Граф коммитов

7845 Коммитов

Автор SHA1 Сообщение Дата
Andi Kleen 54a43d5498 numa: add a sysctl for numa_balancing
Add a working sysctl to enable/disable automatic numa memory balancing
at runtime.

This allows us to track down performance problems with this feature and
is generally a good idea.

This was possible earlier through debugfs, but only with special
debugging options set.  Also fix the boot message.

[akpm@linux-foundation.org: s/sched_numa_balancing/sysctl_numa_balancing/]
Signed-off-by: Andi Kleen <ak@linux.intel.com>
Acked-by: Mel Gorman <mgorman@suse.de>
Cc: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-01-23 16:36:51 -08:00
Philipp Hachtmann 5e270e2548 mm: free memblock.memory in free_all_bootmem
When calling free_all_bootmem() the free areas under memblock's control
are released to the buddy allocator.  Additionally the reserved list is
freed if it was reallocated by memblock.  The same should apply for the
memory list.

Signed-off-by: Philipp Hachtmann <phacht@linux.vnet.ibm.com>
Reviewed-by: Tejun Heo <tj@kernel.org>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Tang Chen <tangchen@cn.fujitsu.com>
Cc: Toshi Kani <toshi.kani@hp.com>
Cc: Jianguo Wu <wujianguo@huawei.com>
Cc: Yinghai Lu <yinghai@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-01-23 16:36:51 -08:00
Philipp Hachtmann 87379ec8c2 mm/nobootmem.c: add return value check in __alloc_memory_core_early()
When memblock_reserve() fails because memblock.reserved.regions cannot
be resized, the caller (e.g.  alloc_bootmem()) is not informed of the
failed allocation.  Therefore alloc_bootmem() silently returns the same
pointer again and again.

This patch adds a check for the return value of memblock_reserve() in
__alloc_memory_core().

Signed-off-by: Philipp Hachtmann <phacht@linux.vnet.ibm.com>
Reviewed-by: Tejun Heo <tj@kernel.org>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Tang Chen <tangchen@cn.fujitsu.com>
Cc: Toshi Kani <toshi.kani@hp.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-01-23 16:36:51 -08:00
Vladimir Davydov d644163770 memcg: rework memcg_update_kmem_limit synchronization
Currently we take both the memcg_create_mutex and the set_limit_mutex
when we enable kmem accounting for a memory cgroup, which makes kmem
activation events serialize with both memcg creations and other memcg
limit updates (memory.limit, memory.memsw.limit).  However, there is no
point in such strict synchronization rules there.

First, the set_limit_mutex was introduced to keep the memory.limit and
memory.memsw.limit values in sync.  Since memory.kmem.limit can be set
independently of them, it is better to introduce a separate mutex to
synchronize against concurrent kmem limit updates.

Second, we take the memcg_create_mutex in order to make sure all
children of this memcg will be kmem-active as well.  For achieving that,
it is enough to hold this mutex only while checking if
memcg_has_children() though.  This guarantees that if a child is added
after we checked that the memcg has no children, the newly added cgroup
will see its parent kmem-active (of course if the latter succeeded), and
call kmem activation for itself.

This patch simplifies the locking rules of memcg_update_kmem_limit()
according to these considerations.

[vdavydov@parallels.com: fix unintialized var warning]
Signed-off-by: Vladimir Davydov <vdavydov@parallels.com>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Glauber Costa <glommer@gmail.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Balbir Singh <bsingharora@gmail.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-01-23 16:36:51 -08:00
Vladimir Davydov 6de64beb34 memcg: remove KMEM_ACCOUNTED_ACTIVATED flag
Currently we have two state bits in mem_cgroup::kmem_account_flags
regarding kmem accounting activation, ACTIVATED and ACTIVE.  We start
kmem accounting only if both flags are set (memcg_can_account_kmem()),
plus throughout the code there are several places where we check only
the ACTIVE flag, but we never check the ACTIVATED flag alone.  These
flags are both set from memcg_update_kmem_limit() under the
set_limit_mutex, the ACTIVE flag always being set after ACTIVATED, and
they never get cleared.  That said checking if both flags are set is
equivalent to checking only for the ACTIVE flag, and since there is no
ACTIVATED flag checks, we can safely remove the ACTIVATED flag, and
nothing will change.

Let's try to understand what was the reason for introducing these flags.
The purpose of the ACTIVE flag is clear - it states that kmem should be
accounting to the cgroup.  The only requirement for it is that it should
be set after we have fully initialized kmem accounting bits for the
cgroup and patched all static branches relating to kmem accounting.
Since we always check if static branch is enabled before actually
considering if we should account (otherwise we wouldn't benefit from
static branching), this guarantees us that we won't skip a commit or
uncharge after a charge due to an unpatched static branch.

Now let's move on to the ACTIVATED bit.  As I proved in the beginning of
this message, it is absolutely useless, and removing it will change
nothing.  So what was the reason introducing it?

The ACTIVATED flag was introduced by commit a8964b9b84 ("memcg: use
static branches when code not in use") in order to guarantee that
static_key_slow_inc(&memcg_kmem_enabled_key) would be called only once
for each memory cgroup when its kmem accounting was activated.  The
point was that at that time the memcg_update_kmem_limit() function's
work-flow looked like this:

        bool must_inc_static_branch = false;

        cgroup_lock();
        mutex_lock(&set_limit_mutex);
        if (!memcg->kmem_account_flags && val != RESOURCE_MAX) {
                /* The kmem limit is set for the first time */
                ret = res_counter_set_limit(&memcg->kmem, val);

                memcg_kmem_set_activated(memcg);
                must_inc_static_branch = true;
        } else
                ret = res_counter_set_limit(&memcg->kmem, val);
        mutex_unlock(&set_limit_mutex);
        cgroup_unlock();

        if (must_inc_static_branch) {
                /* We can't do this under cgroup_lock */
                static_key_slow_inc(&memcg_kmem_enabled_key);
                memcg_kmem_set_active(memcg);
        }

So that without the ACTIVATED flag we could race with other threads
trying to set the limit and increment the static branching ref-counter
more than once.  Today we call the whole memcg_update_kmem_limit()
function under the set_limit_mutex and this race is impossible.

As now we understand why the ACTIVATED bit was introduced and why we
don't need it now, and know that removing it will change nothing anyway,
let's get rid of it.

Signed-off-by: Vladimir Davydov <vdavydov@parallels.com>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Glauber Costa <glommer@gmail.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Balbir Singh <bsingharora@gmail.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-01-23 16:36:51 -08:00
Vladimir Davydov f8570263ee memcg, slab: RCU protect memcg_params for root caches
We relocate root cache's memcg_params whenever we need to grow the
memcg_caches array to accommodate all kmem-active memory cgroups.
Currently on relocation we free the old version immediately, which can
lead to use-after-free, because the memcg_caches array is accessed
lock-free (see cache_from_memcg_idx()).  This patch fixes this by making
memcg_params RCU-protected for root caches.

Signed-off-by: Vladimir Davydov <vdavydov@parallels.com>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Glauber Costa <glommer@gmail.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Balbir Singh <bsingharora@gmail.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: Christoph Lameter <cl@linux.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-01-23 16:36:51 -08:00
Vladimir Davydov f717eb3abb slab: do not panic if we fail to create memcg cache
There is no point in flooding logs with warnings or especially crashing
the system if we fail to create a cache for a memcg.  In this case we
will be accounting the memcg allocation to the root cgroup until we
succeed to create its own cache, but it isn't that critical.

Signed-off-by: Vladimir Davydov <vdavydov@parallels.com>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Glauber Costa <glommer@gmail.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: Christoph Lameter <cl@linux.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-01-23 16:36:51 -08:00
Vladimir Davydov 842e287369 memcg: get rid of kmem_cache_dup()
kmem_cache_dup() is only called from memcg_create_kmem_cache().  The
latter, in fact, does nothing besides this, so let's fold
kmem_cache_dup() into memcg_create_kmem_cache().

This patch also makes the memcg_cache_mutex private to
memcg_create_kmem_cache(), because it is not used anywhere else.

Signed-off-by: Vladimir Davydov <vdavydov@parallels.com>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Glauber Costa <glommer@gmail.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Balbir Singh <bsingharora@gmail.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-01-23 16:36:51 -08:00
Vladimir Davydov 2edefe1155 memcg, slab: fix races in per-memcg cache creation/destruction
We obtain a per-memcg cache from a root kmem_cache by dereferencing an
entry of the root cache's memcg_params::memcg_caches array.  If we find
no cache for a memcg there on allocation, we initiate the memcg cache
creation (see memcg_kmem_get_cache()).  The cache creation proceeds
asynchronously in memcg_create_kmem_cache() in order to avoid lock
clashes, so there can be several threads trying to create the same
kmem_cache concurrently, but only one of them may succeed.  However, due
to a race in the code, it is not always true.  The point is that the
memcg_caches array can be relocated when we activate kmem accounting for
a memcg (see memcg_update_all_caches(), memcg_update_cache_size()).  If
memcg_update_cache_size() and memcg_create_kmem_cache() proceed
concurrently as described below, we can leak a kmem_cache.

Asume two threads schedule creation of the same kmem_cache.  One of them
successfully creates it.  Another one should fail then, but if
memcg_create_kmem_cache() interleaves with memcg_update_cache_size() as
follows, it won't:

  memcg_create_kmem_cache()             memcg_update_cache_size()
  (called w/o mutexes held)             (called with slab_mutex,
                                         set_limit_mutex held)
  -------------------------             -------------------------

  mutex_lock(&memcg_cache_mutex)

                                        s->memcg_params=kzalloc(...)

  new_cachep=cache_from_memcg_idx(cachep,idx)
  // new_cachep==NULL => proceed to creation

                                        s->memcg_params->memcg_caches[i]
                                            =cur_params->memcg_caches[i]

  // kmem_cache_create_memcg takes slab_mutex
  // so we will hang around until
  // memcg_update_cache_size finishes, but
  // nothing will prevent it from succeeding so
  // memcg_caches[idx] will be overwritten in
  // memcg_register_cache!

  new_cachep = kmem_cache_create_memcg(...)
  mutex_unlock(&memcg_cache_mutex)

Let's fix this by moving the check for existence of the memcg cache to
kmem_cache_create_memcg() to be called under the slab_mutex and make it
return NULL if so.

A similar race is possible when destroying a memcg cache (see
kmem_cache_destroy()).  Since memcg_unregister_cache(), which clears the
pointer in the memcg_caches array, is called w/o protection, we can race
with memcg_update_cache_size() and omit clearing the pointer.  Therefore
memcg_unregister_cache() should be moved before we release the
slab_mutex.

Signed-off-by: Vladimir Davydov <vdavydov@parallels.com>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Glauber Costa <glommer@gmail.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Balbir Singh <bsingharora@gmail.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: Christoph Lameter <cl@linux.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-01-23 16:36:51 -08:00
Vladimir Davydov 96403da244 memcg: fix possible NULL deref while traversing memcg_slab_caches list
All caches of the same memory cgroup are linked in the memcg_slab_caches
list via kmem_cache::memcg_params::list.  This list is traversed, for
example, when we read memory.kmem.slabinfo.

Since the list actually consists of memcg_cache_params objects, we have
to convert an element of the list to a kmem_cache object using
memcg_params_to_cache(), which obtains the pointer to the cache from the
memcg_params::memcg_caches array of the corresponding root cache.  That
said the pointer to a kmem_cache in its parent's memcg_params must be
initialized before adding the cache to the list, and cleared only after
it has been unlinked.  Currently it is vice-versa, which can result in a
NULL ptr dereference while traversing the memcg_slab_caches list.  This
patch restores the correct order.

Signed-off-by: Vladimir Davydov <vdavydov@parallels.com>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Glauber Costa <glommer@gmail.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Balbir Singh <bsingharora@gmail.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-01-23 16:36:51 -08:00
Vladimir Davydov 959c8963fc memcg, slab: fix barrier usage when accessing memcg_caches
Each root kmem_cache has pointers to per-memcg caches stored in its
memcg_params::memcg_caches array.  Whenever we want to allocate a slab
for a memcg, we access this array to get per-memcg cache to allocate
from (see memcg_kmem_get_cache()).  The access must be lock-free for
performance reasons, so we should use barriers to assert the kmem_cache
is up-to-date.

First, we should place a write barrier immediately before setting the
pointer to it in the memcg_caches array in order to make sure nobody
will see a partially initialized object.  Second, we should issue a read
barrier before dereferencing the pointer to conform to the write
barrier.

However, currently the barrier usage looks rather strange.  We have a
write barrier *after* setting the pointer and a read barrier *before*
reading the pointer, which is incorrect.  This patch fixes this.

Signed-off-by: Vladimir Davydov <vdavydov@parallels.com>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Glauber Costa <glommer@gmail.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Balbir Singh <bsingharora@gmail.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: Christoph Lameter <cl@linux.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-01-23 16:36:51 -08:00
Vladimir Davydov 1aa1325425 memcg, slab: clean up memcg cache initialization/destruction
Currently, we have rather a messy function set relating to per-memcg
kmem cache initialization/destruction.

Per-memcg caches are created in memcg_create_kmem_cache().  This
function calls kmem_cache_create_memcg() to allocate and initialize a
kmem cache and then "registers" the new cache in the
memcg_params::memcg_caches array of the parent cache.

During its work-flow, kmem_cache_create_memcg() executes the following
memcg-related functions:

 - memcg_alloc_cache_params(), to initialize memcg_params of the newly
   created cache;
 - memcg_cache_list_add(), to add the new cache to the memcg_slab_caches
   list.

On the other hand, kmem_cache_destroy() called on a cache destruction
only calls memcg_release_cache(), which does all the work: it cleans the
reference to the cache in its parent's memcg_params::memcg_caches,
removes the cache from the memcg_slab_caches list, and frees
memcg_params.

Such an inconsistency between destruction and initialization paths make
the code difficult to read, so let's clean this up a bit.

This patch moves all the code relating to registration of per-memcg
caches (adding to memcg list, setting the pointer to a cache from its
parent) to the newly created memcg_register_cache() and
memcg_unregister_cache() functions making the initialization and
destruction paths look symmetrical.

Signed-off-by: Vladimir Davydov <vdavydov@parallels.com>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Glauber Costa <glommer@gmail.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Balbir Singh <bsingharora@gmail.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: Christoph Lameter <cl@linux.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-01-23 16:36:51 -08:00
Vladimir Davydov 363a044f73 memcg, slab: kmem_cache_create_memcg(): fix memleak on fail path
We do not free the cache's memcg_params if __kmem_cache_create fails.
Fix this.

Plus, rename memcg_register_cache() to memcg_alloc_cache_params(),
because it actually does not register the cache anywhere, but simply
initialize kmem_cache::memcg_params.

