commit 3fe2895cfe upstream.
We have an application with a lot of threads that use a shared mmap backed
by tmpfs mounted with -o huge=within_size. This application started
leaking loads of huge pages when we upgraded to a recent kernel.
Using the page ref tracepoints and a BPF program written by Tejun Heo we
were able to determine that these pages would have multiple refcounts from
the page fault path, but when it came to unmap time we wouldn't drop the
number of refs we had added from the faults.
I wrote a reproducer that mmap'ed a file backed by tmpfs with -o
huge=always, and then spawned 20 threads all looping faulting random
offsets in this map, while using madvise(MADV_DONTNEED) randomly for huge
page aligned ranges. This very quickly reproduced the problem.
The problem here is that we check for the case that we have multiple
threads faulting in a range that was previously unmapped. One thread maps
the PMD, the other thread loses the race and then returns 0. However at
this point we already have the page, and we are no longer putting this
page into the processes address space, and so we leak the page. We
actually did the correct thing prior to f9ce0be71d, however it looks
like Kirill copied what we do in the anonymous page case. In the
anonymous page case we don't yet have a page, so we don't have to drop a
reference on anything. Previously we did the correct thing for file based
faults by returning VM_FAULT_NOPAGE so we correctly drop the reference on
the page we faulted in.
Fix this by returning VM_FAULT_NOPAGE in the pmd_devmap_trans_unstable()
case, this makes us drop the ref on the page properly, and now my
reproducer no longer leaks the huge pages.
[josef@toxicpanda.com: v2]
Link: https://lkml.kernel.org/r/e90c8f0dbae836632b669c2afc434006a00d4a67.1657721478.git.josef@toxicpanda.com
Link: https://lkml.kernel.org/r/2b798acfd95c9ab9395fe85e8d5a835e2e10a920.1657051137.git.josef@toxicpanda.com
Fixes: f9ce0be71d ("mm: Cleanup faultaround and finish_fault() codepaths")
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Rik van Riel <riel@surriel.com>
Signed-off-by: Chris Mason <clm@fb.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 14c99d6594 upstream.
Currently the implementation will split the PUD when a fallback is taken
inside the create_huge_pud function. This isn't where it should be done:
the splitting should be done in wp_huge_pud, just like it's done for PMDs.
Reason being that if a callback is taken during create, there is no PUD
yet so nothing to split, whereas if a fallback is taken when encountering
a write protection fault there is something to split.
It looks like this was the original intention with the commit where the
splitting was introduced, but somehow it got moved to the wrong place
between v1 and v2 of the patch series. Rebase mistake perhaps.
Link: https://lkml.kernel.org/r/6f48d622eb8bce1ae5dd75327b0b73894a2ec407.camel@amazon.com
Fixes: 327e9fd489 ("mm: Split huge pages on write-notify or COW")
Signed-off-by: James Gowans <jgowans@amazon.com>
Reviewed-by: Thomas Hellström <thomas.hellstrom@linux.intel.com>
Cc: Christian König <christian.koenig@amd.com>
Cc: Jan H. Schönherr <jschoenh@amazon.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit e763243cc6 upstream.
userfaultfd calls copy_huge_page_from_user() which does not do any cache
flushing for the target page. Then the target page will be mapped to
the user space with a different address (user address), which might have
an alias issue with the kernel address used to copy the data from the
user to.
Fix this issue by flushing dcache in copy_huge_page_from_user().
Link: https://lkml.kernel.org/r/20220210123058.79206-4-songmuchun@bytedance.com
Fixes: fa4d75c1de ("userfaultfd: hugetlbfs: add copy_huge_page_from_user for hugetlb userfaultfd support")
Signed-off-by: Muchun Song <songmuchun@bytedance.com>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Axel Rasmussen <axelrasmussen@google.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Fam Zheng <fam.zheng@bytedance.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Lars Persson <lars.persson@axis.com>
Cc: Peter Xu <peterx@redhat.com>
Cc: Xiongchun Duan <duanxiongchun@bytedance.com>
Cc: Zi Yan <ziy@nvidia.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 5abfd71d93 upstream.
Patch series "mm: Rework zap ptes on swap entries", v5.
Patch 1 should fix a long standing bug for zap_pte_range() on
zap_details usage. The risk is we could have some swap entries skipped
while we should have zapped them.
Migration entries are not the major concern because file backed memory
always zap in the pattern that "first time without page lock, then
re-zap with page lock" hence the 2nd zap will always make sure all
migration entries are already recovered.
However there can be issues with real swap entries got skipped
errornoously. There's a reproducer provided in commit message of patch
1 for that.
Patch 2-4 are cleanups that are based on patch 1. After the whole
patchset applied, we should have a very clean view of zap_pte_range().
Only patch 1 needs to be backported to stable if necessary.
This patch (of 4):
The "details" pointer shouldn't be the token to decide whether we should
skip swap entries.
For example, when the callers specified details->zap_mapping==NULL, it
means the user wants to zap all the pages (including COWed pages), then
we need to look into swap entries because there can be private COWed
pages that was swapped out.
Skipping some swap entries when details is non-NULL may lead to wrongly
leaving some of the swap entries while we should have zapped them.
A reproducer of the problem:
===8<===
#define _GNU_SOURCE /* See feature_test_macros(7) */
#include <stdio.h>
#include <assert.h>
#include <unistd.h>
#include <sys/mman.h>
#include <sys/types.h>
int page_size;
int shmem_fd;
char *buffer;
void main(void)
{
int ret;
char val;
page_size = getpagesize();
shmem_fd = memfd_create("test", 0);
assert(shmem_fd >= 0);
ret = ftruncate(shmem_fd, page_size * 2);
assert(ret == 0);
buffer = mmap(NULL, page_size * 2, PROT_READ | PROT_WRITE,
MAP_PRIVATE, shmem_fd, 0);
assert(buffer != MAP_FAILED);
/* Write private page, swap it out */
buffer[page_size] = 1;
madvise(buffer, page_size * 2, MADV_PAGEOUT);
/* This should drop private buffer[page_size] already */
ret = ftruncate(shmem_fd, page_size);
assert(ret == 0);
/* Recover the size */
ret = ftruncate(shmem_fd, page_size * 2);
assert(ret == 0);
/* Re-read the data, it should be all zero */
val = buffer[page_size];
if (val == 0)
printf("Good\n");
else
printf("BUG\n");
}
===8<===
We don't need to touch up the pmd path, because pmd never had a issue with
swap entries. For example, shmem pmd migration will always be split into
pte level, and same to swapping on anonymous.
Add another helper should_zap_cows() so that we can also check whether we
should zap private mappings when there's no page pointer specified.
This patch drops that trick, so we handle swap ptes coherently. Meanwhile
we should do the same check upon migration entry, hwpoison entry and
genuine swap entries too.
To be explicit, we should still remember to keep the private entries if
even_cows==false, and always zap them when even_cows==true.
The issue seems to exist starting from the initial commit of git.
[peterx@redhat.com: comment tweaks]
Link: https://lkml.kernel.org/r/20220217060746.71256-2-peterx@redhat.com
Link: https://lkml.kernel.org/r/20220217060746.71256-1-peterx@redhat.com
Link: https://lkml.kernel.org/r/20220216094810.60572-1-peterx@redhat.com
Link: https://lkml.kernel.org/r/20220216094810.60572-2-peterx@redhat.com
Fixes: 1da177e4c3 ("Linux-2.6.12-rc2")
Signed-off-by: Peter Xu <peterx@redhat.com>
Reviewed-by: John Hubbard <jhubbard@nvidia.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Alistair Popple <apopple@nvidia.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: "Kirill A . Shutemov" <kirill@shutemov.name>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Yang Shi <shy828301@gmail.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 3149c79f3c upstream.
In some cases it appears the invalidation of a hwpoisoned page fails
because the page is still mapped in another process. This can cause a
program to be continuously restarted and die when it page faults on the
page that was not invalidated. Avoid that problem by unmapping the
hwpoisoned page when we find it.
Another issue is that sometimes we end up oopsing in finish_fault, if
the code tries to do something with the now-NULL vmf->page. I did not
hit this error when submitting the previous patch because there are
several opportunities for alloc_set_pte to bail out before accessing
vmf->page, and that apparently happened on those systems, and most of
the time on other systems, too.
However, across several million systems that error does occur a handful
of times a day. It can be avoided by returning VM_FAULT_NOPAGE which
will cause do_read_fault to return before calling finish_fault.
Link: https://lkml.kernel.org/r/20220325161428.5068d97e@imladris.surriel.com
Fixes: e53ac7374e ("mm: invalidate hwpoison page cache page in fault path")
Signed-off-by: Rik van Riel <riel@surriel.com>
Reviewed-by: Miaohe Lin <linmiaohe@huawei.com>
Tested-by: Naoya Horiguchi <naoya.horiguchi@nec.com>
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit e53ac7374e upstream.
Sometimes the page offlining code can leave behind a hwpoisoned clean
page cache page. This can lead to programs being killed over and over
and over again as they fault in the hwpoisoned page, get killed, and
then get re-spawned by whatever wanted to run them.
This is particularly embarrassing when the page was offlined due to
having too many corrected memory errors. Now we are killing tasks due
to them trying to access memory that probably isn't even corrupted.
This problem can be avoided by invalidating the page from the page fault
handler, which already has a branch for dealing with these kinds of
pages. With this patch we simply pretend the page fault was successful
if the page was invalidated, return to userspace, incur another page
fault, read in the file from disk (to a new memory page), and then
everything works again.
Link: https://lkml.kernel.org/r/20220212213740.423efcea@imladris.surriel.com
Signed-off-by: Rik van Riel <riel@surriel.com>
Reviewed-by: Miaohe Lin <linmiaohe@huawei.com>
Acked-by: Naoya Horiguchi <naoya.horiguchi@nec.com>
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
When handling shmem page fault the THP with corrupted subpage could be
PMD mapped if certain conditions are satisfied. But kernel is supposed
to send SIGBUS when trying to map hwpoisoned page.
There are two paths which may do PMD map: fault around and regular
fault.
