If we remove a missing device, bdev is null, and if we
send that off to btrfs_kobject_uevent we'll panic.
Signed-off-by: Eric Sandeen <sandeen@redhat.com>
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
Signed-off-by: Chris Mason <chris.mason@fusionio.com>
The max device number of single profile is 1, not 0 (0 means 'as many as
possible'). Fix it.
Cc: Liu Bo <bo.li.liu@oracle.com>
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Reviewed-by: Liu Bo <bo.li.liu@oracle.com>
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
Commit 3fed40cc ("Btrfs: cleanup duplicated division functions"), which
was merged into 3.8-rc1, has introduced a regression by removing logic
that was guarding us against bad user input. Bring it back.
Signed-off-by: Ilya Dryomov <idryomov@gmail.com>
Signed-off-by: Chris Mason <chris.mason@fusionio.com>
Balance pause/resume logic got broken by 5ac00add (went in into 3.8-rc1
as part of dev-replace merge). Offending commit took a stab at making
mutually exclusive volume operations (add_dev, rm_dev, resize, balance,
replace_dev) not block behind volume_mutex if another such operation is
in progress and instead return an error right away. Balancing front-end
relied on the blocking behaviour, so the fix is ugly, but short of a
complete rework, it's the best we can do.
Reported-by: Liu Bo <bo.li.liu@oracle.com>
Signed-off-by: Ilya Dryomov <idryomov@gmail.com>
When we're deleting the device we should get it in write mode since
we're going to re-write the super block magic on that device. And it
should fail if the device is read-only.
Signed-off-by: Lukas Czerner <lczerner@redhat.com>
Raid properties can be shared among raid calculation code, we can put
them into a global table to keep it simple.
Signed-off-by: Liu Bo <bo.li.liu@oracle.com>
Signed-off-by: Chris Mason <chris.mason@fusionio.com>
We don't really need to copy extents from the source tree since we have all
of the information already available to us in the extent_map tree. So
instead just write the extents straight to the log tree and don't bother to
copy the extent items from the source tree.
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
Signed-off-by: Chris Mason <chris.mason@fusionio.com>
Currently udev does not know about the device being removed from the
file system. This may result in the situation where we're unable to
mount the file system by UUID or by LABEL because the by-uuid and
by-label links may still point to the device which is no longer part of
the btrfs file system and hence does not have any btrfs super block.
It can be easily reproduced by the following:
mkfs.btrfs -L bugfs /dev/loop[0-6]
mount /dev/loop0 /mnt/test
btrfs device delete /dev/loop0 /mnt/test
umount /mnt/test
mount LABEL=bugfs /mnt/test <---- this fails
then see:
ls -l /dev/disk/by-label/bugfs
which will still point to the /dev/loop0
We did not noticed this before because libblkid would send the udev
event for us when it notice that the link does not fit the reality,
however it does not do that anymore and completely relies on udev
information.
Fix this by sending the KOBJ_CHANGE event to the bdev kobject after
successful device removal.
Note that this does not affect device addition, because we will open the
device prior the addition from userspace and udev will notice that and
reread the device afterwards.
Signed-off-by: Lukas Czerner <lczerner@redhat.com>
Signed-off-by: Chris Mason <chris.mason@fusionio.com>
This issue was detected by the "0-DAY kernel build testing".
fs/btrfs/volumes.c: In function 'btrfs_rm_device':
fs/btrfs/volumes.c:1505:1: warning: label 'error_close' defined but not used [-Wunused-label]
Signed-off-by: Stefan Behrens <sbehrens@giantdisaster.de>
Signed-off-by: Chris Mason <chris.mason@fusionio.com>
Make the target disk of a running device replace operation
available for reading. This is only used as a last ressort for
the defect repair procedure. And it is dependent on the location
of the data block to read, because during an ongoing device
replace operation, the target drive is only partially filled
with the filesystem data.
Signed-off-by: Stefan Behrens <sbehrens@giantdisaster.de>
Signed-off-by: Chris Mason <chris.mason@fusionio.com>
It is desirable to be able to configure the device replace
procedure to avoid reading the source drive (the one to be
copied) whenever possible. This is useful when the number of
read errors on this disk is high, because it would delay the
copy procedure alot. Therefore there is an option to avoid
reading from the source disk unless the repair procedure
really needs to access it. The regular read req asks for
mapping the block with mirror_num == 0, in this case the
source disk is avoided whenever possible. The repair code
selects the mirror_num explicitly (mirror_num != 0), this
case is not changed by this commit.
Signed-off-by: Stefan Behrens <sbehrens@giantdisaster.de>
Signed-off-by: Chris Mason <chris.mason@fusionio.com>
During a running dev replace operation, all write requests to
the live filesystem are duplicated to also write to the target
drive. Therefore btrfs_map_block() is changed to duplicate
stripes that are written to the source disk of a device replace
procedure to be written to the target disk as well.
Signed-off-by: Stefan Behrens <sbehrens@giantdisaster.de>
Signed-off-by: Chris Mason <chris.mason@fusionio.com>
Before this commit, btrfs_map_block() was called with REQ_WRITE
in order to retrieve the list of mirrors for a disk block.
This needs to be changed for the device replace procedure since
it makes a difference whether you are asking for read mirrors
or for locations to write to.
GET_READ_MIRRORS is introduced as a new interface to call
btrfs_map_block().
In the current commit, the functionality is not yet changed,
only the interface for GET_READ_MIRRORS is introduced and all
the places that should use this new interface are adapted.
The reason that REQ_WRITE cannot be abused anymore to retrieve
a list of read mirrors is that during a running dev replace
operation all write requests to the live filesystem are
duplicated to also write to the target drive.
Keep in mind that the target disk is only partially a valid
copy of the source disk while the operation is ongoing. All
writes go to the target disk, but not all reads would return
valid data on the target disk. Therefore it is not possible
anymore to abuse a REQ_WRITE interface to find valid mirrors
for a REQ_READ.
Signed-off-by: Stefan Behrens <sbehrens@giantdisaster.de>
Signed-off-by: Chris Mason <chris.mason@fusionio.com>
This commit contains all the essential changes to the core code
of Btrfs for support of the device replace procedure.
Signed-off-by: Stefan Behrens <sbehrens@giantdisaster.de>
Signed-off-by: Chris Mason <chris.mason@fusionio.com>
This adds a new file to the sources together with the header file
and the changes to ioctl.h and ctree.h that are required by the
new C source file. Additionally, 4 new functions are added to
volume.c that deal with device creation and destruction.