[akpm@linux-foundation.org: fix build]
Signed-off-by: Vladimir Davydov <vdavydov@parallels.com>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Glauber Costa <glommer@gmail.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Balbir Singh <bsingharora@gmail.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: Christoph Lameter <cl@linux.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-01-23 16:36:51 -08:00
Vladimir Davydov 3965fc3652 slab: clean up kmem_cache_create_memcg() error handling
Currently kmem_cache_create_memcg() backoffs on failure inside
conditionals, without using gotos.  This results in the rollback code
duplication, which makes the function look cumbersome even though on
error we should only free the allocated cache.  Since in the next patch
I am going to add yet another rollback function call on error path
there, let's employ labels instead of conditionals for undoing any
changes on failure to keep things clean.

Signed-off-by: Vladimir Davydov <vdavydov@parallels.com>
Reviewed-by: Pekka Enberg <penberg@kernel.org>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Glauber Costa <glommer@gmail.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Christoph Lameter <cl@linux.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-01-23 16:36:50 -08:00
Sasha Levin 309381feae mm: dump page when hitting a VM_BUG_ON using VM_BUG_ON_PAGE
Most of the VM_BUG_ON assertions are performed on a page.  Usually, when
one of these assertions fails we'll get a BUG_ON with a call stack and
the registers.

I've recently noticed based on the requests to add a small piece of code
that dumps the page to various VM_BUG_ON sites that the page dump is
quite useful to people debugging issues in mm.

This patch adds a VM_BUG_ON_PAGE(cond, page) which beyond doing what
VM_BUG_ON() does, also dumps the page before executing the actual
BUG_ON.

[akpm@linux-foundation.org: fix up includes]
Signed-off-by: Sasha Levin <sasha.levin@oracle.com>
Cc: "Kirill A. Shutemov" <kirill@shutemov.name>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-01-23 16:36:50 -08:00
Vladimir Davydov 8ff69e2c85 memcg: do not use vmalloc for mem_cgroup allocations
The vmalloc was introduced by 3332794878 ("memcgroup: use vmalloc for
mem_cgroup allocation"), because at that time MAX_NUMNODES was used for
defining the per-node array in the mem_cgroup structure so that the
structure could be huge even if the system had the only NUMA node.

The situation was significantly improved by commit 45cf7ebd5a ("memcg:
reduce the size of struct memcg 244-fold"), which made the size of the
mem_cgroup structure calculated dynamically depending on the real number
of NUMA nodes installed on the system (nr_node_ids), so now there is no
point in using vmalloc here: the structure is allocated rarely and on
most systems its size is about 1K.

Signed-off-by: Vladimir Davydov <vdavydov@parallels.com>
Acked-by: Michal Hocko <mhocko@suse.cz>
Cc: Glauber Costa <glommer@openvz.org>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Balbir Singh <bsingharora@gmail.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-01-23 16:36:50 -08:00
Vlastimil Babka 01cc2e5869 mm: munlock: fix potential race with THP page split
Since commit ff6a6da60b ("mm: accelerate munlock() treatment of THP
pages") munlock skips tail pages of a munlocked THP page.  There is some
attempt to prevent bad consequences of racing with a THP page split, but
code inspection indicates that there are two problems that may lead to a
non-fatal, yet wrong outcome.

First, __split_huge_page_refcount() copies flags including PageMlocked
from the head page to the tail pages.  Clearing PageMlocked by
munlock_vma_page() in the middle of this operation might result in part
of tail pages left with PageMlocked flag.  As the head page still
appears to be a THP page until all tail pages are processed,
munlock_vma_page() might think it munlocked the whole THP page and skip
all the former tail pages.  Before ff6a6da60, those pages would be
cleared in further iterations of munlock_vma_pages_range(), but NR_MLOCK
would still become undercounted (related the next point).

Second, NR_MLOCK accounting is based on call to hpage_nr_pages() after
the PageMlocked is cleared.  The accounting might also become
inconsistent due to race with __split_huge_page_refcount()

- undercount when HUGE_PMD_NR is subtracted, but some tail pages are
  left with PageMlocked set and counted again (only possible before
  ff6a6da60)

- overcount when hpage_nr_pages() sees a normal page (split has already
  finished), but the parallel split has meanwhile cleared PageMlocked from
  additional tail pages

This patch prevents both problems via extending the scope of lru_lock in
munlock_vma_page().  This is convenient because:

- __split_huge_page_refcount() takes lru_lock for its whole operation

- munlock_vma_page() typically takes lru_lock anyway for page isolation

As this becomes a second function where page isolation is done with
lru_lock already held, factor this out to a new
__munlock_isolate_lru_page() function and clean up the code around.

[akpm@linux-foundation.org: avoid a coding-style ugly]
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Sasha Levin <sasha.levin@oracle.com>
Cc: Michel Lespinasse <walken@google.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Hugh Dickins <hughd@google.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-01-23 16:36:50 -08:00
Dave Hansen f0b791a34c mm: print more details for bad_page()
bad_page() is cool in that it prints out a bunch of data about the page.
But, I can never remember which page flags are good and which are bad,
or whether ->index or ->mapping is required to be NULL.

This patch allows bad/dump_page() callers to specify a string about why
they are dumping the page and adds explanation strings to a number of
places.  It also adds a 'bad_flags' argument to bad_page(), which it
then dumps out separately from the flags which are actually set.

This way, the messages will show specifically why the page was bad,
*specifically* which flags it is complaining about, if it was a page
flag combination which was the problem.

[akpm@linux-foundation.org: switch to pr_alert]
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Reviewed-by: Christoph Lameter <cl@linux.com>
Cc: Andi Kleen <andi@firstfloor.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-01-23 16:36:50 -08:00
Dan Streetman 12ab028be0 mm/zswap.c: change params from hidden to ro
The "compressor" and "enabled" params are currently hidden, this changes
them to read-only, so userspace can tell if zswap is enabled or not and
see what compressor is in use.

Signed-off-by: Dan Streetman <ddstreet@ieee.org>
Cc: Vladimir Murzin <murzin.v@gmail.com>
Cc: Bob Liu <bob.liu@oracle.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Weijie Yang <weijie.yang@samsung.com>
Acked-by: Seth Jennings <sjennings@variantweb.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-01-23 16:36:50 -08:00
Linus Torvalds df32e43a54 Merge branch 'akpm' (incoming from Andrew)
Merge first patch-bomb from Andrew Morton:

 - a couple of misc things

 - inotify/fsnotify work from Jan

 - ocfs2 updates (partial)

 - about half of MM

* emailed patches from Andrew Morton <akpm@linux-foundation.org>: (117 commits)
  mm/migrate: remove unused function, fail_migrate_page()
  mm/migrate: remove putback_lru_pages, fix comment on putback_movable_pages
  mm/migrate: correct failure handling if !hugepage_migration_support()
  mm/migrate: add comment about permanent failure path
  mm, page_alloc: warn for non-blockable __GFP_NOFAIL allocation failure
  mm: compaction: reset scanner positions immediately when they meet
  mm: compaction: do not mark unmovable pageblocks as skipped in async compaction
  mm: compaction: detect when scanners meet in isolate_freepages
  mm: compaction: reset cached scanner pfn's before reading them
  mm: compaction: encapsulate defer reset logic
  mm: compaction: trace compaction begin and end
  memcg, oom: lock mem_cgroup_print_oom_info
  sched: add tracepoints related to NUMA task migration
  mm: numa: do not automatically migrate KSM pages
  mm: numa: trace tasks that fail migration due to rate limiting
  mm: numa: limit scope of lock for NUMA migrate rate limiting
  mm: numa: make NUMA-migrate related functions static
  lib/show_mem.c: show num_poisoned_pages when oom
  mm/hwpoison: add '#' to hwpoison_inject
  mm/memblock: use WARN_ONCE when MAX_NUMNODES passed as input parameter
  ...
2014-01-21 19:05:45 -08:00
Linus Torvalds f075e0f699 Merge branch 'for-3.14' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/cgroup
Pull cgroup updates from Tejun Heo:
 "The bulk of changes are cleanups and preparations for the upcoming
  kernfs conversion.

   - cgroup_event mechanism which is and will be used only by memcg is
     moved to memcg.

   - pidlist handling is updated so that it can be served by seq_file.

     Also, the list is not sorted if sane_behavior.  cgroup
     documentation explicitly states that the file is not sorted but it
     has been for quite some time.

   - All cgroup file handling now happens on top of seq_file.  This is
     to prepare for kernfs conversion.  In addition, all operations are
     restructured so that they map 1-1 to kernfs operations.

   - Other cleanups and low-pri fixes"

* 'for-3.14' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/cgroup: (40 commits)
  cgroup: trivial style updates
  cgroup: remove stray references to css_id
  doc: cgroups: Fix typo in doc/cgroups
  cgroup: fix fail path in cgroup_load_subsys()
  cgroup: fix missing unlock on error in cgroup_load_subsys()
  cgroup: remove for_each_root_subsys()
  cgroup: implement for_each_css()
  cgroup: factor out cgroup_subsys_state creation into create_css()
  cgroup: combine css handling loops in cgroup_create()
  cgroup: reorder operations in cgroup_create()
  cgroup: make for_each_subsys() useable under cgroup_root_mutex
  cgroup: css iterations and css_from_dir() are safe under cgroup_mutex
  cgroup: unify pidlist and other file handling
  cgroup: replace cftype->read_seq_string() with cftype->seq_show()
  cgroup: attach cgroup_open_file to all cgroup files
  cgroup: generalize cgroup_pidlist_open_file
  cgroup: unify read path so that seq_file is always used
  cgroup: unify cgroup_write_X64() and cgroup_write_string()
  cgroup: remove cftype->read(), ->read_map() and ->write()
  hugetlb_cgroup: convert away from cftype->read()
  ...
2014-01-21 17:51:34 -08:00
Linus Torvalds 5cb7398caf Merge branch 'for-3.14' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/percpu
Pull percpu changes from Tejun Heo:
 "Two trivial changes - addition of WARN_ONCE() in lib/percpu-refcount.c
  and use of VMALLOC_TOTAL instead of END - START in percpu.c"

* 'for-3.14' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/percpu:
  percpu: use VMALLOC_TOTAL instead of VMALLOC_END - VMALLOC_START
  percpu-refcount: Add a WARN() for ref going negative
2014-01-21 17:48:41 -08:00
Joonsoo Kim 78d5506e82 mm/migrate: remove unused function, fail_migrate_page()
fail_migrate_page() isn't used anywhere, so remove it.

Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Acked-by: Christoph Lameter <cl@linux.com>
Reviewed-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Reviewed-by: Wanpeng Li <liwanp@linux.vnet.ibm.com>
Cc: Rafael Aquini <aquini@redhat.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Wanpeng Li <liwanp@linux.vnet.ibm.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Rik van Riel <riel@redhat.com>
Cc: Zhang Yanfei <zhangyanfei@cn.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-01-21 16:19:49 -08:00
Joonsoo Kim 59c82b70dc mm/migrate: remove putback_lru_pages, fix comment on putback_movable_pages
Some part of putback_lru_pages() and putback_movable_pages() is
duplicated, so it could confuse us what we should use.  We can remove
putback_lru_pages() since it is not really needed now.  This makes us
undestand and maintain the code more easily.

And comment on putback_movable_pages() is stale now, so fix it.

Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Reviewed-by: Wanpeng Li <liwanp@linux.vnet.ibm.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Rafael Aquini <aquini@redhat.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Wanpeng Li <liwanp@linux.vnet.ibm.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Rik van Riel <riel@redhat.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Zhang Yanfei <zhangyanfei@cn.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-01-21 16:19:49 -08:00
Joonsoo Kim 32665f2bbf mm/migrate: correct failure handling if !hugepage_migration_support()
We should remove the page from the list if we fail with ENOSYS, since
migrate_pages() consider error cases except -ENOMEM and -EAGAIN as
permanent failure and it assumes that the page would be removed from the
list.  Without this patch, we could overcount number of failure.

In addition, we should put back the new hugepage if
!hugepage_migration_support().  If not, we would leak hugepage memory.

Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Acked-by: Christoph Lameter <cl@linux.com>
Reviewed-by: Wanpeng Li <liwanp@linux.vnet.ibm.com>
Reviewed-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Rafael Aquini <aquini@redhat.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Wanpeng Li <liwanp@linux.vnet.ibm.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Rik van Riel <riel@redhat.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Zhang Yanfei <zhangyanfei@cn.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-01-21 16:19:49 -08:00
Naoya Horiguchi 354a336336 mm/migrate: add comment about permanent failure path
Let's add a comment about where the failed page goes to, which makes
code more readable.

Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Acked-by: Christoph Lameter <cl@linux.com>
Reviewed-by: Wanpeng Li <liwanp@linux.vnet.ibm.com>
Acked-by: Rafael Aquini <aquini@redhat.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Wanpeng Li <liwanp@linux.vnet.ibm.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Rik van Riel <riel@redhat.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Zhang Yanfei <zhangyanfei@cn.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-01-21 16:19:49 -08:00
David Rientjes aed0a0e32d mm, page_alloc: warn for non-blockable __GFP_NOFAIL allocation failure
__GFP_NOFAIL may return NULL when coupled with GFP_NOWAIT or GFP_ATOMIC.

Luckily, nothing currently does such craziness.  So instead of causing
such allocations to loop (potentially forever), we maintain the current
behavior and also warn about the new users of the deprecated flag.

Suggested-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: David Rientjes <rientjes@google.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Michal Hocko <mhocko@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-01-21 16:19:49 -08:00
Vlastimil Babka 55b7c4c99f mm: compaction: reset scanner positions immediately when they meet
Compaction used to start its migrate and free page scaners at the zone's
lowest and highest pfn, respectively.  Later, caching was introduced to
remember the scanners' progress across compaction attempts so that
pageblocks are not re-scanned uselessly.  Additionally, pageblocks where
isolation failed are marked to be quickly skipped when encountered again
in future compactions.

Currently, both the reset of cached pfn's and clearing of the pageblock
skip information for a zone is done in __reset_isolation_suitable().
This function gets called when:

 - compaction is restarting after being deferred
 - compact_blockskip_flush flag is set in compact_finished() when the scanners
   meet (and not again cleared when direct compaction succeeds in allocation)
   and kswapd acts upon this flag before going to sleep

This behavior is suboptimal for several reasons:

 - when direct sync compaction is called after async compaction fails (in the
   allocation slowpath), it will effectively do nothing, unless kswapd
   happens to process the compact_blockskip_flush flag meanwhile. This is racy
   and goes against the purpose of sync compaction to more thoroughly retry
   the compaction of a zone where async compaction has failed.
   The restart-after-deferring path cannot help here as deferring happens only
   after the sync compaction fails. It is also done only for the preferred
   zone, while the compaction might be done for a fallback zone.

 - the mechanism of marking pageblock to be skipped has little value since the
   cached pfn's are reset only together with the pageblock skip flags. This
   effectively limits pageblock skip usage to parallel compactions.

This patch changes compact_finished() so that cached pfn's are reset
immediately when the scanners meet.  Clearing pageblock skip flags is
unchanged, as well as the other situations where cached pfn's are reset.
This allows the sync-after-async compaction to retry pageblocks not
marked as skipped, such as blocks !MIGRATE_MOVABLE blocks that async
compactions now skips without marking them.

Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Rik van Riel <riel@redhat.com>
Acked-by: Mel Gorman <mgorman@suse.de>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-01-21 16:19:49 -08:00
Vlastimil Babka 50b5b094e6 mm: compaction: do not mark unmovable pageblocks as skipped in async compaction
Compaction temporarily marks pageblocks where it fails to isolate pages
as to-be-skipped in further compactions, in order to improve efficiency.
One of the reasons to fail isolating pages is that isolation is not
attempted in pageblocks that are not of MIGRATE_MOVABLE (or CMA) type.

The problem is that blocks skipped due to not being MIGRATE_MOVABLE in
async compaction become skipped due to the temporary mark also in future
sync compaction.  Moreover, this may follow quite soon during
__alloc_page_slowpath, without much time for kswapd to clear the
pageblock skip marks.  This goes against the idea that sync compaction
should try to scan these blocks more thoroughly than the async
compaction.

The fix is to ensure in async compaction that these !MIGRATE_MOVABLE
blocks are not marked to be skipped.  Note this should not affect
performance or locking impact of further async compactions, as skipping
a block due to being !MIGRATE_MOVABLE is done soon after skipping a
block marked to be skipped, both without locking.

Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Rik van Riel <riel@redhat.com>
Acked-by: Mel Gorman <mgorman@suse.de>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-01-21 16:19:48 -08:00
Vlastimil Babka 7ed695e069 mm: compaction: detect when scanners meet in isolate_freepages
Compaction of a zone is finished when the migrate scanner (which begins
at the zone's lowest pfn) meets the free page scanner (which begins at
the zone's highest pfn).  This is detected in compact_zone() and in the
case of direct compaction, the compact_blockskip_flush flag is set so
that kswapd later resets the cached scanner pfn's, and a new compaction
may again start at the zone's borders.

The meeting of the scanners can happen during either scanner's activity.
However, it may currently fail to be detected when it occurs in the free
page scanner, due to two problems.  First, isolate_freepages() keeps
free_pfn at the highest block where it isolated pages from, for the
purposes of not missing the pages that are returned back to allocator
when migration fails.  Second, failing to isolate enough free pages due
to scanners meeting results in -ENOMEM being returned by
migrate_pages(), which makes compact_zone() bail out immediately without
calling compact_finished() that would detect scanners meeting.

This failure to detect scanners meeting might result in repeated
attempts at compaction of a zone that keep starting from the cached
pfn's close to the meeting point, and quickly failing through the
-ENOMEM path, without the cached pfns being reset, over and over.  This
has been observed (through additional tracepoints) in the third phase of
the mmtests stress-highalloc benchmark, where the allocator runs on an
otherwise idle system.  The problem was observed in the DMA32 zone,
which was used as a fallback to the preferred Normal zone, but on the
4GB system it was actually the largest zone.  The problem is even
amplified for such fallback zone - the deferred compaction logic, which
could (after being fixed by a previous patch) reset the cached scanner
pfn's, is only applied to the preferred zone and not for the fallbacks.

The problem in the third phase of the benchmark was further amplified by
commit 81c0a2bb51 ("mm: page_alloc: fair zone allocator policy") which
resulted in a non-deterministic regression of the allocation success
rate from ~85% to ~65%.  This occurs in about half of benchmark runs,
making bisection problematic.  It is unlikely that the commit itself is
buggy, but it should put more pressure on the DMA32 zone during phases 1
and 2, which may leave it more fragmented in phase 3 and expose the bugs
that this patch fixes.

The fix is to make scanners meeting in isolate_freepage() stay that way,
and to check in compact_zone() for scanners meeting when migrate_pages()
returns -ENOMEM.  The result is that compact_finished() also detects
scanners meeting and sets the compact_blockskip_flush flag to make
kswapd reset the scanner pfn's.

The results in stress-highalloc benchmark show that the "regression" by
commit 81c0a2bb51 in phase 3 no longer occurs, and phase 1 and 2
allocation success rates are also significantly improved.

Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Rik van Riel <riel@redhat.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-01-21 16:19:48 -08:00
Vlastimil Babka d3132e4b83 mm: compaction: reset cached scanner pfn's before reading them
Compaction caches pfn's for its migrate and free scanners to avoid
scanning the whole zone each time.  In compact_zone(), the cached values
are read to set up initial values for the scanners.  There are several
situations when these cached pfn's are reset to the first and last pfn
of the zone, respectively.  One of these situations is when a compaction
has been deferred for a zone and is now being restarted during a direct
compaction, which is also done in compact_zone().

However, compact_zone() currently reads the cached pfn's *before*
resetting them.  This means the reset doesn't affect the compaction that
performs it, and with good chance also subsequent compactions, as
update_pageblock_skip() is likely to be called and update the cached
pfn's to those being processed.  Another chance for a successful reset
is when a direct compaction detects that migration and free scanners
meet (which has its own problems addressed by another patch) and sets
update_pageblock_skip flag which kswapd uses to do the reset because it
goes to sleep.

This is clearly a bug that results in non-deterministic behavior, so
this patch moves the cached pfn reset to be performed *before* the
values are read.

Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Mel Gorman <mgorman@suse.de>
Acked-by: Rik van Riel <riel@redhat.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-01-21 16:19:48 -08:00
Vlastimil Babka de6c60a6c1 mm: compaction: encapsulate defer reset logic
Currently there are several functions to manipulate the deferred
compaction state variables.  The remaining case where the variables are
touched directly is when a successful allocation occurs in direct
compaction, or is expected to be successful in the future by kswapd.
Here, the lowest order that is expected to fail is updated, and in the
case of successful allocation, the deferred status and counter is reset
completely.

Create a new function compaction_defer_reset() to encapsulate this
functionality and make it easier to understand the code.  No functional
change.

Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Mel Gorman <mgorman@suse.de>
Reviewed-by: Rik van Riel <riel@redhat.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-01-21 16:19:48 -08:00
Mel Gorman 0eb927c0ab mm: compaction: trace compaction begin and end
The broad goal of the series is to improve allocation success rates for
huge pages through memory compaction, while trying not to increase the
compaction overhead.  The original objective was to reintroduce
capturing of high-order pages freed by the compaction, before they are
split by concurrent activity.  However, several bugs and opportunities
for simple improvements were found in the current implementation, mostly
through extra tracepoints (which are however too ugly for now to be
considered for sending).

The patches mostly deal with two mechanisms that reduce compaction
overhead, which is caching the progress of migrate and free scanners,
and marking pageblocks where isolation failed to be skipped during
further scans.

Patch 1 (from mgorman) adds tracepoints that allow calculate time spent in
        compaction and potentially debug scanner pfn values.

Patch 2 encapsulates the some functionality for handling deferred compactions
        for better maintainability, without a functional change
        type is not determined without being actually needed.

Patch 3 fixes a bug where cached scanner pfn's are sometimes reset only after
        they have been read to initialize a compaction run.

Patch 4 fixes a bug where scanners meeting is sometimes not properly detected
        and can lead to multiple compaction attempts quitting early without
        doing any work.

Patch 5 improves the chances of sync compaction to process pageblocks that
        async compaction has skipped due to being !MIGRATE_MOVABLE.

Patch 6 improves the chances of sync direct compaction to actually do anything
        when called after async compaction fails during allocation slowpath.

The impact of patches were validated using mmtests's stress-highalloc
benchmark with mmtests's stress-highalloc benchmark on a x86_64 machine
with 4GB memory.

Due to instability of the results (mostly related to the bugs fixed by
patches 2 and 3), 10 iterations were performed, taking min,mean,max
values for success rates and mean values for time and vmstat-based
metrics.

First, the default GFP_HIGHUSER_MOVABLE allocations were tested with the
patches stacked on top of v3.13-rc2.  Patch 2 is OK to serve as baseline
due to no functional changes in 1 and 2.  Comments below.

stress-highalloc
                             3.13-rc2              3.13-rc2              3.13-rc2              3.13-rc2              3.13-rc2
                              2-nothp               3-nothp               4-nothp               5-nothp               6-nothp
Success 1 Min          9.00 (  0.00%)       10.00 (-11.11%)       43.00 (-377.78%)       43.00 (-377.78%)       33.00 (-266.67%)
Success 1 Mean        27.50 (  0.00%)       25.30 (  8.00%)       45.50 (-65.45%)       45.90 (-66.91%)       46.30 (-68.36%)
Success 1 Max         36.00 (  0.00%)       36.00 (  0.00%)       47.00 (-30.56%)       48.00 (-33.33%)       52.00 (-44.44%)
Success 2 Min         10.00 (  0.00%)        8.00 ( 20.00%)       46.00 (-360.00%)       45.00 (-350.00%)       35.00 (-250.00%)
Success 2 Mean        26.40 (  0.00%)       23.50 ( 10.98%)       47.30 (-79.17%)       47.60 (-80.30%)       48.10 (-82.20%)
Success 2 Max         34.00 (  0.00%)       33.00 (  2.94%)       48.00 (-41.18%)       50.00 (-47.06%)       54.00 (-58.82%)
Success 3 Min         65.00 (  0.00%)       63.00 (  3.08%)       85.00 (-30.77%)       84.00 (-29.23%)       85.00 (-30.77%)
Success 3 Mean        76.70 (  0.00%)       70.50 (  8.08%)       86.20 (-12.39%)       85.50 (-11.47%)       86.00 (-12.13%)
Success 3 Max         87.00 (  0.00%)       86.00 (  1.15%)       88.00 ( -1.15%)       87.00 (  0.00%)       87.00 (  0.00%)

            3.13-rc2    3.13-rc2    3.13-rc2    3.13-rc2    3.13-rc2
             2-nothp     3-nothp     4-nothp     5-nothp     6-nothp
User         6437.72     6459.76     5960.32     5974.55     6019.67
System       1049.65     1049.09     1029.32     1031.47     1032.31
Elapsed      1856.77     1874.48     1949.97     1994.22     1983.15

                              3.13-rc2    3.13-rc2    3.13-rc2    3.13-rc2    3.13-rc2
                               2-nothp     3-nothp     4-nothp     5-nothp     6-nothp
Minor Faults                 253952267   254581900   250030122   250507333   250157829
Major Faults                       420         407         506         530         530
Swap Ins                             4           9           9           6           6
Swap Outs                          398         375         345         346         333
Direct pages scanned            197538      189017      298574      287019      299063
Kswapd pages scanned           1809843     1801308     1846674     1873184     1861089
Kswapd pages reclaimed         1806972     1798684     1844219     1870509     1858622
Direct pages reclaimed          197227      188829      298380      286822      298835
Kswapd efficiency                  99%         99%         99%         99%         99%
Kswapd velocity                953.382     970.449     952.243     934.569     922.286
Direct efficiency                  99%         99%         99%         99%         99%
Direct velocity                104.058     101.832     153.961     143.200     148.205
Percentage direct scans             9%          9%         13%         13%         13%
Zone normal velocity           347.289     359.676     348.063     339.933     332.983
Zone dma32 velocity            710.151     712.605     758.140     737.835     737.507
Zone dma velocity                0.000       0.000       0.000       0.000       0.000
Page writes by reclaim         557.600     429.000     353.600     426.400     381.800
Page writes file                   159          53           7          79          48
Page writes anon                   398         375         345         346         333
Page reclaim immediate             825         644         411         575         420
Sector Reads                   2781750     2769780     2878547     2939128     2910483
Sector Writes                 12080843    12083351    12012892    12002132    12010745
Page rescued immediate               0           0           0           0           0
Slabs scanned                  1575654     1545344     1778406     1786700     1794073
Direct inode steals               9657       10037       15795       14104       14645
Kswapd inode steals              46857       46335       50543       50716       51796
Kswapd skipped wait                  0           0           0           0           0
THP fault alloc                     97          91          81          71          77
THP collapse alloc                 456         506         546         544         565
THP splits                           6           5           5           4           4
THP fault fallback                   0           1           0           0           0
THP collapse fail                   14          14          12          13          12
Compaction stalls                 1006         980        1537        1536        1548
Compaction success                 303         284         562         559         578
Compaction failures                702         696         974         976         969
Page migrate success           1177325     1070077     3927538     3781870     3877057
Page migrate failure                 0           0           0           0           0
Compaction pages isolated      2547248     2306457     8301218     8008500     8200674
Compaction migrate scanned    42290478    38832618   153961130   154143900   159141197
Compaction free scanned       89199429    79189151   356529027   351943166   356326727
Compaction cost                   1566        1426        5312        5156        5294
NUMA PTE updates                     0           0           0           0           0
NUMA hint faults                     0           0           0           0           0
NUMA hint local faults               0           0           0           0           0
NUMA hint local percent            100         100         100         100         100
NUMA pages migrated                  0           0           0           0           0
AutoNUMA cost                        0           0           0           0           0

Observations:

- The "Success 3" line is allocation success rate with system idle
  (phases 1 and 2 are with background interference).  I used to get stable
  values around 85% with vanilla 3.11.  The lower min and mean values came
  with 3.12.  This was bisected to commit 81c0a2bb ("mm: page_alloc: fair
  zone allocator policy") As explained in comment for patch 3, I don't
  think the commit is wrong, but that it makes the effect of compaction
  bugs worse.  From patch 3 onwards, the results are OK and match the 3.11
  results.

- Patch 4 also clearly helps phases 1 and 2, and exceeds any results
  I've seen with 3.11 (I didn't measure it that thoroughly then, but it
  was never above 40%).

- Compaction cost and number of scanned pages is higher, especially due
  to patch 4.  However, keep in mind that patches 3 and 4 fix existing
  bugs in the current design of compaction overhead mitigation, they do
  not change it.  If overhead is found unacceptable, then it should be
  decreased differently (and consistently, not due to random conditions)
  than the current implementation does.  In contrast, patches 5 and 6
  (which are not strictly bug fixes) do not increase the overhead (but
  also not success rates).  This might be a limitation of the
  stress-highalloc benchmark as it's quite uniform.