Before commit f9ce0be71d ("mm: Cleanup faultaround and finish_fault()
codepaths") the thing was even worse in fault around path. The THP
could be PMD mapped as long as the VMA fits regardless what subpage is
accessed and corrupted. After this commit as long as head page is not
corrupted the THP could be PMD mapped.
In the regular fault path the THP could be PMD mapped as long as the
corrupted page is not accessed and the VMA fits.
This loophole could be fixed by iterating every subpage to check if any
of them is hwpoisoned or not, but it is somewhat costly in page fault
path.
So introduce a new page flag called HasHWPoisoned on the first tail
page. It indicates the THP has hwpoisoned subpage(s). It is set if any
subpage of THP is found hwpoisoned by memory failure and after the
refcount is bumped successfully, then cleared when the THP is freed or
split.
The soft offline path doesn't need this since soft offline handler just
marks a subpage hwpoisoned when the subpage is migrated successfully.
But shmem THP didn't get split then migrated at all.
Link: https://lkml.kernel.org/r/20211020210755.23964-3-shy828301@gmail.com
Fixes: 800d8c63b2 ("shmem: add huge pages support")
Signed-off-by: Yang Shi <shy828301@gmail.com>
Reviewed-by: Naoya Horiguchi <naoya.horiguchi@nec.com>
Suggested-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Peter Xu <peterx@redhat.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Fix the coherency management of mmap'd data such that 3rd-party changes
become visible as soon as possible after the callback notification is
delivered by the fileserver. This is done by the following means:
(1) When we break a callback on a vnode specified by the CB.CallBack call
from the server, we queue a work item (vnode->cb_work) to go and
clobber all the PTEs mapping to that inode.
This causes the CPU to trip through the ->map_pages() and
->page_mkwrite() handlers if userspace attempts to access the page(s)
again.
(Ideally, this would be done in the service handler for CB.CallBack,
but the server is waiting for our reply before considering, and we
have a list of vnodes, all of which need breaking - and the process of
getting the mmap_lock and stripping the PTEs on all CPUs could be
quite slow.)
(2) Call afs_validate() from the ->map_pages() handler to check to see if
the file has changed and to get a new callback promise from the
server.
Also handle the fileserver telling us that it's dropping all callbacks,
possibly after it's been restarted by sending us a CB.InitCallBackState*
call by the following means:
(3) Maintain a per-cell list of afs files that are currently mmap'd
(cell->fs_open_mmaps).
(4) Add a work item to each server that is invoked if there are any open
mmaps when CB.InitCallBackState happens. This work item goes through
the aforementioned list and invokes the vnode->cb_work work item for
each one that is currently using this server.
This causes the PTEs to be cleared, causing ->map_pages() or
->page_mkwrite() to be called again, thereby calling afs_validate()
again.
I've chosen to simply strip the PTEs at the point of notification reception
rather than invalidate all the pages as well because (a) it's faster, (b)
we may get a notification for other reasons than the data being altered (in
which case we don't want to clobber the pagecache) and (c) we need to ask
the server to find out - and I don't want to wait for the reply before
holding up userspace.
This was tested using the attached test program:
#include <stdbool.h>
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <fcntl.h>
#include <sys/mman.h>
int main(int argc, char *argv[])
{
size_t size = getpagesize();
unsigned char *p;
bool mod = (argc == 3);
int fd;
if (argc != 2 && argc != 3) {
fprintf(stderr, "Format: %s <file> [mod]\n", argv[0]);
exit(2);
}
fd = open(argv[1], mod ? O_RDWR : O_RDONLY);
if (fd < 0) {
perror(argv[1]);
exit(1);
}
p = mmap(NULL, size, mod ? PROT_READ|PROT_WRITE : PROT_READ,
MAP_SHARED, fd, 0);
if (p == MAP_FAILED) {
perror("mmap");
exit(1);
}
for (;;) {
if (mod) {
p[0]++;
msync(p, size, MS_ASYNC);
fsync(fd);
}
printf("%02x", p[0]);
fflush(stdout);
sleep(1);
}
}
It runs in two modes: in one mode, it mmaps a file, then sits in a loop
reading the first byte, printing it and sleeping for a second; in the
second mode it mmaps a file, then sits in a loop incrementing the first
byte and flushing, then printing and sleeping.
Two instances of this program can be run on different machines, one doing
the reading and one doing the writing. The reader should see the changes
made by the writer, but without this patch, they aren't because validity
checking is being done lazily - only on entry to the filesystem.
Testing the InitCallBackState change is more complicated. The server has
to be taken offline, the saved callback state file removed and then the
server restarted whilst the reading-mode program continues to run. The
client machine then has to poke the server to trigger the InitCallBackState
call.
Signed-off-by: David Howells <dhowells@redhat.com>
Tested-by: Markus Suvanto <markus.suvanto@gmail.com>
cc: linux-afs@lists.infradead.org
Link: https://lore.kernel.org/r/163111668833.283156.382633263709075739.stgit@warthog.procyon.org.uk/
Commit 63f3655f95 ("mm, memcg: fix reclaim deadlock with writeback")
fix the following ABBA deadlock by pre-allocating the pte page table
without holding the page lock.
lock_page(A)
SetPageWriteback(A)
unlock_page(A)
lock_page(B)
lock_page(B)
pte_alloc_one
shrink_page_list
wait_on_page_writeback(A)
SetPageWriteback(B)
unlock_page(B)
# flush A, B to clear the writeback
Commit f9ce0be71d ("mm: Cleanup faultaround and finish_fault()
codepaths") reworked the relevant code but ignored this race. This will
cause the deadlock above to appear again, so fix it.
Link: https://lkml.kernel.org/r/20210721074849.57004-1-zhengqi.arch@bytedance.com
Fixes: f9ce0be71d ("mm: Cleanup faultaround and finish_fault() codepaths")
Signed-off-by: Qi Zheng <zhengqi.arch@bytedance.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Muchun Song <songmuchun@bytedance.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Some devices require exclusive write access to shared virtual memory (SVM)
ranges to perform atomic operations on that memory. This requires CPU
page tables to be updated to deny access whilst atomic operations are
occurring.
In order to do this introduce a new swap entry type
(SWP_DEVICE_EXCLUSIVE). When a SVM range needs to be marked for exclusive
access by a device all page table mappings for the particular range are
replaced with device exclusive swap entries. This causes any CPU access
to the page to result in a fault.
Faults are resovled by replacing the faulting entry with the original
mapping. This results in MMU notifiers being called which a driver uses
to update access permissions such as revoking atomic access. After
notifiers have been called the device will no longer have exclusive access
to the region.
Walking of the page tables to find the target pages is handled by
get_user_pages() rather than a direct page table walk. A direct page
table walk similar to what migrate_vma_collect()/unmap() does could also
have been utilised. However this resulted in more code similar in
functionality to what get_user_pages() provides as page faulting is
required to make the PTEs present and to break COW.
[dan.carpenter@oracle.com: fix signedness bug in make_device_exclusive_range()]
Link: https://lkml.kernel.org/r/YNIz5NVnZ5GiZ3u1@mwanda
Link: https://lkml.kernel.org/r/20210616105937.23201-8-apopple@nvidia.com
Signed-off-by: Alistair Popple <apopple@nvidia.com>
Signed-off-by: Dan Carpenter <dan.carpenter@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Cc: Ben Skeggs <bskeggs@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Jason Gunthorpe <jgg@nvidia.com>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: "Matthew Wilcox (Oracle)" <willy@infradead.org>
Cc: Peter Xu <peterx@redhat.com>
Cc: Ralph Campbell <rcampbell@nvidia.com>
Cc: Shakeel Butt <shakeelb@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Currently if copy_nonpresent_pte() returns a non-zero value it is assumed
to be a swap entry which requires further processing outside the loop in
copy_pte_range() after dropping locks. This prevents other values being
returned to signal conditions such as failure which a subsequent change
requires.
Instead make copy_nonpresent_pte() return an error code if further
processing is required and read the value for the swap entry in the main
loop under the ptl.
Link: https://lkml.kernel.org/r/20210616105937.23201-7-apopple@nvidia.com
Signed-off-by: Alistair Popple <apopple@nvidia.com>
Reviewed-by: Peter Xu <peterx@redhat.com>
Cc: Ben Skeggs <bskeggs@redhat.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Hugh Dickins <hughd@google.com>
Cc: Jason Gunthorpe <jgg@nvidia.com>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: "Matthew Wilcox (Oracle)" <willy@infradead.org>
Cc: Ralph Campbell <rcampbell@nvidia.com>
Cc: Shakeel Butt <shakeelb@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Both migration and device private pages use special swap entries that are
manipluated by a range of inline functions. The arguments to these are
somewhat inconsistent so rework them to remove flag type arguments and to
make the arguments similar for both read and write entry creation.
Link: https://lkml.kernel.org/r/20210616105937.23201-3-apopple@nvidia.com
Signed-off-by: Alistair Popple <apopple@nvidia.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Jason Gunthorpe <jgg@nvidia.com>
Reviewed-by: Ralph Campbell <rcampbell@nvidia.com>
Cc: Ben Skeggs <bskeggs@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: "Matthew Wilcox (Oracle)" <willy@infradead.org>
Cc: Peter Xu <peterx@redhat.com>
Cc: Shakeel Butt <shakeelb@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Patch series "Add support for SVM atomics in Nouveau", v11.
Introduction
============
Some devices have features such as atomic PTE bits that can be used to
implement atomic access to system memory. To support atomic operations to
a shared virtual memory page such a device needs access to that page which
is exclusive of the CPU. This series introduces a mechanism to
temporarily unmap pages granting exclusive access to a device.
These changes are required to support OpenCL atomic operations in Nouveau
to shared virtual memory (SVM) regions allocated with the
CL_MEM_SVM_ATOMICS clSVMAlloc flag. A more complete description of the
OpenCL SVM feature is available at
https://www.khronos.org/registry/OpenCL/specs/3.0-unified/html/
OpenCL_API.html#_shared_virtual_memory .
Implementation
==============
Exclusive device access is implemented by adding a new swap entry type
(SWAP_DEVICE_EXCLUSIVE) which is similar to a migration entry. The main
difference is that on fault the original entry is immediately restored by
the fault handler instead of waiting.
