When building the kernel with clang lto (CONFIG_LTO_CLANG_FULL=y), the
following compilation error will appear:
$ make LLVM=1 LLVM_IAS=1 -j
...
ld.lld: error: ld-temp.o <inline asm>:26889:1: symbol 'cgroup_storage_map_btf_ids' is already defined
cgroup_storage_map_btf_ids:;
^
make[1]: *** [/.../bpf-next/scripts/Makefile.vmlinux_o:61: vmlinux.o] Error 1
In local_storage.c, we have
BTF_ID_LIST_SINGLE(cgroup_storage_map_btf_ids, struct, bpf_local_storage_map)
Commit c4bcfb38a9 ("bpf: Implement cgroup storage available to
non-cgroup-attached bpf progs") added the above identical BTF_ID_LIST_SINGLE
definition in bpf_cgrp_storage.c. With duplicated definitions, llvm linker
complains with lto build.
Also, extracting btf_id of 'struct bpf_local_storage_map' is defined four times
for sk, inode, task and cgrp local storages. Let us define a single global one
with a different name than cgroup_storage_map_btf_ids, which also fixed
the lto compilation error.
Fixes: c4bcfb38a9 ("bpf: Implement cgroup storage available to non-cgroup-attached bpf progs")
Signed-off-by: Yonghong Song <yhs@fb.com>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/bpf/20221130052147.1591625-1-yhs@fb.com
Refactor codes so that inode/task/sk storage implementation
can maximally share the same code. I also added some comments
in new function bpf_local_storage_unlink_nolock() to make
codes easy to understand. There is no functionality change.
Acked-by: David Vernet <void@manifault.com>
Signed-off-by: Yonghong Song <yhs@fb.com>
Link: https://lore.kernel.org/r/20221026042845.672944-1-yhs@fb.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
The bpf_lsm and bpf_iter do not recur that will cause a deadlock.
The situation is similar to the bpf_pid_task_storage_delete_elem()
which is called from the syscall map_delete_elem. It does not need
deadlock detection. Otherwise, it will cause unnecessary failure
when calling the bpf_task_storage_delete() helper.
This patch adds bpf_task_storage_delete proto that does not do deadlock
detection. It will be used by bpf_lsm and bpf_iter program.
Signed-off-by: Martin KaFai Lau <martin.lau@kernel.org>
Link: https://lore.kernel.org/r/20221025184524.3526117-8-martin.lau@linux.dev
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Similar to the earlier change in bpf_task_storage_get_recur.
This patch changes bpf_task_storage_delete_recur such that it
does the lookup first. It only returns -EBUSY if it needs to
take the spinlock to do the deletion when potential deadlock
is detected.
Signed-off-by: Martin KaFai Lau <martin.lau@kernel.org>
Link: https://lore.kernel.org/r/20221025184524.3526117-7-martin.lau@linux.dev
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
The bpf_lsm and bpf_iter do not recur that will cause a deadlock.
The situation is similar to the bpf_pid_task_storage_lookup_elem()
which is called from the syscall map_lookup_elem. It does not need
deadlock detection. Otherwise, it will cause unnecessary failure
when calling the bpf_task_storage_get() helper.
This patch adds bpf_task_storage_get proto that does not do deadlock
detection. It will be used by bpf_lsm and bpf_iter programs.
Signed-off-by: Martin KaFai Lau <martin.lau@kernel.org>
Link: https://lore.kernel.org/r/20221025184524.3526117-6-martin.lau@linux.dev
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
bpf_task_storage_get() does a lookup and optionally inserts
new data if BPF_LOCAL_STORAGE_GET_F_CREATE is present.
During lookup, it will cache the lookup result and caching requires to
acquire a spinlock. When potential deadlock is detected (by the
bpf_task_storage_busy pcpu-counter added in
commit bc235cdb42 ("bpf: Prevent deadlock from recursive bpf_task_storage_[get|delete]")),
the current behavior is returning NULL immediately to avoid deadlock. It is
too pessimistic. This patch will go ahead to do a lookup (which is a
lockless operation) but it will avoid caching it in order to avoid
acquiring the spinlock.