Another set of results is when configuring stress-highalloc t allocate
with similar flags as THP uses:
 (GFP_HIGHUSER_MOVABLE|__GFP_NOMEMALLOC|__GFP_NORETRY|__GFP_NO_KSWAPD)

stress-highalloc
                             3.13-rc2              3.13-rc2              3.13-rc2              3.13-rc2              3.13-rc2
                                2-thp                 3-thp                 4-thp                 5-thp                 6-thp
Success 1 Min          2.00 (  0.00%)        7.00 (-250.00%)       18.00 (-800.00%)       19.00 (-850.00%)       26.00 (-1200.00%)
Success 1 Mean        19.20 (  0.00%)       17.80 (  7.29%)       29.20 (-52.08%)       29.90 (-55.73%)       32.80 (-70.83%)
Success 1 Max         27.00 (  0.00%)       29.00 ( -7.41%)       35.00 (-29.63%)       36.00 (-33.33%)       37.00 (-37.04%)
Success 2 Min          3.00 (  0.00%)        8.00 (-166.67%)       21.00 (-600.00%)       21.00 (-600.00%)       32.00 (-966.67%)
Success 2 Mean        19.30 (  0.00%)       17.90 (  7.25%)       32.20 (-66.84%)       32.60 (-68.91%)       35.70 (-84.97%)
Success 2 Max         27.00 (  0.00%)       30.00 (-11.11%)       36.00 (-33.33%)       37.00 (-37.04%)       39.00 (-44.44%)
Success 3 Min         62.00 (  0.00%)       62.00 (  0.00%)       85.00 (-37.10%)       75.00 (-20.97%)       64.00 ( -3.23%)
Success 3 Mean        66.30 (  0.00%)       65.50 (  1.21%)       85.60 (-29.11%)       83.40 (-25.79%)       83.50 (-25.94%)
Success 3 Max         70.00 (  0.00%)       69.00 (  1.43%)       87.00 (-24.29%)       86.00 (-22.86%)       87.00 (-24.29%)

            3.13-rc2    3.13-rc2    3.13-rc2    3.13-rc2    3.13-rc2
               2-thp       3-thp       4-thp       5-thp       6-thp
User         6547.93     6475.85     6265.54     6289.46     6189.96
System       1053.42     1047.28     1043.23     1042.73     1038.73
Elapsed      1835.43     1821.96     1908.67     1912.74     1956.38

                              3.13-rc2    3.13-rc2    3.13-rc2    3.13-rc2    3.13-rc2
                                 2-thp       3-thp       4-thp       5-thp       6-thp
Minor Faults                 256805673   253106328   253222299   249830289   251184418
Major Faults                       395         375         423         434         448
Swap Ins                            12          10          10          12           9
Swap Outs                          530         537         487         455         415
Direct pages scanned             71859       86046      153244      152764      190713
Kswapd pages scanned           1900994     1870240     1898012     1892864     1880520
Kswapd pages reclaimed         1897814     1867428     1894939     1890125     1877924
Direct pages reclaimed           71766       85908      153167      152643      190600
Kswapd efficiency                  99%         99%         99%         99%         99%
Kswapd velocity               1029.000    1067.782    1000.091     991.049     951.218
Direct efficiency                  99%         99%         99%         99%         99%
Direct velocity                 38.897      49.127      80.747      79.983      96.468
Percentage direct scans             3%          4%          7%          7%          9%
Zone normal velocity           351.377     372.494     348.910     341.689     335.310
Zone dma32 velocity            716.520     744.414     731.928     729.343     712.377
Zone dma velocity                0.000       0.000       0.000       0.000       0.000
Page writes by reclaim         669.300     604.000     545.700     538.900     429.900
Page writes file                   138          66          58          83          14
Page writes anon                   530         537         487         455         415
Page reclaim immediate             806         655         772         548         517
Sector Reads                   2711956     2703239     2811602     2818248     2839459
Sector Writes                 12163238    12018662    12038248    11954736    11994892
Page rescued immediate               0           0           0           0           0
Slabs scanned                  1385088     1388364     1507968     1513292     1558656
Direct inode steals               1739        2564        4622        5496        6007
Kswapd inode steals              47461       46406       47804       48013       48466
Kswapd skipped wait                  0           0           0           0           0
THP fault alloc                    110          82          84          69          70
THP collapse alloc                 445         482         467         462         539
THP splits                           6           5           4           5           3
THP fault fallback                   3           0           0           0           0
THP collapse fail                   15          14          14          14          13
Compaction stalls                  659         685        1033        1073        1111
Compaction success                 222         225         410         427         456
Compaction failures                436         460         622         646         655
Page migrate success            446594      439978     1085640     1095062     1131716
Page migrate failure                 0           0           0           0           0
Compaction pages isolated      1029475     1013490     2453074     2482698     2565400
Compaction migrate scanned     9955461    11344259    24375202    27978356    30494204
Compaction free scanned       27715272    28544654    80150615    82898631    85756132
Compaction cost                    552         555        1344        1379        1436
NUMA PTE updates                     0           0           0           0           0
NUMA hint faults                     0           0           0           0           0
NUMA hint local faults               0           0           0           0           0
NUMA hint local percent            100         100         100         100         100
NUMA pages migrated                  0           0           0           0           0
AutoNUMA cost                        0           0           0           0           0

There are some differences from the previous results for THP-like allocations:

- Here, the bad result for unpatched kernel in phase 3 is much more
  consistent to be between 65-70% and not related to the "regression" in
  3.12.  Still there is the improvement from patch 4 onwards, which brings
  it on par with simple GFP_HIGHUSER_MOVABLE allocations.

- Compaction costs have increased, but nowhere near as much as the
  non-THP case.  Again, the patches should be worth the gained
  determininsm.

- Patches 5 and 6 somewhat increase the number of migrate-scanned pages.
   This is most likely due to __GFP_NO_KSWAPD flag, which means the cached
  pfn's and pageblock skip bits are not reset by kswapd that often (at
  least in phase 3 where no concurrent activity would wake up kswapd) and
  the patches thus help the sync-after-async compaction.  It doesn't
  however show that the sync compaction would help so much with success
  rates, which can be again seen as a limitation of the benchmark
  scenario.

This patch (of 6):

Add two tracepoints for compaction begin and end of a zone.  Using this it
is possible to calculate how much time a workload is spending within
compaction and potentially debug problems related to cached pfns for
scanning.  In combination with the direct reclaim and slab trace points it
should be possible to estimate most allocation-related overhead for a
workload.

Signed-off-by: Mel Gorman <mgorman@suse.de>
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Rik van Riel <riel@redhat.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-01-21 16:19:48 -08:00
Michal Hocko 947b3dd1a8 memcg, oom: lock mem_cgroup_print_oom_info
mem_cgroup_print_oom_info uses a static buffer (memcg_name) to store the
name of the cgroup.  This is not safe as pointed out by David Rientjes
because memcg oom is locked only for its hierarchy and nothing prevents
another parallel hierarchy to trigger oom as well and overwrite the
already in-use buffer.

This patch introduces oom_info_lock hidden inside
mem_cgroup_print_oom_info which is held throughout the function.  It
makes access to memcg_name safe and as a bonus it also prevents parallel
memcg ooms to interleave their statistics which would make the printed
data hard to analyze otherwise.

Signed-off-by: Michal Hocko <mhocko@suse.cz>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Acked-by: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-01-21 16:19:48 -08:00
Mel Gorman 64a9a34e22 mm: numa: do not automatically migrate KSM pages
KSM pages can be shared between tasks that are not necessarily related
to each other from a NUMA perspective.  This patch causes those pages to
be ignored by automatic NUMA balancing so they do not migrate and do not
cause unrelated tasks to be grouped together.

Signed-off-by: Mel Gorman <mgorman@suse.de>
Reviewed-by: Rik van Riel <riel@redhat.com>
Cc: Alex Thorlton <athorlton@sgi.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-01-21 16:19:48 -08:00
Mel Gorman af1839d722 mm: numa: trace tasks that fail migration due to rate limiting
A low local/remote numa hinting fault ratio is potentially explained by
failed migrations.  This patch adds a tracepoint that fires when
migration fails due to migration rate limitation.

Signed-off-by: Mel Gorman <mgorman@suse.de>
Reviewed-by: Rik van Riel <riel@redhat.com>
Cc: Alex Thorlton <athorlton@sgi.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-01-21 16:19:48 -08:00
Mel Gorman 1c5e9c27cb mm: numa: limit scope of lock for NUMA migrate rate limiting
NUMA migrate rate limiting protects a migration counter and window using
a lock but in some cases this can be a contended lock.  It is not
critical that the number of pages be perfect, lost updates are
acceptable.  Reduce the importance of this lock.

Signed-off-by: Mel Gorman <mgorman@suse.de>
Reviewed-by: Rik van Riel <riel@redhat.com>
Cc: Alex Thorlton <athorlton@sgi.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-01-21 16:19:48 -08:00
Mel Gorman 1c30e0177e mm: numa: make NUMA-migrate related functions static
numamigrate_update_ratelimit and numamigrate_isolate_page only have
callers in mm/migrate.c.  This patch makes them static.

Signed-off-by: Mel Gorman <mgorman@suse.de>
Reviewed-by: Rik van Riel <riel@redhat.com>
Cc: Alex Thorlton <athorlton@sgi.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-01-21 16:19:48 -08:00
Wanpeng Li 4883e997b2 mm/hwpoison: add '#' to hwpoison_inject
Add '#' to hwpoison_inject just as done in madvise_hwpoison.

Signed-off-by: Wanpeng Li <liwanp@linux.vnet.ibm.com>
Reviewed-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Reviewed-by: Vladimir Murzin <murzin.v@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-01-21 16:19:48 -08:00
Grygorii Strashko 560dca27a6 mm/memblock: use WARN_ONCE when MAX_NUMNODES passed as input parameter
Check nid parameter and produce warning if it has deprecated
MAX_NUMNODES value.  Also re-assign NUMA_NO_NODE value to the nid
parameter in this case.

These will help to identify the wrong API usage (the caller) and make
code simpler.

Signed-off-by: Grygorii Strashko <grygorii.strashko@ti.com>
Signed-off-by: Santosh Shilimkar <santosh.shilimkar@ti.com>
Cc: Yinghai Lu <yinghai@kernel.org>
Cc: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-01-21 16:19:48 -08:00
Santosh Shilimkar 9e43aa2b8d mm/memory_hotplug.c: use memblock apis for early memory allocations
Correct ensure_zone_is_initialized() function description according to
the introduced memblock APIs for early memory allocations.

Signed-off-by: Grygorii Strashko <grygorii.strashko@ti.com>
Signed-off-by: Santosh Shilimkar <santosh.shilimkar@ti.com>
Cc: "Rafael J. Wysocki" <rjw@sisk.pl>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Christoph Lameter <cl@linux-foundation.org>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Paul Walmsley <paul@pwsan.com>
Cc: Pavel Machek <pavel@ucw.cz>
Cc: Russell King <linux@arm.linux.org.uk>
Cc: Tejun Heo <tj@kernel.org>
Cc: Tony Lindgren <tony@atomide.com>
Cc: Yinghai Lu <yinghai@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-01-21 16:19:47 -08:00
Santosh Shilimkar 999c17e3de mm/percpu.c: use memblock apis for early memory allocations
Switch to memblock interfaces for early memory allocator instead of
bootmem allocator.  No functional change in beahvior than what it is in
current code from bootmem users points of view.

Archs already converted to NO_BOOTMEM now directly use memblock
interfaces instead of bootmem wrappers build on top of memblock.  And
the archs which still uses bootmem, these new apis just fallback to
exiting bootmem APIs.

Signed-off-by: Santosh Shilimkar <santosh.shilimkar@ti.com>
Cc: "Rafael J. Wysocki" <rjw@sisk.pl>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Christoph Lameter <cl@linux-foundation.org>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Grygorii Strashko <grygorii.strashko@ti.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Paul Walmsley <paul@pwsan.com>
Cc: Pavel Machek <pavel@ucw.cz>
Cc: Russell King <linux@arm.linux.org.uk>
Cc: Tejun Heo <tj@kernel.org>
Cc: Tony Lindgren <tony@atomide.com>
Cc: Yinghai Lu <yinghai@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-01-21 16:19:47 -08:00
Grygorii Strashko 0d036e9e33 mm/page_cgroup.c: use memblock apis for early memory allocations
Switch to memblock interfaces for early memory allocator instead of
bootmem allocator.  No functional change in beahvior than what it is in
current code from bootmem users points of view.

Archs already converted to NO_BOOTMEM now directly use memblock
interfaces instead of bootmem wrappers build on top of memblock.  And
the archs which still uses bootmem, these new apis just fallback to
exiting bootmem APIs.

Signed-off-by: Grygorii Strashko <grygorii.strashko@ti.com>
Signed-off-by: Santosh Shilimkar <santosh.shilimkar@ti.com>
Cc: "Rafael J. Wysocki" <rjw@sisk.pl>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Christoph Lameter <cl@linux-foundation.org>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Grygorii Strashko <grygorii.strashko@ti.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Paul Walmsley <paul@pwsan.com>
Cc: Pavel Machek <pavel@ucw.cz>
Cc: Russell King <linux@arm.linux.org.uk>
Cc: Tejun Heo <tj@kernel.org>
Cc: Tony Lindgren <tony@atomide.com>
Cc: Yinghai Lu <yinghai@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-01-21 16:19:47 -08:00
Grygorii Strashko 8b89a11694 mm/hugetlb.c: use memblock apis for early memory allocations
Switch to memblock interfaces for early memory allocator instead of
bootmem allocator.  No functional change in beahvior than what it is in
current code from bootmem users points of view.

Archs already converted to NO_BOOTMEM now directly use memblock
interfaces instead of bootmem wrappers build on top of memblock.  And
the archs which still uses bootmem, these new apis just fallback to
exiting bootmem APIs.

Signed-off-by: Grygorii Strashko <grygorii.strashko@ti.com>
Signed-off-by: Santosh Shilimkar <santosh.shilimkar@ti.com>
Cc: "Rafael J. Wysocki" <rjw@sisk.pl>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Christoph Lameter <cl@linux-foundation.org>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Paul Walmsley <paul@pwsan.com>
Cc: Pavel Machek <pavel@ucw.cz>
Cc: Russell King <linux@arm.linux.org.uk>
Cc: Tejun Heo <tj@kernel.org>
Cc: Tony Lindgren <tony@atomide.com>
Cc: Yinghai Lu <yinghai@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-01-21 16:19:47 -08:00
Santosh Shilimkar bb016b8416 mm/sparse: use memblock apis for early memory allocations
Switch to memblock interfaces for early memory allocator instead of
bootmem allocator.  No functional change in beahvior than what it is in
current code from bootmem users points of view.

Archs already converted to NO_BOOTMEM now directly use memblock
interfaces instead of bootmem wrappers build on top of memblock.  And
the archs which still uses bootmem, these new apis just fallback to
exiting bootmem APIs.

Signed-off-by: Santosh Shilimkar <santosh.shilimkar@ti.com>
Cc: "Rafael J. Wysocki" <rjw@sisk.pl>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Christoph Lameter <cl@linux-foundation.org>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Grygorii Strashko <grygorii.strashko@ti.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Paul Walmsley <paul@pwsan.com>
Cc: Pavel Machek <pavel@ucw.cz>
Cc: Russell King <linux@arm.linux.org.uk>
Cc: Tejun Heo <tj@kernel.org>
Cc: Tony Lindgren <tony@atomide.com>
Cc: Yinghai Lu <yinghai@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-01-21 16:19:47 -08:00
Santosh Shilimkar 6782832eba mm/page_alloc.c: use memblock apis for early memory allocations
Switch to memblock interfaces for early memory allocator instead of
bootmem allocator.  No functional change in beahvior than what it is in
current code from bootmem users points of view.

Archs already converted to NO_BOOTMEM now directly use memblock
interfaces instead of bootmem wrappers build on top of memblock.  And
the archs which still uses bootmem, these new apis just fallback to
exiting bootmem APIs.