Restoring the entry triggers calls to MMU notifers which allows a device
driver to revoke the atomic access permission from the GPU prior to the
CPU finalising the entry.
Patches
=======
Patches 1 & 2 refactor existing migration and device private entry
functions.
Patches 3 & 4 rework try_to_unmap_one() by splitting out unrelated
functionality into separate functions - try_to_migrate_one() and
try_to_munlock_one().
Patch 5 renames some existing code but does not introduce functionality.
Patch 6 is a small clean-up to swap entry handling in copy_pte_range().
Patch 7 contains the bulk of the implementation for device exclusive
memory.
Patch 8 contains some additions to the HMM selftests to ensure everything
works as expected.
Patch 9 is a cleanup for the Nouveau SVM implementation.
Patch 10 contains the implementation of atomic access for the Nouveau
driver.
Testing
=======
This has been tested with upstream Mesa 21.1.0 and a simple OpenCL program
which checks that GPU atomic accesses to system memory are atomic.
Without this series the test fails as there is no way of write-protecting
the page mapping which results in the device clobbering CPU writes. For
reference the test is available at
https://ozlabs.org/~apopple/opencl_svm_atomics/
Further testing has been performed by adding support for testing exclusive
access to the hmm-tests kselftests.
This patch (of 10):
Remove multiple similar inline functions for dealing with different types
of special swap entries.
Both migration and device private swap entries use the swap offset to
store a pfn. Instead of multiple inline functions to obtain a struct page
for each swap entry type use a common function pfn_swap_entry_to_page().
Also open-code the various entry_to_pfn() functions as this results is
shorter code that is easier to understand.
Link: https://lkml.kernel.org/r/20210616105937.23201-1-apopple@nvidia.com
Link: https://lkml.kernel.org/r/20210616105937.23201-2-apopple@nvidia.com
Signed-off-by: Alistair Popple <apopple@nvidia.com>
Reviewed-by: Ralph Campbell <rcampbell@nvidia.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Cc: "Matthew Wilcox (Oracle)" <willy@infradead.org>
Cc: Hugh Dickins <hughd@google.com>
Cc: Peter Xu <peterx@redhat.com>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Ben Skeggs <bskeggs@redhat.com>
Cc: Jason Gunthorpe <jgg@nvidia.com>
Cc: John Hubbard <jhubbard@nvidia.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The numa_migrate_prep() will be used by huge NUMA fault as well in the
following patch, make it non-static.
Link: https://lkml.kernel.org/r/20210518200801.7413-3-shy828301@gmail.com
Signed-off-by: Yang Shi <shy828301@gmail.com>
Acked-by: Mel Gorman <mgorman@suse.de>
Cc: Christian Borntraeger <borntraeger@de.ibm.com>
Cc: Gerald Schaefer <gerald.schaefer@linux.ibm.com>
Cc: Heiko Carstens <hca@linux.ibm.com>
Cc: Huang Ying <ying.huang@intel.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Vasily Gorbik <gor@linux.ibm.com>
Cc: Zi Yan <ziy@nvidia.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Pach series "mm: thp: use generic THP migration for NUMA hinting fault", v3.
When the THP NUMA fault support was added THP migration was not supported
yet. So the ad hoc THP migration was implemented in NUMA fault handling.
Since v4.14 THP migration has been supported so it doesn't make too much
sense to still keep another THP migration implementation rather than using
the generic migration code. It is definitely a maintenance burden to keep
two THP migration implementation for different code paths and it is more
error prone. Using the generic THP migration implementation allows us
remove the duplicate code and some hacks needed by the old ad hoc
implementation.
A quick grep shows x86_64, PowerPC (book3s), ARM64 ans S390 support both
THP and NUMA balancing. The most of them support THP migration except for
S390. Zi Yan tried to add THP migration support for S390 before but it
was not accepted due to the design of S390 PMD. For the discussion,
please see: https://lkml.org/lkml/2018/4/27/953.
Per the discussion with Gerald Schaefer in v1 it is acceptible to skip
huge PMD for S390 for now.
I saw there were some hacks about gup from git history, but I didn't
figure out if they have been removed or not since I just found FOLL_NUMA
code in the current gup implementation and they seems useful.
Patch #1 ~ #2 are preparation patches.
Patch #3 is the real meat.
Patch #4 ~ #6 keep consistent counters and behaviors with before.
Patch #7 skips change huge PMD to prot_none if thp migration is not supported.
Test
----
Did some tests to measure the latency of do_huge_pmd_numa_page. The test
VM has 80 vcpus and 64G memory. The test would create 2 processes to
consume 128G memory together which would incur memory pressure to cause
THP splits. And it also creates 80 processes to hog cpu, and the memory
consumer processes are bound to different nodes periodically in order to
increase NUMA faults.
The below test script is used:
echo 3 > /proc/sys/vm/drop_caches
# Run stress-ng for 24 hours
./stress-ng/stress-ng --vm 2 --vm-bytes 64G --timeout 24h &
PID=$!
./stress-ng/stress-ng --cpu $NR_CPUS --timeout 24h &
# Wait for vm stressors forked
sleep 5
PID_1=`pgrep -P $PID | awk 'NR == 1'`
PID_2=`pgrep -P $PID | awk 'NR == 2'`
JOB1=`pgrep -P $PID_1`
JOB2=`pgrep -P $PID_2`
# Bind load jobs to different nodes periodically to force generate
# cross node memory access
while [ -d "/proc/$PID" ]
do
taskset -apc 8 $JOB1
taskset -apc 8 $JOB2
sleep 300
taskset -apc 58 $JOB1
taskset -apc 58 $JOB2
sleep 300
done
With the above test the histogram of latency of do_huge_pmd_numa_page is
as shown below. Since the number of do_huge_pmd_numa_page varies
drastically for each run (should be due to scheduler), so I converted the
raw number to percentage.
patched base
@us[stress-ng]:
[0] 3.57% 0.16%
[1] 55.68% 18.36%
[2, 4) 10.46% 40.44%
[4, 8) 7.26% 17.82%
[8, 16) 21.12% 13.41%
[16, 32) 1.06% 4.27%
[32, 64) 0.56% 4.07%
[64, 128) 0.16% 0.35%
[128, 256) < 0.1% < 0.1%
[256, 512) < 0.1% < 0.1%
[512, 1K) < 0.1% < 0.1%
[1K, 2K) < 0.1% < 0.1%
[2K, 4K) < 0.1% < 0.1%
[4K, 8K) < 0.1% < 0.1%
[8K, 16K) < 0.1% < 0.1%
[16K, 32K) < 0.1% < 0.1%
[32K, 64K) < 0.1% < 0.1%
Per the result, patched kernel is even slightly better than the base
kernel. I think this is because the lock contention against THP split is
less than base kernel due to the refactor.
To exclude the affect from THP split, I also did test w/o memory pressure.
No obvious regression is spotted. The below is the test result *w/o*
memory pressure.
patched base
@us[stress-ng]:
[0] 7.97% 18.4%
[1] 69.63% 58.24%
[2, 4) 4.18% 2.63%
[4, 8) 0.22% 0.17%
[8, 16) 1.03% 0.92%
[16, 32) 0.14% < 0.1%
[32, 64) < 0.1% < 0.1%
[64, 128) < 0.1% < 0.1%
[128, 256) < 0.1% < 0.1%
[256, 512) 0.45% 1.19%
[512, 1K) 15.45% 17.27%
[1K, 2K) < 0.1% < 0.1%
[2K, 4K) < 0.1% < 0.1%
[4K, 8K) < 0.1% < 0.1%
[8K, 16K) 0.86% 0.88%
[16K, 32K) < 0.1% 0.15%
[32K, 64K) < 0.1% < 0.1%
[64K, 128K) < 0.1% < 0.1%
[128K, 256K) < 0.1% < 0.1%
The series also survived a series of tests that exercise NUMA balancing
migrations by Mel.
This patch (of 7):
Add orig_pmd to struct vm_fault so the "orig_pmd" parameter used by huge
page fault could be removed, just like its PTE counterpart does.
Link: https://lkml.kernel.org/r/20210518200801.7413-1-shy828301@gmail.com
Link: https://lkml.kernel.org/r/20210518200801.7413-2-shy828301@gmail.com
Signed-off-by: Yang Shi <shy828301@gmail.com>
Acked-by: Mel Gorman <mgorman@suse.de>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Zi Yan <ziy@nvidia.com>
Cc: Huang Ying <ying.huang@intel.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Gerald Schaefer <gerald.schaefer@linux.ibm.com>
Cc: Heiko Carstens <hca@linux.ibm.com>
Cc: Vasily Gorbik <gor@linux.ibm.com>
Cc: Christian Borntraeger <borntraeger@de.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This patch allows shmem-backed VMAs to be registered for minor faults.
Minor faults are appropriately relayed to userspace in the fault path, for
VMAs with the relevant flag.
This commit doesn't hook up the UFFDIO_CONTINUE ioctl for shmem-backed
minor faults, though, so userspace doesn't yet have a way to resolve such
faults.
Because of this, we also don't yet advertise this as a supported feature.
That will be done in a separate commit when the feature is fully
implemented.
Link: https://lkml.kernel.org/r/20210503180737.2487560-4-axelrasmussen@google.com
Signed-off-by: Axel Rasmussen <axelrasmussen@google.com>
Acked-by: Peter Xu <peterx@redhat.com>
Acked-by: Hugh Dickins <hughd@google.com>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Brian Geffon <bgeffon@google.com>
Cc: "Dr . David Alan Gilbert" <dgilbert@redhat.com>
Cc: Jerome Glisse <jglisse@redhat.com>
Cc: Joe Perches <joe@perches.com>
Cc: Kirill A. Shutemov <kirill@shutemov.name>
Cc: Lokesh Gidra <lokeshgidra@google.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Mike Rapoport <rppt@linux.vnet.ibm.com>
Cc: Mina Almasry <almasrymina@google.com>
Cc: Oliver Upton <oupton@google.com>
Cc: Shaohua Li <shli@fb.com>
Cc: Shuah Khan <shuah@kernel.org>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Cc: Wang Qing <wangqing@vivo.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
We tried to do something similar in b569a17607 ("userfaultfd: wp: drop
_PAGE_UFFD_WP properly when fork") previously, but it's not doing it all
right.. A few fixes around the code path:
1. We were referencing VM_UFFD_WP vm_flags on the _old_ vma rather
than the new vma. That's overlooked in b569a17607, so it won't work
as expected. Thanks to the recent rework on fork code
(7a4830c380), we can easily get the new vma now, so switch the
checks to that.