When lookup fails to find the data and BPF_LOCAL_STORAGE_GET_F_CREATE
is set, an insertion is needed and this requires acquiring a spinlock.
This patch will still return NULL when a potential deadlock is detected.
Signed-off-by: Martin KaFai Lau <martin.lau@kernel.org>
Link: https://lore.kernel.org/r/20221025184524.3526117-5-martin.lau@linux.dev
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
This patch creates a new function __bpf_task_storage_get() and
moves the core logic of the existing bpf_task_storage_get()
into this new function. This new function will be shared
by another new helper proto in the latter patch.
Signed-off-by: Martin KaFai Lau <martin.lau@kernel.org>
Link: https://lore.kernel.org/r/20221025184524.3526117-4-martin.lau@linux.dev
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
This patch adds the "_recur" naming to the bpf_task_storage_{get,delete}
proto. In a latter patch, they will only be used by the tracing
programs that requires a deadlock detection because a tracing
prog may use bpf_task_storage_{get,delete} recursively and cause a
deadlock.
Another following patch will add a different helper proto for the non
tracing programs because they do not need the deadlock prevention.
This patch does this rename to prepare for this future proto
additions.
Signed-off-by: Martin KaFai Lau <martin.lau@kernel.org>
Link: https://lore.kernel.org/r/20221025184524.3526117-3-martin.lau@linux.dev
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Now migrate_disable() does not disable preemption and under some
architectures (e.g. arm64) __this_cpu_{inc|dec|inc_return} are neither
preemption-safe nor IRQ-safe, so for fully preemptible kernel concurrent
lookups or updates on the same task local storage and on the same CPU
may make bpf_task_storage_busy be imbalanced, and
bpf_task_storage_trylock() on the specific cpu will always fail.
Fixing it by using this_cpu_{inc|dec|inc_return} when manipulating
bpf_task_storage_busy.
Fixes: bc235cdb42 ("bpf: Prevent deadlock from recursive bpf_task_storage_[get|delete]")
Signed-off-by: Hou Tao <houtao1@huawei.com>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/r/20220901061938.3789460-2-houtao@huaweicloud.com
Signed-off-by: Martin KaFai Lau <martin.lau@kernel.org>
For now, the field 'map_btf_id' in 'struct bpf_map_ops' for all map
types are computed during vmlinux-btf init:
btf_parse_vmlinux() -> btf_vmlinux_map_ids_init()
It will lookup the btf_type according to the 'map_btf_name' field in
'struct bpf_map_ops'. This process can be done during build time,
thanks to Jiri's resolve_btfids.
selftest of map_ptr has passed:
$96 map_ptr:OK
Summary: 1/0 PASSED, 0 SKIPPED, 0 FAILED
Reported-by: kernel test robot <lkp@intel.com>
Signed-off-by: Menglong Dong <imagedong@tencent.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
bpf_{sk,task,inode}_storage_free() do not need to use
call_rcu_tasks_trace as no BPF program should be accessing the owner
as it's being destroyed. The only other reader at this point is
bpf_local_storage_map_free() which uses normal RCU.
The only path that needs trace RCU are:
* bpf_local_storage_{delete,update} helpers
* map_{delete,update}_elem() syscalls
Fixes: 0fe4b381a5 ("bpf: Allow bpf_local_storage to be used by sleepable programs")
Signed-off-by: KP Singh <kpsingh@kernel.org>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Martin KaFai Lau <kafai@fb.com>
Link: https://lore.kernel.org/bpf/20220418155158.2865678-1-kpsingh@kernel.org
Currently, local storage memory can only be allocated atomically
(GFP_ATOMIC). This restriction is too strict for sleepable bpf
programs.