Signed-off-by: Grygorii Strashko <grygorii.strashko@ti.com>
Signed-off-by: Santosh Shilimkar <santosh.shilimkar@ti.com>
Cc: Yinghai Lu <yinghai@kernel.org>
Cc: Tejun Heo <tj@kernel.org>
Cc: "Rafael J. Wysocki" <rjw@sisk.pl>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Christoph Lameter <cl@linux-foundation.org>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Paul Walmsley <paul@pwsan.com>
Cc: Pavel Machek <pavel@ucw.cz>
Cc: Russell King <linux@arm.linux.org.uk>
Cc: Tony Lindgren <tony@atomide.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-01-21 16:19:47 -08:00
Santosh Shilimkar 26f09e9b3a mm/memblock: add memblock memory allocation apis
Introduce memblock memory allocation APIs which allow to support PAE or
LPAE extension on 32 bits archs where the physical memory start address
can be beyond 4GB.  In such cases, existing bootmem APIs which operate
on 32 bit addresses won't work and needs memblock layer which operates
on 64 bit addresses.

So we add equivalent APIs so that we can replace usage of bootmem with
memblock interfaces.  Architectures already converted to NO_BOOTMEM use
these new memblock interfaces.  The architectures which are still not
converted to NO_BOOTMEM continue to function as is because we still
maintain the fal lback option of bootmem back-end supporting these new
interfaces.  So no functional change as such.

In long run, once all the architectures moves to NO_BOOTMEM, we can get
rid of bootmem layer completely.  This is one step to remove the core
code dependency with bootmem and also gives path for architectures to
move away from bootmem.

The proposed interface will became active if both CONFIG_HAVE_MEMBLOCK
and CONFIG_NO_BOOTMEM are specified by arch.  In case
!CONFIG_NO_BOOTMEM, the memblock() wrappers will fallback to the
existing bootmem apis so that arch's not converted to NO_BOOTMEM
continue to work as is.

The meaning of MEMBLOCK_ALLOC_ACCESSIBLE and MEMBLOCK_ALLOC_ANYWHERE
is kept same.

[akpm@linux-foundation.org: s/depricated/deprecated/]
Signed-off-by: Grygorii Strashko <grygorii.strashko@ti.com>
Signed-off-by: Santosh Shilimkar <santosh.shilimkar@ti.com>
Cc: Yinghai Lu <yinghai@kernel.org>
Cc: Tejun Heo <tj@kernel.org>
Cc: "Rafael J. Wysocki" <rjw@sisk.pl>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Christoph Lameter <cl@linux-foundation.org>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Paul Walmsley <paul@pwsan.com>
Cc: Pavel Machek <pavel@ucw.cz>
Cc: Russell King <linux@arm.linux.org.uk>
Cc: Tony Lindgren <tony@atomide.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-01-21 16:19:46 -08:00
Grygorii Strashko b115423357 mm/memblock: switch to use NUMA_NO_NODE instead of MAX_NUMNODES
It's recommended to use NUMA_NO_NODE everywhere to select "process any
node" behavior or to indicate that "no node id specified".

Hence, update __next_free_mem_range*() API's to accept both NUMA_NO_NODE
and MAX_NUMNODES, but emit warning once on MAX_NUMNODES, and correct
corresponding API's documentation to describe new behavior.  Also,
update other memblock/nobootmem APIs where MAX_NUMNODES is used
dirrectly.

The change was suggested by Tejun Heo.

Signed-off-by: Grygorii Strashko <grygorii.strashko@ti.com>
Signed-off-by: Santosh Shilimkar <santosh.shilimkar@ti.com>
Cc: Yinghai Lu <yinghai@kernel.org>
Cc: Tejun Heo <tj@kernel.org>
Cc: "Rafael J. Wysocki" <rjw@sisk.pl>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Christoph Lameter <cl@linux-foundation.org>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Paul Walmsley <paul@pwsan.com>
Cc: Pavel Machek <pavel@ucw.cz>
Cc: Russell King <linux@arm.linux.org.uk>
Cc: Tony Lindgren <tony@atomide.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-01-21 16:19:46 -08:00
Grygorii Strashko 87029ee939 mm/memblock: reorder parameters of memblock_find_in_range_node
Reorder parameters of memblock_find_in_range_node to be consistent with
other memblock APIs.

The change was suggested by Tejun Heo <tj@kernel.org>.

Signed-off-by: Grygorii Strashko <grygorii.strashko@ti.com>
Signed-off-by: Santosh Shilimkar <santosh.shilimkar@ti.com>
Cc: Yinghai Lu <yinghai@kernel.org>
Cc: Tejun Heo <tj@kernel.org>
Cc: "Rafael J. Wysocki" <rjw@sisk.pl>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Christoph Lameter <cl@linux-foundation.org>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Paul Walmsley <paul@pwsan.com>
Cc: Pavel Machek <pavel@ucw.cz>
Cc: Russell King <linux@arm.linux.org.uk>
Cc: Tony Lindgren <tony@atomide.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-01-21 16:19:46 -08:00
Grygorii Strashko 79f40fab0b mm/memblock: drop WARN and use SMP_CACHE_BYTES as a default alignment
Don't produce warning and interpret 0 as "default align" equal to
SMP_CACHE_BYTES in case if caller of memblock_alloc_base_nid() doesn't
specify alignment for the block (align == 0).

This is done in preparation of introducing common memblock alloc interface
to make code behavior consistent.  More details are in below thread :

	https://lkml.org/lkml/2013/10/13/117.

Signed-off-by: Grygorii Strashko <grygorii.strashko@ti.com>
Signed-off-by: Santosh Shilimkar <santosh.shilimkar@ti.com>
Cc: Yinghai Lu <yinghai@kernel.org>
Cc: Tejun Heo <tj@kernel.org>
Cc: "Rafael J. Wysocki" <rjw@sisk.pl>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Christoph Lameter <cl@linux-foundation.org>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Paul Walmsley <paul@pwsan.com>
Cc: Pavel Machek <pavel@ucw.cz>
Cc: Russell King <linux@arm.linux.org.uk>
Cc: Tony Lindgren <tony@atomide.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-01-21 16:19:46 -08:00
Grygorii Strashko 869a84e1ca mm/memblock: remove unnecessary inclusions of bootmem.h
Clean-up to remove depedency with bootmem headers.

Signed-off-by: Grygorii Strashko <grygorii.strashko@ti.com>
Signed-off-by: Santosh Shilimkar <santosh.shilimkar@ti.com>
Reviewed-by: Tejun Heo <tj@kernel.org>
Cc: Yinghai Lu <yinghai@kernel.org>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: "Rafael J. Wysocki" <rjw@sisk.pl>
Cc: Christoph Lameter <cl@linux-foundation.org>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Paul Walmsley <paul@pwsan.com>
Cc: Pavel Machek <pavel@ucw.cz>
Cc: Russell King <linux@arm.linux.org.uk>
Cc: Tony Lindgren <tony@atomide.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-01-21 16:19:46 -08:00
Grygorii Strashko fd615c4e67 mm/memblock: debug: don't free reserved array if !ARCH_DISCARD_MEMBLOCK
Now the Nobootmem allocator will always try to free memory allocated for
reserved memory regions (free_low_memory_core_early()) without taking
into to account current memblock debugging configuration
(CONFIG_ARCH_DISCARD_MEMBLOCK and CONFIG_DEBUG_FS state).

As result if:

 - CONFIG_DEBUG_FS defined
 - CONFIG_ARCH_DISCARD_MEMBLOCK not defined;
 - reserved memory regions array have been resized during boot

then:

 - memory allocated for reserved memory regions array will be freed to
   buddy allocator;
 - debug_fs entry "sys/kernel/debug/memblock/reserved" will show garbage
   instead of state of memory reservations.  like:
   0: 0x98393bc0..0x9a393bbf
   1: 0xff120000..0xff11ffff
   2: 0x00000000..0xffffffff

Hence, do not free memory allocated for reserved memory regions if
defined(CONFIG_DEBUG_FS) && !defined(CONFIG_ARCH_DISCARD_MEMBLOCK).

Signed-off-by: Grygorii Strashko <grygorii.strashko@ti.com>
Signed-off-by: Santosh Shilimkar <santosh.shilimkar@ti.com>
Reviewed-by: Tejun Heo <tj@kernel.org>
Cc: Yinghai Lu <yinghai@kernel.org>
Cc: "Rafael J. Wysocki" <rjw@sisk.pl>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Christoph Lameter <cl@linux-foundation.org>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Paul Walmsley <paul@pwsan.com>
Cc: Pavel Machek <pavel@ucw.cz>
Cc: Russell King <linux@arm.linux.org.uk>
Cc: Tony Lindgren <tony@atomide.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-01-21 16:19:46 -08:00
Oleg Nesterov 4d4048be8a oom_kill: add rcu_read_lock() into find_lock_task_mm()
find_lock_task_mm() expects it is called under rcu or tasklist lock, but
it seems that at least oom_unkillable_task()->task_in_mem_cgroup() and
mem_cgroup_out_of_memory()->oom_badness() can call it lockless.

Perhaps we could fix the callers, but this patch simply adds rcu lock
into find_lock_task_mm().  This also allows to simplify a bit one of its
callers, oom_kill_process().

Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Cc: Sergey Dyasly <dserrg@gmail.com>
Cc: Sameer Nanda <snanda@chromium.org>
Cc: "Eric W. Biederman" <ebiederm@xmission.com>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Mandeep Singh Baines <msb@chromium.org>
Cc: "Ma, Xindong" <xindong.ma@intel.com>
Reviewed-by: Michal Hocko <mhocko@suse.cz>
Cc: "Tu, Xiaobing" <xiaobing.tu@intel.com>
Acked-by: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-01-21 16:19:46 -08:00
Oleg Nesterov ad96244179 oom_kill: has_intersects_mems_allowed() needs rcu_read_lock()
At least out_of_memory() calls has_intersects_mems_allowed() without
even rcu_read_lock(), this is obviously buggy.

Add the necessary rcu_read_lock().  This means that we can not simply
return from the loop, we need "bool ret" and "break".

While at it, swap the names of task_struct's (the argument and the
local).  This cleans up the code a little bit and avoids the unnecessary
initialization.

Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Reviewed-by: Sergey Dyasly <dserrg@gmail.com>
Tested-by: Sergey Dyasly <dserrg@gmail.com>
Reviewed-by: Sameer Nanda <snanda@chromium.org>
Cc: "Eric W. Biederman" <ebiederm@xmission.com>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Mandeep Singh Baines <msb@chromium.org>
Cc: "Ma, Xindong" <xindong.ma@intel.com>
Reviewed-by: Michal Hocko <mhocko@suse.cz>
Cc: "Tu, Xiaobing" <xiaobing.tu@intel.com>
Acked-by: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-01-21 16:19:46 -08:00
Oleg Nesterov 1da4db0cd5 oom_kill: change oom_kill.c to use for_each_thread()
Change oom_kill.c to use for_each_thread() rather than the racy
while_each_thread() which can loop forever if we race with exit.

Note also that most users were buggy even if while_each_thread() was
fine, the task can exit even _before_ rcu_read_lock().

Fortunately the new for_each_thread() only requires the stable
task_struct, so this change fixes both problems.

Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Reviewed-by: Sergey Dyasly <dserrg@gmail.com>
Tested-by: Sergey Dyasly <dserrg@gmail.com>
Reviewed-by: Sameer Nanda <snanda@chromium.org>
Cc: "Eric W. Biederman" <ebiederm@xmission.com>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Mandeep Singh Baines <msb@chromium.org>
Cc: "Ma, Xindong" <xindong.ma@intel.com>
Reviewed-by: Michal Hocko <mhocko@suse.cz>
Cc: "Tu, Xiaobing" <xiaobing.tu@intel.com>
Acked-by: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-01-21 16:19:46 -08:00
Joonsoo Kim 9853a407b9 mm/rmap: use rmap_walk() in page_mkclean()
Now, we have an infrastructure in rmap_walk() to handle difference from
   variants of rmap traversing functions.

So, just use it in page_mkclean().

In this patch, I change following things.

1. remove some variants of rmap traversing functions.
    cf> page_mkclean_file
2. mechanical change to use rmap_walk() in page_mkclean().

Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Reviewed-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Hugh Dickins <hughd@google.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Hillf Danton <dhillf@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-01-21 16:19:46 -08:00
Joonsoo Kim 9f32624be9 mm/rmap: use rmap_walk() in page_referenced()
Now, we have an infrastructure in rmap_walk() to handle difference from
variants of rmap traversing functions.

So, just use it in page_referenced().

In this patch, I change following things.

1. remove some variants of rmap traversing functions.
	cf> page_referenced_ksm, page_referenced_anon,
	page_referenced_file

2. introduce new struct page_referenced_arg and pass it to
   page_referenced_one(), main function of rmap_walk, in order to count
   reference, to store vm_flags and to check finish condition.

3. mechanical change to use rmap_walk() in page_referenced().

[liwanp@linux.vnet.ibm.com: fix BUG at rmap_walk]
Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Reviewed-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Hugh Dickins <hughd@google.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Hillf Danton <dhillf@gmail.com>
Signed-off-by: Wanpeng Li <liwanp@linux.vnet.ibm.com>
Cc: Sasha Levin <sasha.levin@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-01-21 16:19:45 -08:00
Joonsoo Kim e8351ac9bf mm/rmap: use rmap_walk() in try_to_munlock()
Now, we have an infrastructure in rmap_walk() to handle difference from
variants of rmap traversing functions.

So, just use it in try_to_munlock().

In this patch, I change following things.

1. remove some variants of rmap traversing functions.
	cf> try_to_unmap_ksm, try_to_unmap_anon, try_to_unmap_file
2. mechanical change to use rmap_walk() in try_to_munlock().
3. copy and paste comments.

Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Reviewed-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Hugh Dickins <hughd@google.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Hillf Danton <dhillf@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-01-21 16:19:45 -08:00
Joonsoo Kim 5262950642 mm/rmap: use rmap_walk() in try_to_unmap()
Now, we have an infrastructure in rmap_walk() to handle difference from
variants of rmap traversing functions.

So, just use it in try_to_unmap().

In this patch, I change following things.

1. enable rmap_walk() if !CONFIG_MIGRATION.
2. mechanical change to use rmap_walk() in try_to_unmap().

Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Reviewed-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Hugh Dickins <hughd@google.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Hillf Danton <dhillf@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-01-21 16:19:45 -08:00
Joonsoo Kim 0dd1c7bbce mm/rmap: extend rmap_walk_xxx() to cope with different cases
There are a lot of common parts in traversing functions, but there are
also a little of uncommon parts in it.  By assigning proper function
pointer on each rmap_walker_control, we can handle these difference
correctly.

Following are differences we should handle.