Signed-off-by: Stefan Behrens <sbehrens@giantdisaster.de>
Signed-off-by: Chris Mason <chris.mason@fusionio.com>
With the addition of the device replace procedure, it is possible
for btrfs_map_bio(READ) to report an error. This happens when the
specific mirror is requested which is located on the target disk,
and the copy operation has not yet copied this block. Hence the
block cannot be read and this error state is indicated by
returning EIO.
Some background information follows now. A new mirror is added
while the device replace procedure is running.
btrfs_get_num_copies() returns one more, and
btrfs_map_bio(GET_READ_MIRROR) adds one more mirror if a disk
location is involved that was already handled by the device
replace copy operation. The assigned mirror num is the highest
mirror number, e.g. the value 3 in case of RAID1.
If btrfs_map_bio() is invoked with mirror_num == 0 (i.e., select
any mirror), the copy on the target drive is never selected
because that disk shall be able to perform the write requests as
quickly as possible. The parallel execution of read requests would
only slow down the disk copy procedure. Second case is that
btrfs_map_bio() is called with mirror_num > 0. This is done from
the repair code only. In this case, the highest mirror num is
assigned to the target disk, since it is used last. And when this
mirror is not available because the copy procedure has not yet
handled this area, an error is returned. Everywhere in the code
the handling of such errors is added now.
Signed-off-by: Stefan Behrens <sbehrens@giantdisaster.de>
Signed-off-by: Chris Mason <chris.mason@fusionio.com>
This patch adds some code to disallow operations on the device that
is used as the target for the device replace operation.
Signed-off-by: Stefan Behrens <sbehrens@giantdisaster.de>
Signed-off-by: Chris Mason <chris.mason@fusionio.com>
Btrfs admin operations that are manually started from user mode
and that cannot be executed at the same time return -EINPROGRESS.
A common way to enter and leave this locked section is introduced
since it used to be specific to the balance operation.
Signed-off-by: Stefan Behrens <sbehrens@giantdisaster.de>
Signed-off-by: Chris Mason <chris.mason@fusionio.com>
A small number of functions that are used in a device replace
procedure when the operation is resumed at mount time are unable
to pass the same root pointer that would be used in the regular
(ioctl) context. And since the root pointer is not required, only
the fs_info is, the root pointer argument is replaced with the
fs_info pointer argument.
Signed-off-by: Stefan Behrens <sbehrens@giantdisaster.de>
Signed-off-by: Chris Mason <chris.mason@fusionio.com>
This new function is used by the device replace procedure in
a later patch.
Signed-off-by: Stefan Behrens <sbehrens@giantdisaster.de>
Signed-off-by: Chris Mason <chris.mason@fusionio.com>
This is required for the device replace procedure in a later step.
Two calling functions also had to be changed to have the fs_info
pointer: repair_io_failure() and scrub_setup_recheck_block().
Signed-off-by: Stefan Behrens <sbehrens@giantdisaster.de>
Signed-off-by: Chris Mason <chris.mason@fusionio.com>
This is required for the device replace procedure in a later step.
Signed-off-by: Stefan Behrens <sbehrens@giantdisaster.de>
Signed-off-by: Chris Mason <chris.mason@fusionio.com>
The new function btrfs_find_device_missing_or_by_path() will be
used for the device replace procedure. This function itself calls
the second new function btrfs_find_device_by_path().
Unfortunately, it is not possible to currently make the rest of the
code use these functions as well, since all functions that look
similar at first view are all a little bit different in what they
are doing. But in the future, new code could benefit from these
two new functions, and currently, device replace uses them.
Signed-off-by: Stefan Behrens <sbehrens@giantdisaster.de>
Signed-off-by: Chris Mason <chris.mason@fusionio.com>
Some code to open block devices, to read the superblock and to
handle errors was repeated multiple times in 3 places, and the
following patch makes use of it as well. This code is now moved
into a subfunction.
Signed-off-by: Stefan Behrens <sbehrens@giantdisaster.de>
Signed-off-by: Chris Mason <chris.mason@fusionio.com>
Since we've kill the bigger one volume_mutex, we need to add devices
list mutex back.
Signed-off-by: Liu Bo <bo.li.liu@oracle.com>
Signed-off-by: Chris Mason <chris.mason@fusionio.com>
Someone who is root or capable(CAP_SYS_ADMIN) could corrupt the
superblock and make Btrfs printk("%s") crash while holding the
uuid_mutex since nobody forces a limit on the string. Since the
uuid_mutex is significant, the system would be unusable
afterwards.
Signed-off-by: Stefan Behrens <sbehrens@giantdisaster.de>
Reviewed-by: David Sterba <dsterba@suse.cz>
Signed-off-by: Chris Mason <chris.mason@fusionio.com>
Use WARN rather than printk followed by WARN_ON(1), for conciseness.
A simplified version of the semantic patch that makes this transformation
is as follows: (http://coccinelle.lip6.fr/)
// <smpl>
@@
expression list es;
@@
-printk(
+WARN(1,
es);
-WARN_ON(1);
// </smpl>
Signed-off-by: Julia Lawall <Julia.Lawall@lip6.fr>
Reviewed-by: David Sterba <dsterba@suse.cz>
Signed-off-by: Chris Mason <chris.mason@fusionio.com>
Remove an invalid size check up from btrfs_shrink_dev().
The new size should not larger than the device->total_bytes as it was
already verified before coming to here(i.e. new_size < old_size).
Remove invalid check up for btrfs_shrink_dev().
Signed-off-by: Jie Liu <jeff.liu@oracle.com>
Signed-off-by: Chris Mason <chris.mason@fusionio.com>
Alex reported a problem where we were writing between chunks on a rbd
device. The thing is we do bio_add_page using logical offsets, but the
physical offset may be different. So when we map the bio now check to see
if the bio is still ok with the physical offset, and if it is not split the
bio up and redo the bio_add_page with the physical sector. This fixes the
problem for Alex and doesn't affect performance in the normal case. Thanks,
Reported-and-tested-by: Alex Elder <elder@inktank.com>
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
Signed-off-by: Chris Mason <chris.mason@fusionio.com>
div_factor{_fine} has been implemented for two times, cleanup it.
And I move them into a independent file named math.h because they are
common math functions.
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Chris Mason <chris.mason@fusionio.com>
Steps to reproduce:
# mkfs.btrfs -m raid1 <disk1> <disk2>
# btrfstune -S 1 <disk1>
# mount <disk1> <mnt>
# btrfs device add <disk3> <disk4> <mnt>
# mount -o remount,rw <mnt>
# dd if=/dev/zero of=<mnt>/tmpfile bs=1M count=1
Deadlock happened.
