it on vmexit to L1.

Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
2018-01-16 16:50:23 +01:00
Paolo Bonzini 25a2e4fe8e KVM: nVMX: initialize more non-shadowed fields in prepare_vmcs02_full
These fields are also simple copies of the data in the vmcs12 struct.
For some of them, prepare_vmcs02 was skipping the copy when the field
was unused.  In prepare_vmcs02_full, we copy them always as long as the
field exists on the host, because the corresponding execution control
might be one of the shadowed fields.

Optimization opportunities remain for MSRs that, depending on the
entry/exit controls, have to be copied from either the vmcs01 or
the vmcs12: EFER (whose value is partly stored in the entry controls
too), PAT, DEBUGCTL (and also DR7).  Before moving these three and
the entry/exit controls to prepare_vmcs02_full, KVM would have to set
dirty_vmcs12 on writes to the L1 MSRs.

Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
2018-01-16 16:50:20 +01:00
Paolo Bonzini 8665c3f973 KVM: nVMX: initialize descriptor cache fields in prepare_vmcs02_full
This part is separate for ease of review, because git prefers to move
prepare_vmcs02 below the initial long sequence of vmcs_write* operations.

Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
2018-01-16 16:50:17 +01:00
Paolo Bonzini 74a497fae7 KVM: nVMX: track dirty state of non-shadowed VMCS fields
VMCS12 fields that are not handled through shadow VMCS are rarely
written, and thus they are also almost constant in the vmcs02.  We can
thus optimize prepare_vmcs02 by skipping all the work for non-shadowed
fields in the common case.

This patch introduces the (pretty simple) tracking infrastructure; the
next patches will move work to prepare_vmcs02_full and save a few hundred
clock cycles per VMRESUME on a Haswell Xeon E5 system:

	                                before  after
	cpuid                           14159   13869
	vmcall                          15290   14951
	inl_from_kernel                 17703   17447
	outl_to_kernel                  16011   14692
	self_ipi_sti_nop                16763   15825
	self_ipi_tpr_sti_nop            17341   15935
	wr_tsc_adjust_msr               14510   14264
	rd_tsc_adjust_msr               15018   14311
	mmio-wildcard-eventfd:pci-mem   16381   14947
	mmio-datamatch-eventfd:pci-mem  18620   17858
	portio-wildcard-eventfd:pci-io  15121   14769
	portio-datamatch-eventfd:pci-io 15761   14831

(average savings 748, stdev 460).

Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
2018-01-16 16:50:13 +01:00
Paolo Bonzini c9e9deae76 KVM: VMX: split list of shadowed VMCS field to a separate file
Prepare for multiple inclusions of the list.

Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
2018-01-16 16:50:05 +01:00
Jim Mattson 58e9ffae5e kvm: vmx: Reduce size of vmcs_field_to_offset_table
The vmcs_field_to_offset_table was a rather sparse table of short
integers with a maximum index of 0x6c16, amounting to 55342 bytes. Now
that we are considering support for multiple VMCS12 formats, it would
be unfortunate to replicate that large, sparse table. Rotating the
field encoding (as a 16-bit integer) left by 6 reduces that table to
5926 bytes.

Suggested-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Jim Mattson <jmattson@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
2018-01-16 16:50:03 +01:00
Jim Mattson d37f4267a7 kvm: vmx: Change vmcs_field_type to vmcs_field_width
Per the SDM, "[VMCS] Fields are grouped by width (16-bit, 32-bit,
etc.) and type (guest-state, host-state, etc.)." Previously, the width
was indicated by vmcs_field_type. To avoid confusion when we start
dealing with both field width and field type, change vmcs_field_type
to vmcs_field_width.

Signed-off-by: Jim Mattson <jmattson@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
2018-01-16 16:50:01 +01:00
Jim Mattson 5b15706dbf kvm: vmx: Introduce VMCS12_MAX_FIELD_INDEX
This is the highest index value used in any supported VMCS12 field
encoding. It is used to populate the IA32_VMX_VMCS_ENUM MSR.

Signed-off-by: Jim Mattson <jmattson@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
2018-01-16 16:49:58 +01:00
Paolo Bonzini 44900ba65e KVM: VMX: optimize shadow VMCS copying
Because all fields can be read/written with a single vmread/vmwrite on
64-bit kernels, the switch statements in copy_vmcs12_to_shadow and
copy_shadow_to_vmcs12 are unnecessary.

What I did in this patch is to copy the two parts of 64-bit fields
separately on 32-bit kernels, to keep all complicated #ifdef-ery
in init_vmcs_shadow_fields.  The disadvantage is that 64-bit fields
have to be listed separately in shadow_read_only/read_write_fields,
but those are few and we can validate the arrays when building the
VMREAD and VMWRITE bitmaps.  This saves a few hundred clock cycles
per nested vmexit.

However there is still a "switch" in vmcs_read_any and vmcs_write_any.
So, while at it, this patch reorders the fields by type, hoping that
the branch predictor appreciates it.

Cc: Jim Mattson <jmattson@google.com>
Cc: Wanpeng Li <wanpeng.li@hotmail.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
2018-01-16 16:49:56 +01:00
Paolo Bonzini c5d167b27e KVM: vmx: shadow more fields that are read/written on every vmexits
Compared to when VMCS shadowing was added to KVM, we are reading/writing
a few more fields: the PML index, the interrupt status and the preemption
timer value.  The first two are because we are exposing more features
to nested guests, the preemption timer is simply because we have grown
a new optimization.  Adding them to the shadow VMCS field lists reduces
the cost of a vmexit by about 1000 clock cycles for each field that exists
on bare metal.

On the other hand, the guest BNDCFGS and TSC offset are not written on
fast paths, so remove them.

Suggested-by: Jim Mattson <jmattson@google.com>
Cc: Jim Mattson <jmattson@google.com>
Cc: Wanpeng Li <wanpeng.li@hotmail.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
2018-01-16 16:49:44 +01:00
Liran Alon 6b6977117f KVM: nVMX: Fix races when sending nested PI while dest enters/leaves L2
Consider the following scenario:
1. CPU A calls vmx_deliver_nested_posted_interrupt() to send an IPI
to CPU B via virtual posted-interrupt mechanism.
2. CPU B is currently executing L2 guest.
3. vmx_deliver_nested_posted_interrupt() calls
kvm_vcpu_trigger_posted_interrupt() which will note that
vcpu->mode == IN_GUEST_MODE.
4. Assume that before CPU A sends the physical POSTED_INTR_NESTED_VECTOR
IPI, CPU B exits from L2 to L0 during event-delivery
(valid IDT-vectoring-info).
5. CPU A now sends the physical IPI. The IPI is received in host and
it's handler (smp_kvm_posted_intr_nested_ipi()) does nothing.
6. Assume that before CPU A sets pi_pending=true and KVM_REQ_EVENT,
CPU B continues to run in L0 and reach vcpu_enter_guest(). As
KVM_REQ_EVENT is not set yet, vcpu_enter_guest() will continue and resume
L2 guest.
7. At this point, CPU A sets pi_pending=true and KVM_REQ_EVENT but
it's too late! CPU B already entered L2 and KVM_REQ_EVENT will only be
consumed at next L2 entry!

Another scenario to consider:
1. CPU A calls vmx_deliver_nested_posted_interrupt() to send an IPI
to CPU B via virtual posted-interrupt mechanism.
2. Assume that before CPU A calls kvm_vcpu_trigger_posted_interrupt(),
CPU B is at L0 and is about to resume into L2. Further assume that it is
in vcpu_enter_guest() after check for KVM_REQ_EVENT.
3. At this point, CPU A calls kvm_vcpu_trigger_posted_interrupt() which
will note that vcpu->mode != IN_GUEST_MODE. Therefore, do nothing and
return false. Then, will set pi_pending=true and KVM_REQ_EVENT.
4. Now CPU B continue and resumes into L2 guest without processing
the posted-interrupt until next L2 entry!

To fix both issues, we just need to change
vmx_deliver_nested_posted_interrupt() to set pi_pending=true and
KVM_REQ_EVENT before calling kvm_vcpu_trigger_posted_interrupt().

It will fix the first scenario by chaging step (6) to note that
KVM_REQ_EVENT and pi_pending=true and therefore process
nested posted-interrupt.

It will fix the second scenario by two possible ways:
1. If kvm_vcpu_trigger_posted_interrupt() is called while CPU B has changed
vcpu->mode to IN_GUEST_MODE, physical IPI will be sent and will be received
when CPU resumes into L2.
2. If kvm_vcpu_trigger_posted_interrupt() is called while CPU B hasn't yet
changed vcpu->mode to IN_GUEST_MODE, then after CPU B will change
vcpu->mode it will call kvm_request_pending() which will return true and
therefore force another round of vcpu_enter_guest() which will note that
KVM_REQ_EVENT and pi_pending=true and therefore process nested
posted-interrupt.

Cc: stable@vger.kernel.org
Fixes: 705699a139 ("KVM: nVMX: Enable nested posted interrupt processing")
Signed-off-by: Liran Alon <liran.alon@oracle.com>
Reviewed-by: Nikita Leshenko <nikita.leshchenko@oracle.com>
Reviewed-by: Krish Sadhukhan <krish.sadhukhan@oracle.com>
[Add kvm_vcpu_kick to also handle the case where L1 doesn't intercept L2 HLT
 and L2 executes HLT instruction. - Paolo]
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
2018-01-16 16:40:09 +01:00
Liran Alon 851c1a18c5 KVM: nVMX: Fix injection to L2 when L1 don't intercept external-interrupts
Before each vmentry to guest, vcpu_enter_guest() calls sync_pir_to_irr()
which calls vmx_hwapic_irr_update() to update RVI.
Currently, vmx_hwapic_irr_update() contains a tweak in case it is called
when CPU is running L2 and L1 don't intercept external-interrupts.
In that case, code injects interrupt directly into L2 instead of
updating RVI.

Besides being hacky (wouldn't expect function updating RVI to also
inject interrupt), it also doesn't handle this case correctly.
The code contains several issues:
1. When code calls kvm_queue_interrupt() it just passes it max_irr which
represents the highest IRR currently pending in L1 LAPIC.
This is problematic as interrupt was injected to guest but it's bit is
still set in LAPIC IRR instead of being cleared from IRR and set in ISR.
2. Code doesn't check if LAPIC PPR is set to accept an interrupt of
max_irr priority. It just checks if interrupts are enabled in guest with
vmx_interrupt_allowed().

To fix the above issues:
1. Simplify vmx_hwapic_irr_update() to just update RVI.
Note that this shouldn't happen when CPU is running L2
(See comment in code).
2. Since now vmx_hwapic_irr_update() only does logic for L1
virtual-interrupt-delivery, inject_pending_event() should be the
one responsible for injecting the interrupt directly into L2.
Therefore, change kvm_cpu_has_injectable_intr() to check L1
LAPIC when CPU is running L2.
3. Change vmx_sync_pir_to_irr() to set KVM_REQ_EVENT when L1
has a pending injectable interrupt.

Fixes: 963fee1656 ("KVM: nVMX: Fix virtual interrupt delivery
injection")

Signed-off-by: Liran Alon <liran.alon@oracle.com>
Reviewed-by: Nikita Leshenko <nikita.leshchenko@oracle.com>
Reviewed-by: Krish Sadhukhan <krish.sadhukhan@oracle.com>
Reviewed-by: Liam Merwick <liam.merwick@oracle.com>
Signed-off-by: Liam Merwick <liam.merwick@oracle.com>
Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
2018-01-16 16:40:09 +01:00
Liran Alon f27a85c498 KVM: nVMX: Re-evaluate L1 pending events when running L2 and L1 got posted-interrupt
In case posted-interrupt was delivered to CPU while it is in host
(outside guest), then posted-interrupt delivery will be done by
calling sync_pir_to_irr() at vmentry after interrupts are disabled.

sync_pir_to_irr() will check vmx->pi_desc.control ON bit and if
set, it will sync vmx->pi_desc.pir to IRR and afterwards update RVI to
ensure virtual-interrupt-delivery will dispatch interrupt to guest.

However, it is possible that L1 will receive a posted-interrupt while
CPU runs at host and is about to enter L2. In this case, the call to
sync_pir_to_irr() will indeed update the L1's APIC IRR but
vcpu_enter_guest() will then just resume into L2 guest without
re-evaluating if it should exit from L2 to L1 as a result of this
new pending L1 event.

To address this case, if sync_pir_to_irr() has a new L1 injectable
interrupt and CPU is running L2, we force exit GUEST_MODE which will
result in another iteration of vcpu_run() run loop which will call
kvm_vcpu_running() which will call check_nested_events() which will
handle the pending L1 event properly.

Signed-off-by: Liran Alon <liran.alon@oracle.com>
Reviewed-by: Nikita Leshenko <nikita.leshchenko@oracle.com>
Reviewed-by: Krish Sadhukhan <krish.sadhukhan@oracle.com>
Reviewed-by: Liam Merwick <liam.merwick@oracle.com>
Signed-off-by: Liam Merwick <liam.merwick@oracle.com>
Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
2018-01-16 16:40:09 +01:00
Liran Alon e7387b0e27 KVM: x86: Change __kvm_apic_update_irr() to also return if max IRR updated
This commit doesn't change semantics.
It is done as a preparation for future commits.

Signed-off-by: Liran Alon <liran.alon@oracle.com>
Reviewed-by: Nikita Leshenko <nikita.leshchenko@oracle.com>
Reviewed-by: Liam Merwick <liam.merwick@oracle.com>
Signed-off-by: Liam Merwick <liam.merwick@oracle.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
2018-01-16 16:40:09 +01:00
Liran Alon fa59cc0038 KVM: x86: Optimization: Create SVM stubs for sync_pir_to_irr()
sync_pir_to_irr() is only called if vcpu->arch.apicv_active()==true.
In case it is false, VMX code make sure to set sync_pir_to_irr
to NULL.