1. difference of lock function in anon mapping case
2. nonlinear handling in file mapping case
3. prechecked condition:
	checking memcg in page_referenced(),
	checking VM_SHARE in page_mkclean()
	checking temporary vma in try_to_unmap()
4. exit condition:
	checking page_mapped() in try_to_unmap()

So, in this patch, I introduce 4 function pointers to handle above
differences.

Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Hugh Dickins <hughd@google.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Hillf Danton <dhillf@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-01-21 16:19:45 -08:00
Joonsoo Kim 051ac83adf mm/rmap: make rmap_walk to get the rmap_walk_control argument
In each rmap traverse case, there is some difference so that we need
function pointers and arguments to them in order to handle these

For this purpose, struct rmap_walk_control is introduced in this patch,
and will be extended in following patch.  Introducing and extending are
separate, because it clarify changes.

Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Reviewed-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Hugh Dickins <hughd@google.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Hillf Danton <dhillf@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-01-21 16:19:45 -08:00
Joonsoo Kim faecd8dd85 mm/rmap: factor lock function out of rmap_walk_anon()
When we traverse anon_vma, we need to take a read-side anon_lock.  But
there is subtle difference in the situation so that we can't use same
method to take a lock in each cases.  Therefore, we need to make
rmap_walk_anon() taking difference lock function.

This patch is the first step, factoring lock function for anon_lock out
of rmap_walk_anon().  It will be used in case of removing migration
entry and in default of rmap_walk_anon().

Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Reviewed-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Hugh Dickins <hughd@google.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Hillf Danton <dhillf@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-01-21 16:19:45 -08:00
Joonsoo Kim 0f843c6ac3 mm/rmap: factor nonlinear handling out of try_to_unmap_file()
To merge all kinds of rmap traverse functions, try_to_unmap(),
try_to_munlock(), page_referenced() and page_mkclean(), we need to
extract common parts and separate out non-common parts.

Nonlinear handling is handled just in try_to_unmap_file() and other rmap
traverse functions doesn't care of it.  Therfore it is better to factor
nonlinear handling out of try_to_unmap_file() in order to merge all
kinds of rmap traverse functions easily.

Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Reviewed-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Hugh Dickins <hughd@google.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Hillf Danton <dhillf@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-01-21 16:19:45 -08:00
Joonsoo Kim b854f711f6 mm/rmap: recompute pgoff for huge page
Rmap traversing is used in five different cases, try_to_unmap(),
try_to_munlock(), page_referenced(), page_mkclean() and
remove_migration_ptes().  Each one implements its own traversing
functions for the cases, anon, file, ksm, respectively.  These cause
lots of duplications and cause maintenance overhead.  They also make
codes being hard to understand and error-prone.  One example is hugepage
handling.  There is a code to compute hugepage offset correctly in
try_to_unmap_file(), but, there isn't a code to compute hugepage offset
in rmap_walk_file().  These are used pairwise in migration context, but
we missed to modify pairwise.

To overcome these drawbacks, we should unify these through one unified
function.  I decide rmap_walk() as main function since it has no
unnecessity.  And to control behavior of rmap_walk(), I introduce struct
rmap_walk_control having some function pointers.  These makes
rmap_walk() working for their specific needs.

This patchset remove a lot of duplicated code as you can see in below
short-stat and kernel text size also decrease slightly.

   text    data     bss     dec     hex filename
  10640       1      16   10657    29a1 mm/rmap.o
  10047       1      16   10064    2750 mm/rmap.o

  13823     705    8288   22816    5920 mm/ksm.o
  13199     705    8288   22192    56b0 mm/ksm.o

This patch (of 9):

We have to recompute pgoff if the given page is huge, since result based
on HPAGE_SIZE is not approapriate for scanning the vma interval tree, as
shown by commit 36e4f20af8 ("hugetlb: do not use
vma_hugecache_offset() for vma_prio_tree_foreach") and commit 369a713e
("rmap: recompute pgoff for unmapping huge page").

To handle both the cases, normal page for page cache and hugetlb page,
by same way, we can use compound_page().  It returns 0 on non-compound
page and it also returns proper value on compound page.

Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Hugh Dickins <hughd@google.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Hillf Danton <dhillf@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-01-21 16:19:45 -08:00
Vladimir Davydov 2753b35bcd memcg: make memcg_update_cache_sizes() static
This function is not used outside of memcontrol.c so make it static.

Signed-off-by: Vladimir Davydov <vdavydov@parallels.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.cz>
Cc: Balbir Singh <bsingharora@gmail.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-01-21 16:19:45 -08:00
Vladimir Davydov 1c98dd905d memcg: fix kmem_account_flags check in memcg_can_account_kmem()
We should start kmem accounting for a memory cgroup only after both its
kmem limit is set (KMEM_ACCOUNTED_ACTIVE) and related call sites are
patched (KMEM_ACCOUNTED_ACTIVATED).  Currently memcg_can_account_kmem()
allows kmem accounting even if only one of the conditions is true.  Fix
it.

This means that a page might get charged by memcg_kmem_newpage_charge
which would see its static key patched already but
memcg_kmem_commit_charge would still see it unpatched and so the charge
won't be committed.  The result would be charge inconsistency
(page_cgroup not marked as PageCgroupUsed) and the charge would leak
because __memcg_kmem_uncharge_pages would ignore it.

[mhocko@suse.cz: augment changelog]
Signed-off-by: Vladimir Davydov <vdavydov@parallels.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.cz>
Cc: Balbir Singh <bsingharora@gmail.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Glauber Costa <glommer@parallels.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-01-21 16:19:45 -08:00
Tang Chen b2f3eebe7a x86, numa, acpi, memory-hotplug: make movable_node have higher priority
If users specify the original movablecore=nn@ss boot option, the kernel
will arrange [ss, ss+nn) as ZONE_MOVABLE.  The kernelcore=nn@ss boot
option is similar except it specifies ZONE_NORMAL ranges.

Now, if users specify "movable_node" in kernel commandline, the kernel
will arrange hotpluggable memory in SRAT as ZONE_MOVABLE.  And if users
do this, all the other movablecore=nn@ss and kernelcore=nn@ss options
should be ignored.

For those who don't want this, just specify nothing.  The kernel will
act as before.

Signed-off-by: Tang Chen <tangchen@cn.fujitsu.com>
Signed-off-by: Zhang Yanfei <zhangyanfei@cn.fujitsu.com>
Reviewed-by: Wanpeng Li <liwanp@linux.vnet.ibm.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: "Rafael J . Wysocki" <rjw@sisk.pl>
Cc: Chen Tang <imtangchen@gmail.com>
Cc: Gong Chen <gong.chen@linux.intel.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Jiang Liu <jiang.liu@huawei.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Lai Jiangshan <laijs@cn.fujitsu.com>
Cc: Larry Woodman <lwoodman@redhat.com>
Cc: Len Brown <lenb@kernel.org>
Cc: Liu Jiang <jiang.liu@huawei.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Michal Nazarewicz <mina86@mina86.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Prarit Bhargava <prarit@redhat.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Taku Izumi <izumi.taku@jp.fujitsu.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Thomas Renninger <trenn@suse.de>
Cc: Toshi Kani <toshi.kani@hp.com>
Cc: Vasilis Liaskovitis <vasilis.liaskovitis@profitbricks.com>
Cc: Wen Congyang <wency@cn.fujitsu.com>
Cc: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com>
Cc: Yinghai Lu <yinghai@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-01-21 16:19:45 -08:00
Tang Chen 55ac590c2f memblock, mem_hotplug: make memblock skip hotpluggable regions if needed
Linux kernel cannot migrate pages used by the kernel.  As a result,
hotpluggable memory used by the kernel won't be able to be hot-removed.
To solve this problem, the basic idea is to prevent memblock from
allocating hotpluggable memory for the kernel at early time, and arrange
all hotpluggable memory in ACPI SRAT(System Resource Affinity Table) as
ZONE_MOVABLE when initializing zones.

In the previous patches, we have marked hotpluggable memory regions with
MEMBLOCK_HOTPLUG flag in memblock.memory.

In this patch, we make memblock skip these hotpluggable memory regions
in the default top-down allocation function if movable_node boot option
is specified.

[akpm@linux-foundation.org: coding-style fixes]
Signed-off-by: Tang Chen <tangchen@cn.fujitsu.com>
Signed-off-by: Zhang Yanfei <zhangyanfei@cn.fujitsu.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: "Rafael J . Wysocki" <rjw@sisk.pl>
Cc: Chen Tang <imtangchen@gmail.com>
Cc: Gong Chen <gong.chen@linux.intel.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Jiang Liu <jiang.liu@huawei.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Lai Jiangshan <laijs@cn.fujitsu.com>
Cc: Larry Woodman <lwoodman@redhat.com>
Cc: Len Brown <lenb@kernel.org>
Cc: Liu Jiang <jiang.liu@huawei.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Michal Nazarewicz <mina86@mina86.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Prarit Bhargava <prarit@redhat.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Taku Izumi <izumi.taku@jp.fujitsu.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Thomas Renninger <trenn@suse.de>
Cc: Toshi Kani <toshi.kani@hp.com>
Cc: Vasilis Liaskovitis <vasilis.liaskovitis@profitbricks.com>
Cc: Wanpeng Li <liwanp@linux.vnet.ibm.com>
Cc: Wen Congyang <wency@cn.fujitsu.com>
Cc: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com>
Cc: Yinghai Lu <yinghai@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-01-21 16:19:45 -08:00
Tang Chen e7e8de5918 memblock: make memblock_set_node() support different memblock_type
[sfr@canb.auug.org.au: fix powerpc build]
Signed-off-by: Tang Chen <tangchen@cn.fujitsu.com>
Reviewed-by: Zhang Yanfei <zhangyanfei@cn.fujitsu.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: "Rafael J . Wysocki" <rjw@sisk.pl>
Cc: Chen Tang <imtangchen@gmail.com>
Cc: Gong Chen <gong.chen@linux.intel.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Jiang Liu <jiang.liu@huawei.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Lai Jiangshan <laijs@cn.fujitsu.com>
Cc: Larry Woodman <lwoodman@redhat.com>
Cc: Len Brown <lenb@kernel.org>
Cc: Liu Jiang <jiang.liu@huawei.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Michal Nazarewicz <mina86@mina86.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Prarit Bhargava <prarit@redhat.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Taku Izumi <izumi.taku@jp.fujitsu.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Thomas Renninger <trenn@suse.de>
Cc: Toshi Kani <toshi.kani@hp.com>
Cc: Vasilis Liaskovitis <vasilis.liaskovitis@profitbricks.com>
Cc: Wanpeng Li <liwanp@linux.vnet.ibm.com>
Cc: Wen Congyang <wency@cn.fujitsu.com>
Cc: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com>
Cc: Yinghai Lu <yinghai@kernel.org>
Signed-off-by: Stephen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-01-21 16:19:44 -08:00
Tang Chen 66b16edf9e memblock, mem_hotplug: introduce MEMBLOCK_HOTPLUG flag to mark hotpluggable regions
In find_hotpluggable_memory, once we find out a memory region which is
hotpluggable, we want to mark them in memblock.memory.  So that we could
control memblock allocator not to allocte hotpluggable memory for the
kernel later.

To achieve this goal, we introduce MEMBLOCK_HOTPLUG flag to indicate the
hotpluggable memory regions in memblock and a function
memblock_mark_hotplug() to mark hotpluggable memory if we find one.

[akpm@linux-foundation.org: coding-style fixes]
Signed-off-by: Tang Chen <tangchen@cn.fujitsu.com>
Reviewed-by: Zhang Yanfei <zhangyanfei@cn.fujitsu.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: "Rafael J . Wysocki" <rjw@sisk.pl>
Cc: Chen Tang <imtangchen@gmail.com>
Cc: Gong Chen <gong.chen@linux.intel.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Jiang Liu <jiang.liu@huawei.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Lai Jiangshan <laijs@cn.fujitsu.com>
Cc: Larry Woodman <lwoodman@redhat.com>
Cc: Len Brown <lenb@kernel.org>
Cc: Liu Jiang <jiang.liu@huawei.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Michal Nazarewicz <mina86@mina86.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Prarit Bhargava <prarit@redhat.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Taku Izumi <izumi.taku@jp.fujitsu.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Thomas Renninger <trenn@suse.de>
Cc: Toshi Kani <toshi.kani@hp.com>
Cc: Vasilis Liaskovitis <vasilis.liaskovitis@profitbricks.com>
Cc: Wanpeng Li <liwanp@linux.vnet.ibm.com>
Cc: Wen Congyang <wency@cn.fujitsu.com>
Cc: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com>
Cc: Yinghai Lu <yinghai@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-01-21 16:19:44 -08:00
Tang Chen 66a2075721 memblock, numa: introduce flags field into memblock
There is no flag in memblock to describe what type the memory is.
Sometimes, we may use memblock to reserve some memory for special usage.
And we want to know what kind of memory it is.  So we need a way to

In hotplug environment, we want to reserve hotpluggable memory so the
kernel won't be able to use it.  And when the system is up, we have to
free these hotpluggable memory to buddy.  So we need to mark these
memory first.

In order to do so, we need to mark out these special memory in memblock.
In this patch, we introduce a new "flags" member into memblock_region:

   struct memblock_region {
           phys_addr_t base;
           phys_addr_t size;
           unsigned long flags;		/* This is new. */
   #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
           int nid;
   #endif
   };

This patch does the following things:
1) Add "flags" member to memblock_region.
2) Modify the following APIs' prototype:
	memblock_add_region()
	memblock_insert_region()
3) Add memblock_reserve_region() to support reserve memory with flags, and keep
   memblock_reserve()'s prototype unmodified.
4) Modify other APIs to support flags, but keep their prototype unmodified.

The idea is from Wen Congyang <wency@cn.fujitsu.com> and Liu Jiang <jiang.liu@huawei.com>.

Suggested-by: Wen Congyang <wency@cn.fujitsu.com>
Suggested-by: Liu Jiang <jiang.liu@huawei.com>
Signed-off-by: Tang Chen <tangchen@cn.fujitsu.com>
Reviewed-by: Zhang Yanfei <zhangyanfei@cn.fujitsu.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: "Rafael J . Wysocki" <rjw@sisk.pl>
Cc: Chen Tang <imtangchen@gmail.com>
Cc: Gong Chen <gong.chen@linux.intel.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Jiang Liu <jiang.liu@huawei.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Lai Jiangshan <laijs@cn.fujitsu.com>
Cc: Larry Woodman <lwoodman@redhat.com>
Cc: Len Brown <lenb@kernel.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Michal Nazarewicz <mina86@mina86.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Prarit Bhargava <prarit@redhat.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Taku Izumi <izumi.taku@jp.fujitsu.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Thomas Renninger <trenn@suse.de>
Cc: Toshi Kani <toshi.kani@hp.com>
Cc: Vasilis Liaskovitis <vasilis.liaskovitis@profitbricks.com>
Cc: Wanpeng Li <liwanp@linux.vnet.ibm.com>
Cc: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com>
Cc: Yinghai Lu <yinghai@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-01-21 16:19:44 -08:00
Grygorii Strashko 931d13f534 mm/memblock: debug: correct displaying of upper memory boundary
Current memblock APIs don't work on 32 PAE or LPAE extension arches
where the physical memory start address beyond 4GB.  The problem was
discussed here [3] where Tejun, Yinghai(thanks) proposed a way forward
with memblock interfaces.  Based on the proposal, this series adds
necessary memblock interfaces and convert the core kernel code to use
them.  Architectures already converted to NO_BOOTMEM use these new
interfaces and other which still uses bootmem, these new interfaces just
fallback to exiting bootmem APIs.