In this patch, the verifier detects whether the program is sleepable,
and passes the corresponding GFP_KERNEL or GFP_ATOMIC flag as a
5th argument to bpf_task/sk/inode_storage_get. This flag will propagate
down to the local storage functions that allocate memory.
Please note that bpf_task/sk/inode_storage_update_elem functions are
invoked by userspace applications through syscalls. Preemption is
disabled before bpf_task/sk/inode_storage_update_elem is called, which
means they will always have to allocate memory atomically.
Signed-off-by: Joanne Koong <joannelkoong@gmail.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: KP Singh <kpsingh@kernel.org>
Acked-by: Martin KaFai Lau <kafai@fb.com>
Link: https://lore.kernel.org/bpf/20220318045553.3091807-2-joannekoong@fb.com
Other maps like hashmaps are already available to sleepable programs.
Sleepable BPF programs run under trace RCU. Allow task, sk and inode
storage to be used from sleepable programs. This allows sleepable and
non-sleepable programs to provide shareable annotations on kernel
objects.
Sleepable programs run in trace RCU where as non-sleepable programs run
in a normal RCU critical section i.e. __bpf_prog_enter{_sleepable}
and __bpf_prog_exit{_sleepable}) (rcu_read_lock or rcu_read_lock_trace).
In order to make the local storage maps accessible to both sleepable
and non-sleepable programs, one needs to call both
call_rcu_tasks_trace and call_rcu to wait for both trace and classical
RCU grace periods to expire before freeing memory.
Paul's work on call_rcu_tasks_trace allows us to have per CPU queueing
for call_rcu_tasks_trace. This behaviour can be achieved by setting
rcupdate.rcu_task_enqueue_lim=<num_cpus> boot parameter.
In light of these new performance changes and to keep the local storage
code simple, avoid adding a new flag for sleepable maps / local storage
to select the RCU synchronization (trace / classical).
Also, update the dereferencing of the pointers to use
rcu_derference_check (with either the trace or normal RCU locks held)
with a common bpf_rcu_lock_held helper method.
Signed-off-by: KP Singh <kpsingh@kernel.org>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Martin KaFai Lau <kafai@fb.com>
Link: https://lore.kernel.org/bpf/20211224152916.1550677-2-kpsingh@kernel.org
Similar to btf_sock_ids, btf_tracing_ids provides btf ID for task_struct,
file, and vm_area_struct via easy to understand format like
btf_tracing_ids[BTF_TRACING_TYPE_[TASK|file|VMA]].
Suggested-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Song Liu <songliubraving@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Yonghong Song <yhs@fb.com>
Link: https://lore.kernel.org/bpf/20211112150243.1270987-3-songliubraving@fb.com
The sparse tool complains as follows:
kernel/bpf/bpf_task_storage.c:23:1: warning:
symbol '__pcpu_scope_bpf_task_storage_busy' was not declared. Should it be static?
This symbol is not used outside of bpf_task_storage.c, so this
commit marks it static.
Fixes: bc235cdb42 ("bpf: Prevent deadlock from recursive bpf_task_storage_[get|delete]")
Reported-by: Hulk Robot <hulkci@huawei.com>
Signed-off-by: Wei Yongjun <weiyongjun1@huawei.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Song Liu <songliubraving@fb.com>
Link: https://lore.kernel.org/bpf/20210311131505.1901509-1-weiyongjun1@huawei.com
BPF helpers bpf_task_storage_[get|delete] could hold two locks:
bpf_local_storage_map_bucket->lock and bpf_local_storage->lock. Calling
these helpers from fentry/fexit programs on functions in bpf_*_storage.c
may cause deadlock on either locks.
Prevent such deadlock with a per cpu counter, bpf_task_storage_busy. We
need this counter to be global, because the two locks here belong to two
different objects: bpf_local_storage_map and bpf_local_storage. If we
pick one of them as the owner of the counter, it is still possible to
trigger deadlock on the other lock. For example, if bpf_local_storage_map
owns the counters, it cannot prevent deadlock on bpf_local_storage->lock
when two maps are used.