2. Dropping the uffd-wp bit in copy_huge_pmd() could be wrong if the
huge pmd is a migration huge pmd. When it happens, instead of using
pmd_uffd_wp(), we should use pmd_swp_uffd_wp(). The fix is simply to
handle them separately.
3. Forget to carry over uffd-wp bit for a write migration huge pmd
entry. This also happens in copy_huge_pmd(), where we converted a
write huge migration entry into a read one.
4. In copy_nonpresent_pte(), drop uffd-wp if necessary for swap ptes.
5. In copy_present_page() when COW is enforced when fork(), we also
need to pass over the uffd-wp bit if VM_UFFD_WP is armed on the new
vma, and when the pte to be copied has uffd-wp bit set.
Remove the comment in copy_present_pte() about this. It won't help a huge
lot to only comment there, but comment everywhere would be an overkill.
Let's assume the commit messages would help.
[peterx@redhat.com: fix a few thp pmd missing uffd-wp bit]
Link: https://lkml.kernel.org/r/20210428225030.9708-4-peterx@redhat.com
Link: https://lkml.kernel.org/r/20210428225030.9708-3-peterx@redhat.com
Fixes: b569a17607 ("userfaultfd: wp: drop _PAGE_UFFD_WP properly when fork")
Signed-off-by: Peter Xu <peterx@redhat.com>
Cc: Jerome Glisse <jglisse@redhat.com>
Cc: Mike Rapoport <rppt@linux.vnet.ibm.com>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Axel Rasmussen <axelrasmussen@google.com>
Cc: Brian Geffon <bgeffon@google.com>
Cc: "Dr . David Alan Gilbert" <dgilbert@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Joe Perches <joe@perches.com>
Cc: Kirill A. Shutemov <kirill@shutemov.name>
Cc: Lokesh Gidra <lokeshgidra@google.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Mina Almasry <almasrymina@google.com>
Cc: Oliver Upton <oupton@google.com>
Cc: Shaohua Li <shli@fb.com>
Cc: Shuah Khan <shuah@kernel.org>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Cc: Wang Qing <wangqing@vivo.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
After removal of DISCINTIGMEM the NEED_MULTIPLE_NODES and NUMA
configuration options are equivalent.
Drop CONFIG_NEED_MULTIPLE_NODES and use CONFIG_NUMA instead.
Done with
$ sed -i 's/CONFIG_NEED_MULTIPLE_NODES/CONFIG_NUMA/' \
$(git grep -wl CONFIG_NEED_MULTIPLE_NODES)
$ sed -i 's/NEED_MULTIPLE_NODES/NUMA/' \
$(git grep -wl NEED_MULTIPLE_NODES)
with manual tweaks afterwards.
[rppt@linux.ibm.com: fix arm boot crash]
Link: https://lkml.kernel.org/r/YMj9vHhHOiCVN4BF@linux.ibm.com
Link: https://lkml.kernel.org/r/20210608091316.3622-9-rppt@kernel.org
Signed-off-by: Mike Rapoport <rppt@linux.ibm.com>
Acked-by: Arnd Bergmann <arnd@arndb.de>
Acked-by: David Hildenbrand <david@redhat.com>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: Ivan Kokshaysky <ink@jurassic.park.msu.ru>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Matt Turner <mattst88@gmail.com>
Cc: Richard Henderson <rth@twiddle.net>
Cc: Vineet Gupta <vgupta@synopsys.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Use vma_lookup() to find the VMA at a specific address. As vma_lookup()
will return NULL if the address is not within any VMA, the start address
no longer needs to be validated.
Link: https://lkml.kernel.org/r/20210521174745.2219620-22-Liam.Howlett@Oracle.com
Signed-off-by: Liam R. Howlett <Liam.Howlett@Oracle.com>
Reviewed-by: Laurent Dufour <ldufour@linux.ibm.com>
Acked-by: David Hildenbrand <david@redhat.com>
Acked-by: Davidlohr Bueso <dbueso@suse.de>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Fix the return value in comment of finish_mkwrite_fault().
Link: https://lkml.kernel.org/r/20210513093931.15234-1-liu.xiang@zlingsmart.com
Signed-off-by: Liu Xiang <liu.xiang@zlingsmart.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
With commit 09854ba94c ("mm: do_wp_page() simplification"), after COW,
the idle swap cache page (neither the page nor the corresponding swap
entry is mapped by any process) will be left in the LRU list, even if it's
in the active list or the head of the inactive list. So, the page
reclaimer may take quite some overhead to reclaim these actually unused
pages.
To help the page reclaiming, in this patch, after COW, the idle swap cache
page will be tried to be freed. To avoid to introduce much overhead to
the hot COW code path,
a) there's almost zero overhead for non-swap case via checking
PageSwapCache() firstly.
b) the page lock is acquired via trylock only.
To test the patch, we used pmbench memory accessing benchmark with
working-set larger than available memory on a 2-socket Intel server with a
NVMe SSD as swap device. Test results shows that the pmbench score
increases up to 23.8% with the decreased size of swap cache and swapin
throughput.
Link: https://lkml.kernel.org/r/20210601053143.1380078-1-ying.huang@intel.com
Signed-off-by: "Huang, Ying" <ying.huang@intel.com>
Suggested-by: Johannes Weiner <hannes@cmpxchg.org> [use free_swap_cache()]
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Hugh Dickins <hughd@google.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Peter Xu <peterx@redhat.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Rik van Riel <riel@surriel.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Tim Chen <tim.c.chen@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When I was investigating the swap code, I found the below possible race
window:
CPU 1 CPU 2
----- -----
do_swap_page
if (data_race(si->flags & SWP_SYNCHRONOUS_IO)
swap_readpage
if (data_race(sis->flags & SWP_FS_OPS)) {
swapoff
..
p->swap_file = NULL;
..
struct file *swap_file = sis->swap_file;
struct address_space *mapping = swap_file->f_mapping;[oops!]
Note that for the pages that are swapped in through swap cache, this isn't
an issue. Because the page is locked, and the swap entry will be marked
with SWAP_HAS_CACHE, so swapoff() can not proceed until the page has been
unlocked.
Fix this race by using get/put_swap_device() to guard against concurrent
swapoff.
Link: https://lkml.kernel.org/r/20210426123316.806267-3-linmiaohe@huawei.com
Fixes: 0bcac06f27 ("mm,swap: skip swapcache for swapin of synchronous device")
Signed-off-by: Miaohe Lin <linmiaohe@huawei.com>
Reviewed-by: "Huang, Ying" <ying.huang@intel.com>
Cc: Alex Shi <alexs@kernel.org>
Cc: David Hildenbrand <david@redhat.com>
Cc: Dennis Zhou <dennis@kernel.org>
Cc: Hugh Dickins <hughd@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Tim Chen <tim.c.chen@linux.intel.com>
Cc: Wei Yang <richard.weiyang@gmail.com>
Cc: Yang Shi <shy828301@gmail.com>
Cc: Yu Zhao <yuzhao@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
There is a race between THP unmapping and truncation, when truncate sees
pmd_none() and skips the entry, after munmap's zap_huge_pmd() cleared
it, but before its page_remove_rmap() gets to decrement
compound_mapcount: generating false "BUG: Bad page cache" reports that
the page is still mapped when deleted. This commit fixes that, but not
in the way I hoped.
The first attempt used try_to_unmap(page, TTU_SYNC|TTU_IGNORE_MLOCK)
instead of unmap_mapping_range() in truncate_cleanup_page(): it has
often been an annoyance that we usually call unmap_mapping_range() with
no pages locked, but there apply it to a single locked page.
try_to_unmap() looks more suitable for a single locked page.
However, try_to_unmap_one() contains a VM_BUG_ON_PAGE(!pvmw.pte,page):
it is used to insert THP migration entries, but not used to unmap THPs.
Copy zap_huge_pmd() and add THP handling now? Perhaps, but their TLB
needs are different, I'm too ignorant of the DAX cases, and couldn't
decide how far to go for anon+swap. Set that aside.
The second attempt took a different tack: make no change in truncate.c,
but modify zap_huge_pmd() to insert an invalidated huge pmd instead of
clearing it initially, then pmd_clear() between page_remove_rmap() and
unlocking at the end. Nice. But powerpc blows that approach out of the
water, with its serialize_against_pte_lookup(), and interesting pgtable
usage. It would need serious help to get working on powerpc (with a
minor optimization issue on s390 too). Set that aside.
Just add an "if (page_mapped(page)) synchronize_rcu();" or other such
delay, after unmapping in truncate_cleanup_page()? Perhaps, but though
that's likely to reduce or eliminate the number of incidents, it would
give less assurance of whether we had identified the problem correctly.
This successful iteration introduces "unmap_mapping_page(page)" instead
of try_to_unmap(), and goes the usual unmap_mapping_range_tree() route,
with an addition to details. Then zap_pmd_range() watches for this
case, and does spin_unlock(pmd_lock) if so - just like
page_vma_mapped_walk() now does in the PVMW_SYNC case. Not pretty, but
safe.
Note that unmap_mapping_page() is doing a VM_BUG_ON(!PageLocked) to
assert its interface; but currently that's only used to make sure that
page->mapping is stable, and zap_pmd_range() doesn't care if the page is
locked or not. Along these lines, in invalidate_inode_pages2_range()
move the initial unmap_mapping_range() out from under page lock, before
then calling unmap_mapping_page() under page lock if still mapped.