It is because of the nested chunk allocation. When we wrote the data
into the filesystem, we would allocate the data chunk because there was
no data chunk in the filesystem. At the end of the data chunk allocation,
we should insert the metadata of the data chunk into the extent tree, but
there was no raid1 chunk, so we tried to lock the chunk allocation mutex to
allocate the new chunk, but we had held the mutex, the deadlock happened.
By rights, we would allocate the raid1 chunk when we added the second device
because the profile of the seed filesystem is raid1 and we had two devices.
But we didn't do that in fact. It is because the last step of the first device
insertion didn't commit the transaction. So when we added the second device,
we didn't cow the tree, and just inserted the relative metadata into the leaves
which were generated by the first device insertion, and its profile was dup.
So, I fix this problem by commiting the transaction at the end of the first
device insertion.
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
So far the return code of barrier_all_devices() is ignored, which
means that errors are ignored. The result can be a corrupt
filesystem which is not consistent.
This commit adds code to evaluate the return code of
barrier_all_devices(). The normal btrfs_error() mechanism is used to
switch the filesystem into read-only mode when errors are detected.
In order to decide whether barrier_all_devices() should return
error or success, the number of disks that are allowed to fail the
barrier submission is calculated. This calculation accounts for the
worst RAID level of metadata, system and data. If single, dup or
RAID0 is in use, a single disk error is already considered to be
fatal. Otherwise a single disk error is tolerated.
The calculation of the number of disks that are tolerated to fail
the barrier operation is performed when the filesystem gets mounted,
when a balance operation is started and finished, and when devices
are added or removed.
Signed-off-by: Stefan Behrens <sbehrens@giantdisaster.de>
Call btrfs_abort_transaction as early as possible when an error
condition is detected, that way the line number reported is useful
and we're not clueless anymore which error path led to the abort.
Signed-off-by: David Sterba <dsterba@suse.cz>
Pull btrfs fixes from Chris Mason:
"I've split out the big send/receive update from my last pull request
and now have just the fixes in my for-linus branch. The send/recv
branch will wander over to linux-next shortly though.
The largest patches in this pull are Josef's patches to fix DIO
locking problems and his patch to fix a crash during balance. They
are both well tested.
The rest are smaller fixes that we've had queued. The last rc came
out while I was hacking new and exciting ways to recover from a
misplaced rm -rf on my dev box, so these missed rc3."
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux-btrfs: (25 commits)
Btrfs: fix that repair code is spuriously executed for transid failures
Btrfs: fix ordered extent leak when failing to start a transaction
Btrfs: fix a dio write regression
Btrfs: fix deadlock with freeze and sync V2
Btrfs: revert checksum error statistic which can cause a BUG()
Btrfs: remove superblock writing after fatal error
Btrfs: allow delayed refs to be merged
Btrfs: fix enospc problems when deleting a subvol
Btrfs: fix wrong mtime and ctime when creating snapshots
Btrfs: fix race in run_clustered_refs
Btrfs: don't run __tree_mod_log_free_eb on leaves
Btrfs: increase the size of the free space cache
Btrfs: barrier before waitqueue_active
Btrfs: fix deadlock in wait_for_more_refs
btrfs: fix second lock in btrfs_delete_delayed_items()
Btrfs: don't allocate a seperate csums array for direct reads
Btrfs: do not strdup non existent strings
Btrfs: do not use missing devices when showing devname
Btrfs: fix that error value is changed by mistake
Btrfs: lock extents as we map them in DIO
...
Commit 442a4f6308 added btrfs device
statistic counters for detected IO and checksum errors to Linux 3.5.
The statistic part that counts checksum errors in
end_bio_extent_readpage() can cause a BUG() in a subfunction:
"kernel BUG at fs/btrfs/volumes.c:3762!"
That part is reverted with the current patch.
However, the counting of checksum errors in the scrub context remains
active, and the counting of detected IO errors (read, write or flush
errors) in all contexts remains active.
Cc: stable <stable@vger.kernel.org> # 3.5
Signed-off-by: Stefan Behrens <sbehrens@giantdisaster.de>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
We need a barrir before calling waitqueue_active otherwise we will miss
wakeups. So in places that do atomic_dec(); then atomic_read() use
atomic_dec_return() which imply a memory barrier (see memory-barriers.txt)
and then add an explicit memory barrier everywhere else that need them.
Thanks,
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
When we close devices we add back empty devices for some reason that escapes
me. In the case of a missing dev we don't allocate an rcu_string for it's
name, so check to see if the device has a name and if it doesn't don't
bother strdup()'ing it. Thanks,
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
The '->write_super' superblock method is gone, and this patch removes all the
references to 'write_super' from btrfs.
Cc: Chris Mason <chris.mason@fusionio.com>
Cc: linux-btrfs@vger.kernel.org
Signed-off-by: Artem Bityutskiy <artem.bityutskiy@linux.intel.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Code is added to suppress the I/O stats printing at mount time if all
statistic values are zero.
Signed-off-by: Stefan Behrens <sbehrens@giantdisaster.de>
People complained about the annoying kernel log message
"btrfs: no dev_stats entry found ... (OK on first mount after mkfs)"
everytime a filesystem is mounted for the first time after running
mkfs. Since the distribution of the btrfs-progs is not synchronized
to the kernel version, mkfs like it is now will be used also in the
future. Then this message is not useful to find errors, it is just
annoying. This commit removes the printk().
Signed-off-by: Stefan Behrens <sbehrens@giantdisaster.de>
This will be used in conjunction with btrfs device ready <dev>. This is
needed for initrd's to have a nice and lightweight way to tell if all of the
devices needed for a file system are in the cache currently. This keeps
them from having to do mount+sleep loops waiting for devices to show up.
Thanks,
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
Commit c11d2c236c (Btrfs: add ioctl to get and reset the device
stats) introduced two ioctls doing almost the same thing distinguished
by just the ioctl number which encodes "do reset after read". I have
suggested
http://www.mail-archive.com/linux-btrfs@vger.kernel.org/msg16604.html
to implement it via the ioctl args. This hasn't happen, and I think we
should use a more clean way to pass flags and should not waste ioctl
numbers.
CC: Stefan Behrens <sbehrens@giantdisaster.de>
Signed-off-by: David Sterba <dsterba@suse.cz>
This introduces btrfs_resume_balance_async(), which, given that
restriper state was recovered earlier by btrfs_recover_balance(),
resumes balance in btrfs-balance kthread.
Signed-off-by: Ilya Dryomov <idryomov@gmail.com>
Fix a bug that triggered asserts in btrfs_balance() in both normal and
resume modes -- restriper state was not properly restored on read-only
mounts. This factors out resuming code from btrfs_restore_balance(),
which is now also called earlier in the mount sequence to avoid the
problem of some early writes getting the old profile.