Signed-off-by: Song Liu <songliubraving@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Martin KaFai Lau <kafai@fb.com>
Link: https://lore.kernel.org/bpf/20210225234319.336131-3-songliubraving@fb.com
To access per-task data, BPF programs usually creates a hash table with
pid as the key. This is not ideal because:
1. The user need to estimate the proper size of the hash table, which may
be inaccurate;
2. Big hash tables are slow;
3. To clean up the data properly during task terminations, the user need
to write extra logic.
Task local storage overcomes these issues and offers a better option for
these per-task data. Task local storage is only available to BPF_LSM. Now
enable it for tracing programs.
Unlike LSM programs, tracing programs can be called in IRQ contexts.
Helpers that access task local storage are updated to use
raw_spin_lock_irqsave() instead of raw_spin_lock_bh().
Tracing programs can attach to functions on the task free path, e.g.
exit_creds(). To avoid allocating task local storage after
bpf_task_storage_free(). bpf_task_storage_get() is updated to not allocate
new storage when the task is not refcounted (task->usage == 0).
Signed-off-by: Song Liu <songliubraving@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: KP Singh <kpsingh@kernel.org>
Acked-by: Martin KaFai Lau <kafai@fb.com>
Link: https://lore.kernel.org/bpf/20210225234319.336131-2-songliubraving@fb.com
The verifier allows ARG_PTR_TO_BTF_ID helper arguments to be NULL, so
helper implementations need to check this before dereferencing them.
This was already fixed for the socket storage helpers but not for task
and inode.
The issue can be reproduced by attaching an LSM program to
inode_rename hook (called when moving files) which tries to get the
inode of the new file without checking for its nullness and then trying
to move an existing file to a new path:
mv existing_file new_file_does_not_exist
The report including the sample program and the steps for reproducing
the bug:
https://lore.kernel.org/bpf/CANaYP3HWkH91SN=wTNO9FL_2ztHfqcXKX38SSE-JJ2voh+vssw@mail.gmail.com
Fixes: 4cf1bc1f10 ("bpf: Implement task local storage")
Fixes: 8ea636848a ("bpf: Implement bpf_local_storage for inodes")
Reported-by: Gilad Reti <gilad.reti@gmail.com>
Signed-off-by: KP Singh <kpsingh@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Martin KaFai Lau <kafai@fb.com>
Acked-by: Yonghong Song <yhs@fb.com>
Link: https://lore.kernel.org/bpf/20210112075525.256820-3-kpsingh@kernel.org
In bpf_pid_task_storage_update_elem(), it missed to
test the !task_storage_ptr(task) which then could trigger a NULL
pointer exception in bpf_local_storage_update().
Fixes: 4cf1bc1f10 ("bpf: Implement task local storage")
Signed-off-by: Martin KaFai Lau <kafai@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Tested-by: Roman Gushchin <guro@fb.com>
Acked-by: KP Singh <kpsingh@google.com>
Link: https://lore.kernel.org/bpf/20201112001919.2028357-1-kafai@fb.com
Similar to bpf_local_storage for sockets and inodes add local storage
for task_struct.
The life-cycle of storage is managed with the life-cycle of the
task_struct. i.e. the storage is destroyed along with the owning task
with a callback to the bpf_task_storage_free from the task_free LSM
hook.
The BPF LSM allocates an __rcu pointer to the bpf_local_storage in
the security blob which are now stackable and can co-exist with other
LSMs.
The userspace map operations can be done by using a pid fd as a key
passed to the lookup, update and delete operations.
Signed-off-by: KP Singh <kpsingh@google.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Song Liu <songliubraving@fb.com>
Acked-by: Martin KaFai Lau <kafai@fb.com>
Link: https://lore.kernel.org/bpf/20201106103747.2780972-3-kpsingh@chromium.org