Link: https://lkml.kernel.org/r/a2a4a148-cdd8-942c-4ef8-51b77f643dbe@google.com
Fixes: fc127da085 ("truncate: handle file thp")
Signed-off-by: Hugh Dickins <hughd@google.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Reviewed-by: Yang Shi <shy828301@gmail.com>
Cc: Alistair Popple <apopple@nvidia.com>
Cc: Jan Kara <jack@suse.cz>
Cc: Jue Wang <juew@google.com>
Cc: "Matthew Wilcox (Oracle)" <willy@infradead.org>
Cc: Miaohe Lin <linmiaohe@huawei.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Naoya Horiguchi <naoya.horiguchi@nec.com>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Peter Xu <peterx@redhat.com>
Cc: Ralph Campbell <rcampbell@nvidia.com>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Wang Yugui <wangyugui@e16-tech.com>
Cc: Zi Yan <ziy@nvidia.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This reverts commit f685a533a7.
The MIPS cache flush logic needs to know whether the mapping was already
established to decide how to flush caches. This is done by checking the
valid bit in the PTE. The commit above breaks this logic by setting the
valid in the PTE in new mappings, which causes kernel crashes.
Link: https://lkml.kernel.org/r/20210526094335.92948-1-tsbogend@alpha.franken.de
Fixes: f685a533a7 ("MIPS: make userspace mapping young by default")
Reported-by: Zhou Yanjie <zhouyanjie@wanyeetech.com>
Signed-off-by: Thomas Bogendoerfer <tsbogend@alpha.franken.de>
Cc: Huang Pei <huangpei@loongson.cn>
Cc: Nicholas Piggin <npiggin@gmail.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When I was implementing a latency analyzer tool by using task->delays
and other things, I found an issue in delayacct. The issue is it should
clear the target's flag instead of current's in delayacct_blkio_end().
When I git blame delayacct, I found there're some similar issues we have
fixed in delayacct_blkio_end().
- Commit c96f5471ce ("delayacct: Account blkio completion on the
correct task") fixed the issue that it should account blkio
completion on the target task instead of current.
- Commit b512719f77 ("delayacct: fix crash in delayacct_blkio_end()
after delayacct init failure") fixed the issue that it should check
target task's delays instead of current task'.
It seems that delayacct_blkio_{begin, end} are error prone.
So I introduce a new paratmeter - the target task 'p' - to these
helpers. After that change, the callsite will specifilly set the right
task, which should make it less error prone.
Link: https://lkml.kernel.org/r/20210414083720.24083-1-laoar.shao@gmail.com
Signed-off-by: Yafang Shao <laoar.shao@gmail.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Josh Snyder <joshs@netflix.com>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
apply_to_pte_range might mistake a large pte for bad, or treat it as a
page table, resulting in a crash or corruption. Add a test to warn and
return error if large entries are found.
Link: https://lkml.kernel.org/r/20210317062402.533919-4-npiggin@gmail.com
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Reviewed-by: Miaohe Lin <linmiaohe@huawei.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Ding Tianhong <dingtianhong@huawei.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Russell King <linux@armlinux.org.uk>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Uladzislau Rezki (Sony) <urezki@gmail.com>
Cc: Will Deacon <will@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
With NUMA balancing, in hint page fault handler, the faulting page will be
migrated to the accessing node if necessary. During the migration, TLB
will be shot down on all CPUs that the process has run on recently.
Because in the hint page fault handler, the PTE will be made accessible
before the migration is tried. The overhead of TLB shooting down can be
high, so it's better to be avoided if possible. In fact, if we delay
mapping the page until migration, that can be avoided. This is what this
patch doing.
For the multiple threads applications, it's possible that a page is
accessed by multiple threads almost at the same time. In the original
implementation, because the first thread will install the accessible PTE
before migrating the page, the other threads may access the page directly
before the page is made inaccessible again during migration. While with
the patch, the second thread will go through the page fault handler too.
And because of the PageLRU() checking in the following code path,
migrate_misplaced_page()
numamigrate_isolate_page()
isolate_lru_page()
the migrate_misplaced_page() will return 0, and the PTE will be made
accessible in the second thread.
This will introduce a little more overhead. But we think the possibility
for a page to be accessed by the multiple threads at the same time is low,
and the overhead difference isn't too large. If this becomes a problem in
some workloads, we need to consider how to reduce the overhead.
To test the patch, we run a test case as follows on a 2-socket Intel
server (1 NUMA node per socket) with 128GB DRAM (64GB per socket).
1. Run a memory eater on NUMA node 1 to use 40GB memory before running
pmbench.
2. Run pmbench (normal accessing pattern) with 8 processes, and 8
threads per process, so there are 64 threads in total. The
working-set size of each process is 8960MB, so the total working-set
size is 8 * 8960MB = 70GB. The CPU of all pmbench processes is bound
to node 1. The pmbench processes will access some DRAM on node 0.
3. After the pmbench processes run for 10 seconds, kill the memory
eater. Now, some pages will be migrated from node 0 to node 1 via
NUMA balancing.
Test results show that, with the patch, the pmbench throughput (page
accesses/s) increases 5.5%. The number of the TLB shootdowns interrupts
reduces 98% (from ~4.7e7 to ~9.7e5) with about 9.2e6 pages (35.8GB)
migrated. From the perf profile, it can be found that the CPU cycles
spent by try_to_unmap() and its callees reduces from 6.02% to 0.47%. That
is, the CPU cycles spent by TLB shooting down decreases greatly.
Link: https://lkml.kernel.org/r/20210408132236.1175607-1-ying.huang@intel.com
Signed-off-by: "Huang, Ying" <ying.huang@intel.com>
Reviewed-by: Mel Gorman <mgorman@suse.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Peter Xu <peterx@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: "Matthew Wilcox" <willy@infradead.org>
Cc: Will Deacon <will@kernel.org>
Cc: Michel Lespinasse <walken@google.com>
Cc: Arjun Roy <arjunroy@google.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Patch series "add remap_pfn_range_notrack instead of reinventing it in i915", v2.
i915 has some reason to want to avoid the track_pfn_remap overhead in
remap_pfn_range. Add a function to the core VM to do just that rather
than reinventing the functionality poorly in the driver.
Note that the remap_io_sg path does get exercises when using Xorg on my
Thinkpad X1, so this should be considered lightly tested, I've not managed
to hit the remap_io_mapping path at all.
This patch (of 4):
Add a version of remap_pfn_range that does not call track_pfn_range. This
will be used to fix horrible abuses of VM internals in the i915 driver.
Link: https://lkml.kernel.org/r/20210326055505.1424432-1-hch@lst.de
Link: https://lkml.kernel.org/r/20210326055505.1424432-2-hch@lst.de
Signed-off-by: Christoph Hellwig <hch@lst.de>
Acked-by: Daniel Vetter <daniel.vetter@ffwll.ch>
Cc: Jani Nikula <jani.nikula@linux.intel.com>
Cc: Joonas Lahtinen <joonas.lahtinen@linux.intel.com>
Cc: Rodrigo Vivi <rodrigo.vivi@intel.com>
Cc: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Currently the kernel adds the page, allocated for swapin, to the
swapcache before charging the page. This is fine but now we want a
per-memcg swapcache stat which is essential for folks who wants to
transparently migrate from cgroup v1's memsw to cgroup v2's memory and
swap counters. In addition charging a page before exposing it to other
parts of the kernel is a step in the right direction.
To correctly maintain the per-memcg swapcache stat, this patch has
adopted to charge the page before adding it to swapcache. One challenge
in this option is the failure case of add_to_swap_cache() on which we
need to undo the mem_cgroup_charge(). Specifically undoing
mem_cgroup_uncharge_swap() is not simple.
To resolve the issue, this patch decouples the charging for swapin pages
from mem_cgroup_charge(). Two new functions are introduced,
mem_cgroup_swapin_charge_page() for just charging the swapin page and
mem_cgroup_swapin_uncharge_swap() for uncharging the swap slot once the
page has been successfully added to the swapcache.
[shakeelb@google.com: set page->private before calling swap_readpage]
Link: https://lkml.kernel.org/r/20210318015959.2986837-1-shakeelb@google.com
Link: https://lkml.kernel.org/r/20210305212639.775498-1-shakeelb@google.com
Signed-off-by: Shakeel Butt <shakeelb@google.com>
Acked-by: Roman Gushchin <guro@fb.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Hugh Dickins <hughd@google.com>
Tested-by: Heiko Carstens <hca@linux.ibm.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Cc: Christian Borntraeger <borntraeger@de.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
There are code paths that rely on zero_pfn to be fully initialized
before core_initcall. For example, wq_sysfs_init() is a core_initcall
function that eventually results in a call to kernel_execve, which
causes a page fault with a subsequent mmput. If zero_pfn is not
initialized by then it may not get cleaned up properly and result in an
error:
BUG: Bad rss-counter state mm:(ptrval) type:MM_ANONPAGES val:1
Here is an analysis of the race as seen on a MIPS device. On this
particular MT7621 device (Ubiquiti ER-X), zero_pfn is PFN 0 until
initialized, at which point it becomes PFN 5120:
1. wq_sysfs_init calls into kobject_uevent_env at core_initcall:
kobject_uevent_env+0x7e4/0x7ec
kset_register+0x68/0x88
bus_register+0xdc/0x34c
subsys_virtual_register+0x34/0x78
wq_sysfs_init+0x1c/0x4c
do_one_initcall+0x50/0x1a8
kernel_init_freeable+0x230/0x2c8
kernel_init+0x10/0x100
ret_from_kernel_thread+0x14/0x1c
2. kobject_uevent_env() calls call_usermodehelper_exec() which executes
kernel_execve asynchronously.
3. Memory allocations in kernel_execve cause a page fault, bumping the
MM reference counter:
add_mm_counter_fast+0xb4/0xc0
handle_mm_fault+0x6e4/0xea0
__get_user_pages.part.78+0x190/0x37c
__get_user_pages_remote+0x128/0x360
get_arg_page+0x34/0xa0
copy_string_kernel+0x194/0x2a4
kernel_execve+0x11c/0x298
call_usermodehelper_exec_async+0x114/0x194
4. In case zero_pfn has not been initialized yet, zap_pte_range does
not decrement the MM_ANONPAGES RSS counter and the BUG message is
triggered shortly afterwards when __mmdrop checks the ref counters:
__mmdrop+0x98/0x1d0
free_bprm+0x44/0x118
kernel_execve+0x160/0x1d8
call_usermodehelper_exec_async+0x114/0x194
ret_from_kernel_thread+0x14/0x1c
To avoid races such as described above, initialize init_zero_pfn at
early_initcall level. Depending on the architecture, ZERO_PAGE is
either constant or gets initialized even earlier, at paging_init, so
there is no issue with initializing zero_pfn earlier.