Signed-off-by: Ilya Dryomov <idryomov@gmail.com>
It is normal behaviour of the low level btrfs function btrfs_map_bio()
to complete a bio with -EIO if the device is missing, instead of just
preventing the bio creation in an earlier step.
This used to cause I/O statistic read error increments and annoying
printk_ratelimited messages. This commit fixes the issue.
Signed-off-by: Stefan Behrens <sbehrens@giantdisaster.de>
Reported-by: Carey Underwood <cwillu@cwillu.com>
Al pointed out that we can just toss out the old name on a device and add a
new one arbitrarily, so anybody who uses device->name in printk could
possibly use free'd memory. Instead of adding locking around all of this he
suggested doing it with RCU, so I've introduced a struct rcu_string that
does just that and have gone through and protected all accesses to
device->name that aren't under the uuid_mutex with rcu_read_lock(). This
protects us and I will use it for dealing with removing the device that we
used to mount the file system in a later patch. Thanks,
Reviewed-by: David Sterba <dsterba@suse.cz>
Signed-off-by: Josef Bacik <josef@redhat.com>
The device statistics are written into the device tree with each
transaction commit. Only modified statistics are written.
When a filesystem is mounted, the device statistics for each involved
device are read from the device tree and used to initialize the
counters.
Signed-off-by: Stefan Behrens <sbehrens@giantdisaster.de>
An ioctl interface is added to get the device statistic counters.
A second ioctl is added to atomically get and reset these counters.
Signed-off-by: Stefan Behrens <sbehrens@giantdisaster.de>
The goal is to detect when drives start to get an increased error rate,
when drives should be replaced soon. Therefore statistic counters are
added that count IO errors (read, write and flush). Additionally, the
software detected errors like checksum errors and corrupted blocks are
counted.
Signed-off-by: Stefan Behrens <sbehrens@giantdisaster.de>
Reproduce:
$ mkfs.btrfs /dev/sdb7
$ mount /dev/sdb7 /mnt/btrfs -o ro
$ btrfs dev add /dev/sdb8 /mnt/btrfs
ERROR: error adding the device '/dev/sdb8' - Invalid argument
Since we mount with readonly options, and /dev/sdb7 is not a seeding one,
a readonly notification is preferred.
Signed-off-by: Liu Bo <liubo2009@cn.fujitsu.com>
Reviewed-by: Josef Bacik <josef@redhat.com>
btrfs_map_block sets mirror_num, so that the repair code knows eventually
which device gave us the read error. For RAID10, mirror_num must be 1 or 2.
Before this fix mirror_num was incorrectly related to our stripe index.
Signed-off-by: Jan Schmidt <list.btrfs@jan-o-sch.net>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
Fix a bug, where in case we need to adjust stripe_size so that the
length of the resulting chunk is less than or equal to max_chunk_size,
DUP chunks turn out to be only half as big as they could be.
Cc: Arne Jansen <sensille@gmx.net>
Signed-off-by: Ilya Dryomov <idryomov@gmail.com>
We miscalculate the length of extents we're discarding, and it leads to
an eof of device.
Reported-by: Daniel Blueman <daniel@quora.org>
Signed-off-by: Liu Bo <liubo2009@cn.fujitsu.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
Btrfs puts the filesystem metadata into its own address space, and
somehow the block device address space isn't getting onto disk properly
before a mount. The end result is that a loop of mkfs and mounting the
filesystem will sometimes find stale or incorrect data.
This commit should fix it by sprinkling fdatawrites and invalidate_bdev
calls around. This is a short term measure to make sure it is fixed.
The block devices really should be flushed and cleaned up higher in the
stack.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
If relocate of block group 0 fails with ENOSPC we end up infinitely
looping because key.offset -= 1 statement in that case brings us back to
where we started.
Signed-off-by: Ilya Dryomov <idryomov@gmail.com>
Generally we don't allow dup for data, but mixed chunks are special and
people seem to think this has its use cases.
Signed-off-by: Ilya Dryomov <idryomov@gmail.com>
Do not run sanity checks on all target profiles unless they all will be
used. This came up because alloc_profile_is_valid() is now more strict
than it used to be.
Signed-off-by: Ilya Dryomov <idryomov@gmail.com>
Header file is not a good place to define functions. This also moves a
call to alloc_profile_is_valid() down the stack and removes a redundant
check from __btrfs_alloc_chunk() - alloc_profile_is_valid() takes it
into account.
Signed-off-by: Ilya Dryomov <idryomov@gmail.com>
"0" is a valid value for an on-disk chunk profile, but it is not a valid
extended profile. (We have a separate bit for single chunks in extended
case)
Also rename it to alloc_profile_is_valid() for clarity.
Signed-off-by: Ilya Dryomov <idryomov@gmail.com>
Add functions to abstract the conversion between chunk and extended
allocation profile formats and switch everybody to use them.
Signed-off-by: Ilya Dryomov <idryomov@gmail.com>
A few years ago the btrfs code to support blocks lager than
the page size was disabled to fix a few corner cases in the
page cache handling. This fixes the code to properly support
large metadata blocks again.
Since current kernels will crash early and often with larger
metadata blocks, this adds an incompat bit so that older kernels
can't mount it.
This also does away with different blocksizes for nodes and leaves.
You get a single block size for all tree blocks.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
btrfs currently handles most errors with BUG_ON. This patch is a work-in-
progress but aims to handle most errors other than internal logic
errors and ENOMEM more gracefully.
This iteration prevents most crashes but can run into lockups with
the page lock on occasion when the timing "works out."
Signed-off-by: Jeff Mahoney <jeffm@suse.com>
btrfs_alloc_chunk() unconditionally BUGs on any error returned from
__finish_chunk_alloc() so there's no need for two BUG_ON lines. Remove the
one from __finish_chunk_alloc().
Signed-off-by: Mark Fasheh <mfasheh@suse.de>
We BUG_ON() error from add_extent_mapping(), but that error looks pretty
easy to bubble back up - as far as I can tell there have not been any
permanent modifications to fs state at that point.
Signed-off-by: Mark Fasheh <mfasheh@suse.de>
The only caller of btrfs_alloc_dev_extent() is __btrfs_alloc_chunk() which
already bugs on any error returned. We can remove the BUG_ON's in
btrfs_alloc_dev_extent() then since __btrfs_alloc_chunk() will "catch" them
anyway.
Signed-off-by: Mark Fasheh <mfasheh@suse.de>
All callers of __finish_chunk_alloc() BUG_ON() return value, so it's trivial
for us to always bubble up any errors caught in __finish_chunk_alloc() to be
caught there.