Therefore, having SVM stubs allows to remove check for if
sync_pir_to_irr != NULL from all calling sites.

Signed-off-by: Liran Alon <liran.alon@oracle.com>
Suggested-by: Paolo Bonzini <pbonzini@redhat.com>
Reviewed-by: Nikita Leshenko <nikita.leshchenko@oracle.com>
Reviewed-by: Liam Merwick <liam.merwick@oracle.com>
[Return highest IRR in the SVM case. - Paolo]
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
2018-01-16 16:40:09 +01:00
Liran Alon 5c7d4f9ad3 KVM: nVMX: Fix bug of injecting L2 exception into L1
kvm_clear_exception_queue() should clear pending exception.
This also includes exceptions which were only marked pending but not
yet injected. This is because exception.pending is used for both L1
and L2 to determine if an exception should be raised to guest.
Note that an exception which is pending but not yet injected will
be raised again once the guest will be resumed.

Consider the following scenario:
1) L0 KVM with ignore_msrs=false.
2) L1 prepare vmcs12 with the following:
    a) No intercepts on MSR (MSR_BITMAP exist and is filled with 0).
    b) No intercept for #GP.
    c) vmx-preemption-timer is configured.
3) L1 enters into L2.
4) L2 reads an unhandled MSR that exists in MSR_BITMAP
(such as 0x1fff).

L2 RDMSR could be handled as described below:
1) L2 exits to L0 on RDMSR and calls handle_rdmsr().
2) handle_rdmsr() calls kvm_inject_gp() which sets
KVM_REQ_EVENT, exception.pending=true and exception.injected=false.
3) vcpu_enter_guest() consumes KVM_REQ_EVENT and calls
inject_pending_event() which calls vmx_check_nested_events()
which sees that exception.pending=true but
nested_vmx_check_exception() returns 0 and therefore does nothing at
this point. However let's assume it later sees vmx-preemption-timer
expired and therefore exits from L2 to L1 by calling
nested_vmx_vmexit().
4) nested_vmx_vmexit() calls prepare_vmcs12()
which calls vmcs12_save_pending_event() but it does nothing as
exception.injected is false. Also prepare_vmcs12() calls
kvm_clear_exception_queue() which does nothing as
exception.injected is already false.
5) We now return from vmx_check_nested_events() with 0 while still
having exception.pending=true!
6) Therefore inject_pending_event() continues
and we inject L2 exception to L1!...

This commit will fix above issue by changing step (4) to
clear exception.pending in kvm_clear_exception_queue().

Fixes: 664f8e26b0 ("KVM: X86: Fix loss of exception which has not yet been injected")
Signed-off-by: Liran Alon <liran.alon@oracle.com>
Reviewed-by: Nikita Leshenko <nikita.leshchenko@oracle.com>
Reviewed-by: Krish Sadhukhan <krish.sadhukhan@oracle.com>
Signed-off-by: Krish Sadhukhan <krish.sadhukhan@oracle.com>
Cc: stable@vger.kernel.org
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
2018-01-16 16:40:09 +01:00
Borislav Petkov a6cb099a43 kvm/vmx: Use local vmx variable in vmx_get_msr()
... just like in vmx_set_msr().

No functionality change.

Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
2018-01-16 16:40:09 +01:00
Haozhong Zhang aa2e063aea KVM: MMU: consider host cache mode in MMIO page check
Some reserved pages, such as those from NVDIMM DAX devices, are not
for MMIO, and can be mapped with cached memory type for better
performance. However, the above check misconceives those pages as
MMIO.  Because KVM maps MMIO pages with UC memory type, the
performance of guest accesses to those pages would be harmed.
Therefore, we check the host memory type in addition and only treat
UC/UC-/WC pages as MMIO.

Signed-off-by: Haozhong Zhang <haozhong.zhang@intel.com>
Reported-by: Cuevas Escareno, Ivan D <ivan.d.cuevas.escareno@intel.com>
Reported-by: Kumar, Karthik <karthik.kumar@intel.com>
Reviewed-by: Xiao Guangrong <xiaoguangrong@tencent.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
2018-01-16 16:40:09 +01:00
Paolo Bonzini 05992edc27 Merge branch 'kvm-insert-lfence'
Topic branch for CVE-2017-5753, avoiding conflicts in the next merge window.
2018-01-16 16:39:30 +01:00
Paolo Bonzini 505c9e94d8 KVM: x86: prefer "depends on" to "select" for SEV
Avoid reverse dependencies.  Instead, SEV will only be enabled if
the PSP driver is available.

Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
2018-01-16 16:38:32 +01:00
Paolo Bonzini 65e38583c3 Merge branch 'sev-v9-p2' of https://github.com/codomania/kvm
This part of Secure Encrypted Virtualization (SEV) patch series focuses on KVM
changes required to create and manage SEV guests.

SEV is an extension to the AMD-V architecture which supports running encrypted
virtual machine (VMs) under the control of a hypervisor. Encrypted VMs have their
pages (code and data) secured such that only the guest itself has access to
unencrypted version. Each encrypted VM is associated with a unique encryption key;
if its data is accessed to a different entity using a different key the encrypted
guest's data will be incorrectly decrypted, leading to unintelligible data.
This security model ensures that hypervisor will no longer able to inspect or
alter any guest code or data.

The key management of this feature is handled by a separate processor known as
the AMD Secure Processor (AMD-SP) which is present on AMD SOCs. The SEV Key
Management Specification (see below) provides a set of commands which can be
used by hypervisor to load virtual machine keys through the AMD-SP driver.

The patch series adds a new ioctl in KVM driver (KVM_MEMORY_ENCRYPT_OP). The
ioctl will be used by qemu to issue SEV guest-specific commands defined in Key
Management Specification.

The following links provide additional details:

AMD Memory Encryption white paper:
http://amd-dev.wpengine.netdna-cdn.com/wordpress/media/2013/12/AMD_Memory_Encryption_Whitepaper_v7-Public.pdf

AMD64 Architecture Programmer's Manual:
    http://support.amd.com/TechDocs/24593.pdf
    SME is section 7.10
    SEV is section 15.34

SEV Key Management:
http://support.amd.com/TechDocs/55766_SEV-KM API_Specification.pdf

KVM Forum Presentation:
http://www.linux-kvm.org/images/7/74/02x08A-Thomas_Lendacky-AMDs_Virtualizatoin_Memory_Encryption_Technology.pdf

SEV Guest BIOS support:
  SEV support has been add to EDKII/OVMF BIOS
  https://github.com/tianocore/edk2

Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-01-16 16:35:32 +01:00
Paolo Bonzini 476b7adaa3 KVM: x86: avoid unnecessary XSETBV on guest entry
xsetbv can be expensive when running on nested virtualization, try to
avoid it.

Reviewed-by: Jim Mattson <jmattson@google.com>
Reviewed-by: Wanpeng Li <wanpeng.li@hotmail.com>
Reviewed-by: Quan Xu <quan.xu0@gmail.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
2018-01-16 16:34:13 +01:00
Wanpeng Li efdab99281 KVM: x86: fix escape of guest dr6 to the host
syzkaller reported:

   WARNING: CPU: 0 PID: 12927 at arch/x86/kernel/traps.c:780 do_debug+0x222/0x250
   CPU: 0 PID: 12927 Comm: syz-executor Tainted: G           OE    4.15.0-rc2+ #16
   RIP: 0010:do_debug+0x222/0x250
   Call Trace:
    <#DB>
    debug+0x3e/0x70
   RIP: 0010:copy_user_enhanced_fast_string+0x10/0x20
    </#DB>
    _copy_from_user+0x5b/0x90
    SyS_timer_create+0x33/0x80
    entry_SYSCALL_64_fastpath+0x23/0x9a

The testcase sets a watchpoint (with perf_event_open) on a buffer that is
passed to timer_create() as the struct sigevent argument.  In timer_create(),
copy_from_user()'s rep movsb triggers the BP.  The testcase also sets
the debug registers for the guest.

However, KVM only restores host debug registers when the host has active
watchpoints, which triggers a race condition when running the testcase with
multiple threads.  The guest's DR6.BS bit can escape to the host before
another thread invokes timer_create(), and do_debug() complains.

The fix is to respect do_debug()'s dr6 invariant when leaving KVM.

Reported-by: Dmitry Vyukov <dvyukov@google.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Wanpeng Li <wanpeng.li@hotmail.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
2018-01-16 16:34:13 +01:00
Wanpeng Li f38a7b7526 KVM: X86: support paravirtualized help for TLB shootdowns
When running on a virtual machine, IPIs are expensive when the target
CPU is sleeping.  Thus, it is nice to be able to avoid them for TLB
shootdowns.  KVM can just do the flush via INVVPID on the guest's behalf
the next time the CPU is scheduled.

Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Wanpeng Li <wanpeng.li@hotmail.com>
[Use "&" to test the bit instead of "==". - Paolo]
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
2018-01-16 16:34:13 +01:00
Wanpeng Li c2ba05ccfd KVM: X86: introduce invalidate_gpa argument to tlb flush
Introduce a new bool invalidate_gpa argument to kvm_x86_ops->tlb_flush,
it will be used by later patches to just flush guest tlb.

For VMX, this will use INVVPID instead of INVEPT, which will invalidate
combined mappings while keeping guest-physical mappings.

Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Wanpeng Li <wanpeng.li@hotmail.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
2018-01-16 16:34:13 +01:00
Wanpeng Li fa55eedd63 KVM: X86: Add KVM_VCPU_PREEMPTED
The next patch will add another bit to the preempted field in
kvm_steal_time.  Define a constant for bit 0 (the only one that is
currently used).

Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Wanpeng Li <wanpeng.li@hotmail.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
2018-01-16 16:34:13 +01:00
Paolo Bonzini 51776043af kvm: x86: fix KVM_XEN_HVM_CONFIG ioctl
This ioctl is obsolete (it was used by Xenner as far as I know) but
still let's not break it gratuitously...  Its handler is copying
directly into struct kvm.  Go through a bounce buffer instead, with
the added benefit that we can actually do something useful with the
flags argument---the previous code was exiting with -EINVAL but still
doing the copy.

This technically is a userspace ABI breakage, but since no one should be
using the ioctl, it's a good occasion to see if someone actually
complains.

Cc: kernel-hardening@lists.openwall.com
Cc: Kees Cook <keescook@chromium.org>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Kees Cook <keescook@chromium.org>
2018-01-15 12:08:07 -08:00
Linus Torvalds 40548c6b6c Merge branch 'x86-pti-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 pti updates from Thomas Gleixner:
 "This contains:

   - a PTI bugfix to avoid setting reserved CR3 bits when PCID is
     disabled. This seems to cause issues on a virtual machine at least
     and is incorrect according to the AMD manual.

   - a PTI bugfix which disables the perf BTS facility if PTI is
     enabled. The BTS AUX buffer is not globally visible and causes the
     CPU to fault when the mapping disappears on switching CR3 to user
     space. A full fix which restores BTS on PTI is non trivial and will
     be worked on.

   - PTI bugfixes for EFI and trusted boot which make sure that the user
     space visible page table entries have the NX bit cleared

   - removal of dead code in the PTI pagetable setup functions

   - add PTI documentation

   - add a selftest for vsyscall to verify that the kernel actually
     implements what it advertises.

   - a sysfs interface to expose vulnerability and mitigation
     information so there is a coherent way for users to retrieve the
     status.

   - the initial spectre_v2 mitigations, aka retpoline:

      + The necessary ASM thunk and compiler support

      + The ASM variants of retpoline and the conversion of affected ASM
        code

      + Make LFENCE serializing on AMD so it can be used as speculation
        trap

      + The RSB fill after vmexit

   - initial objtool support for retpoline

  As I said in the status mail this is the most of the set of patches
  which should go into 4.15 except two straight forward patches still on
  hold:

   - the retpoline add on of LFENCE which waits for ACKs

   - the RSB fill after context switch

  Both should be ready to go early next week and with that we'll have
  covered the major holes of spectre_v2 and go back to normality"

* 'x86-pti-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (28 commits)
  x86,perf: Disable intel_bts when PTI
  security/Kconfig: Correct the Documentation reference for PTI
  x86/pti: Fix !PCID and sanitize defines
  selftests/x86: Add test_vsyscall
  x86/retpoline: Fill return stack buffer on vmexit
  x86/retpoline/irq32: Convert assembler indirect jumps
  x86/retpoline/checksum32: Convert assembler indirect jumps
  x86/retpoline/xen: Convert Xen hypercall indirect jumps
  x86/retpoline/hyperv: Convert assembler indirect jumps
  x86/retpoline/ftrace: Convert ftrace assembler indirect jumps
  x86/retpoline/entry: Convert entry assembler indirect jumps
  x86/retpoline/crypto: Convert crypto assembler indirect jumps
  x86/spectre: Add boot time option to select Spectre v2 mitigation
  x86/retpoline: Add initial retpoline support
  objtool: Allow alternatives to be ignored
  objtool: Detect jumps to retpoline thunks
  x86/pti: Make unpoison of pgd for trusted boot work for real
  x86/alternatives: Fix optimize_nops() checking
  sysfs/cpu: Fix typos in vulnerability documentation
  x86/cpu/AMD: Use LFENCE_RDTSC in preference to MFENCE_RDTSC
  ...
2018-01-14 09:51:25 -08:00
David Woodhouse 117cc7a908 x86/retpoline: Fill return stack buffer on vmexit
In accordance with the Intel and AMD documentation, we need to overwrite
all entries in the RSB on exiting a guest, to prevent malicious branch
target predictions from affecting the host kernel. This is needed both
for retpoline and for IBRS.