So no functional change in behavior.  In long run, once all the
architectures moves to NO_BOOTMEM, we can get rid of bootmem layer
completely.  This is one step to remove the core code dependency with
bootmem and also gives path for architectures to move away from bootmem.

Testing is done on ARM architecture with 32 bit ARM LAPE machines with
normal as well sparse(faked) memory model.

This patch (of 23):

When debugging is enabled (cmdline has "memblock=debug") the memblock
will display upper memory boundary per each allocated/freed memory range
wrongly.  For example:

 memblock_reserve: [0x0000009e7e8000-0x0000009e7ed000] _memblock_early_alloc_try_nid_nopanic+0xfc/0x12c

The 0x0000009e7ed000 is displayed instead of 0x0000009e7ecfff

Hence, correct this by changing formula used to calculate upper memory
boundary to (u64)base + size - 1 instead of (u64)base + size everywhere
in the debug messages.

Signed-off-by: Grygorii Strashko <grygorii.strashko@ti.com>
Signed-off-by: Santosh Shilimkar <santosh.shilimkar@ti.com>
Cc: Yinghai Lu <yinghai@kernel.org>
Acked-by: Tejun Heo <tj@kernel.org>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Russell King <linux@arm.linux.org.uk>
Cc: "Rafael J. Wysocki" <rjw@sisk.pl>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Christoph Lameter <cl@linux-foundation.org>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Paul Walmsley <paul@pwsan.com>
Cc: Pavel Machek <pavel@ucw.cz>
Cc: Tony Lindgren <tony@atomide.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-01-21 16:19:44 -08:00
Davidlohr Bueso 1f1cd7054f mm/mlock: prepare params outside critical region
All mlock related syscalls prepare lock limits, lengths and start
parameters with the mmap_sem held.  Move this logic outside of the
critical region.  For the case of mlock, continue incrementing the
amount already locked by mm->locked_vm with the rwsem taken.

Signed-off-by: Davidlohr Bueso <davidlohr@hp.com>
Cc: Rik van Riel <riel@redhat.com>
Reviewed-by: Michel Lespinasse <walken@google.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-01-21 16:19:44 -08:00
Davidlohr Bueso 363ee17f0f mm/mmap.c: add mlock_future_check() helper
Both do_brk and do_mmap_pgoff verify that we are actually capable of
locking future pages if the corresponding VM_LOCKED flags are used.
Encapsulate this logic into a single mlock_future_check() helper
function.

Signed-off-by: Davidlohr Bueso <davidlohr@hp.com>
Cc: Rik van Riel <riel@redhat.com>
Reviewed-by: Michel Lespinasse <walken@google.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-01-21 16:19:44 -08:00
Jerome Marchand 49f0ce5f92 mm: add overcommit_kbytes sysctl variable
Some applications that run on HPC clusters are designed around the
availability of RAM and the overcommit ratio is fine tuned to get the
maximum usage of memory without swapping.  With growing memory, the
1%-of-all-RAM grain provided by overcommit_ratio has become too coarse
for these workload (on a 2TB machine it represents no less than 20GB).

This patch adds the new overcommit_kbytes sysctl variable that allow a
much finer grain.

[akpm@linux-foundation.org: coding-style fixes]
[akpm@linux-foundation.org: fix nommu build]
Signed-off-by: Jerome Marchand <jmarchan@redhat.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Alan Cox <alan@lxorguk.ukuu.org.uk>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-01-21 16:19:44 -08:00
Mel Gorman aec6a8889a mm, show_mem: remove SHOW_MEM_FILTER_PAGE_COUNT
Commit 4b59e6c473 ("mm, show_mem: suppress page counts in
non-blockable contexts") introduced SHOW_MEM_FILTER_PAGE_COUNT to
suppress PFN walks on large memory machines.  Commit c78e93630d ("mm:
do not walk all of system memory during show_mem") avoided a PFN walk in
the generic show_mem helper which removes the requirement for
SHOW_MEM_FILTER_PAGE_COUNT in that case.

This patch removes PFN walkers from the arch-specific implementations
that report on a per-node or per-zone granularity.  ARM and unicore32
still do a PFN walk as they report memory usage on each bank which is a
much finer granularity where the debugging information may still be of
use.  As the remaining arches doing PFN walks have relatively small
amounts of memory, this patch simply removes SHOW_MEM_FILTER_PAGE_COUNT.

[akpm@linux-foundation.org: fix parisc]
Signed-off-by: Mel Gorman <mgorman@suse.de>
Acked-by: David Rientjes <rientjes@google.com>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Russell King <linux@arm.linux.org.uk>
Cc: James Bottomley <jejb@parisc-linux.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-01-21 16:19:44 -08:00
Jianyu Zhan ece86e222d mm/vmalloc: interchage the implementation of vmalloc_to_{pfn,page}
Currently we are implementing vmalloc_to_pfn() as a wrapper around
vmalloc_to_page(), which is implemented as follow:

 1. walks the page talbes to generates the corresponding pfn,
 2. then converts the pfn to struct page,
 3. returns it.

And vmalloc_to_pfn() re-wraps vmalloc_to_page() to get the pfn.

This seems too circuitous, so this patch reverses the way: implement
vmalloc_to_page() as a wrapper around vmalloc_to_pfn().  This makes
vmalloc_to_pfn() and vmalloc_to_page() slightly more efficient.

No functional change.

Signed-off-by: Jianyu Zhan <nasa4836@gmail.com>
Cc: Vladimir Murzin <murzin.v@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-01-21 16:19:44 -08:00
Andreas Sandberg e8569dd299 mm/hugetlb.c: call MMU notifiers when copying a hugetlb page range
When copy_hugetlb_page_range() is called to copy a range of hugetlb
mappings, the secondary MMUs are not notified if there is a protection
downgrade, which breaks COW semantics in KVM.

This patch adds the necessary MMU notifier calls.

Signed-off-by: Andreas Sandberg <andreas@sandberg.pp.se>
Acked-by: Steve Capper <steve.capper@linaro.org>
Acked-by: Marc Zyngier <marc.zyngier@arm.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Rik van Riel <riel@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-01-21 16:19:44 -08:00
Zhi Yong Wu 549543dff7 mm, memory-failure: fix typo in me_pagecache_dirty()
[akpm@linux-foundation.org: s/cache/pagecache/]
Signed-off-by: Zhi Yong Wu <wuzhy@linux.vnet.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-01-21 16:19:44 -08:00
Kirill A. Shutemov b35f1819ac mm: create a separate slab for page->ptl allocation
If DEBUG_SPINLOCK and DEBUG_LOCK_ALLOC are enabled spinlock_t on x86_64
is 72 bytes.  For page->ptl they will be allocated from kmalloc-96 slab,
so we loose 24 on each.  An average system can easily allocate few tens
thousands of page->ptl and overhead is significant.

Let's create a separate slab for page->ptl allocation to solve this.

To make sure that it really works this time, some numbers from my test
machine (just booted, no load):

Before:
  # grep '^\(kmalloc-96\|page->ptl\)' /proc/slabinfo
  kmalloc-96         31987  32190    128   30    1 : tunables  120   60    8 : slabdata   1073   1073     92
After:
  # grep '^\(kmalloc-96\|page->ptl\)' /proc/slabinfo
  page->ptl          27516  28143     72   53    1 : tunables  120   60    8 : slabdata    531    531      9
  kmalloc-96          3853   5280    128   30    1 : tunables  120   60    8 : slabdata    176    176      0

Note that the patch is useful not only for debug case, but also for
PREEMPT_RT, where spinlock_t is always bloated.

Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-01-21 16:19:44 -08:00
Yasuaki Ishimatsu 943dca1a1f mm: get rid of unnecessary pageblock scanning in setup_zone_migrate_reserve
Yasuaki Ishimatsu reported memory hot-add spent more than 5 _hours_ on
9TB memory machine since onlining memory sections is too slow.  And we
found out setup_zone_migrate_reserve spent >90% of the time.

The problem is, setup_zone_migrate_reserve scans all pageblocks
unconditionally, but it is only necessary if the number of reserved
block was reduced (i.e.  memory hot remove).

Moreover, maximum MIGRATE_RESERVE per zone is currently 2.  It means
that the number of reserved pageblocks is almost always unchanged.

This patch adds zone->nr_migrate_reserve_block to maintain the number of
MIGRATE_RESERVE pageblocks and it reduces the overhead of
setup_zone_migrate_reserve dramatically.  The following table shows time
of onlining a memory section.

  Amount of memory     | 128GB | 192GB | 256GB|
  ---------------------------------------------
  linux-3.12           |  23.9 |  31.4 | 44.5 |
  This patch           |   8.3 |   8.3 |  8.6 |
  Mel's proposal patch |  10.9 |  19.2 | 31.3 |
  ---------------------------------------------
                                   (millisecond)

  128GB : 4 nodes and each node has 32GB of memory
  192GB : 6 nodes and each node has 32GB of memory
  256GB : 8 nodes and each node has 32GB of memory

  (*1) Mel proposed his idea by the following threads.
       https://lkml.org/lkml/2013/10/30/272

[akpm@linux-foundation.org: tweak comment]
Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com>
Reported-by: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com>
Tested-by: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com>
Cc: Mel Gorman <mgorman@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-01-21 16:19:43 -08:00
Oleg Nesterov c728852f5d mm: thp: __get_page_tail_foll() can use get_huge_page_tail()
Cleanup. Change __get_page_tail_foll() to use get_huge_page_tail()
to avoid the code duplication.

Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Dave Jones <davej@redhat.com>
Cc: Darren Hart <dvhart@linux.intel.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Mel Gorman <mgorman@suse.de>
Acked-by: Andrea Arcangeli <aarcange@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-01-21 16:19:43 -08:00
Andrea Arcangeli 9b7ac26018 mm/hugetlb.c: defer PageHeadHuge() symbol export
No actual need of it. So keep it internal.

Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Cc: Khalid Aziz <khalid.aziz@oracle.com>
Cc: Pravin Shelar <pshelar@nicira.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Ben Hutchings <bhutchings@solarflare.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Johannes Weiner <jweiner@redhat.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Rik van Riel <riel@redhat.com>
Cc: Andi Kleen <andi@firstfloor.org>
Cc: Minchan Kim <minchan@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-01-21 16:19:43 -08:00
Andrew Morton 26296ad2df mm/swap.c: reorganize put_compound_page()
Tweak it so save a tab stop, make code layout slightly less nutty.

Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Cc: Khalid Aziz <khalid.aziz@oracle.com>
Cc: Pravin Shelar <pshelar@nicira.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Ben Hutchings <bhutchings@solarflare.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Johannes Weiner <jweiner@redhat.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Rik van Riel <riel@redhat.com>
Cc: Andi Kleen <andi@firstfloor.org>
Cc: Minchan Kim <minchan@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-01-21 16:19:43 -08:00
Andrew Morton 758f66a29c mm/hugetlb.c: simplify PageHeadHuge() and PageHuge()
Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Cc: Khalid Aziz <khalid.aziz@oracle.com>
Cc: Pravin Shelar <pshelar@nicira.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Ben Hutchings <bhutchings@solarflare.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Johannes Weiner <jweiner@redhat.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Rik van Riel <riel@redhat.com>
Cc: Andi Kleen <andi@firstfloor.org>
Cc: Minchan Kim <minchan@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-01-21 16:19:43 -08:00
Andrea Arcangeli 3bfcd13ec0 mm: hugetlbfs: use __compound_tail_refcounted in __get_page_tail too
Also remove hugetlb.h which isn't needed anymore as PageHeadHuge is
handled in mm.h.

Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Cc: Khalid Aziz <khalid.aziz@oracle.com>
Cc: Pravin Shelar <pshelar@nicira.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Ben Hutchings <bhutchings@solarflare.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Johannes Weiner <jweiner@redhat.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Rik van Riel <riel@redhat.com>
Cc: Andi Kleen <andi@firstfloor.org>
Cc: Minchan Kim <minchan@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-01-21 16:19:43 -08:00
Andrea Arcangeli 44518d2b32 mm: tail page refcounting optimization for slab and hugetlbfs
This skips the _mapcount mangling for slab and hugetlbfs pages.

The main trouble in doing this is to guarantee that PageSlab and
PageHeadHuge remains constant for all get_page/put_page run on the tail
of slab or hugetlbfs compound pages.  Otherwise if they're set during
get_page but not set during put_page, the _mapcount of the tail page
would underflow.

PageHeadHuge will remain true until the compound page is released and
enters the buddy allocator so it won't risk to change even if the tail
page is the last reference left on the page.

PG_slab instead is cleared before the slab frees the head page with
put_page, so if the tail pin is released after the slab freed the page,
we would have a problem.  But in the slab case the tail pin cannot be
the last reference left on the page.  This is because the slab code is
free to reuse the compound page after a kfree/kmem_cache_free without
having to check if there's any tail pin left.  In turn all tail pins
must be always released while the head is still pinned by the slab code
and so we know PG_slab will be still set too.

Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Reviewed-by: Khalid Aziz <khalid.aziz@oracle.com>
Cc: Pravin Shelar <pshelar@nicira.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Ben Hutchings <bhutchings@solarflare.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Johannes Weiner <jweiner@redhat.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Rik van Riel <riel@redhat.com>
Cc: Andi Kleen <andi@firstfloor.org>
Cc: Minchan Kim <minchan@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-01-21 16:19:43 -08:00
Andrea Arcangeli ebf360f9bb mm: hugetlbfs: move the put/get_page slab and hugetlbfs optimization in a faster path
We don't actually need a reference on the head page in the slab and
hugetlbfs paths, as long as we add a smp_rmb() which should be faster
than get_page_unless_zero.

[akpm@linux-foundation.org: fix typo in comment]
Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Cc: Khalid Aziz <khalid.aziz@oracle.com>
Cc: Pravin Shelar <pshelar@nicira.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Ben Hutchings <bhutchings@solarflare.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Johannes Weiner <jweiner@redhat.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Rik van Riel <riel@redhat.com>
Cc: Andi Kleen <andi@firstfloor.org>
Cc: Minchan Kim <minchan@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-01-21 16:19:43 -08:00
Andrea Arcangeli a0368d4e48 mm: hugetlb: use get_page_foll() in follow_hugetlb_page()
get_page_foll() is more optimal and is always safe to use under the PT
lock.  More so for hugetlbfs as there's no risk of race conditions with
split_huge_page regardless of the PT lock.

Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Tested-by: Khalid Aziz <khalid.aziz@oracle.com>
Cc: Pravin Shelar <pshelar@nicira.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Ben Hutchings <bhutchings@solarflare.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Johannes Weiner <jweiner@redhat.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Rik van Riel <riel@redhat.com>
Cc: Andi Kleen <andi@firstfloor.org>
Cc: Minchan Kim <minchan@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-01-21 16:19:43 -08:00
Dan Williams 0abdd7a81b dma-debug: introduce debug_dma_assert_idle()
Record actively mapped pages and provide an api for asserting a given
page is dma inactive before execution proceeds.  Placing
debug_dma_assert_idle() in cow_user_page() flagged the violation of the
dma-api in the NET_DMA implementation (see commit 7787380336 "net_dma:
mark broken").

The implementation includes the capability to count, in a limited way,
repeat mappings of the same page that occur without an intervening
unmap.  This 'overlap' counter is limited to the few bits of tag space
in a radix tree.  This mechanism is added to mitigate false negative
cases where, for example, a page is dma mapped twice and
debug_dma_assert_idle() is called after the page is un-mapped once.

Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Cc: Joerg Roedel <joro@8bytes.org>
Cc: Vinod Koul <vinod.koul@intel.com>
Cc: Russell King <rmk+kernel@arm.linux.org.uk>
Cc: James Bottomley <JBottomley@Parallels.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-01-21 16:19:41 -08:00
Laura Abbott 8a0921712e percpu: use VMALLOC_TOTAL instead of VMALLOC_END - VMALLOC_START
vmalloc already gives a useful macro to calculate the total vmalloc
size. Use it.

Signed-off-by: Laura Abbott <lauraa@codeaurora.org>
Signed-off-by: Tejun Heo <tj@kernel.org>
2014-01-21 04:41:26 -05:00
Mikulas Patocka 03e5ac2fc3 mm: fix crash when using XFS on loopback
Commit 8456a648cf ("slab: use struct page for slab management") causes
a crash in the LVM2 testsuite on PA-RISC (the crashing test is
fsadm.sh).  The testsuite doesn't crash on 3.12, crashes on 3.13-rc1 and
later.

 Bad Address (null pointer deref?): Code=15 regs=000000413edd89a0 (Addr=000006202224647d)
 CPU: 3 PID: 24008 Comm: loop0 Not tainted 3.13.0-rc6 #5
 task: 00000001bf3c0048 ti: 000000413edd8000 task.ti: 000000413edd8000

      YZrvWESTHLNXBCVMcbcbcbcbOGFRQPDI
 PSW: 00001000000001101111100100001110 Not tainted
 r00-03  000000ff0806f90e 00000000405c8de0 000000004013e6c0 000000413edd83f0
 r04-07  00000000405a95e0 0000000000000200 00000001414735f0 00000001bf349e40
 r08-11  0000000010fe3d10 0000000000000001 00000040829c7778 000000413efd9000
 r12-15  0000000000000000 000000004060d800 0000000010fe3000 0000000010fe3000
 r16-19  000000413edd82a0 00000041078ddbc0 0000000000000010 0000000000000001
 r20-23  0008f3d0d83a8000 0000000000000000 00000040829c7778 0000000000000080
 r24-27  00000001bf349e40 00000001bf349e40 202d66202224640d 00000000405a95e0
 r28-31  202d662022246465 000000413edd88f0 000000413edd89a0 0000000000000001
 sr00-03  000000000532c000 0000000000000000 0000000000000000 000000000532c000
 sr04-07  0000000000000000 0000000000000000 0000000000000000 0000000000000000

 IASQ: 0000000000000000 0000000000000000 IAOQ: 00000000401fe42c 00000000401fe430
  IIR: 539c0030    ISR: 00000000202d6000  IOR: 000006202224647d
  CPU:        3   CR30: 000000413edd8000 CR31: 0000000000000000
  ORIG_R28: 00000000405a95e0
  IAOQ[0]: vma_interval_tree_iter_first+0x14/0x48
  IAOQ[1]: vma_interval_tree_iter_first+0x18/0x48
  RP(r2): flush_dcache_page+0x128/0x388
 Backtrace:
   flush_dcache_page+0x128/0x388
   lo_splice_actor+0x90/0x148 [loop]
   splice_from_pipe_feed+0xc0/0x1d0
   __splice_from_pipe+0xac/0xc0
   lo_direct_splice_actor+0x1c/0x70 [loop]
   splice_direct_to_actor+0xec/0x228
   lo_receive+0xe4/0x298 [loop]
   loop_thread+0x478/0x640 [loop]
   kthread+0x134/0x168
   end_fault_vector+0x20/0x28
   xfs_setsize_buftarg+0x0/0x90 [xfs]

 Kernel panic - not syncing: Bad Address (null pointer deref?)

Commit 8456a648cf changes the page structure so that the slab
subsystem reuses the page->mapping field.

The crash happens in the following way:
 * XFS allocates some memory from slab and issues a bio to read data
   into it.
 * the bio is sent to the loopback device.
 * lo_receive creates an actor and calls splice_direct_to_actor.
 * lo_splice_actor copies data to the target page.
 * lo_splice_actor calls flush_dcache_page because the page may be
   mapped by userspace.  In that case we need to flush the kernel cache.
 * flush_dcache_page asks for the list of userspace mappings, however
   that page->mapping field is reused by the slab subsystem for a
   different purpose.  This causes the crash.

Note that other architectures without coherent caches (sparc, arm, mips)
also call page_mapping from flush_dcache_page, so they may crash in the
same way.

This patch fixes this bug by testing if the page is a slab page in
page_mapping and returning NULL if it is.

The patch also fixes VM_BUG_ON(PageSlab(page)) that could happen in
earlier kernels in the same scenario on architectures without cache
coherence when CONFIG_DEBUG_VM is enabled - so it should be backported
to stable kernels.

In the old kernels, the function page_mapping is placed in
include/linux/mm.h, so you should modify the patch accordingly when
backporting it.

Signed-off-by: Mikulas Patocka <mpatocka@redhat.com>
Cc: John David Anglin <dave.anglin@bell.net>]
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Christoph Lameter <cl@linux.com>
Acked-by: Pekka Enberg <penberg@kernel.org>
Reviewed-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Helge Deller <deller@gmx.de>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-01-15 14:19:42 +07:00
Aneesh Kumar K.V b3084f4db3 powerpc/thp: Fix crash on mremap
This patch fix the below crash

NIP [c00000000004cee4] .__hash_page_thp+0x2a4/0x440
LR [c0000000000439ac] .hash_page+0x18c/0x5e0
...
Call Trace:
[c000000736103c40] [00001ffffb000000] 0x1ffffb000000(unreliable)
[437908.479693] [c000000736103d50] [c0000000000439ac] .hash_page+0x18c/0x5e0
[437908.479699] [c000000736103e30] [c00000000000924c] .do_hash_page+0x4c/0x58

On ppc64 we use the pgtable for storing the hpte slot information and
store address to the pgtable at a constant offset (PTRS_PER_PMD) from
pmd. On mremap, when we switch the pmd, we need to withdraw and deposit
the pgtable again, so that we find the pgtable at PTRS_PER_PMD offset
from new pmd.

We also want to move the withdraw and deposit before the set_pmd so
that, when page fault find the pmd as trans huge we can be sure that
pgtable can be located at the offset.

Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
2014-01-15 15:46:38 +11:00
Tetsuo Handa 26e4f20575 slub: Fix possible format string bug.
The "name" is determined at runtime and is parsed as format string.

Acked-by: David Rientjes <rientjes@google.com>
Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Signed-off-by: Pekka Enberg <penberg@kernel.org>
2014-01-13 21:36:34 +02:00
Peter Zijlstra c65c1877bd slub: use lockdep_assert_held
Instead of using comments in an attempt at getting the locking right,
use proper assertions that actively warn you if you got it wrong.

Also add extra braces in a few sites to comply with coding-style.

Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Pekka Enberg <penberg@kernel.org>
2014-01-13 21:34:39 +02:00
Hugh Dickins b3ff8a2f95 cgroup: remove stray references to css_id
Trivial: remove the few stray references to css_id, which itself
was removed in v3.13's 2ff2a7d03b "cgroup: kill css_id".

Signed-off-by: Hugh Dickins <hughd@google.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
2014-01-13 10:48:18 -05:00
Hugh Dickins eecc1e426d thp: fix copy_page_rep GPF by testing is_huge_zero_pmd once only
We see General Protection Fault on RSI in copy_page_rep: that RSI is
what you get from a NULL struct page pointer.

  RIP: 0010:[<ffffffff81154955>]  [<ffffffff81154955>] copy_page_rep+0x5/0x10
  RSP: 0000:ffff880136e15c00  EFLAGS: 00010286
  RAX: ffff880000000000 RBX: ffff880136e14000 RCX: 0000000000000200
  RDX: 6db6db6db6db6db7 RSI: db73880000000000 RDI: ffff880dd0c00000
  RBP: ffff880136e15c18 R08: 0000000000000200 R09: 000000000005987c
  R10: 000000000005987c R11: 0000000000000200 R12: 0000000000000001
  R13: ffffea00305aa000 R14: 0000000000000000 R15: 0000000000000000
  FS:  00007f195752f700(0000) GS:ffff880c7fc20000(0000) knlGS:0000000000000000
  CS:  0010 DS: 0000 ES: 0000 CR0: 0000000080050033
  CR2: 0000000093010000 CR3: 00000001458e1000 CR4: 00000000000027e0
  Call Trace:
    copy_user_huge_page+0x93/0xab
    do_huge_pmd_wp_page+0x710/0x815
    handle_mm_fault+0x15d8/0x1d70
    __do_page_fault+0x14d/0x840
    do_page_fault+0x2f/0x90
    page_fault+0x22/0x30

do_huge_pmd_wp_page() tests is_huge_zero_pmd(orig_pmd) four times: but
since shrink_huge_zero_page() can free the huge_zero_page, and we have
no hold of our own on it here (except where the fourth test holds
page_table_lock and has checked pmd_same), it's possible for it to
answer yes the first time, but no to the second or third test.  Change
all those last three to tests for NULL page.

(Note: this is not the same issue as trinity's DEBUG_PAGEALLOC BUG
in copy_page_rep with RSI: ffff88009c422000, reported by Sasha Levin
in https://lkml.org/lkml/2013/3/29/103.  I believe that one is due
to the source page being split, and a tail page freed, while copy
is in progress; and not a problem without DEBUG_PAGEALLOC, since
the pmd_same check will prevent a miscopy from being made visible.)

Fixes: 97ae17497e ("thp: implement refcounting for huge zero page")
Signed-off-by: Hugh Dickins <hughd@google.com>
Cc: stable@vger.kernel.org # v3.10 v3.11 v3.12
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-01-12 16:47:15 +07:00
Naoya Horiguchi a3e0f9e47d mm/memory-failure.c: transfer page count from head page to tail page after split thp
Memory failures on thp tail pages cause kernel panic like below:

   mce: [Hardware Error]: Machine check events logged
   MCE exception done on CPU 7
   BUG: unable to handle kernel NULL pointer dereference at 0000000000000058
   IP: [<ffffffff811b7cd1>] dequeue_hwpoisoned_huge_page+0x131/0x1e0
   PGD bae42067 PUD ba47d067 PMD 0
   Oops: 0000 [#1] SMP
  ...
   CPU: 7 PID: 128 Comm: kworker/7:2 Tainted: G   M       O 3.13.0-rc4-131217-1558-00003-g83b7df08e462 #25
  ...
   Call Trace:
     me_huge_page+0x3e/0x50
     memory_failure+0x4bb/0xc20
     mce_process_work+0x3e/0x70
     process_one_work+0x171/0x420
     worker_thread+0x11b/0x3a0
     ? manage_workers.isra.25+0x2b0/0x2b0
     kthread+0xe4/0x100
     ? kthread_create_on_node+0x190/0x190
     ret_from_fork+0x7c/0xb0
     ? kthread_create_on_node+0x190/0x190
  ...
   RIP   dequeue_hwpoisoned_huge_page+0x131/0x1e0
   CR2: 0000000000000058

The reasoning of this problem is shown below:
 - when we have a memory error on a thp tail page, the memory error
   handler grabs a refcount of the head page to keep the thp under us.
 - Before unmapping the error page from processes, we split the thp,
   where page refcounts of both of head/tail pages don't change.
 - Then we call try_to_unmap() over the error page (which was a tail
   page before). We didn't pin the error page to handle the memory error,
   this error page is freed and removed from LRU list.
 - We never have the error page on LRU list, so the first page state
   check returns "unknown page," then we move to the second check
   with the saved page flag.
 - The saved page flag have PG_tail set, so the second page state check
   returns "hugepage."
 - We call me_huge_page() for freed error page, then we hit the above panic.

The root cause is that we didn't move refcount from the head page to the
tail page after split thp.  So this patch suggests to do this.

This panic was introduced by commit 524fca1e73 ("HWPOISON: fix
misjudgement of page_action() for errors on mlocked pages").  Note that we
did have the same refcount problem before this commit, but it was just
ignored because we had only first page state check which returned "unknown
page." The commit changed the refcount problem from "doesn't work" to
"kernel panic."

Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Reviewed-by: Wanpeng Li <liwanp@linux.vnet.ibm.com>
Cc: Andi Kleen <andi@firstfloor.org>
Cc: <stable@vger.kernel.org>	[3.9+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-01-02 14:40:30 -08:00
Mel Gorman d0319bd52e mm: remove bogus warning in copy_huge_pmd()
Sasha Levin reported the following warning being triggered

  WARNING: CPU: 28 PID: 35287 at mm/huge_memory.c:887 copy_huge_pmd+0x145/ 0x3a0()
  Call Trace:
    copy_huge_pmd+0x145/0x3a0
    copy_page_range+0x3f2/0x560
    dup_mmap+0x2c9/0x3d0
    dup_mm+0xad/0x150
    copy_process+0xa68/0x12e0
    do_fork+0x96/0x270
    SyS_clone+0x16/0x20
    stub_clone+0x69/0x90

This warning was introduced by "mm: numa: Avoid unnecessary disruption
of NUMA hinting during migration" for paranoia reasons but the warning
is bogus.  I was thinking of parallel races between NUMA hinting faults
and forks but this warning would also be triggered by a parallel reclaim
splitting a THP during a fork.  Remote the bogus warning.

Signed-off-by: Mel Gorman <mgorman@suse.de>
Reported-by: Sasha Levin <sasha.levin@oracle.com>
Cc: Alex Thorlton <athorlton@sgi.com>
Cc: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-01-02 14:40:30 -08:00
Vladimir Davydov 695c608307 memcg: fix memcg_size() calculation
The mem_cgroup structure contains nr_node_ids pointers to
mem_cgroup_per_node objects, not the objects themselves.

Signed-off-by: Vladimir Davydov <vdavydov@parallels.com>
Acked-by: Michal Hocko <mhocko@suse.cz>
Cc: Glauber Costa <glommer@openvz.org>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Balbir Singh <bsingharora@gmail.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-01-02 14:40:30 -08:00