Signed-off-by: Mark Fasheh <mfasheh@suse.de>
Quoth Chris:
"This is later than I wanted because I got backed up running through
btrfs bugs from the Oracle QA teams. But they are all bug fixes that
we've queued and tested since rc1.
Nothing in particular stands out, this just reflects bug fixing and QA
done in parallel by all the btrfs developers. The most user visible
of these is:
Btrfs: clear the extent uptodate bits during parent transid failures
Because that helps deal with out of date drives (say an iscsi disk
that has gone away and come back). The old code wasn't always
properly retrying the other mirror for this type of failure."
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux-btrfs: (24 commits)
Btrfs: fix compiler warnings on 32 bit systems
Btrfs: increase the global block reserve estimates
Btrfs: clear the extent uptodate bits during parent transid failures
Btrfs: add extra sanity checks on the path names in btrfs_mksubvol
Btrfs: make sure we update latest_bdev
Btrfs: improve error handling for btrfs_insert_dir_item callers
Btrfs: be less strict on finding next node in clear_extent_bit
Btrfs: fix a bug on overcommit stuff
Btrfs: kick out redundant stuff in convert_extent_bit
Btrfs: skip states when they does not contain bits to clear
Btrfs: check return value of lookup_extent_mapping() correctly
Btrfs: fix deadlock on page lock when doing auto-defragment
Btrfs: fix return value check of extent_io_ops
btrfs: honor umask when creating subvol root
btrfs: silence warning in raid array setup
btrfs: fix structs where bitfields and spinlock/atomic share 8B word
btrfs: delalloc for page dirtied out-of-band in fixup worker
Btrfs: fix memory leak in load_free_space_cache()
btrfs: don't check DUP chunks twice
Btrfs: fix trim 0 bytes after a device delete
...
When we are setting up the mount, we close all the
devices that were not actually part of the metadata we found.
But, we don't make sure that one of those devices wasn't
fs_devices->latest_bdev, which means we can do a use after free
on the one we closed.
This updates latest_bdev as it goes.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
Raid array setup code creates an extent buffer in an usual way. When the
PAGE_CACHE_SIZE is > super block size, the extent pages are not marked
up-to-date, which triggers a WARN_ON in the following
write_extent_buffer call. Add an explicit up-to-date call to silence the
warning.
Signed-off-by: David Sterba <dsterba@suse.cz>
* 'btrfs' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs:
btrfs: take allocation of ->tree_root into open_ctree()
btrfs: let ->s_fs_info point to fs_info, not root...
btrfs: consolidate failure exits in btrfs_mount() a bit
btrfs: make free_fs_info() call ->kill_sb() unconditional
btrfs: merge free_fs_info() calls on fill_super failures
btrfs: kill pointless reassignment of ->s_fs_info in btrfs_fill_super()
btrfs: make open_ctree() return int
btrfs: sanitizing ->fs_info, part 5
btrfs: sanitizing ->fs_info, part 4
btrfs: sanitizing ->fs_info, part 3
btrfs: sanitizing ->fs_info, part 2
btrfs: sanitizing ->fs_info, part 1
btrfs: fix a deadlock in btrfs_scan_one_device()
btrfs: fix mount/umount race
btrfs: get ->kill_sb() of its own
btrfs: preparation to fixing mount/umount race
system chunks by default are very small. This makes them slightly
larger and also fixes the conditional checks to make sure we don't
allocate a billion of them at once.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
Implement an ioctl for canceling restriper. Currently we wait until
relocation of the current block group is finished, in future this can be
done by triggering a commit. Balance item is deleted and no memory
about the interrupted balance is kept.
Signed-off-by: Ilya Dryomov <idryomov@gmail.com>
Implement an ioctl for pausing restriper. This pauses the relocation,
but balance is still considered to be "in progress": balance item is
not deleted, other volume operations cannot be started, etc. If paused
in the middle of profile changing operation we will continue making
allocations with the target profile.
Add a hook to close_ctree() to pause restriper and free its data
structures on unmount. (It's safe to unmount when restriper is in
"paused" state, we will resume with the same parameters on the next
mount)
Signed-off-by: Ilya Dryomov <idryomov@gmail.com>
Since restriper kthread starts involuntarily on mount and can suck cpu
and memory bandwidth add a mount option to forcefully skip it. The
restriper in that case hangs around in paused state and can be resumed
from userspace when it's convenient.
Signed-off-by: Ilya Dryomov <idryomov@gmail.com>
On mount, if balance item is found, resume balance in a separate
kernel thread.
Try to be smart to continue roughly where previous balance (or convert)
was interrupted. For chunk types that were being converted to some
profile we turn on soft convert, in case of a simple balance we turn on
usage filter and relocate only less-than-90%-full chunks of that type.
These are just heuristics but they help quite a bit, and can be improved
in future.
Signed-off-by: Ilya Dryomov <idryomov@gmail.com>
Introduce a new btree objectid for storing balance item. The reason is
to be able to resume restriper after a crash with the same parameters.
Balance item has a very high objectid and goes into tree of tree roots.
The key for the new item is as follows:
[ BTRFS_BALANCE_OBJECTID ; BTRFS_BALANCE_ITEM_KEY ; 0 ]
Older kernels simply ignore it so it's safe to mount with an older
kernel and then go back to the newer one.
Signed-off-by: Ilya Dryomov <idryomov@gmail.com>
When doing convert from one profile to another if soft mode is on
restriper won't touch chunks that already have the profile we are
converting to. This is useful if e.g. half of the FS was converted
earlier.
The soft mode switch is (like every other filter) per-type. This means
that we can convert for example meta chunks the "hard" way while
converting data chunks selectively with soft switch.
Signed-off-by: Ilya Dryomov <idryomov@gmail.com>
Profile changing is done by launching a balance with
BTRFS_BALANCE_CONVERT bits set and target fields of respective
btrfs_balance_args structs initialized. Profile reducing code in this
case will pick restriper's target profile if it's available instead of
doing a blind reduce. If target profile is not yet available it goes
back to a plain reduce.
Signed-off-by: Ilya Dryomov <idryomov@gmail.com>
Select chunks which have at least one byte located inside a given
[vstart, vend) virtual address space range.
Signed-off-by: Ilya Dryomov <idryomov@gmail.com>
Select chunks which have at least one byte of at least one stripe
located on a device with devid X in a given [pstart,pend) physical
address range.
This filter only works when devid filter is turned on.
Signed-off-by: Ilya Dryomov <idryomov@gmail.com>
This allows to have a separate set of filters for each chunk type
(data,meta,sys). The code however is generic and switch on chunk type
is only done once.