[ak: numbers again for the RSB stuffing labels]

Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: gnomes@lxorguk.ukuu.org.uk
Cc: Rik van Riel <riel@redhat.com>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: thomas.lendacky@amd.com
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Jiri Kosina <jikos@kernel.org>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Kees Cook <keescook@google.com>
Cc: Tim Chen <tim.c.chen@linux.intel.com>
Cc: Greg Kroah-Hartman <gregkh@linux-foundation.org>
Cc: Paul Turner <pjt@google.com>
Link: https://lkml.kernel.org/r/1515755487-8524-1-git-send-email-dwmw@amazon.co.uk
2018-01-12 12:33:37 +01:00
Paolo Bonzini 2aad9b3e07 Merge branch 'kvm-insert-lfence' into kvm-master
Topic branch for CVE-2017-5753, avoiding conflicts in the next merge window.
2018-01-11 18:20:48 +01:00
Andrew Honig 75f139aaf8 KVM: x86: Add memory barrier on vmcs field lookup
This adds a memory barrier when performing a lookup into
the vmcs_field_to_offset_table.  This is related to
CVE-2017-5753.

Signed-off-by: Andrew Honig <ahonig@google.com>
Reviewed-by: Jim Mattson <jmattson@google.com>
Cc: stable@vger.kernel.org
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-01-11 18:20:31 +01:00
Paolo Bonzini bd89525a82 KVM: x86: emulate #UD while in guest mode
This reverts commits ae1f576707
and ac9b305caa.

If the hardware doesn't support MOVBE, but L0 sets CPUID.01H:ECX.MOVBE
in L1's emulated CPUID information, then L1 is likely to pass that
CPUID bit through to L2. L2 will expect MOVBE to work, but if L1
doesn't intercept #UD, then any MOVBE instruction executed in L2 will
raise #UD, and the exception will be delivered in L2.

Commit ac9b305caa is a better and more
complete version of ae1f576707 ("KVM: nVMX: Do not emulate #UD while
in guest mode"); however, neither considers the above case.

Suggested-by: Jim Mattson <jmattson@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-01-11 16:55:24 +01:00
Arnd Bergmann ab271bd4df x86: kvm: propagate register_shrinker return code
Patch "mm,vmscan: mark register_shrinker() as __must_check" is
queued for 4.16 in linux-mm and adds a warning about the unchecked
call to register_shrinker:

arch/x86/kvm/mmu.c:5485:2: warning: ignoring return value of 'register_shrinker', declared with attribute warn_unused_result [-Wunused-result]

This changes the kvm_mmu_module_init() function to fail itself
when the call to register_shrinker fails.

Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-01-11 16:53:13 +01:00
Haozhong Zhang 2a266f2355 KVM MMU: check pending exception before injecting APF
For example, when two APF's for page ready happen after one exit and
the first one becomes pending, the second one will result in #DF.
Instead, just handle the second page fault synchronously.

Reported-by: Ross Zwisler <zwisler@gmail.com>
Message-ID: <CAOxpaSUBf8QoOZQ1p4KfUp0jq76OKfGY4Uxs-Gg8ngReD99xww@mail.gmail.com>
Reported-by: Alec Blayne <ab@tevsa.net>
Signed-off-by: Haozhong Zhang <haozhong.zhang@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-01-11 14:05:19 +01:00
Linus Torvalds 5b6c02f383 KVM fixes for v4.15-rc7
s390:
 * Two fixes for potential bitmap overruns in the cmma migration code
 
 x86:
 * Clear guest provided GPRs to defeat the Project Zero PoC for CVE
   2017-5715
 -----BEGIN PGP SIGNATURE-----
 
 iQEcBAABCAAGBQJaUTJ4AAoJEED/6hsPKofohk0IAJAFlMG66u5MxC0kSM61U4Zf
 1vkzRwAkBbcN82LpGQKbqabVyTq0F3aLipyOn6WO5SN0K5m+OI2OV/aAroPyX8bI
 F7nWIqTXLhJ9X6KXINFvyavHMprvWl8PA72tR/B/7GhhfShrZ2wGgqhl0vv/kCUK
 /8q+5e693yJqw8ceemin9a6kPJrLpmjeH+Oy24KIlGbvJWV4UrIE86pRHnAnBtg8
 L7Vbxn5+ezKmakvBh+zF8NKcD1zHDcmQZHoYFPsQT0vX5GPoYqT2bcO6gsh1Grmp
 8ti6KkrnP+j2A/OEna4LBWfwKI/1xHXneB22BYrAxvNjHt+R4JrjaPpx82SEB4Y=
 =URMR
 -----END PGP SIGNATURE-----

Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm

Pull KVM fixes from Radim Krčmář:
 "s390:
   - Two fixes for potential bitmap overruns in the cmma migration code

  x86:
   - Clear guest provided GPRs to defeat the Project Zero PoC for CVE
     2017-5715"

* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm:
  kvm: vmx: Scrub hardware GPRs at VM-exit
  KVM: s390: prevent buffer overrun on memory hotplug during migration
  KVM: s390: fix cmma migration for multiple memory slots
2018-01-06 17:05:05 -08:00
Jim Mattson 0cb5b30698 kvm: vmx: Scrub hardware GPRs at VM-exit
Guest GPR values are live in the hardware GPRs at VM-exit.  Do not
leave any guest values in hardware GPRs after the guest GPR values are
saved to the vcpu_vmx structure.

This is a partial mitigation for CVE 2017-5715 and CVE 2017-5753.
Specifically, it defeats the Project Zero PoC for CVE 2017-5715.

Suggested-by: Eric Northup <digitaleric@google.com>
Signed-off-by: Jim Mattson <jmattson@google.com>
Reviewed-by: Eric Northup <digitaleric@google.com>
Reviewed-by: Benjamin Serebrin <serebrin@google.com>
Reviewed-by: Andrew Honig <ahonig@google.com>
[Paolo: Add AMD bits, Signed-off-by: Tom Lendacky <thomas.lendacky@amd.com>]
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-01-05 16:48:40 +01:00
Linus Torvalds 409232a450 ARM fixes:
- A bug in handling of SPE state for non-vhe systems
 - A fix for a crash on system shutdown
 - Three timer fixes, introduced by the timer optimizations for v4.15
 
 x86 fixes:
 - fix for a WARN that was introduced in 4.15
 - fix for SMM when guest uses PCID
 - fixes for several bugs found by syzkaller
 
 ... and a dozen papercut fixes for the kvm_stat tool.
 -----BEGIN PGP SIGNATURE-----
 Version: GnuPG v2.0.22 (GNU/Linux)
 
 iQEcBAABAgAGBQJaO6N9AAoJEL/70l94x66DC1wH/Rf+u0Cj6ZQil6LK6Nf8bfPd
 3TqrwrxUDeXwi8GzsvK14izBr1mDzidSHIO0Q4XINFRSRdaf43h3R2im/SJqvNhP
 xktCmJI2CxN96oaC7kIExgwf3YKhFdLIADfbT8oR9p3xZG/+c97dkr3b4XtmVCDb
 ZXdUEOcKnoW4zwpfJN30FLlq4OwYvuYVz02AEfPivZRDfhhus/TYSnuSdxH8CLNf
 75ymuKyXoo/RELbimwbMk8Cm9+ey7PjlUGOgbnbXIFtmgznXhLzAOeES2B+46J5b
 sMBPlmiJrn6N//lM18CC5yOBzBLGsYOoXggtw4aU/5nM4GVcFebWedpcoD4D8Jw=
 =Bt8w
 -----END PGP SIGNATURE-----

Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm

Pull KVM fixes from Paolo Bonzini:
 "ARM fixes:
   - A bug in handling of SPE state for non-vhe systems
   - A fix for a crash on system shutdown
   - Three timer fixes, introduced by the timer optimizations for v4.15

  x86 fixes:
   - fix for a WARN that was introduced in 4.15
   - fix for SMM when guest uses PCID
   - fixes for several bugs found by syzkaller

  ... and a dozen papercut fixes for the kvm_stat tool"

* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (22 commits)
  tools/kvm_stat: sort '-f help' output
  kvm: x86: fix RSM when PCID is non-zero
  KVM: Fix stack-out-of-bounds read in write_mmio
  KVM: arm/arm64: Fix timer enable flow
  KVM: arm/arm64: Properly handle arch-timer IRQs after vtimer_save_state
  KVM: arm/arm64: timer: Don't set irq as forwarded if no usable GIC
  KVM: arm/arm64: Fix HYP unmapping going off limits
  arm64: kvm: Prevent restoring stale PMSCR_EL1 for vcpu
  KVM/x86: Check input paging mode when cs.l is set
  tools/kvm_stat: add line for totals
  tools/kvm_stat: stop ignoring unhandled arguments
  tools/kvm_stat: suppress usage information on command line errors
  tools/kvm_stat: handle invalid regular expressions
  tools/kvm_stat: add hint on '-f help' to man page
  tools/kvm_stat: fix child trace events accounting
  tools/kvm_stat: fix extra handling of 'help' with fields filter
  tools/kvm_stat: fix missing field update after filter change
  tools/kvm_stat: fix drilldown in events-by-guests mode
  tools/kvm_stat: fix command line option '-g'
  kvm: x86: fix WARN due to uninitialized guest FPU state
  ...
2017-12-21 10:44:13 -08:00
Paolo Bonzini fae1a3e775 kvm: x86: fix RSM when PCID is non-zero
rsm_load_state_64() and rsm_enter_protected_mode() load CR3, then
CR4 & ~PCIDE, then CR0, then CR4.

However, setting CR4.PCIDE fails if CR3[11:0] != 0.  It's probably easier
in the long run to replace rsm_enter_protected_mode() with an emulator
callback that sets all the special registers (like KVM_SET_SREGS would
do).  For now, set the PCID field of CR3 only after CR4.PCIDE is 1.

Reported-by: Laszlo Ersek <lersek@redhat.com>
Tested-by: Laszlo Ersek <lersek@redhat.com>
Fixes: 660a5d517a
Cc: stable@vger.kernel.org
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2017-12-21 12:59:54 +01:00
Linus Torvalds 64a48099b3 Merge branch 'WIP.x86-pti.entry-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 syscall entry code changes for PTI from Ingo Molnar:
 "The main changes here are Andy Lutomirski's changes to switch the
  x86-64 entry code to use the 'per CPU entry trampoline stack'. This,
  besides helping fix KASLR leaks (the pending Page Table Isolation
  (PTI) work), also robustifies the x86 entry code"

* 'WIP.x86-pti.entry-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (26 commits)
  x86/cpufeatures: Make CPU bugs sticky
  x86/paravirt: Provide a way to check for hypervisors
  x86/paravirt: Dont patch flush_tlb_single
  x86/entry/64: Make cpu_entry_area.tss read-only
  x86/entry: Clean up the SYSENTER_stack code
  x86/entry/64: Remove the SYSENTER stack canary
  x86/entry/64: Move the IST stacks into struct cpu_entry_area
  x86/entry/64: Create a per-CPU SYSCALL entry trampoline
  x86/entry/64: Return to userspace from the trampoline stack
  x86/entry/64: Use a per-CPU trampoline stack for IDT entries
  x86/espfix/64: Stop assuming that pt_regs is on the entry stack
  x86/entry/64: Separate cpu_current_top_of_stack from TSS.sp0
  x86/entry: Remap the TSS into the CPU entry area
  x86/entry: Move SYSENTER_stack to the beginning of struct tss_struct
  x86/dumpstack: Handle stack overflow on all stacks
  x86/entry: Fix assumptions that the HW TSS is at the beginning of cpu_tss
  x86/kasan/64: Teach KASAN about the cpu_entry_area
  x86/mm/fixmap: Generalize the GDT fixmap mechanism, introduce struct cpu_entry_area
  x86/entry/gdt: Put per-CPU GDT remaps in ascending order
  x86/dumpstack: Add get_stack_info() support for the SYSENTER stack
  ...
2017-12-18 08:59:15 -08:00
Wanpeng Li e39d200fa5 KVM: Fix stack-out-of-bounds read in write_mmio
Reported by syzkaller:

  BUG: KASAN: stack-out-of-bounds in write_mmio+0x11e/0x270 [kvm]
  Read of size 8 at addr ffff8803259df7f8 by task syz-executor/32298

  CPU: 6 PID: 32298 Comm: syz-executor Tainted: G           OE    4.15.0-rc2+ #18
  Hardware name: LENOVO ThinkCentre M8500t-N000/SHARKBAY, BIOS FBKTC1AUS 02/16/2016
  Call Trace:
   dump_stack+0xab/0xe1
   print_address_description+0x6b/0x290
   kasan_report+0x28a/0x370
   write_mmio+0x11e/0x270 [kvm]
   emulator_read_write_onepage+0x311/0x600 [kvm]
   emulator_read_write+0xef/0x240 [kvm]
   emulator_fix_hypercall+0x105/0x150 [kvm]
   em_hypercall+0x2b/0x80 [kvm]
   x86_emulate_insn+0x2b1/0x1640 [kvm]
   x86_emulate_instruction+0x39a/0xb90 [kvm]
   handle_exception+0x1b4/0x4d0 [kvm_intel]
   vcpu_enter_guest+0x15a0/0x2640 [kvm]
   kvm_arch_vcpu_ioctl_run+0x549/0x7d0 [kvm]
   kvm_vcpu_ioctl+0x479/0x880 [kvm]
   do_vfs_ioctl+0x142/0x9a0
   SyS_ioctl+0x74/0x80
   entry_SYSCALL_64_fastpath+0x23/0x9a

The path of patched vmmcall will patch 3 bytes opcode 0F 01 C1(vmcall)
to the guest memory, however, write_mmio tracepoint always prints 8 bytes
through *(u64 *)val since kvm splits the mmio access into 8 bytes. This
leaks 5 bytes from the kernel stack (CVE-2017-17741).  This patch fixes
it by just accessing the bytes which we operate on.