Link: https://lkml.kernel.org/r/CALCv0x2YqOXEAy2Q=hafjhHCtTHVodChv1qpM=niAXOpqEbt7w@mail.gmail.com
Signed-off-by: Ilya Lipnitskiy <ilya.lipnitskiy@gmail.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: "Eric W. Biederman" <ebiederm@xmission.com>
Cc: stable@vger.kernel.org
Tested-by: 周琰杰 (Zhou Yanjie) <zhouyanjie@wanyeetech.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Userfaultfd self-test fails occasionally, indicating a memory corruption.
Analyzing this problem indicates that there is a real bug since mmap_lock
is only taken for read in mwriteprotect_range() and defers flushes, and
since there is insufficient consideration of concurrent deferred TLB
flushes in wp_page_copy(). Although the PTE is flushed from the TLBs in
wp_page_copy(), this flush takes place after the copy has already been
performed, and therefore changes of the page are possible between the time
of the copy and the time in which the PTE is flushed.
To make matters worse, memory-unprotection using userfaultfd also poses a
problem. Although memory unprotection is logically a promotion of PTE
permissions, and therefore should not require a TLB flush, the current
userrfaultfd code might actually cause a demotion of the architectural PTE
permission: when userfaultfd_writeprotect() unprotects memory region, it
unintentionally *clears* the RW-bit if it was already set. Note that this
unprotecting a PTE that is not write-protected is a valid use-case: the
userfaultfd monitor might ask to unprotect a region that holds both
write-protected and write-unprotected PTEs.
The scenario that happens in selftests/vm/userfaultfd is as follows:
cpu0 cpu1 cpu2
---- ---- ----
[ Writable PTE
cached in TLB ]
userfaultfd_writeprotect()
[ write-*unprotect* ]
mwriteprotect_range()
mmap_read_lock()
change_protection()
change_protection_range()
...
change_pte_range()
[ *clear* “write”-bit ]
[ defer TLB flushes ]
[ page-fault ]
...
wp_page_copy()
cow_user_page()
[ copy page ]
[ write to old
page ]
...
set_pte_at_notify()
A similar scenario can happen:
cpu0 cpu1 cpu2 cpu3
---- ---- ---- ----
[ Writable PTE
cached in TLB ]
userfaultfd_writeprotect()
[ write-protect ]
[ deferred TLB flush ]
userfaultfd_writeprotect()
[ write-unprotect ]
[ deferred TLB flush]
[ page-fault ]
wp_page_copy()
cow_user_page()
[ copy page ]
... [ write to page ]
set_pte_at_notify()
This race exists since commit 292924b260 ("userfaultfd: wp: apply
_PAGE_UFFD_WP bit"). Yet, as Yu Zhao pointed, these races became apparent
since commit 09854ba94c ("mm: do_wp_page() simplification") which made
wp_page_copy() more likely to take place, specifically if page_count(page)
> 1.
To resolve the aforementioned races, check whether there are pending
flushes on uffd-write-protected VMAs, and if there are, perform a flush
before doing the COW.
Further optimizations will follow to avoid during uffd-write-unprotect
unnecassary PTE write-protection and TLB flushes.
Link: https://lkml.kernel.org/r/20210304095423.3825684-1-namit@vmware.com
Fixes: 09854ba94c ("mm: do_wp_page() simplification")
Signed-off-by: Nadav Amit <namit@vmware.com>
Suggested-by: Yu Zhao <yuzhao@google.com>
Reviewed-by: Peter Xu <peterx@redhat.com>
Tested-by: Peter Xu <peterx@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Pavel Emelyanov <xemul@openvz.org>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Mike Rapoport <rppt@linux.vnet.ibm.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Will Deacon <will@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: <stable@vger.kernel.org> [5.9+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
We've got quite a few places (pte, pmd, pud) that explicitly checked
against whether we should break the cow right now during fork(). It's
easier to provide a helper, especially before we work the same thing on
hugetlbfs.
Since we'll reference is_cow_mapping() in mm.h, move it there too.
Actually it suites mm.h more since internal.h is mm/ only, but mm.h is
exported to the whole kernel. With that we should expect another patch to
use is_cow_mapping() whenever we can across the kernel since we do use it
quite a lot but it's always done with raw code against VM_* flags.
Link: https://lkml.kernel.org/r/20210217233547.93892-4-peterx@redhat.com
Signed-off-by: Peter Xu <peterx@redhat.com>
Reviewed-by: Jason Gunthorpe <jgg@ziepe.ca>
Cc: Alexey Dobriyan <adobriyan@gmail.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Daniel Vetter <daniel@ffwll.ch>
Cc: David Airlie <airlied@linux.ie>
Cc: David Gibson <david@gibson.dropbear.id.au>
Cc: Gal Pressman <galpress@amazon.com>
Cc: Jan Kara <jack@suse.cz>
Cc: Jann Horn <jannh@google.com>
Cc: Kirill Shutemov <kirill@shutemov.name>
Cc: Kirill Tkhai <ktkhai@virtuozzo.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Miaohe Lin <linmiaohe@huawei.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Mike Rapoport <rppt@linux.vnet.ibm.com>
Cc: Roland Scheidegger <sroland@vmware.com>
Cc: VMware Graphics <linux-graphics-maintainer@vmware.com>
Cc: Wei Zhang <wzam@amazon.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
MIPS page fault path(except huge page) takes 3 exceptions (1 TLB Miss + 2
TLB Invalid), butthe second TLB Invalid exception is just triggered by
__update_tlb from do_page_fault writing tlb without _PAGE_VALID set. With
this patch, user space mapping prot is made young by default (with both
_PAGE_VALID and _PAGE_YOUNG set), and it only take 1 TLB Miss + 1 TLB
Invalid exception
Remove pte_sw_mkyoung without polluting MM code and make page fault delay
of MIPS on par with other architecture
Link: https://lkml.kernel.org/r/20210204013942.8398-1-huangpei@loongson.cn
Signed-off-by: Huang Pei <huangpei@loongson.cn>
Reviewed-by: Nicholas Piggin <npiggin@gmail.com>
Acked-by: <huangpei@loongson.cn>
Acked-by: Thomas Bogendoerfer <tsbogend@alpha.franken.de>
Cc: Christophe Leroy <christophe.leroy@csgroup.eu>
Cc: <ambrosehua@gmail.com>
Cc: Bibo Mao <maobibo@loongson.cn>
Cc: Jiaxun Yang <jiaxun.yang@flygoat.com>
Cc: Paul Burton <paulburton@kernel.org>
Cc: Li Xuefeng <lixuefeng@loongson.cn>
Cc: Yang Tiezhu <yangtiezhu@loongson.cn>
Cc: Gao Juxin <gaojuxin@loongson.cn>
Cc: Fuxin Zhang <zhangfx@lemote.com>
Cc: Huacai Chen <chenhc@lemote.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
page structs are not guaranteed to be contiguous for gigantic pages. The
routine copy_huge_page_from_user can encounter gigantic pages, yet it
assumes page structs are contiguous when copying pages from user space.
Since page structs for the target gigantic page are not contiguous, the
data copied from user space could overwrite other pages not associated
with the gigantic page and cause data corruption.
Non-contiguous page structs are generally not an issue. However, they can
exist with a specific kernel configuration and hotplug operations. For
example: Configure the kernel with CONFIG_SPARSEMEM and
!CONFIG_SPARSEMEM_VMEMMAP. Then, hotplug add memory for the area where
the gigantic page will be allocated.
Link: https://lkml.kernel.org/r/20210217184926.33567-2-mike.kravetz@oracle.com
Fixes: 8fb5debc5f ("userfaultfd: hugetlbfs: add hugetlb_mcopy_atomic_pte for userfaultfd support")
Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Zi Yan <ziy@nvidia.com>
Cc: Davidlohr Bueso <dbueso@suse.de>
Cc: "Kirill A . Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Joao Martins <joao.m.martins@oracle.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
If all pte entry is none in 'non-create' case, we would break the loop with
pte unchanged. Then the wrong pte - 1 would be passed to pte_unmap_unlock.
This is a theoretical issue which may not be a real bug. So it's not worth
cc stable.
Link: https://lkml.kernel.org/r/20210205081925.59809-1-linmiaohe@huawei.com
Fixes: aee16b3cee ("Add apply_to_page_range() which applies a function to a pte range")
Signed-off-by: Miaohe Lin <linmiaohe@huawei.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Ian Pratt <ian.pratt@xensource.com>
Cc: Chris Wright <chrisw@sous-sol.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Since commit 42e4089c78 ("x86/speculation/l1tf: Disallow non privileged
high MMIO PROT_NONE mappings"), when the first pfn modify is not allowed,
we would break the loop with pte unchanged. Then the wrong pte - 1 would
be passed to pte_unmap_unlock.
Andi said:
"While the fix is correct, I'm not sure if it actually is a real bug.
