Граф коммитов

6 Коммитов

Автор SHA1 Сообщение Дата
David Howells 07f081fb50 PKCS#7: Add OIDs for sha224, sha284 and sha512 hash algos and use them
Add OIDs for sha224, sha284 and sha512 hash algos and use them to select
the hashing algorithm.  Without this, something like the following error
might get written to dmesg:

[   31.829322] PKCS7: Unknown OID: [32] 2.16.840.1.101.3.4.2.3
[   31.829328] PKCS7: Unknown OID: [180] 2.16.840.1.101.3.4.2.3
[   31.829330] Unsupported digest algo: 55

Where the 55 on the third line is OID__NR indicating an unknown OID.

Reported-by: Valdis Kletnieks <Valdis.Kletnieks@vt.edu>
Signed-off-by: David Howells <dhowells@redhat.com>
Tested-By: Valdis Kletnieks <valdis.kletnieks@vt.edu>
Signed-off-by: James Morris <james.l.morris@oracle.com>
2015-09-01 09:59:20 +10:00
David Howells 99db443506 PKCS#7: Appropriately restrict authenticated attributes and content type
A PKCS#7 or CMS message can have per-signature authenticated attributes
that are digested as a lump and signed by the authorising key for that
signature.  If such attributes exist, the content digest isn't itself
signed, but rather it is included in a special authattr which then
contributes to the signature.

Further, we already require the master message content type to be
pkcs7_signedData - but there's also a separate content type for the data
itself within the SignedData object and this must be repeated inside the
authattrs for each signer [RFC2315 9.2, RFC5652 11.1].

We should really validate the authattrs if they exist or forbid them
entirely as appropriate.  To this end:

 (1) Alter the PKCS#7 parser to reject any message that has more than one
     signature where at least one signature has authattrs and at least one
     that does not.

 (2) Validate authattrs if they are present and strongly restrict them.
     Only the following authattrs are permitted and all others are
     rejected:

     (a) contentType.  This is checked to be an OID that matches the
     	 content type in the SignedData object.

     (b) messageDigest.  This must match the crypto digest of the data.

     (c) signingTime.  If present, we check that this is a valid, parseable
     	 UTCTime or GeneralTime and that the date it encodes fits within
     	 the validity window of the matching X.509 cert.

     (d) S/MIME capabilities.  We don't check the contents.

     (e) Authenticode SP Opus Info.  We don't check the contents.

     (f) Authenticode Statement Type.  We don't check the contents.

     The message is rejected if (a) or (b) are missing.  If the message is
     an Authenticode type, the message is rejected if (e) is missing; if
     not Authenticode, the message is rejected if (d) - (f) are present.

     The S/MIME capabilities authattr (d) unfortunately has to be allowed
     to support kernels already signed by the pesign program.  This only
     affects kexec.  sign-file suppresses them (CMS_NOSMIMECAP).

     The message is also rejected if an authattr is given more than once or
     if it contains more than one element in its set of values.

 (3) Add a parameter to pkcs7_verify() to select one of the following
     restrictions and pass in the appropriate option from the callers:

     (*) VERIFYING_MODULE_SIGNATURE

	 This requires that the SignedData content type be pkcs7-data and
	 forbids authattrs.  sign-file sets CMS_NOATTR.  We could be more
	 flexible and permit authattrs optionally, but only permit minimal
	 content.

     (*) VERIFYING_FIRMWARE_SIGNATURE

	 This requires that the SignedData content type be pkcs7-data and
	 requires authattrs.  In future, this will require an attribute
	 holding the target firmware name in addition to the minimal set.

     (*) VERIFYING_UNSPECIFIED_SIGNATURE

	 This requires that the SignedData content type be pkcs7-data but
	 allows either no authattrs or only permits the minimal set.

     (*) VERIFYING_KEXEC_PE_SIGNATURE

	 This only supports the Authenticode SPC_INDIRECT_DATA content type
	 and requires at least an SpcSpOpusInfo authattr in addition to the
	 minimal set.  It also permits an SPC_STATEMENT_TYPE authattr (and
	 an S/MIME capabilities authattr because the pesign program doesn't
	 remove these).

     (*) VERIFYING_KEY_SIGNATURE
     (*) VERIFYING_KEY_SELF_SIGNATURE

	 These are invalid in this context but are included for later use
	 when limiting the use of X.509 certs.

 (4) The pkcs7_test key type is given a module parameter to select between
     the above options for testing purposes.  For example:

	echo 1 >/sys/module/pkcs7_test_key/parameters/usage
	keyctl padd pkcs7_test foo @s </tmp/stuff.pkcs7

     will attempt to check the signature on stuff.pkcs7 as if it contains a
     firmware blob (1 being VERIFYING_FIRMWARE_SIGNATURE).

Suggested-by: Andy Lutomirski <luto@kernel.org>
Signed-off-by: David Howells <dhowells@redhat.com>
Reviewed-by: Marcel Holtmann <marcel@holtmann.org>
Reviewed-by: David Woodhouse <David.Woodhouse@intel.com>
2015-08-12 17:01:01 +01:00
David Howells 4c0b4b1d1a pefile: Parse the "Microsoft individual code signing" data blob
The PKCS#7 certificate should contain a "Microsoft individual code signing"
data blob as its signed content.  This blob contains a digest of the signed
content of the PE binary and the OID of the digest algorithm used (typically
SHA256).

Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: Vivek Goyal <vgoyal@redhat.com>
Reviewed-by: Kees Cook <keescook@chromium.org>
2014-07-09 14:58:37 +01:00
David Howells 2e3fadbf73 PKCS#7: Implement a parser [RFC 2315]
Implement a parser for a PKCS#7 signed-data message as described in part of
RFC 2315.

Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: Vivek Goyal <vgoyal@redhat.com>
Reviewed-by: Kees Cook <keescook@chromium.org>
2014-07-08 13:49:56 +01:00
David Howells 4f73175d03 X.509: Add utility functions to render OIDs as strings
Add a pair of utility functions to render OIDs as strings.  The first takes an
encoded OID and turns it into a "a.b.c.d" form string:

	int sprint_oid(const void *data, size_t datasize,
		       char *buffer, size_t bufsize);

The second takes an OID enum index and calls the first on the data held
therein:

	int sprint_OID(enum OID oid, char *buffer, size_t bufsize);

Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
2012-10-08 13:50:18 +10:30
David Howells a77ad6ea0b X.509: Implement simple static OID registry
Implement a simple static OID registry that allows the mapping of an encoded
OID to an enum value for ease of use.

The OID registry index enum appears in the:

	linux/oid_registry.h

header file.  A script generates the registry from lines in the header file
that look like:

	<sp*>OID_foo,<sp*>/*<sp*>1.2.3.4<sp*>*/

The actual OID is taken to be represented by the numbers with interpolated
dots in the comment.

All other lines in the header are ignored.

The registry is queries by calling:

	OID look_up_oid(const void *data, size_t datasize);

This returns a number from the registry enum representing the OID if found or
OID__NR if not.

Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
2012-10-08 13:50:18 +10:30