Before patch:

syz-executor-5567  [007] .... 51370.561696: kvm_mmio: mmio write len 3 gpa 0x10 val 0x1ffff10077c1010f

After patch:

syz-executor-13416 [002] .... 51302.299573: kvm_mmio: mmio write len 3 gpa 0x10 val 0xc1010f

Reported-by: Dmitry Vyukov <dvyukov@google.com>
Reviewed-by: Darren Kenny <darren.kenny@oracle.com>
Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
Tested-by: Marc Zyngier <marc.zyngier@arm.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Cc: Marc Zyngier <marc.zyngier@arm.com>
Cc: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Wanpeng Li <wanpeng.li@hotmail.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2017-12-18 12:57:01 +01:00
Andy Lutomirski 72f5e08dbb x86/entry: Remap the TSS into the CPU entry area
This has a secondary purpose: it puts the entry stack into a region
with a well-controlled layout.  A subsequent patch will take
advantage of this to streamline the SYSCALL entry code to be able to
find it more easily.

Signed-off-by: Andy Lutomirski <luto@kernel.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Borislav Petkov <bpetkov@suse.de>
Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: David Laight <David.Laight@aculab.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: Eduardo Valentin <eduval@amazon.com>
Cc: Greg KH <gregkh@linuxfoundation.org>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: aliguori@amazon.com
Cc: daniel.gruss@iaik.tugraz.at
Cc: hughd@google.com
Cc: keescook@google.com
Link: https://lkml.kernel.org/r/20171204150605.962042855@linutronix.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-12-17 13:59:56 +01:00
Andy Lutomirski 7fb983b4dd x86/entry: Fix assumptions that the HW TSS is at the beginning of cpu_tss
A future patch will move SYSENTER_stack to the beginning of cpu_tss
to help detect overflow.  Before this can happen, fix several code
paths that hardcode assumptions about the old layout.

Signed-off-by: Andy Lutomirski <luto@kernel.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Dave Hansen <dave.hansen@intel.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Borislav Petkov <bpetkov@suse.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: David Laight <David.Laight@aculab.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: Eduardo Valentin <eduval@amazon.com>
Cc: Greg KH <gregkh@linuxfoundation.org>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: aliguori@amazon.com
Cc: daniel.gruss@iaik.tugraz.at
Cc: hughd@google.com
Cc: keescook@google.com
Link: https://lkml.kernel.org/r/20171204150605.722425540@linutronix.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-12-17 13:59:55 +01:00
Lan Tianyu f298103359 KVM/x86: Check input paging mode when cs.l is set
Reported by syzkaller:
    WARNING: CPU: 0 PID: 27962 at arch/x86/kvm/emulate.c:5631 x86_emulate_insn+0x557/0x15f0 [kvm]
    Modules linked in: kvm_intel kvm [last unloaded: kvm]
    CPU: 0 PID: 27962 Comm: syz-executor Tainted: G    B   W        4.15.0-rc2-next-20171208+ #32
    Hardware name: Intel Corporation S1200SP/S1200SP, BIOS S1200SP.86B.01.03.0006.040720161253 04/07/2016
    RIP: 0010:x86_emulate_insn+0x557/0x15f0 [kvm]
    RSP: 0018:ffff8807234476d0 EFLAGS: 00010282
    RAX: 0000000000000000 RBX: ffff88072d0237a0 RCX: ffffffffa0065c4d
    RDX: 1ffff100e5a046f9 RSI: 0000000000000003 RDI: ffff88072d0237c8
    RBP: ffff880723447728 R08: ffff88072d020000 R09: ffffffffa008d240
    R10: 0000000000000002 R11: ffffed00e7d87db3 R12: ffff88072d0237c8
    R13: ffff88072d023870 R14: ffff88072d0238c2 R15: ffffffffa008d080
    FS:  00007f8a68666700(0000) GS:ffff880802200000(0000) knlGS:0000000000000000
    CS:  0010 DS: 0000 ES: 0000 CR0: 0000000080050033
    CR2: 000000002009506c CR3: 000000071fec4005 CR4: 00000000003626f0
    Call Trace:
     x86_emulate_instruction+0x3bc/0xb70 [kvm]
     ? reexecute_instruction.part.162+0x130/0x130 [kvm]
     vmx_handle_exit+0x46d/0x14f0 [kvm_intel]
     ? trace_event_raw_event_kvm_entry+0xe7/0x150 [kvm]
     ? handle_vmfunc+0x2f0/0x2f0 [kvm_intel]
     ? wait_lapic_expire+0x25/0x270 [kvm]
     vcpu_enter_guest+0x720/0x1ef0 [kvm]
     ...

When CS.L is set, vcpu should run in the 64 bit paging mode.
Current kvm set_sregs function doesn't have such check when
userspace inputs sreg values. This will lead unexpected behavior.
This patch is to add checks for CS.L, EFER.LME, EFER.LMA and
CR4.PAE when get SREG inputs from userspace in order to avoid
unexpected behavior.

Suggested-by: Paolo Bonzini <pbonzini@redhat.com>
Reported-by: Dmitry Vyukov <dvyukov@google.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Jim Mattson <jmattson@google.com>
Signed-off-by: Tianyu Lan <tianyu.lan@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2017-12-15 10:01:46 +01:00
Christoffer Dall 9b062471e5 KVM: Move vcpu_load to arch-specific kvm_arch_vcpu_ioctl
Move the calls to vcpu_load() and vcpu_put() in to the architecture
specific implementations of kvm_arch_vcpu_ioctl() which dispatches
further architecture-specific ioctls on to other functions.

Some architectures support asynchronous vcpu ioctls which cannot call
vcpu_load() or take the vcpu->mutex, because that would prevent
concurrent execution with a running VCPU, which is the intended purpose
of these ioctls, for example because they inject interrupts.

We repeat the separate checks for these specifics in the architecture
code for MIPS, S390 and PPC, and avoid taking the vcpu->mutex and
calling vcpu_load for these ioctls.

Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2017-12-14 09:26:58 +01:00
Christoffer Dall 6a96bc7fa0 KVM: Move vcpu_load to arch-specific kvm_arch_vcpu_ioctl_set_fpu
Move vcpu_load() and vcpu_put() into the architecture specific
implementations of kvm_arch_vcpu_ioctl_set_fpu().

Reviewed-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
Reviewed-by: Cornelia Huck <cohuck@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2017-12-14 09:26:57 +01:00
Christoffer Dall 1393123e1e KVM: Move vcpu_load to arch-specific kvm_arch_vcpu_ioctl_get_fpu
Move vcpu_load() and vcpu_put() into the architecture specific
implementations of kvm_arch_vcpu_ioctl_get_fpu().

Reviewed-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
Reviewed-by: Cornelia Huck <cohuck@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2017-12-14 09:26:56 +01:00
Christoffer Dall 66b5656222 KVM: Move vcpu_load to arch-specific kvm_arch_vcpu_ioctl_set_guest_debug
Move vcpu_load() and vcpu_put() into the architecture specific
implementations of kvm_arch_vcpu_ioctl_set_guest_debug().

Reviewed-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
Reviewed-by: Cornelia Huck <cohuck@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2017-12-14 09:26:56 +01:00
Christoffer Dall 1da5b61dac KVM: Move vcpu_load to arch-specific kvm_arch_vcpu_ioctl_translate
Move vcpu_load() and vcpu_put() into the architecture specific
implementations of kvm_arch_vcpu_ioctl_translate().

Reviewed-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
Reviewed-by: Cornelia Huck <cohuck@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2017-12-14 09:26:55 +01:00
Christoffer Dall e83dff5edf KVM: Move vcpu_load to arch-specific kvm_arch_vcpu_ioctl_set_mpstate
Move vcpu_load() and vcpu_put() into the architecture specific
implementations of kvm_arch_vcpu_ioctl_set_mpstate().

Reviewed-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
Reviewed-by: Cornelia Huck <cohuck@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2017-12-14 09:26:54 +01:00
Christoffer Dall fd2325612c KVM: Move vcpu_load to arch-specific kvm_arch_vcpu_ioctl_get_mpstate
Move vcpu_load() and vcpu_put() into the architecture specific
implementations of kvm_arch_vcpu_ioctl_get_mpstate().

Reviewed-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
Reviewed-by: Cornelia Huck <cohuck@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2017-12-14 09:26:54 +01:00
Christoffer Dall b4ef9d4e8c KVM: Move vcpu_load to arch-specific kvm_arch_vcpu_ioctl_set_sregs
Move vcpu_load() and vcpu_put() into the architecture specific
implementations of kvm_arch_vcpu_ioctl_set_sregs().

Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
Reviewed-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Cornelia Huck <cohuck@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2017-12-14 09:26:53 +01:00
Christoffer Dall bcdec41cef KVM: Move vcpu_load to arch-specific kvm_arch_vcpu_ioctl_get_sregs
Move vcpu_load() and vcpu_put() into the architecture specific
implementations of kvm_arch_vcpu_ioctl_get_sregs().

Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
Reviewed-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Cornelia Huck <cohuck@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2017-12-14 09:26:52 +01:00
Christoffer Dall 875656fe0c KVM: Move vcpu_load to arch-specific kvm_arch_vcpu_ioctl_set_regs
Move vcpu_load() and vcpu_put() into the architecture specific
implementations of kvm_arch_vcpu_ioctl_set_regs().

Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
Reviewed-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Cornelia Huck <cohuck@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2017-12-14 09:26:52 +01:00
Christoffer Dall 1fc9b76b3d KVM: Move vcpu_load to arch-specific kvm_arch_vcpu_ioctl_get_regs
Move vcpu_load() and vcpu_put() into the architecture specific
implementations of kvm_arch_vcpu_ioctl_get_regs().

Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
Reviewed-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Cornelia Huck <cohuck@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2017-12-14 09:26:51 +01:00
Christoffer Dall accb757d79 KVM: Move vcpu_load to arch-specific kvm_arch_vcpu_ioctl_run
Move vcpu_load() and vcpu_put() into the architecture specific
implementations of kvm_arch_vcpu_ioctl_run().

Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
Reviewed-by: Christian Borntraeger <borntraeger@de.ibm.com> # s390 parts
Reviewed-by: Cornelia Huck <cohuck@redhat.com>
[Rebased. - Paolo]
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2017-12-14 09:26:50 +01:00
Christoffer Dall ec7660ccdd KVM: Take vcpu->mutex outside vcpu_load
As we're about to call vcpu_load() from architecture-specific
implementations of the KVM vcpu ioctls, but yet we access data
structures protected by the vcpu->mutex in the generic code, factor
this logic out from vcpu_load().

x86 is the only architecture which calls vcpu_load() outside of the main
vcpu ioctl function, and these calls will no longer take the vcpu mutex
following this patch.  However, with the exception of
kvm_arch_vcpu_postcreate (see below), the callers are either in the
creation or destruction path of the VCPU, which means there cannot be
any concurrent access to the data structure, because the file descriptor
is not yet accessible, or is already gone.

kvm_arch_vcpu_postcreate makes the newly created vcpu potentially
accessible by other in-kernel threads through the kvm->vcpus array, and
we therefore take the vcpu mutex in this case directly.

Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
Reviewed-by: Cornelia Huck <cohuck@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2017-12-14 09:26:49 +01:00
Quan Xu 8eb73e2d41 KVM: VMX: drop I/O permission bitmaps
Since KVM removes the only I/O port 0x80 bypass on Intel hosts,
clear CPU_BASED_USE_IO_BITMAPS and set CPU_BASED_UNCOND_IO_EXITING
bit. Then these I/O permission bitmaps are not used at all, so
drop I/O permission bitmaps.

Signed-off-by: Jim Mattson <jmattson@google.com>
Signed-off-by: Radim KrÄmář <rkrcmar@redhat.com>
Signed-off-by: Quan Xu <quan.xu0@gmail.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2017-12-14 09:26:48 +01:00
Wanpeng Li 9c48d517ce KVM: X86: Reduce the overhead when lapic_timer_advance is disabled
When I run ebizzy in a 32 vCPUs guest on a 32 pCPUs Xeon box, I can observe
~8000 kvm_wait_lapic_expire CurAvg/s through kvm_stat tool even if the advance
tscdeadline hrtimer expiration is disabled. Each call to wait_lapic_expire()
will consume ~70 cycles when a timer fires since apic_timer_expire() will
set expired_tscdeadline and then wait_lapic_expire() will do some caculation
before bailing out. So total ~175us per second is lost on this 3.2Ghz machine.
This patch reduces the overhead by skipping the function wait_lapic_expire()
when lapic_timer_advance is disabled.

Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Signed-off-by: Wanpeng Li <wanpeng.li@hotmail.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2017-12-14 09:26:48 +01:00
Wanpeng Li 74c55931c7 KVM: VMX: Cache IA32_DEBUGCTL in memory
MSR_IA32_DEBUGCTLMSR is zeroed on VMEXIT, so it is saved/restored each
time during world switch.  This patch caches the host IA32_DEBUGCTL MSR
and saves/restores the host IA32_DEBUGCTL msr when guest/host switches
to avoid to save/restore each time during world switch.  This saves
about 100 clock cycles per vmexit.

Suggested-by: Jim Mattson <jmattson@google.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Cc: Jim Mattson <jmattson@google.com>
Signed-off-by: Wanpeng Li <wanpeng.li@hotmail.com>
Reviewed-by: Jim Mattson <jmattson@google.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
2017-12-14 09:26:47 +01:00
Mark Kanda 276c796cfe KVM: nVMX: Add a WARN for freeing a loaded VMCS02
When attempting to free a loaded VMCS02, add a WARN and avoid
freeing it (to avoid use-after-free situations).