Is there any architecture that would do something else than unlocking
the underlying page? If it's just the underlying page then it should
be always the same page, so no bug"
Link: https://lkml.kernel.org/r/20210109080118.20885-1-linmiaohe@huawei.com
Fixes: 42e4089c78 ("x86/speculation/l1tf: Disallow non privileged high MMIO PROT_NONE mappings")
Signed-off-by: Hongxiang Lou <louhongxiang@huawei.com>
Signed-off-by: Miaohe Lin <linmiaohe@huawei.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
- replace mm/frame_vector.c by get_user_pages in misc/habana and
drm/exynos drivers, then move that into media as it's sole user
- close race in generic_access_phys
- s390 pci ioctl fix of this series landed in 5.11 already
- properly revoke iomem mappings (/dev/mem, pci files)
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEEb4nG6jLu8Y5XI+PfTA9ye/CYqnEFAmAzgywACgkQTA9ye/CY
qnFPbA//RUHB5bD7vwnEglfJhonKSi/Vt3dNQwUI+pCFK8muWvvPyTkGXKjjT2dI
uAOY2F23wymtIexV3fNLgnMez7kMcupOLkdxJic4GiO+HJn1jnkshdX7/dGtUW7O
G3yfnf/D27i912tT3j6PN7dVnasAYYtndCgImM027Zigzn4ibY+02tnzd5XTj1F8
yq8Swx88oqF8v10HxfpF3RLShqT3S17mFmd9dTv0GkZX497Pe75O44XcXzkD33Bj
wasH2Tz8gMEQx6TNAGlJe13dzDHReh2cG0z2r+6PTA6KnaMMxbEIImHNuhWOmHb/
nf8Jpu9uMOLzB+3hG3TzISTDBhAgPfoJ8Ov40VJCWMtCVBnyMyPJr28Oobb8Dj3V
SXvjSVlLeobOLt+E9vAS+Rmas07LCGBdNP9sexxV7S/sveSQ5W+FptaQW03EghwA
nBYEUC68WqpX99lJCFPmv5zmy5xkecjpU6mLHZljtV1ORzktqWZdVhmC8njHMAMY
Hi/emnPxEX1FpOD38rr7F9KUUSsy4t/ZaCgVaLcxCcbglCHXSHC41R09p9TBRSJo
G6Lksjyj4aa+UL5dZDAtLY0shg0bv2u93dGQNaDAC+uzj6D0ErBBzDK570zBKjp/
75+nqezJlD0d7I6rOl6FwiEYeSrYXJxYEveKVUr8CnH6sfeBlwo=
=lQoR
-----END PGP SIGNATURE-----
Merge tag 'topic/iomem-mmap-vs-gup-2021-02-22' of git://anongit.freedesktop.org/drm/drm
Pull follow_pfn() updates from Daniel Vetter:
"Fixes around VM_FPNMAP and follow_pfn:
- replace mm/frame_vector.c by get_user_pages in misc/habana and
drm/exynos drivers, then move that into media as it's sole user
- close race in generic_access_phys
- s390 pci ioctl fix of this series landed in 5.11 already
- properly revoke iomem mappings (/dev/mem, pci files)"
* tag 'topic/iomem-mmap-vs-gup-2021-02-22' of git://anongit.freedesktop.org/drm/drm:
PCI: Revoke mappings like devmem
PCI: Also set up legacy files only after sysfs init
sysfs: Support zapping of binary attr mmaps
resource: Move devmem revoke code to resource framework
/dev/mem: Only set filp->f_mapping
PCI: Obey iomem restrictions for procfs mmap
mm: Close race in generic_access_phys
media: videobuf2: Move frame_vector into media subsystem
mm/frame-vector: Use FOLL_LONGTERM
misc/habana: Use FOLL_LONGTERM for userptr
misc/habana: Stop using frame_vector helpers
drm/exynos: Use FOLL_LONGTERM for g2d cmdlists
drm/exynos: Stop using frame_vector helpers
- Support for userspace to emulate Xen hypercalls
- Raise the maximum number of user memslots
- Scalability improvements for the new MMU. Instead of the complex
"fast page fault" logic that is used in mmu.c, tdp_mmu.c uses an
rwlock so that page faults are concurrent, but the code that can run
against page faults is limited. Right now only page faults take the
lock for reading; in the future this will be extended to some
cases of page table destruction. I hope to switch the default MMU
around 5.12-rc3 (some testing was delayed due to Chinese New Year).
- Cleanups for MAXPHYADDR checks
- Use static calls for vendor-specific callbacks
- On AMD, use VMLOAD/VMSAVE to save and restore host state
- Stop using deprecated jump label APIs
- Workaround for AMD erratum that made nested virtualization unreliable
- Support for LBR emulation in the guest
- Support for communicating bus lock vmexits to userspace
- Add support for SEV attestation command
- Miscellaneous cleanups
PPC:
- Support for second data watchpoint on POWER10
- Remove some complex workarounds for buggy early versions of POWER9
- Guest entry/exit fixes
ARM64
- Make the nVHE EL2 object relocatable
- Cleanups for concurrent translation faults hitting the same page
- Support for the standard TRNG hypervisor call
- A bunch of small PMU/Debug fixes
- Simplification of the early init hypercall handling
Non-KVM changes (with acks):
- Detection of contended rwlocks (implemented only for qrwlocks,
because KVM only needs it for x86)
- Allow __DISABLE_EXPORTS from assembly code
- Provide a saner follow_pfn replacements for modules
-----BEGIN PGP SIGNATURE-----
iQFIBAABCAAyFiEE8TM4V0tmI4mGbHaCv/vSX3jHroMFAmApSRgUHHBib256aW5p
QHJlZGhhdC5jb20ACgkQv/vSX3jHroOc7wf9FnlinKoTFaSk7oeuuhF/CoCVwSFs
Z9+A2sNI99tWHQxFR6dyDkEFeQoXnqSxfLHtUVIdH/JnTg0FkEvFz3NK+0PzY1PF
PnGNbSoyhP58mSBG4gbBAxdF3ZJZMB8GBgYPeR62PvMX2dYbcHqVBNhlf6W4MQK4
5mAUuAnbf19O5N267sND+sIg3wwJYwOZpRZB7PlwvfKAGKf18gdBz5dQ/6Ej+apf
P7GODZITjqM5Iho7SDm/sYJlZprFZT81KqffwJQHWFMEcxFgwzrnYPx7J3gFwRTR
eeh9E61eCBDyCTPpHROLuNTVBqrAioCqXLdKOtO5gKvZI3zmomvAsZ8uXQ==
=uFZU
-----END PGP SIGNATURE-----
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull KVM updates from Paolo Bonzini:
"x86:
- Support for userspace to emulate Xen hypercalls
- Raise the maximum number of user memslots
- Scalability improvements for the new MMU.
Instead of the complex "fast page fault" logic that is used in
mmu.c, tdp_mmu.c uses an rwlock so that page faults are concurrent,
but the code that can run against page faults is limited. Right now
only page faults take the lock for reading; in the future this will
be extended to some cases of page table destruction. I hope to
switch the default MMU around 5.12-rc3 (some testing was delayed
due to Chinese New Year).
- Cleanups for MAXPHYADDR checks
- Use static calls for vendor-specific callbacks
- On AMD, use VMLOAD/VMSAVE to save and restore host state
- Stop using deprecated jump label APIs
- Workaround for AMD erratum that made nested virtualization
unreliable
- Support for LBR emulation in the guest
- Support for communicating bus lock vmexits to userspace
- Add support for SEV attestation command
- Miscellaneous cleanups
PPC:
- Support for second data watchpoint on POWER10
- Remove some complex workarounds for buggy early versions of POWER9
- Guest entry/exit fixes
ARM64:
- Make the nVHE EL2 object relocatable
- Cleanups for concurrent translation faults hitting the same page
- Support for the standard TRNG hypervisor call
- A bunch of small PMU/Debug fixes
- Simplification of the early init hypercall handling
Non-KVM changes (with acks):
- Detection of contended rwlocks (implemented only for qrwlocks,
because KVM only needs it for x86)
- Allow __DISABLE_EXPORTS from assembly code
- Provide a saner follow_pfn replacements for modules"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (192 commits)
KVM: x86/xen: Explicitly pad struct compat_vcpu_info to 64 bytes
KVM: selftests: Don't bother mapping GVA for Xen shinfo test
KVM: selftests: Fix hex vs. decimal snafu in Xen test
KVM: selftests: Fix size of memslots created by Xen tests
KVM: selftests: Ignore recently added Xen tests' build output
KVM: selftests: Add missing header file needed by xAPIC IPI tests
KVM: selftests: Add operand to vmsave/vmload/vmrun in svm.c
KVM: SVM: Make symbol 'svm_gp_erratum_intercept' static
locking/arch: Move qrwlock.h include after qspinlock.h
KVM: PPC: Book3S HV: Fix host radix SLB optimisation with hash guests
KVM: PPC: Book3S HV: Ensure radix guest has no SLB entries
KVM: PPC: Don't always report hash MMU capability for P9 < DD2.2
KVM: PPC: Book3S HV: Save and restore FSCR in the P9 path
KVM: PPC: remove unneeded semicolon
KVM: PPC: Book3S HV: Use POWER9 SLBIA IH=6 variant to clear SLB
KVM: PPC: Book3S HV: No need to clear radix host SLB before loading HPT guest
KVM: PPC: Book3S HV: Fix radix guest SLB side channel
KVM: PPC: Book3S HV: Remove support for running HPT guest on RPT host without mixed mode support
KVM: PPC: Book3S HV: Introduce new capability for 2nd DAWR
KVM: PPC: Book3S HV: Add infrastructure to support 2nd DAWR
...
- vDSO build improvements including support for building with BSD.
- Cleanup to the AMU support code and initialisation rework to support
cpufreq drivers built as modules.
- Removal of synthetic frame record from exception stack when entering
the kernel from EL0.
- Add support for the TRNG firmware call introduced by Arm spec
DEN0098.
- Cleanup and refactoring across the board.
- Avoid calling arch_get_random_seed_long() from
add_interrupt_randomness()
- Perf and PMU updates including support for Cortex-A78 and the v8.3
SPE extensions.
- Significant steps along the road to leaving the MMU enabled during
kexec relocation.
- Faultaround changes to initialise prefaulted PTEs as 'old' when
hardware access-flag updates are supported, which drastically
improves vmscan performance.
- CPU errata updates for Cortex-A76 (#1463225) and Cortex-A55
(#1024718)
- Preparatory work for yielding the vector unit at a finer granularity
in the crypto code, which in turn will one day allow us to defer
softirq processing when it is in use.
- Support for overriding CPU ID register fields on the command-line.