This commit also adds a type filter: it allows to balance for example
meta and system chunks w/o touching data ones.
Signed-off-by: Ilya Dryomov <idryomov@gmail.com>
Add basic restriper infrastructure: extended balancing ioctl and all
related ioctl data structures, add data structure for tracking
restriper's state to fs_info, etc. The semantics of the old balancing
ioctl are fully preserved.
Explicitly disallow any volume operations when balance is in progress.
Signed-off-by: Ilya Dryomov <idryomov@gmail.com>
Chunk's type and profile are encoded in u64 flags field. Introduce
masks to easily access them. Also fix the type of BTRFS_BLOCK_GROUP_*
constants, it should be ULL.
Signed-off-by: Ilya Dryomov <idryomov@gmail.com>
The correct lock order is uuid_mutex -> volume_mutex -> chunk_mutex,
but when we mount a filesystem which has backing seed devices, we have
this lock chain:
open_ctree()
lock(chunk_mutex);
read_chunk_tree();
read_one_dev();
open_seed_devices();
lock(uuid_mutex);
and then we hit a lockdep splat.
Signed-off-by: Li Zefan <lizf@cn.fujitsu.com>
For btrfs raid, while discarding a range of space, we'll need to know
the start offset and length to discard for each device, and it's done
in btrfs_map_block().
However the calculation is a bit complex for raid0 and raid10, so I
reimplement it based on a fact that:
dev1 dev2 dev3 (raid0)
-----------------------------------
s0 s3 s6 s1 s4 s7 s2 s5
Each device has (total_stripes / nr_dev) stripes, or plus one.
Signed-off-by: Li Zefan <lizf@cn.fujitsu.com>
We pre-allocate a btrfs bio with fixed size, and then may re-allocate
memory if we find stripes are bigger than the fixed size. But this
pre-allocation is not necessary.
Also we don't have to calcuate the stripe number twice.
Signed-off-by: Li Zefan <lizf@cn.fujitsu.com>
pathname resolution under a global mutex, taken on some paths in ->mount()
is a Bad Idea(tm) - think what happens if said pathname resolution triggers
automount of some btrfs instance and walks into attempt to grab the same
mutex. Deadlock - we are waiting for daemon to finish walking the path,
daemon is waiting for us to release the mutex...
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
This is the last part of the patch series. It modifies the btrfs
code to use the integrity check module if configured to do so
with the define BTRFS_FS_CHECK_INTEGRITY. If this define is not set,
the only effective change is that code is added that handles the
mount option to activate the integrity check. If the mount option is
set and the define BTRFS_FS_CHECK_INTEGRITY is not set, that code
complains in the log and the mount fails with EINVAL.
Add the mount option to activate the usage of the integrity check
code.
Add invocation of btrfs integrity check code init and cleanup
function on mount and umount, respectively.
Add hook to call btrfs integrity check code version of
submit_bh/submit_bio.
Signed-off-by: Stefan Behrens <sbehrens@giantdisaster.de>
The btrfs io submission threads can build up massive plug lists. This
keeps things more reasonable so we don't hand over huge dumps of IO at
once.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
btrfs_end_bio checks the number of errors on a bio against the max
number of errors allowed before sending any EIOs up to the higher
levels.
If we got enough copies of the bio done for a given raid level, it is
supposed to clear the bio error flag and return success.
We have pointers to the original bio sent down by the higher layers and
pointers to any cloned bios we made for raid purposes. If the original
bio happens to be the one that got an io error, but not the last one to
finish, it might not have the BIO_UPTODATE bit set.
Then, when the last bio does finish, we'll call bio_end_io on the
original bio. It won't have the uptodate bit set and we'll end up
sending EIO to the higher layers.
We already had a check for this, it just was conditional on getting the
IO error on the very last bio. Make the check unconditional so we eat
the EIOs properly.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
If we call ioctl(BTRFS_IOC_ADD_DEV) directly, we'll succeed in adding
a readonly device to a btrfs filesystem, and btrfs will write to
that device, emitting kernel errors:
[ 3109.833692] lost page write due to I/O error on loop2
[ 3109.833720] lost page write due to I/O error on loop2
...
Signed-off-by: Li Zefan <lizf@cn.fujitsu.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
btrfs_previous_item() just search the b+ tree, do not COW the nodes or leaves,
if we modify the result of it, the meta-data will be broken. fix it.
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
fs_info has now ~9kb, more than fits into one page. This will cause
mount failure when memory is too fragmented. Top space consumers are
super block structures super_copy and super_for_commit, ~2.8kb each.
Allocate them dynamically. fs_info will be ~3.5kb. (measured on x86_64)
Add a wrapper for freeing fs_info and all of it's dynamically allocated
members.
Signed-off-by: David Sterba <dsterba@suse.cz>
Fix a bug introduced by 20b45077. We have to return EINVAL on mount
failure, but doing that too early in the sequence leaves all of the
devices opened exclusively. This also fixes an issue where under some
scenarios only a second mount -o degraded <devices> command would
succeed.
Signed-off-by: Ilya Dryomov <idryomov@gmail.com>
One of the things that kills us is the fact that our ENOSPC reservations are
horribly over the top in most normal cases. There isn't too much that can be
done about this because when we are completely full we really need them to work
like this so we don't under reserve. However if there is plenty of unallocated
chunks on the disk we can use that to gauge how much we can overcommit. So this
patch adds chunk free space accounting so we always know how much unallocated
space we have. Then if we fail to make a reservation within our allocated
space, check to see if we can overcommit. In the normal flushing case (like
with delalloc metadata reservations) we'll take the free space and divide it by
2 if our metadata profile is setup for DUP or any of those, and then divide it
by 8 to make sure we don't overcommit too much. Then if we're in a non-flushing
case (we really need this reservation now!) we only limit ourselves to half of
the free space. This makes this fio test
[torrent]
filename=torrent-test
rw=randwrite
size=4g
ioengine=sync
directory=/mnt/btrfs-test
go from taking around 45 minutes to 10 seconds on my freshly formatted 3 TiB
file system. This doesn't seem to break my other enospc tests, but could really
use some more testing as this is a super scary change. Thanks,
Signed-off-by: Josef Bacik <josef@redhat.com>
Add state information for readahead to btrfs_fs_info and btrfs_device
Changes v2:
- don't wait in radix_trees
- add own set of workers for readahead
Reviewed-by: Josef Bacik <josef@redhat.com>
Signed-off-by: Arne Jansen <sensille@gmx.net>
The error correction code wants to make sure that only the bad mirror is
rewritten. Thus, we need to know which mirror is the bad one. I did not
find a more apropriate field than bi_bdev. But I think using this is fine,
because it is modified by the block layer, anyway, and should not be read
after the bio returned.