Suggested-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Mark Kanda <mark.kanda@oracle.com>
Reviewed-by: Ameya More <ameya.more@oracle.com>
Reviewed-by: Krish Sadhukhan <krish.sadhukhan@oracle.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
2017-12-14 09:26:46 +01:00
Jim Mattson 00647b4494 KVM: nVMX: Eliminate vmcs02 pool
The potential performance advantages of a vmcs02 pool have never been
realized. To simplify the code, eliminate the pool. Instead, a single
vmcs02 is allocated per VCPU when the VCPU enters VMX operation.

Signed-off-by: Jim Mattson <jmattson@google.com>
Signed-off-by: Mark Kanda <mark.kanda@oracle.com>
Reviewed-by: Ameya More <ameya.more@oracle.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
2017-12-14 09:26:46 +01:00
Yang Zhong 80fef315a7 KVM: Expose new cpu features to guest
Intel IceLake cpu has added new cpu features,AVX512_VBMI2/GFNI/
VAES/VPCLMULQDQ/AVX512_VNNI/AVX512_BITALG. Those new cpu features
need expose to guest VM.

The bit definition:
CPUID.(EAX=7,ECX=0):ECX[bit 06] AVX512_VBMI2
CPUID.(EAX=7,ECX=0):ECX[bit 08] GFNI
CPUID.(EAX=7,ECX=0):ECX[bit 09] VAES
CPUID.(EAX=7,ECX=0):ECX[bit 10] VPCLMULQDQ
CPUID.(EAX=7,ECX=0):ECX[bit 11] AVX512_VNNI
CPUID.(EAX=7,ECX=0):ECX[bit 12] AVX512_BITALG

The release document ref below link:
https://software.intel.com/sites/default/files/managed/c5/15/\
architecture-instruction-set-extensions-programming-reference.pdf

The kernel dependency commit in kvm.git:
(c128dbfa0f)

Signed-off-by: Yang Zhong <yang.zhong@intel.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
2017-12-14 09:26:45 +01:00
Liran Alon 52797bf9a8 KVM: x86: Add emulation of MSR_SMI_COUNT
This MSR returns the number of #SMIs that occurred on CPU since
boot.

It was seen to be used frequently by ESXi guest.

Patch adds a new vcpu-arch specific var called smi_count to
save the number of #SMIs which occurred on CPU since boot.
It is exposed as a read-only MSR to guest (causing #GP
on wrmsr) in RDMSR/WRMSR emulation code.
MSR_SMI_COUNT is also added to emulated_msrs[] to make sure
user-space can save/restore it for migration purposes.

Signed-off-by: Liran Alon <liran.alon@oracle.com>
Suggested-by: Paolo Bonzini <pbonzini@redhat.com>
Reviewed-by: Nikita Leshenko <nikita.leshchenko@oracle.com>
Reviewed-by: Bhavesh Davda <bhavesh.davda@oracle.com>
Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Reviewed-by: Paolo Bonzini <pbonzini@redhat.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
2017-12-14 09:26:44 +01:00
Radim Krčmář 431f5d4443 KVM: x86: simplify kvm_mwait_in_guest()
If Intel/AMD implements MWAIT, we expect that it works well and only
reject known bugs;  no reason to do it the other way around for minor
vendors.  (Not that they are relevant ATM.)

This allows further simplification of kvm_mwait_in_guest().
And use boot_cpu_has() instead of "cpu_has(&boot_cpu_data," while at it.

Reviewed-by: Alexander Graf <agraf@suse.de>
Acked-by: Borislav Petkov <bp@suse.de>
Acked-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2017-12-14 09:26:43 +01:00
Radim Krčmář 346f48fa31 KVM: x86: drop bogus MWAIT check
The check was added in some iteration while trying to fix a reported OS
X on Core 2 bug, but that bug is elsewhere.

The comment is misleading because the guest can call MWAIT with ECX = 0
even if we enforce CPUID5_ECX_INTERRUPT_BREAK;  the call would have the
exactly the same effect as if the host didn't have the feature.

A problem is that a QEMU feature exposes CPUID5_ECX_INTERRUPT_BREAK on
CPUs that do not support it.  Removing the check changes behavior on
last Pentium 4 lines (Presler, Dempsey, and Tulsa, which had VMX and
MONITOR while missing INTERRUPT_BREAK) when running a guest OS that uses
MWAIT without checking for its presence (QEMU doesn't expose MONITOR).

The only known OS that ignores the MONITOR flag is old Mac OS X and we
allowed it to bug on Core 2 (MWAIT used to throw #UD and only that OS
noticed), so we can save another 20 lines letting it bug on even older
CPUs.  Alternatively, we can return MWAIT exiting by default and let
userspace toggle it.

Reviewed-by: Alexander Graf <agraf@suse.de>
Acked-by: Borislav Petkov <bp@suse.de>
Acked-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2017-12-14 09:26:43 +01:00
Radim Krčmář 2a140f3b6e KVM: x86: prevent MWAIT in guest with buggy MONITOR
The bug prevents MWAIT from waking up after a write to the monitored
cache line.
KVM might emulate a CPU model that shouldn't have the bug, so the guest
would not employ a workaround and possibly miss wakeups.
Better to avoid the situation.

Reviewed-by: Alexander Graf <agraf@suse.de>
Acked-by: Borislav Petkov <bp@suse.de>
Acked-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2017-12-14 09:26:42 +01:00
Colin Ian King 0d37d26f11 KVM: x86: MMU: make array audit_point_name static
The array audit_point_name is local to the source and does not need to
be in global scope, so make it static.

Cleans up sparse warning:
arch/x86/kvm/mmu_audit.c:22:12: warning: symbol 'audit_point_name' was
not declared. Should it be static?

Signed-off-by: Colin Ian King <colin.king@canonical.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2017-12-14 09:26:41 +01:00
Gimcuan Hui 858ac87fc2 x86: kvm: mmu: make kvm_mmu_clear_all_pte_masks static
The kvm_mmu_clear_all_pte_masks interface is only used by kvm_mmu_module_init
locally, and does not need to be called by other module, make it static.

This patch cleans up sparse warning:
symbol 'kvm_mmu_clear_all_pte_masks' was not declared. Should it be static?

Signed-off-by: Gimcuan Hui <gimcuan@gmail.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2017-12-14 09:26:41 +01:00
Paolo Bonzini fb6d4d340e KVM: x86: emulate RDPID
This is encoded as F3 0F C7 /7 with a register argument.  The register
argument is the second array in the group9 GroupDual, while F3 is the
fourth element of a Prefix.

Reviewed-by: Wanpeng Li <wanpeng.li@hotmail.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2017-12-14 09:26:40 +01:00
Paolo Bonzini 0367f205a3 KVM: vmx: add support for emulating UMIP
UMIP can be emulated almost perfectly on Intel processor by enabling
descriptor-table exits.  SMSW does not cause a vmexit and hence it
cannot be changed into a #GP fault, but all in all it's the most
"innocuous" of the unprivileged instructions that UMIP blocks.

In fact, Linux is _also_ emulating SMSW instructions on behalf of the
program that executes them, because some 16-bit programs expect to use
SMSW to detect vm86 mode, so this is an even smaller issue.

Reviewed-by: Wanpeng Li <wanpeng.li@hotmail.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2017-12-14 09:26:40 +01:00
Paolo Bonzini 66336cab35 KVM: x86: add support for emulating UMIP
The User-Mode Instruction Prevention feature present in recent Intel
processor prevents a group of instructions (sgdt, sidt, sldt, smsw, and
str) from being executed with CPL > 0. Otherwise, a general protection
fault is issued.

UMIP instructions in general are also able to trigger vmexits, so we can
actually emulate UMIP on older processors.  This commit sets up the
infrastructure so that kvm-intel.ko and kvm-amd.ko can set the UMIP
feature bit for CPUID even if the feature is not actually available
in hardware.

Reviewed-by: Wanpeng Li <wanpeng.li@hotmail.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2017-12-14 09:26:39 +01:00
Paolo Bonzini dd307d017b KVM: x86: emulate sldt and str
These are needed to handle the descriptor table vmexits when emulating
UMIP.

Reviewed-by: Wanpeng Li <wanpeng.li@hotmail.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2017-12-14 09:26:38 +01:00
Paolo Bonzini ae3e61e1c2 KVM: x86: add support for UMIP
Add the CPUID bits, make the CR4.UMIP bit not reserved anymore, and
add UMIP support for instructions that are already emulated by KVM.

Reviewed-by: Wanpeng Li <wanpeng.li@hotmail.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2017-12-14 09:26:38 +01:00
Peter Xu 5663d8f9bb kvm: x86: fix WARN due to uninitialized guest FPU state
------------[ cut here ]------------
 Bad FPU state detected at kvm_put_guest_fpu+0xd8/0x2d0 [kvm], reinitializing FPU registers.
 WARNING: CPU: 1 PID: 4594 at arch/x86/mm/extable.c:103 ex_handler_fprestore+0x88/0x90
 CPU: 1 PID: 4594 Comm: qemu-system-x86 Tainted: G    B      OE    4.15.0-rc2+ #10
 RIP: 0010:ex_handler_fprestore+0x88/0x90
 Call Trace:
  fixup_exception+0x4e/0x60
  do_general_protection+0xff/0x270
  general_protection+0x22/0x30
 RIP: 0010:kvm_put_guest_fpu+0xd8/0x2d0 [kvm]
 RSP: 0018:ffff8803d5627810 EFLAGS: 00010246
  kvm_vcpu_reset+0x3b4/0x3c0 [kvm]
  kvm_apic_accept_events+0x1c0/0x240 [kvm]
  kvm_arch_vcpu_ioctl_run+0x1658/0x2fb0 [kvm]
  kvm_vcpu_ioctl+0x479/0x880 [kvm]
  do_vfs_ioctl+0x142/0x9a0
  SyS_ioctl+0x74/0x80
  do_syscall_64+0x15f/0x600

where kvm_put_guest_fpu is called without a prior kvm_load_guest_fpu.
To fix it, move kvm_load_guest_fpu to the very beginning of
kvm_arch_vcpu_ioctl_run.

Cc: stable@vger.kernel.org
Fixes: f775b13eed
Signed-off-by: Peter Xu <peterx@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2017-12-14 09:24:35 +01:00
Wanpeng Li d73235d17b KVM: X86: Fix load RFLAGS w/o the fixed bit
*** Guest State ***
 CR0: actual=0x0000000000000030, shadow=0x0000000060000010, gh_mask=fffffffffffffff7
 CR4: actual=0x0000000000002050, shadow=0x0000000000000000, gh_mask=ffffffffffffe871
 CR3 = 0x00000000fffbc000
 RSP = 0x0000000000000000  RIP = 0x0000000000000000
 RFLAGS=0x00000000         DR7 = 0x0000000000000400
        ^^^^^^^^^^

The failed vmentry is triggered by the following testcase when ept=Y:

    #include <unistd.h>
    #include <sys/syscall.h>
    #include <string.h>
    #include <stdint.h>
    #include <linux/kvm.h>
    #include <fcntl.h>
    #include <sys/ioctl.h>

    long r[5];
    int main()
    {
    	r[2] = open("/dev/kvm", O_RDONLY);
    	r[3] = ioctl(r[2], KVM_CREATE_VM, 0);
    	r[4] = ioctl(r[3], KVM_CREATE_VCPU, 7);
    	struct kvm_regs regs = {
    		.rflags = 0,
    	};
    	ioctl(r[4], KVM_SET_REGS, &regs);
    	ioctl(r[4], KVM_RUN, 0);
    }

X86 RFLAGS bit 1 is fixed set, userspace can simply clearing bit 1
of RFLAGS with KVM_SET_REGS ioctl which results in vmentry fails.
This patch fixes it by oring X86_EFLAGS_FIXED during ioctl.

Cc: stable@vger.kernel.org
Suggested-by: Jim Mattson <jmattson@google.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Quan Xu <quan.xu0@gmail.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Cc: Jim Mattson <jmattson@google.com>
Cc: stable@vger.kernel.org
Signed-off-by: Wanpeng Li <wanpeng.li@hotmail.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2017-12-14 09:24:26 +01:00
Wanpeng Li ed52870f46 KVM: MMU: Fix infinite loop when there is no available mmu page
The below test case can cause infinite loop in kvm when ept=0.

    #include <unistd.h>
    #include <sys/syscall.h>
    #include <string.h>
    #include <stdint.h>
    #include <linux/kvm.h>
    #include <fcntl.h>
    #include <sys/ioctl.h>

    long r[5];
    int main()
    {
    	r[2] = open("/dev/kvm", O_RDONLY);
    	r[3] = ioctl(r[2], KVM_CREATE_VM, 0);
    	r[4] = ioctl(r[3], KVM_CREATE_VCPU, 7);
    	ioctl(r[4], KVM_RUN, 0);
    }

It doesn't setup the memory regions, mmu_alloc_shadow/direct_roots() in
kvm return 1 when kvm fails to allocate root page table which can result
in beblow infinite loop:

    vcpu_run() {
    	for (;;) {
	    	r = vcpu_enter_guest()::kvm_mmu_reload() returns 1
	    	if (r <= 0)
	    		break;
	    	if (need_resched())
	    		cond_resched();
      }
    }

This patch fixes it by returning -ENOSPC when there is no available kvm mmu
page for root page table.

Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Cc: stable@vger.kernel.org
Fixes: 26eeb53cf0 (KVM: MMU: Bail out immediately if there is no available mmu page)
Signed-off-by: Wanpeng Li <wanpeng.li@hotmail.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2017-12-14 09:24:14 +01:00
Radim Krčmář b1394e745b KVM: x86: fix APIC page invalidation
Implementation of the unpinned APIC page didn't update the VMCS address
cache when invalidation was done through range mmu notifiers.
This became a problem when the page notifier was removed.