-----BEGIN PGP SIGNATURE-----
iQFEBAABCgAuFiEEPxTL6PPUbjXGY88ct6xw3ITBYzQFAmAmwZcQHHdpbGxAa2Vy
bmVsLm9yZwAKCRC3rHDchMFjNLA1B/0XMwWUhmJ4ZPK4sr28YWHNGLuCFHDgkMKU
dEmS806OF9d0J7fTczGsKdS4IKtXWko67Z0UGiPIStwfm0itSW2Zgbo9KZeDPqPI
fH0s23nQKxUMyNW7b9p4cTV3YuGVMZSBoMug2jU2DEDpSqeGBk09NPi6inERBCz/
qZxcqXTKxXbtOY56eJmq09UlFZiwfONubzuCrrUH7LU8ZBSInM/6Q4us/oVm4zYI
Pnv996mtL4UxRqq/KoU9+cQ1zsI01kt9/coHwfCYvSpZEVAnTWtfECsJ690tr3mF
TSKQLvOzxbDtU+HcbkNVKW0A38EIO1xXr8yXW9SJx6BJBkyb24xo
=IwMb
-----END PGP SIGNATURE-----
Merge tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux
Pull arm64 updates from Will Deacon:
- vDSO build improvements including support for building with BSD.
- Cleanup to the AMU support code and initialisation rework to support
cpufreq drivers built as modules.
- Removal of synthetic frame record from exception stack when entering
the kernel from EL0.
- Add support for the TRNG firmware call introduced by Arm spec
DEN0098.
- Cleanup and refactoring across the board.
- Avoid calling arch_get_random_seed_long() from
add_interrupt_randomness()
- Perf and PMU updates including support for Cortex-A78 and the v8.3
SPE extensions.
- Significant steps along the road to leaving the MMU enabled during
kexec relocation.
- Faultaround changes to initialise prefaulted PTEs as 'old' when
hardware access-flag updates are supported, which drastically
improves vmscan performance.
- CPU errata updates for Cortex-A76 (#1463225) and Cortex-A55
(#1024718)
- Preparatory work for yielding the vector unit at a finer granularity
in the crypto code, which in turn will one day allow us to defer
softirq processing when it is in use.
- Support for overriding CPU ID register fields on the command-line.
* tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux: (85 commits)
drivers/perf: Replace spin_lock_irqsave to spin_lock
mm: filemap: Fix microblaze build failure with 'mmu_defconfig'
arm64: Make CPU_BIG_ENDIAN depend on ld.bfd or ld.lld 13.0.0+
arm64: cpufeatures: Allow disabling of Pointer Auth from the command-line
arm64: Defer enabling pointer authentication on boot core
arm64: cpufeatures: Allow disabling of BTI from the command-line
arm64: Move "nokaslr" over to the early cpufeature infrastructure
KVM: arm64: Document HVC_VHE_RESTART stub hypercall
arm64: Make kvm-arm.mode={nvhe, protected} an alias of id_aa64mmfr1.vh=0
arm64: Add an aliasing facility for the idreg override
arm64: Honor VHE being disabled from the command-line
arm64: Allow ID_AA64MMFR1_EL1.VH to be overridden from the command line
arm64: cpufeature: Add an early command-line cpufeature override facility
arm64: Extract early FDT mapping from kaslr_early_init()
arm64: cpufeature: Use IDreg override in __read_sysreg_by_encoding()
arm64: cpufeature: Add global feature override facility
arm64: Move SCTLR_EL1 initialisation to EL-agnostic code
arm64: Simplify init_el2_state to be non-VHE only
arm64: Move VHE-specific SPE setup to mutate_to_vhe()
arm64: Drop early setting of MDSCR_EL2.TPMS
...
Currently, the follow_pfn function is exported for modules but
follow_pte is not. However, follow_pfn is very easy to misuse,
because it does not provide protections (so most of its callers
assume the page is writable!) and because it returns after having
already unlocked the page table lock.
Provide instead a simplified version of follow_pte that does
not have the pmdpp and range arguments. The older version
survives as follow_invalidate_pte() for use by fs/dax.c.
Reviewed-by: Jason Gunthorpe <jgg@nvidia.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The 'start' and 'end' arguments to tlb_gather_mmu() are no longer
needed now that there is a separate function for 'fullmm' flushing.
Remove the unused arguments and update all callers.
Suggested-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Will Deacon <will@kernel.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Yu Zhao <yuzhao@google.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Link: https://lore.kernel.org/r/CAHk-=wjQWa14_4UpfDf=fiineNP+RH74kZeDMo_f1D35xNzq9w@mail.gmail.com
Since commit 7a30df49f6 ("mm: mmu_gather: remove __tlb_reset_range()
for force flush"), the 'start' and 'end' arguments to tlb_finish_mmu()
are no longer used, since we flush the whole mm in case of a nested
invalidation.
Remove the unused arguments and update all callers.
Signed-off-by: Will Deacon <will@kernel.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Yu Zhao <yuzhao@google.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Link: https://lkml.kernel.org/r/20210127235347.1402-3-will@kernel.org
Rather than modifying the 'address' field of the 'struct vm_fault'
passed to do_set_pte(), leave that to identify the real faulting address
and pass in the virtual address to be mapped by the new pte as a
separate argument.
This makes FAULT_FLAG_PREFAULT redundant, as a prefault entry can be
identified simply by comparing the new address parameter with the
faulting address, so remove the redundant flag at the same time.
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Will Deacon <will@kernel.org>
Commit 5c0a85fad9 ("mm: make faultaround produce old ptes") changed
the "faultaround" behaviour to initialise prefaulted PTEs as 'old',
since this avoids vmscan wrongly assuming that they are hot, despite
having never been explicitly accessed by userspace. The change has been
shown to benefit numerous arm64 micro-architectures (with hardware
access flag) running Android, where both application launch latency and
direct reclaim time are significantly reduced (by 10%+ and ~80%
respectively).
Unfortunately, commit 315d09bf30 ("Revert "mm: make faultaround
produce old ptes"") reverted the change due to it being identified as
the cause of a ~6% regression in unixbench on x86. Experiments on a
variety of recent arm64 micro-architectures indicate that unixbench is
not affected by the original commit, which appears to yield a 0-1%
performance improvement.
Since one size does not fit all for the initial state of prefaulted
PTEs, introduce arch_wants_old_prefaulted_pte(), which allows an
architecture to opt-in to 'old' prefaulted PTEs at runtime based on
whatever criteria it may have.
Cc: Jan Kara <jack@suse.cz>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Reported-by: Vinayak Menon <vinmenon@codeaurora.org>
Signed-off-by: Will Deacon <will@kernel.org>
alloc_set_pte() has two users with different requirements: in the
faultaround code, it called from an atomic context and PTE page table
has to be preallocated. finish_fault() can sleep and allocate page table
as needed.
PTL locking rules are also strange, hard to follow and overkill for
finish_fault().
Let's untangle the mess. alloc_set_pte() has gone now. All locking is
explicit.
The price is some code duplication to handle huge pages in faultaround
path, but it should be fine, having overall improvement in readability.
Link: https://lore.kernel.org/r/20201229132819.najtavneutnf7ajp@box
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
[will: s/from from/from/ in comment; spotted by willy]
Signed-off-by: Will Deacon <will@kernel.org>
Way back it was a reasonable assumptions that iomem mappings never
change the pfn range they point at. But this has changed:
- gpu drivers dynamically manage their memory nowadays, invalidating
ptes with unmap_mapping_range when buffers get moved
- contiguous dma allocations have moved from dedicated carvetouts to
cma regions. This means if we miss the unmap the pfn might contain
pagecache or anon memory (well anything allocated with GFP_MOVEABLE)
- even /dev/mem now invalidates mappings when the kernel requests that
iomem region when CONFIG_IO_STRICT_DEVMEM is set, see 3234ac664a
("/dev/mem: Revoke mappings when a driver claims the region")
Accessing pfns obtained from ptes without holding all the locks is
therefore no longer a good idea. Fix this.
Since ioremap might need to manipulate pagetables too we need to drop
the pt lock and have a retry loop if we raced.
While at it, also add kerneldoc and improve the comment for the
vma_ops->access function. It's for accessing, not for moving the
memory from iomem to system memory, as the old comment seemed to
suggest.
References: 28b2ee20c7 ("access_process_vm device memory infrastructure")
Signed-off-by: Daniel Vetter <daniel.vetter@intel.com>
Cc: Jason Gunthorpe <jgg@ziepe.ca>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: Benjamin Herrensmidt <benh@kernel.crashing.org>
Cc: Dave Airlie <airlied@linux.ie>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: Jérôme Glisse <jglisse@redhat.com>
Cc: Jan Kara <jack@suse.cz>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: linux-mm@kvack.org
Cc: linux-arm-kernel@lists.infradead.org
Cc: linux-samsung-soc@vger.kernel.org
Cc: linux-media@vger.kernel.org
Cc: Chris Wilson <chris@chris-wilson.co.uk>
Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
Link: https://patchwork.freedesktop.org/patch/msgid/20201127164131.2244124-8-daniel.vetter@ffwll.ch
I'm not sure if I'm completely missing something here, but AFAIKS the
reference to the mysterious "COW SMC race" confuses the issue. The
original changelog and mailing list thread didn't help me either.
This SMC race is where the problem was detected, but isn't the general
problem bigger and more obvious: that the new PTE could be picked up at
any time by any TLB while entries for the old PTE exist in other TLBs
before the TLB flush takes effect?
The case where the iTLB and dTLB of a CPU are pointing at different pages
is an interesting one but follows from the general problem.
The other (minor) thing with the comment I think it makes it a bit clearer
to say what the old code was doing (i.e., it avoids the race as opposed to
what?).
References: 4ce072f1fa ("mm: fix a race condition under SMC + COW")
Link: https://lkml.kernel.org/r/20201215121119.351650-1-npiggin@gmail.com
Reviewed-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Suresh Siddha <suresh.b.siddha@intel.com>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Hugh Dickins <hughd@google.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Suresh Siddha <sbsiddha@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Merge __follow_pte_pmd, follow_pte_pmd and follow_pte into a single
follow_pte function and just pass two additional NULL arguments for the
two previous follow_pte callers.
[sfr@canb.auug.org.au: merge fix for "s390/pci: remove races against pte updates"]
Link: https://lkml.kernel.org/r/20201111221254.7f6a3658@canb.auug.org.au
Link: https://lkml.kernel.org/r/20201029101432.47011-3-hch@lst.de
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Daniel Vetter <daniel@ffwll.ch>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Nick Desaulniers <ndesaulniers@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>