Signed-off-by: Jan Schmidt <list.btrfs@jan-o-sch.net>
btrfs_bio is a bio abstraction able to split and not complete after the last
bio has returned (like the old btrfs_multi_bio). Additionally, btrfs_bio
tracks the mirror_num used to read data which can be used for error
correction purposes.
Signed-off-by: Jan Schmidt <list.btrfs@jan-o-sch.net>
sync_pending is uninitialized before it be used, fix it.
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
When balancing, we'll first try to shrink devices for some space,
but if it is working on a full multi-disk partition with raid protection,
we may encounter a bug, that is, while shrinking, total_bytes may be less
than bytes_used, and btrfs may allocate a dev extent that accesses out of
device's bounds.
Then we will not be able to write or read the data which stores at the end
of the device, and get the followings:
device fsid 0939f071-7ea3-46c8-95df-f176d773bfb6 devid 1 transid 10 /dev/sdb5
Btrfs detected SSD devices, enabling SSD mode
btrfs: relocating block group 476315648 flags 9
btrfs: found 4 extents
attempt to access beyond end of device
sdb5: rw=145, want=546176, limit=546147
attempt to access beyond end of device
sdb5: rw=145, want=546304, limit=546147
attempt to access beyond end of device
sdb5: rw=145, want=546432, limit=546147
attempt to access beyond end of device
sdb5: rw=145, want=546560, limit=546147
attempt to access beyond end of device
Signed-off-by: Liu Bo <liubo2009@cn.fujitsu.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
We have a problem where if a user specifies discard but doesn't actually support
it we will return EOPNOTSUPP from btrfs_discard_extent. This is a problem
because this gets called (in a fashion) from the tree log recovery code, which
has a nice little BUG_ON(ret) after it, which causes us to fail the tree log
replay. So instead detect wether our devices support discard when we're adding
them and then don't issue discards if we know that the device doesn't support
it. And just for good measure set ret = 0 in btrfs_issue_discard just in case
we still get EOPNOTSUPP so we don't screw anybody up like this again. Thanks,
Signed-off-by: Josef Bacik <josef@redhat.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
Btrfs does bio submissions from a worker thread, and each device
has a list of high priority bios and regular priority bios.
Synchronous writes go to the high priority thread while async writes
go to regular list. This commit brings back an explicit unplug
any time we switch from high to regular priority, which makes it
easier for the block layer to give us low latencies.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
This patch was originally from Tejun Heo. lockdep complains about the btrfs
locking because we sometimes take btree locks from two different trees at the
same time. The current classes are based only on level in the btree, which
isn't enough information for lockdep to figure out if the lock is safe.
This patch makes a class for each type of tree, and lumps all the FS trees that
actually have files and directories into the same class.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
I also removed the BUG_ON from error return of find_next_chunk in
init_first_rw_device(). It turns out that the only caller of
init_first_rw_device() also BUGS on any nonzero return so no actual behavior
change has occurred here.
do_chunk_alloc() also needed an update since it calls btrfs_alloc_chunk()
which can now return -ENOMEM. Instead of setting space_info->full on any
error from btrfs_alloc_chunk() I catch and return every error value _except_
-ENOSPC. Thanks goes to Tsutomu Itoh for pointing that issue out.
Signed-off-by: Mark Fasheh <mfasheh@suse.com>
Dealing with this seems trivial - the only caller of btrfs_balance() is
btrfs_ioctl() which passes the error code directly back to userspace. There
also isn't much state to unwind (if I'm wrong about this point, we can
always safely move the allocation to the top of btrfs_balance() anyway).
Signed-off-by: Mark Fasheh <mfasheh@suse.com>
A user reported an error where if we try to balance an fs after a device has
been removed it will blow up. This is because we get an EIO back and this is
where BUG_ON(ret) bites us in the ass. To fix we just exit. Thanks,
Reported-by: Anand Jain <Anand.Jain@oracle.com>
Signed-off-by: Josef Bacik <josef@redhat.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
Get rid of FIXME comment. Uuids from dmesg are now the same as uuids
given by btrfs-progs.
Signed-off-by: Ilya Dryomov <idryomov@gmail.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
In degraded mode the struct btrfs_device of missing devs don't have
device->name set. A kstrdup of NULL correctly returns NULL. Don't
BUG in this case.
Signed-off-by: Arne Jansen <sensille@gmx.net>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
fs_devices->devices is only updated on remove and add device paths, so we can
use rcu to protect it in the reader side
Signed-off-by: Xiao Guangrong <xiaoguangrong@cn.fujitsu.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
Drop device_list_mutex for the reader side on clone_fs_devices and
btrfs_rm_device pathes since the fs_info->volume_mutex can ensure the device
list is not updated
btrfs_close_extra_devices is the initialized path, we can not add or remove
device at this time, so we can simply drop the mutex safely, like other
initialized function does(add_missing_dev, __find_device, __btrfs_open_devices
...).
Signed-off-by: Xiao Guangrong <xiaoguangrong@cn.fujitsu.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
On remove device path, it updates device->dev_alloc_list but does not hold
chunk lock
Signed-off-by: Xiao Guangrong <xiaoguangrong@cn.fujitsu.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
On btrfs_congested_fn and __unplug_io_fn paths, we should hold
device_list_mutex to avoid remove/add device path to
update fs_devices->devices
On __btrfs_close_devices and btrfs_prepare_sprout paths, the devices in
fs_devices->devices or fs_devices->devices is updated, so we should hold
the mutex to avoid the reader side to reach them
Signed-off-by: Xiao Guangrong <xiaoguangrong@cn.fujitsu.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
'bh' is forgot to release if no error is detected
Signed-off-by: Xiao Guangrong <xiaoguangrong@cn.fujitsu.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
The error code is returned instead of calling BUG_ON when
btrfs_del_item returns the error.
Signed-off-by: Tsutomu Itoh <t-itoh@jp.fujitsu.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
The error code is returned instead of calling BUG_ON when
btrfs_previous_item returns the error.
Signed-off-by: Tsutomu Itoh <t-itoh@jp.fujitsu.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
In a multi device setup, the chunk allocator currently always allocates
chunks on the devices in the same order. This leads to a very uneven
distribution, especially with RAID1 or RAID10 and an uneven number of
devices.
This patch always sorts the devices before allocating, and allocates the
stripes on the devices with the most available space, as long as there
is enough space available. In a low space situation, it first tries to
maximize striping.