Re-introduce the arch-specific helper and call it from ...range_start.

Reported-by: Fabian Grünbichler <f.gruenbichler@proxmox.com>
Fixes: 38b9917350 ("kvm: vmx: Implement set_apic_access_page_addr")
Fixes: 369ea8242c ("mm/rmap: update to new mmu_notifier semantic v2")
Cc: <stable@vger.kernel.org>
Reviewed-by: Paolo Bonzini <pbonzini@redhat.com>
Reviewed-by: Andrea Arcangeli <aarcange@redhat.com>
Tested-by: Wanpeng Li <wanpeng.li@hotmail.com>
Tested-by: Fabian Grünbichler <f.gruenbichler@proxmox.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
2017-12-06 16:10:34 +01:00
Jim Mattson 2895db67b0 KVM: VMX: fix page leak in hardware_setup()
vmx_io_bitmap_b should not be allocated twice.

Fixes: 2361133293 ("KVM: VMX: refactor setup of global page-sized bitmaps")
Signed-off-by: Jim Mattson <jmattson@google.com>
Reviewed-by: Krish Sadhukhan <krish.sadhukhan@oracle.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
2017-12-05 22:34:49 +01:00
Andrew Honig d59d51f088 KVM: VMX: remove I/O port 0x80 bypass on Intel hosts
This fixes CVE-2017-1000407.

KVM allows guests to directly access I/O port 0x80 on Intel hosts.  If
the guest floods this port with writes it generates exceptions and
instability in the host kernel, leading to a crash.  With this change
guest writes to port 0x80 on Intel will behave the same as they
currently behave on AMD systems.

Prevent the flooding by removing the code that sets port 0x80 as a
passthrough port.  This is essentially the same as upstream patch
99f85a28a7, except that patch was
for AMD chipsets and this patch is for Intel.

Signed-off-by: Andrew Honig <ahonig@google.com>
Signed-off-by: Jim Mattson <jmattson@google.com>
Fixes: fdef3ad1b3 ("KVM: VMX: Enable io bitmaps to avoid IO port 0x80 VMEXITs")
Cc: <stable@vger.kernel.org>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
2017-12-05 22:32:51 +01:00
Rik van Riel 6ab0b9feb8 x86,kvm: remove KVM emulator get_fpu / put_fpu
Now that get_fpu and put_fpu do nothing, because the scheduler will
automatically load and restore the guest FPU context for us while we
are in this code (deep inside the vcpu_run main loop), we can get rid
of the get_fpu and put_fpu hooks.

Signed-off-by: Rik van Riel <riel@redhat.com>
Suggested-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2017-12-05 21:20:24 +01:00
Rik van Riel f775b13eed x86,kvm: move qemu/guest FPU switching out to vcpu_run
Currently, every time a VCPU is scheduled out, the host kernel will
first save the guest FPU/xstate context, then load the qemu userspace
FPU context, only to then immediately save the qemu userspace FPU
context back to memory. When scheduling in a VCPU, the same extraneous
FPU loads and saves are done.

This could be avoided by moving from a model where the guest FPU is
loaded and stored with preemption disabled, to a model where the
qemu userspace FPU is swapped out for the guest FPU context for
the duration of the KVM_RUN ioctl.

This is done under the VCPU mutex, which is also taken when other
tasks inspect the VCPU FPU context, so the code should already be
safe for this change. That should come as no surprise, given that
s390 already has this optimization.

This can fix a bug where KVM calls get_user_pages while owning the
FPU, and the file system ends up requesting the FPU again:

    [258270.527947]  __warn+0xcb/0xf0
    [258270.527948]  warn_slowpath_null+0x1d/0x20
    [258270.527951]  kernel_fpu_disable+0x3f/0x50
    [258270.527953]  __kernel_fpu_begin+0x49/0x100
    [258270.527955]  kernel_fpu_begin+0xe/0x10
    [258270.527958]  crc32c_pcl_intel_update+0x84/0xb0
    [258270.527961]  crypto_shash_update+0x3f/0x110
    [258270.527968]  crc32c+0x63/0x8a [libcrc32c]
    [258270.527975]  dm_bm_checksum+0x1b/0x20 [dm_persistent_data]
    [258270.527978]  node_prepare_for_write+0x44/0x70 [dm_persistent_data]
    [258270.527985]  dm_block_manager_write_callback+0x41/0x50 [dm_persistent_data]
    [258270.527988]  submit_io+0x170/0x1b0 [dm_bufio]
    [258270.527992]  __write_dirty_buffer+0x89/0x90 [dm_bufio]
    [258270.527994]  __make_buffer_clean+0x4f/0x80 [dm_bufio]
    [258270.527996]  __try_evict_buffer+0x42/0x60 [dm_bufio]
    [258270.527998]  dm_bufio_shrink_scan+0xc0/0x130 [dm_bufio]
    [258270.528002]  shrink_slab.part.40+0x1f5/0x420
    [258270.528004]  shrink_node+0x22c/0x320
    [258270.528006]  do_try_to_free_pages+0xf5/0x330
    [258270.528008]  try_to_free_pages+0xe9/0x190
    [258270.528009]  __alloc_pages_slowpath+0x40f/0xba0
    [258270.528011]  __alloc_pages_nodemask+0x209/0x260
    [258270.528014]  alloc_pages_vma+0x1f1/0x250
    [258270.528017]  do_huge_pmd_anonymous_page+0x123/0x660
    [258270.528021]  handle_mm_fault+0xfd3/0x1330
    [258270.528025]  __get_user_pages+0x113/0x640
    [258270.528027]  get_user_pages+0x4f/0x60
    [258270.528063]  __gfn_to_pfn_memslot+0x120/0x3f0 [kvm]
    [258270.528108]  try_async_pf+0x66/0x230 [kvm]
    [258270.528135]  tdp_page_fault+0x130/0x280 [kvm]
    [258270.528149]  kvm_mmu_page_fault+0x60/0x120 [kvm]
    [258270.528158]  handle_ept_violation+0x91/0x170 [kvm_intel]
    [258270.528162]  vmx_handle_exit+0x1ca/0x1400 [kvm_intel]

No performance changes were detected in quick ping-pong tests on
my 4 socket system, which is expected since an FPU+xstate load is
on the order of 0.1us, while ping-ponging between CPUs is on the
order of 20us, and somewhat noisy.

Cc: stable@vger.kernel.org
Signed-off-by: Rik van Riel <riel@redhat.com>
Suggested-by: Christian Borntraeger <borntraeger@de.ibm.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
[Fixed a bug where reset_vcpu called put_fpu without preceding load_fpu,
 which happened inside from KVM_CREATE_VCPU ioctl. - Radim]
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
2017-12-05 21:16:43 +01:00
Brijesh Singh 00b10fe104 KVM: X86: Restart the guest when insn_len is zero and SEV is enabled
On AMD platforms, under certain conditions insn_len may be zero on #NPF.
This can happen if a guest gets a page-fault on data access but the HW
table walker is not able to read the instruction page (e.g instruction
page is not present in memory).

Typically, when insn_len is zero, x86_emulate_instruction() walks the
guest page table and fetches the instruction bytes from guest memory.
When SEV is enabled, the guest memory is encrypted with guest-specific
key hence hypervisor will not able to fetch the instruction bytes.
In those cases we simply restart the guest.

I have encountered this issue when running kernbench inside the guest.

Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: "Radim Krčmář" <rkrcmar@redhat.com>
Cc: Joerg Roedel <joro@8bytes.org>
Cc: Borislav Petkov <bp@suse.de>
Cc: Tom Lendacky <thomas.lendacky@amd.com>
Cc: x86@kernel.org
Cc: kvm@vger.kernel.org
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Brijesh Singh <brijesh.singh@amd.com>
2017-12-04 13:33:14 -06:00
Brijesh Singh 35c6f649bb KVM: SVM: Do not install #UD intercept when SEV is enabled
On #UD, x86_emulate_instruction() fetches the data from guest memory and
decodes the instruction bytes to assist further. When SEV is enabled, the
instruction bytes will be encrypted using the guest-specific key and the
hypervisor will no longer able to fetch the instruction bytes to assist
UD handling. By not installing intercept we let the guest receive and
handle #UD.

Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: "Radim Krčmář" <rkrcmar@redhat.com>
Cc: Joerg Roedel <joro@8bytes.org>
Cc: Borislav Petkov <bp@suse.de>
Cc: Tom Lendacky <thomas.lendacky@amd.com>
Cc: x86@kernel.org
Cc: kvm@vger.kernel.org
Cc: linux-kernel@vger.kernel.org
Reviewed-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Brijesh Singh <brijesh.singh@amd.com>
2017-12-04 13:33:14 -06:00
Brijesh Singh 0ede79e132 KVM: SVM: Clear C-bit from the page fault address
When SEV is active, on #VMEXIT the  page fault address will contain the
C-bit. We must clear the C-bit before handling the fault.

Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: "Radim Krčmář" <rkrcmar@redhat.com>
Cc: Joerg Roedel <joro@8bytes.org>
Cc: Borislav Petkov <bp@suse.de>
Cc: Tom Lendacky <thomas.lendacky@amd.com>
Cc: x86@kernel.org
Cc: kvm@vger.kernel.org
Cc: linux-kernel@vger.kernel.org
Reviewed-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Brijesh Singh <brijesh.singh@amd.com>
2017-12-04 13:33:14 -06:00
Brijesh Singh 1e80fdc09d KVM: SVM: Pin guest memory when SEV is active
The SEV memory encryption engine uses a tweak such that two identical
plaintext pages at different location will have different ciphertext.
So swapping or moving ciphertext of two pages will not result in
plaintext being swapped. Relocating (or migrating) physical backing
pages for a SEV guest will require some additional steps. The current SEV
key management spec does not provide commands to swap or migrate (move)
ciphertext pages. For now, we pin the guest memory registered through
KVM_MEMORY_ENCRYPT_REG_REGION ioctl.

Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: "Radim Krčmář" <rkrcmar@redhat.com>
Cc: Joerg Roedel <joro@8bytes.org>
Cc: Borislav Petkov <bp@suse.de>
Cc: Tom Lendacky <thomas.lendacky@amd.com>
Cc: x86@kernel.org
Cc: kvm@vger.kernel.org
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Brijesh Singh <brijesh.singh@amd.com>
2017-12-04 13:33:14 -06:00
Brijesh Singh 9f5b5b950a KVM: SVM: Add support for SEV LAUNCH_SECRET command
The command is used for injecting a secret into the guest memory region.

Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: "Radim Krčmář" <rkrcmar@redhat.com>
Cc: Joerg Roedel <joro@8bytes.org>
Cc: Borislav Petkov <bp@suse.de>
Cc: Tom Lendacky <thomas.lendacky@amd.com>
Cc: x86@kernel.org
Cc: kvm@vger.kernel.org
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Brijesh Singh <brijesh.singh@amd.com>
Reviewed-by: Borislav Petkov <bp@suse.de>
2017-12-04 13:33:13 -06:00
Brijesh Singh 7d1594f5d9 KVM: SVM: Add support for SEV DEBUG_ENCRYPT command
The command copies a plaintext into guest memory and encrypts it using
the VM encryption key. The command will be used for debug purposes
(e.g setting breakpoints through gdbserver)

Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: "Radim Krčmář" <rkrcmar@redhat.com>
Cc: Joerg Roedel <joro@8bytes.org>
Cc: Borislav Petkov <bp@suse.de>
Cc: Tom Lendacky <thomas.lendacky@amd.com>
Cc: x86@kernel.org
Cc: kvm@vger.kernel.org
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Brijesh Singh <brijesh.singh@amd.com>
2017-12-04 13:33:13 -06:00
Brijesh Singh 24f41fb23a KVM: SVM: Add support for SEV DEBUG_DECRYPT command
The command is used for decrypting a guest memory region for debug
purposes.

Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: "Radim Krčmář" <rkrcmar@redhat.com>
Cc: Joerg Roedel <joro@8bytes.org>
Cc: Borislav Petkov <bp@suse.de>
Cc: Tom Lendacky <thomas.lendacky@amd.com>
Cc: x86@kernel.org
Cc: kvm@vger.kernel.org
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Brijesh Singh <brijesh.singh@amd.com>
Reviewed-by: Borislav Petkov <bp@suse.de>
2017-12-04 13:33:13 -06:00
Brijesh Singh 255d9e75e2 KVM: SVM: Add support for SEV GUEST_STATUS command
The command is used for querying the SEV guest information.

Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: "Radim Krčmář" <rkrcmar@redhat.com>
Cc: Joerg Roedel <joro@8bytes.org>
Cc: Borislav Petkov <bp@suse.de>
Cc: Tom Lendacky <thomas.lendacky@amd.com>
Cc: x86@kernel.org
Cc: kvm@vger.kernel.org
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Brijesh Singh <brijesh.singh@amd.com>
Reviewed-by: Borislav Petkov <bp@suse.de>
2017-12-04 13:33:13 -06:00
Brijesh Singh 5bdb0e2fa4 KVM: SVM: Add support for SEV LAUNCH_FINISH command
The command is used for finializing the SEV guest launch process.

Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: "Radim Krčmář" <rkrcmar@redhat.com>
Cc: Joerg Roedel <joro@8bytes.org>
Cc: Borislav Petkov <bp@suse.de>
Cc: Tom Lendacky <thomas.lendacky@amd.com>
Cc: x86@kernel.org
Cc: kvm@vger.kernel.org
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Brijesh Singh <brijesh.singh@amd.com>
Reviewed-by: Borislav Petkov <bp@suse.de>
2017-12-04 13:33:13 -06:00
Brijesh Singh 0d0736f763 KVM: SVM: Add support for KVM_SEV_LAUNCH_MEASURE command
The command is used to retrieve the measurement of contents encrypted
through the KVM_SEV_LAUNCH_UPDATE_DATA command.

Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: "Radim Krčmář" <rkrcmar@redhat.com>
Cc: Joerg Roedel <joro@8bytes.org>
Cc: Borislav Petkov <bp@suse.de>
Cc: Tom Lendacky <thomas.lendacky@amd.com>
Cc: x86@kernel.org
Cc: kvm@vger.kernel.org
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Brijesh Singh <brijesh.singh@amd.com>
Reviewed-by: Borislav Petkov <bp@suse.de>
2017-12-04 13:33:13 -06:00
Brijesh Singh 89c5058090 KVM: SVM: Add support for KVM_SEV_LAUNCH_UPDATE_DATA command
The command is used for encrypting the guest memory region using the VM
encryption key (VEK) created during KVM_SEV_LAUNCH_START.

Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: "Radim Krčmář" <rkrcmar@redhat.com>
Cc: Joerg Roedel <joro@8bytes.org>
Cc: Borislav Petkov <bp@suse.de>
Cc: Tom Lendacky <thomas.lendacky@amd.com>
Cc: x86@kernel.org
Cc: kvm@vger.kernel.org
Cc: linux-kernel@vger.kernel.org
Improvements-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Brijesh Singh <brijesh.singh@amd.com>
Reviewed-by: Borislav Petkov <bp@suse.de>
2017-12-04 13:33:13 -06:00
Brijesh Singh 59414c9892 KVM: SVM: Add support for KVM_SEV_LAUNCH_START command
The KVM_SEV_LAUNCH_START command is used to create a memory encryption
context within the SEV firmware. In order to do so, the guest owner
should provide the guest's policy, its public Diffie-Hellman (PDH) key
and session information. The command implements the LAUNCH_START flow
defined in SEV spec Section 6.2.

Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: "Radim Krčmář" <rkrcmar@redhat.com>
Cc: Joerg Roedel <joro@8bytes.org>
Cc: Borislav Petkov <bp@suse.de>
Cc: Tom Lendacky <thomas.lendacky@amd.com>
Cc: x86@kernel.org
Cc: kvm@vger.kernel.org
Cc: linux-kernel@vger.kernel.org
Improvements-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Brijesh Singh <brijesh.singh@amd.com>
Reviewed-by: Borislav Petkov <bp@suse.de>
2017-12-04 13:33:10 -06:00
Brijesh Singh 70cd94e60c KVM: SVM: VMRUN should use associated ASID when SEV is enabled
SEV hardware uses ASIDs to associate a memory encryption key with a
guest VM. During guest creation, a SEV VM uses the SEV_CMD_ACTIVATE
command to bind a particular ASID to the guest. Lets make sure that the
VMCB is programmed with the bound ASID before a VMRUN.

Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: "Radim Krčmář" <rkrcmar@redhat.com>
Cc: Joerg Roedel <joro@8bytes.org>
Cc: Borislav Petkov <bp@suse.de>
Cc: Tom Lendacky <thomas.lendacky@amd.com>
Cc: x86@kernel.org
Cc: kvm@vger.kernel.org
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Brijesh Singh <brijesh.singh@amd.com>
Reviewed-by: Borislav Petkov <bp@suse.de>
2017-12-04 13:32:30 -06:00
Brijesh Singh 1654efcbc4 KVM: SVM: Add KVM_SEV_INIT command
The command initializes the SEV platform context and allocates a new ASID
for this guest from the SEV ASID pool. The firmware must be initialized
before we issue any guest launch commands to create a new memory encryption
context.

Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: "Radim Krčmář" <rkrcmar@redhat.com>
Cc: Joerg Roedel <joro@8bytes.org>
Cc: Borislav Petkov <bp@suse.de>
Cc: Tom Lendacky <thomas.lendacky@amd.com>
Cc: x86@kernel.org
Cc: kvm@vger.kernel.org
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Brijesh Singh <brijesh.singh@amd.com>
Reviewed-by: Borislav Petkov <bp@suse.de>
2017-12-04 13:21:55 -06:00
Brijesh Singh e9df094289 KVM: SVM: Add sev module_param
The module parameter can be used to control the SEV feature support.

Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: "Radim Krčmář" <rkrcmar@redhat.com>
Cc: Joerg Roedel <joro@8bytes.org>
Cc: Borislav Petkov <bp@suse.de>
Cc: Tom Lendacky <thomas.lendacky@amd.com>
Cc: x86@kernel.org
Cc: kvm@vger.kernel.org
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Brijesh Singh <brijesh.singh@amd.com>
Reviewed-by: Borislav Petkov <bp@suse.de>
2017-12-04 10:57:33 -06:00
Brijesh Singh ed3cd233f8 KVM: SVM: Reserve ASID range for SEV guest
A SEV-enabled guest must use ASIDs from the defined subset, while non-SEV
guests can use the remaining ASID range. The range of allowed SEV guest
ASIDs is [1 - CPUID_8000_001F[ECX][31:0]].

Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: "Radim Krčmář" <rkrcmar@redhat.com>
Cc: Joerg Roedel <joro@8bytes.org>
Cc: Borislav Petkov <bp@suse.de>
Cc: Tom Lendacky <thomas.lendacky@amd.com>
Cc: x86@kernel.org
Cc: kvm@vger.kernel.org
Cc: linux-kernel@vger.kernel.org
Improvements-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Brijesh Singh <brijesh.singh@amd.com>
Reviewed-by: Borislav Petkov <bp@suse.de>
2017-12-04 10:57:32 -06:00
Brijesh Singh 5dd0a57cf3 KVM: X86: Add CONFIG_KVM_AMD_SEV
The config option can be used to enable SEV support on AMD Processors.

Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: "Radim Krčmář" <rkrcmar@redhat.com>
Cc: Joerg Roedel <joro@8bytes.org>
Cc: Borislav Petkov <bp@suse.de>
Cc: Tom Lendacky <thomas.lendacky@amd.com>
Cc: x86@kernel.org
Cc: kvm@vger.kernel.org
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Brijesh Singh <brijesh.singh@amd.com>
Reviewed-by: Borislav Petkov <bp@suse.de>
2017-12-04 10:57:32 -06:00
Brijesh Singh 69eaedee41 KVM: Introduce KVM_MEMORY_ENCRYPT_{UN,}REG_REGION ioctl
If hardware supports memory encryption then KVM_MEMORY_ENCRYPT_REG_REGION
and KVM_MEMORY_ENCRYPT_UNREG_REGION ioctl's can be used by userspace to
register/unregister the guest memory regions which may contain the encrypted
data (e.g guest RAM, PCI BAR, SMRAM etc).

Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: "Radim Krčmář" <rkrcmar@redhat.com>
Cc: Joerg Roedel <joro@8bytes.org>
Cc: Borislav Petkov <bp@suse.de>
Cc: Tom Lendacky <thomas.lendacky@amd.com>
Cc: x86@kernel.org
Cc: kvm@vger.kernel.org
Cc: linux-kernel@vger.kernel.org
Improvements-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Brijesh Singh <brijesh.singh@amd.com>
Reviewed-by: Borislav Petkov <bp@suse.de>
2017-12-04 10:57:26 -06:00
Brijesh Singh 5acc5c0631 KVM: Introduce KVM_MEMORY_ENCRYPT_OP ioctl
If the hardware supports memory encryption then the
KVM_MEMORY_ENCRYPT_OP ioctl can be used by qemu to issue a platform
specific memory encryption commands.

Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: "Radim Krčmář" <rkrcmar@redhat.com>
Cc: Joerg Roedel <joro@8bytes.org>
Cc: Borislav Petkov <bp@suse.de>
Cc: Tom Lendacky <thomas.lendacky@amd.com>
Cc: x86@kernel.org
Cc: kvm@vger.kernel.org
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Brijesh Singh <brijesh.singh@amd.com>
Reviewed-by: Paolo Bonzini <pbonzini@redhat.com>
Reviewed-by: Borislav Petkov <bp@suse.de>
2017-12-04 10:57:26 -06:00
Brijesh Singh 8765d75329 KVM: X86: Extend CPUID range to include new leaf
This CPUID leaf provides the memory encryption support information on
AMD Platform. Its complete description is available in APM volume 2,
Section 15.34

Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: "Radim Krčmář" <rkrcmar@redhat.com>
Cc: Joerg Roedel <joro@8bytes.org>
Cc: Borislav Petkov <bp@suse.de>
Cc: Tom Lendacky <thomas.lendacky@amd.com>
Cc: x86@kernel.org
Cc: kvm@vger.kernel.org
Cc: linux-kernel@vger.kernel.org
Reviewed-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Brijesh Singh <brijesh.singh@amd.com>
2017-12-04 10:57:25 -06:00
Brijesh Singh 4faefff324 KVM: SVM: Prepare to reserve asid for SEV guest
Currently, ASID allocation start at 1. Add a svm_vcpu_data.min_asid
which allows supplying a dynamic start ASID.

Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: "Radim Krčmář" <rkrcmar@redhat.com>
Cc: Joerg Roedel <joro@8bytes.org>
Cc: Borislav Petkov <bp@suse.de>
Cc: Tom Lendacky <thomas.lendacky@amd.com>
Cc: x86@kernel.org
Cc: kvm@vger.kernel.org
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Brijesh Singh <brijesh.singh@amd.com>
Reviewed-by: Paolo Bonzini <pbonzini@redhat.com>
Reviewed-by: Borislav Petkov <bp@suse.de>
2017-12-04 10:57:25 -06:00
Tom Lendacky cea3a19b00 kvm: svm: prepare for new bit definition in nested_ctl
Currently the nested_ctl variable in the vmcb_control_area structure is
used to indicate nested paging support. The nested paging support field
is actually defined as bit 0 of the field. In order to support a new
feature flag the usage of the nested_ctl and nested paging support must
be converted to operate on a single bit.

Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: "Radim Krčmář" <rkrcmar@redhat.com>
Cc: Joerg Roedel <joro@8bytes.org>
Cc: Borislav Petkov <bp@suse.de>
Cc: x86@kernel.org
Cc: kvm@vger.kernel.org
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Tom Lendacky <thomas.lendacky@amd.com>
Signed-off-by: Brijesh Singh <brijesh.singh@amd.com>
Reviewed-by: Borislav Petkov <bp@suse.de>
2017-12-04 10:57:24 -06:00
Jan H. Schönherr 20b7035c66 KVM: Let KVM_SET_SIGNAL_MASK work as advertised
KVM API says for the signal mask you set via KVM_SET_SIGNAL_MASK, that
"any unblocked signal received [...] will cause KVM_RUN to return with
-EINTR" and that "the signal will only be delivered if not blocked by
the original signal mask".

This, however, is only true, when the calling task has a signal handler
registered for a signal. If not, signal evaluation is short-circuited for
SIG_IGN and SIG_DFL, and the signal is either ignored without KVM_RUN
returning or the whole process is terminated.

Make KVM_SET_SIGNAL_MASK behave as advertised by utilizing logic similar
to that in do_sigtimedwait() to avoid short-circuiting of signals.

Signed-off-by: Jan H. Schönherr <jschoenh@amazon.de>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2017-11-27 17:53:47 +01:00
Wanpeng Li b74558259c KVM: VMX: Fix vmx->nested freeing when no SMI handler
Reported by syzkaller:

   ------------[ cut here ]------------
   WARNING: CPU: 5 PID: 2939 at arch/x86/kvm/vmx.c:3844 free_loaded_vmcs+0x77/0x80 [kvm_intel]
   CPU: 5 PID: 2939 Comm: repro Not tainted 4.14.0+ #26
   RIP: 0010:free_loaded_vmcs+0x77/0x80 [kvm_intel]
   Call Trace:
    vmx_free_vcpu+0xda/0x130 [kvm_intel]
    kvm_arch_destroy_vm+0x192/0x290 [kvm]
    kvm_put_kvm+0x262/0x560 [kvm]
    kvm_vm_release+0x2c/0x30 [kvm]
    __fput+0x190/0x370
    task_work_run+0xa1/0xd0
    do_exit+0x4d2/0x13e0
    do_group_exit+0x89/0x140
    get_signal+0x318/0xb80
    do_signal+0x8c/0xb40
    exit_to_usermode_loop+0xe4/0x140
    syscall_return_slowpath+0x206/0x230
    entry_SYSCALL_64_fastpath+0x98/0x9a

The syzkaller testcase will execute VMXON/VMLAUCH instructions, so the
vmx->nested stuff is populated, it will also issue KVM_SMI ioctl. However,
the testcase is just a simple c program and not be lauched by something
like seabios which implements smi_handler. Commit 05cade71cf (KVM: nSVM:
fix SMI injection in guest mode) gets out of guest mode and set nested.vmxon
to false for the duration of SMM according to SDM 34.14.1 "leave VMX
operation" upon entering SMM. We can't alloc/free the vmx->nested stuff
each time when entering/exiting SMM since it will induce more overhead. So
the function vmx_pre_enter_smm() marks nested.vmxon false even if vmx->nested
stuff is still populated. What it expected is em_rsm() can mark nested.vmxon
to be true again. However, the smi_handler/rsm will not execute since there
is no something like seabios in this scenario. The function free_nested()
fails to free the vmx->nested stuff since the vmx->nested.vmxon is false
which results in the above warning.

This patch fixes it by also considering the no SMI handler case, luckily
vmx->nested.smm.vmxon is marked according to the value of vmx->nested.vmxon
in vmx_pre_enter_smm(), we can take advantage of it and free vmx->nested
stuff when L1 goes down.

Reported-by: Dmitry Vyukov <dvyukov@google.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Reviewed-by: Liran Alon <liran.alon@oracle.com>
Fixes: 05cade71cf (KVM: nSVM: fix SMI injection in guest mode)
Signed-off-by: Wanpeng Li <wanpeng.li@hotmail.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2017-11-27 17:37:55 +01:00
Wanpeng Li c37c28730b KVM: VMX: Fix rflags cache during vCPU reset
Reported by syzkaller:

   *** Guest State ***
   CR0: actual=0x0000000080010031, shadow=0x0000000060000010, gh_mask=fffffffffffffff7
   CR4: actual=0x0000000000002061, shadow=0x0000000000000000, gh_mask=ffffffffffffe8f1
   CR3 = 0x000000002081e000
   RSP = 0x000000000000fffa  RIP = 0x0000000000000000
   RFLAGS=0x00023000         DR7 = 0x00000000000000
          ^^^^^^^^^^
   ------------[ cut here ]------------
   WARNING: CPU: 6 PID: 24431 at /home/kernel/linux/arch/x86/kvm//x86.c:7302 kvm_arch_vcpu_ioctl_run+0x651/0x2ea0 [kvm]
   CPU: 6 PID: 24431 Comm: reprotest Tainted: G        W  OE   4.14.0+ #26
   RIP: 0010:kvm_arch_vcpu_ioctl_run+0x651/0x2ea0 [kvm]
   RSP: 0018:ffff880291d179e0 EFLAGS: 00010202
   Call Trace:
    kvm_vcpu_ioctl+0x479/0x880 [kvm]
    do_vfs_ioctl+0x142/0x9a0
    SyS_ioctl+0x74/0x80
    entry_SYSCALL_64_fastpath+0x23/0x9a

The failed vmentry is triggered by the following beautified testcase:

    #include <unistd.h>
    #include <sys/syscall.h>
    #include <string.h>
    #include <stdint.h>
    #include <linux/kvm.h>
    #include <fcntl.h>
    #include <sys/ioctl.h>

    long r[5];
    int main()
    {
        struct kvm_debugregs dr = { 0 };

        r[2] = open("/dev/kvm", O_RDONLY);
        r[3] = ioctl(r[2], KVM_CREATE_VM, 0);
        r[4] = ioctl(r[3], KVM_CREATE_VCPU, 7);
        struct kvm_guest_debug debug = {
                .control = 0xf0403,
                .arch = {
                        .debugreg[6] = 0x2,
                        .debugreg[7] = 0x2
                }
        };
        ioctl(r[4], KVM_SET_GUEST_DEBUG, &debug);
        ioctl(r[4], KVM_RUN, 0);
    }

which testcase tries to setup the processor specific debug
registers and configure vCPU for handling guest debug events through
KVM_SET_GUEST_DEBUG.  The KVM_SET_GUEST_DEBUG ioctl will get and set
rflags in order to set TF bit if single step is needed. All regs' caches
are reset to avail and GUEST_RFLAGS vmcs field is reset to 0x2 during vCPU
reset. However, the cache of rflags is not reset during vCPU reset. The
function vmx_get_rflags() returns an unreset rflags cache value since
the cache is marked avail, it is 0 after boot. Vmentry fails if the
rflags reserved bit 1 is 0.

This patch fixes it by resetting both the GUEST_RFLAGS vmcs field and
its cache to 0x2 during vCPU reset.

Reported-by: Dmitry Vyukov <dvyukov@google.com>
Tested-by: Dmitry Vyukov <dvyukov@google.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Cc: Nadav Amit <nadav.amit@gmail.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Signed-off-by: Wanpeng Li <wanpeng.li@hotmail.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2017-11-27 17:37:46 +01:00
Wanpeng Li e70b57a6ce KVM: X86: Fix softlockup when get the current kvmclock
watchdog: BUG: soft lockup - CPU#6 stuck for 22s! [qemu-system-x86:10185]
 CPU: 6 PID: 10185 Comm: qemu-system-x86 Tainted: G           OE   4.14.0-rc4+ #4
 RIP: 0010:kvm_get_time_scale+0x4e/0xa0 [kvm]
 Call Trace:
  get_time_ref_counter+0x5a/0x80 [kvm]
  kvm_hv_process_stimers+0x120/0x5f0 [kvm]
  kvm_arch_vcpu_ioctl_run+0x4b4/0x1690 [kvm]
  kvm_vcpu_ioctl+0x33a/0x620 [kvm]
  do_vfs_ioctl+0xa1/0x5d0
  SyS_ioctl+0x79/0x90
  entry_SYSCALL_64_fastpath+0x1e/0xa9

This can be reproduced when running kvm-unit-tests/hyperv_stimer.flat and
cpu-hotplug stress simultaneously. __this_cpu_read(cpu_tsc_khz) returns 0
(set in kvmclock_cpu_down_prep()) when the pCPU is unhotplug which results
in kvm_get_time_scale() gets into an infinite loop.

This patch fixes it by treating the unhotplug pCPU as not using master clock.

Reviewed-by: Radim Krčmář <rkrcmar@redhat.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Signed-off-by: Wanpeng Li <wanpeng.li@hotmail.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2017-11-27 17:32:53 +01:00
Dr. David Alan Gilbert 12806ba937 KVM: lapic: Fixup LDR on load in x2apic
In x2apic mode the LDR is fixed based on the ID rather
than separately loadable like it was before x2.
When kvm_apic_set_state is called, the base is set, and if
it has the X2APIC_ENABLE flag set then the LDR is calculated;
however that value gets overwritten by the memcpy a few lines
below overwriting it with the value that came from userland.

The symptom is a lack of EOI after loading the state
(e.g. after a QEMU migration) and is due to the EOI bitmap
being wrong due to the incorrect LDR.  This was seen with
a Win2016 guest under Qemu with irqchip=split whose USB mouse
didn't work after a VM migration.

This corresponds to RH bug:
  https://bugzilla.redhat.com/show_bug.cgi?id=1502591

Reported-by: Yiqian Wei <yiwei@redhat.com>
Signed-off-by: Dr. David Alan Gilbert <dgilbert@redhat.com>
Cc: stable@vger.kernel.org
[Applied fixup from Liran Alon. - Paolo]
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2017-11-27 17:32:53 +01:00
Dr. David Alan Gilbert e872fa9466 KVM: lapic: Split out x2apic ldr calculation
Split out the ldr calculation from kvm_apic_set_x2apic_id
since we're about to reuse it in the following patch.

Signed-off-by: Dr. David Alan Gilbert <dgilbert@redhat.com>
Cc: stable@vger.kernel.org
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2017-11-27 17:32:52 +01:00
Paolo Bonzini c4ad77e0d4 KVM: vmx: use X86_CR4_UMIP and X86_FEATURE_UMIP
These bits were not defined until now in common code, but they are
now that the kernel supports UMIP too.

Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2017-11-17 13:20:23 +01:00
Janakarajan Natarajan 50a671d4d1 KVM: x86: Fix CPUID function for word 6 (80000001_ECX)
The function for CPUID 80000001 ECX is set to 0xc0000001. Set it to
0x80000001.

Signed-off-by: Janakarajan Natarajan <Janakarajan.Natarajan@amd.com>
Reviewed-by: Jim Mattson <jmattson@google.com>
Reviewed-by: Krish Sadhukhan <krish.sadhukhan@oracle.com>
Reviewed-by: Borislav Petkov <bp@suse.de>
Fixes: d6321d4933 ("KVM: x86: generalize guest_cpuid_has_ helpers")
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
2017-11-17 13:20:22 +01:00
Liran Alon 917dc6068b KVM: nVMX: Fix vmx_check_nested_events() return value in case an event was reinjected to L2
vmx_check_nested_events() should return -EBUSY only in case there is a
pending L1 event which requires a VMExit from L2 to L1 but such a
VMExit is currently blocked. Such VMExits are blocked either
because nested_run_pending=1 or an event was reinjected to L2.
vmx_check_nested_events() should return 0 in case there are no
pending L1 events which requires a VMExit from L2 to L1 or if
a VMExit from L2 to L1 was done internally.

However, upstream commit which introduced blocking in case an event was
reinjected to L2 (commit acc9ab6013 ("KVM: nVMX: Fix pending events
injection")) contains a bug: It returns -EBUSY even if there are no
pending L1 events which requires VMExit from L2 to L1.

This commit fix this issue.

Fixes: acc9ab6013 ("KVM: nVMX: Fix pending events injection")

Signed-off-by: Liran Alon <liran.alon@oracle.com>
Reviewed-by: Nikita Leshenko <nikita.leshchenko@oracle.com>
Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
2017-11-17 13:20:21 +01:00
Nikita Leshenko b200dded0a KVM: x86: ioapic: Preserve read-only values in the redirection table
According to 82093AA (IOAPIC) manual, Remote IRR and Delivery Status are
read-only. QEMU implements the bits as RO in commit 479c2a1cb7fb
("ioapic: keep RO bits for IOAPIC entry").

Signed-off-by: Nikita Leshenko <nikita.leshchenko@oracle.com>
Reviewed-by: Liran Alon <liran.alon@oracle.com>
Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Reviewed-by: Wanpeng Li <wanpeng.li@hotmail.com>
Reviewed-by: Steve Rutherford <srutherford@google.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
2017-11-17 13:20:21 +01:00
Nikita Leshenko a8bfec2930 KVM: x86: ioapic: Clear Remote IRR when entry is switched to edge-triggered
Some OSes (Linux, Xen) use this behavior to clear the Remote IRR bit for
IOAPICs without an EOI register. They simulate the EOI message manually
by changing the trigger mode to edge and then back to level, with the
entry being masked during this.

QEMU implements this feature in commit ed1263c363c9
("ioapic: clear remote irr bit for edge-triggered interrupts")

As a side effect, this commit removes an incorrect behavior where Remote
IRR was cleared when the redirection table entry was rewritten. This is not
consistent with the manual and also opens an opportunity for a strange
behavior when a redirection table entry is modified from an interrupt
handler that handles the same entry: The modification will clear the
Remote IRR bit even though the interrupt handler is still running.

Signed-off-by: Nikita Leshenko <nikita.leshchenko@oracle.com>
Reviewed-by: Liran Alon <liran.alon@oracle.com>
Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Reviewed-by: Wanpeng Li <wanpeng.li@hotmail.com>
Reviewed-by: Steve Rutherford <srutherford@google.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
2017-11-17 13:20:20 +01:00
Nikita Leshenko 7d2253684d KVM: x86: ioapic: Remove redundant check for Remote IRR in ioapic_set_irq
Remote IRR for level-triggered interrupts was previously checked in
ioapic_set_irq, but since we now have a check in ioapic_service we
can remove the redundant check from ioapic_set_irq.

This commit doesn't change semantics.

Signed-off-by: Nikita Leshenko <nikita.leshchenko@oracle.com>
Reviewed-by: Liran Alon <liran.alon@oracle.com>
Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Reviewed-by: Wanpeng Li <wanpeng.li@hotmail.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
2017-11-17 13:20:19 +01:00
Nikita Leshenko da3fe7bdfa KVM: x86: ioapic: Don't fire level irq when Remote IRR set
Avoid firing a level-triggered interrupt that has the Remote IRR bit set,
because that means that some CPU is already processing it. The Remote
IRR bit will be cleared after an EOI and the interrupt will refire
if the irq line is still asserted.

This behavior is aligned with QEMU's IOAPIC implementation that was
introduced by commit f99b86b94987
("x86: ioapic: ignore level irq during processing") in QEMU.

Signed-off-by: Nikita Leshenko <nikita.leshchenko@oracle.com>
Reviewed-by: Liran Alon <liran.alon@oracle.com>
Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Reviewed-by: Wanpeng Li <wanpeng.li@hotmail.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
2017-11-17 13:20:18 +01:00
Nikita Leshenko 0fc5a36dd6 KVM: x86: ioapic: Fix level-triggered EOI and IOAPIC reconfigure race
KVM uses ioapic_handled_vectors to track vectors that need to notify the
IOAPIC on EOI. The problem is that IOAPIC can be reconfigured while an
interrupt with old configuration is pending or running and
ioapic_handled_vectors only remembers the newest configuration;
thus EOI from the old interrupt is not delievered to the IOAPIC.

A previous commit db2bdcbbbd
("KVM: x86: fix edge EOI and IOAPIC reconfig race")
addressed this issue by adding pending edge-triggered interrupts to
ioapic_handled_vectors, fixing this race for edge-triggered interrupts.
The commit explicitly ignored level-triggered interrupts,
but this race applies to them as well:

1) IOAPIC sends a level triggered interrupt vector to VCPU0
2) VCPU0's handler deasserts the irq line and reconfigures the IOAPIC
   to route the vector to VCPU1. The reconfiguration rewrites only the
   upper 32 bits of the IOREDTBLn register. (Causes KVM to update
   ioapic_handled_vectors for VCPU0 and it no longer includes the vector.)
3) VCPU0 sends EOI for the vector, but it's not delievered to the
   IOAPIC because the ioapic_handled_vectors doesn't include the vector.
4) New interrupts are not delievered to VCPU1 because remote_irr bit
   is set forever.

Therefore, the correct behavior is to add all pending and running
interrupts to ioapic_handled_vectors.

This commit introduces a slight performance hit similar to
commit db2bdcbbbd ("KVM: x86: fix edge EOI and IOAPIC reconfig race")
for the rare case that the vector is reused by a non-IOAPIC source on
VCPU0. We prefer to keep solution simple and not handle this case just
as the original commit does.

Fixes: db2bdcbbbd ("KVM: x86: fix edge EOI and IOAPIC reconfig race")

Signed-off-by: Nikita Leshenko <nikita.leshchenko@oracle.com>
Reviewed-by: Liran Alon <liran.alon@oracle.com>
Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
2017-11-17 13:20:17 +01:00