The patch also simplifies the allocator and reduces the checks for
corner cases.
The simplification is done by several means. First, it defines the
properties of each RAID type upfront. These properties are used afterwards
instead of differentiating cases in several places.
Second, the old allocator defined a minimum stripe size for each block
group type, tried to find a large enough chunk, and if this fails just
allocates a smaller one. This is now done in one step. The largest possible
chunk (up to max_chunk_size) is searched and allocated.
Because we now have only one pass, the allocation of the map (struct
map_lookup) is moved down to the point where the number of stripes is
already known. This way we avoid reallocation of the map.
We still avoid allocating stripes that are not a multiple of STRIPE_SIZE.
currently alloc_start is disregarded if the requested
chunk size is bigger than (device size - alloc_start),
but smaller than the device size.
The only situation where I see this could have made sense
was when a chunk equal the size of the device has been
requested. This was possible as the allocator failed to
take alloc_start into account when calculating the request
chunk size. As this gets fixed by this patch, the workaround
is not necessary anymore.
This adds an initial implementation for scrub. It works quite
straightforward. The usermode issues an ioctl for each device in the
fs. For each device, it enumerates the allocated device chunks. For
each chunk, the contained extents are enumerated and the data checksums
fetched. The extents are read sequentially and the checksums verified.
If an error occurs (checksum or EIO), a good copy is searched for. If
one is found, the bad copy will be rewritten.
All enumerations happen from the commit roots. During a transaction
commit, the scrubs get paused and afterwards continue from the new
roots.
This commit is based on the series originally posted to linux-btrfs
with some improvements that resulted from comments from David Sterba,
Ilya Dryomov and Jan Schmidt.
Signed-off-by: Arne Jansen <sensille@gmx.net>
Remove static and global declarations and/or definitions. Reduces size
of btrfs.ko by ~3.4kB.
text data bss dec hex filename
402081 7464 200 409745 64091 btrfs.ko.base
398620 7144 200 405964 631cc btrfs.ko.remove-all
Signed-off-by: David Sterba <dsterba@suse.cz>
parameter tree root it's not used since commit
5f39d397df ("Btrfs: Create extent_buffer
interface for large blocksizes")
Signed-off-by: David Sterba <dsterba@suse.cz>
The Btrfs submit bio threads have a small number of
threads responsible for pushing down bios we've collected
for a large number of devices.
Since we do all the bios for a single device at once,
we want to make sure we unplug and send down the bios
for each device as we're done processing them.
The new plugging API removed the btrfs code to
unplug while processing bios, this adds it back with
the new API.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
* 'for-linus-unmerged' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/btrfs-unstable: (45 commits)
Btrfs: fix __btrfs_map_block on 32 bit machines
btrfs: fix possible deadlock by clearing __GFP_FS flag
btrfs: check link counter overflow in link(2)
btrfs: don't mess with i_nlink of unlocked inode in rename()
Btrfs: check return value of btrfs_alloc_path()
Btrfs: fix OOPS of empty filesystem after balance
Btrfs: fix memory leak of empty filesystem after balance
Btrfs: fix return value of setflags ioctl
Btrfs: fix uncheck memory allocations
btrfs: make inode ref log recovery faster
Btrfs: add btrfs_trim_fs() to handle FITRIM
Btrfs: adjust btrfs_discard_extent() return errors and trimmed bytes
Btrfs: make btrfs_map_block() return entire free extent for each device of RAID0/1/10/DUP
Btrfs: make update_reserved_bytes() public
btrfs: return EXDEV when linking from different subvolumes
Btrfs: Per file/directory controls for COW and compression
Btrfs: add datacow flag in inode flag
btrfs: use GFP_NOFS instead of GFP_KERNEL
Btrfs: check return value of read_tree_block()
btrfs: properly access unaligned checksum buffer
...
Fix up trivial conflicts in fs/btrfs/volumes.c due to plug removal in
the block layer.
Recent changes for discard support didn't compile,
this fixes them not to try and % 64 bit numbers.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
btrfs_map_block() will only return a single stripe length, but we want the
full extent be mapped to each disk when we are trimming the extent,
so we add length to btrfs_bio_stripe and fill it if we are mapping for REQ_DISCARD.
Signed-off-by: Li Dongyang <lidongyang@novell.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
Tracepoints can provide insight into why btrfs hits bugs and be greatly
helpful for debugging, e.g
dd-7822 [000] 2121.641088: btrfs_inode_request: root = 5(FS_TREE), gen = 4, ino = 256, blocks = 8, disk_i_size = 0, last_trans = 8, logged_trans = 0
dd-7822 [000] 2121.641100: btrfs_inode_new: root = 5(FS_TREE), gen = 8, ino = 257, blocks = 0, disk_i_size = 0, last_trans = 0, logged_trans = 0
btrfs-transacti-7804 [001] 2146.935420: btrfs_cow_block: root = 2(EXTENT_TREE), refs = 2, orig_buf = 29368320 (orig_level = 0), cow_buf = 29388800 (cow_level = 0)
btrfs-transacti-7804 [001] 2146.935473: btrfs_cow_block: root = 1(ROOT_TREE), refs = 2, orig_buf = 29364224 (orig_level = 0), cow_buf = 29392896 (cow_level = 0)
btrfs-transacti-7804 [001] 2146.972221: btrfs_transaction_commit: root = 1(ROOT_TREE), gen = 8
flush-btrfs-2-7821 [001] 2155.824210: btrfs_chunk_alloc: root = 3(CHUNK_TREE), offset = 1103101952, size = 1073741824, num_stripes = 1, sub_stripes = 0, type = DATA
flush-btrfs-2-7821 [001] 2155.824241: btrfs_cow_block: root = 2(EXTENT_TREE), refs = 2, orig_buf = 29388800 (orig_level = 0), cow_buf = 29396992 (cow_level = 0)
flush-btrfs-2-7821 [001] 2155.824255: btrfs_cow_block: root = 4(DEV_TREE), refs = 2, orig_buf = 29372416 (orig_level = 0), cow_buf = 29401088 (cow_level = 0)
flush-btrfs-2-7821 [000] 2155.824329: btrfs_cow_block: root = 3(CHUNK_TREE), refs = 2, orig_buf = 20971520 (orig_level = 0), cow_buf = 20975616 (cow_level = 0)
btrfs-endio-wri-7800 [001] 2155.898019: btrfs_cow_block: root = 5(FS_TREE), refs = 2, orig_buf = 29384704 (orig_level = 0), cow_buf = 29405184 (cow_level = 0)
btrfs-endio-wri-7800 [001] 2155.898043: btrfs_cow_block: root = 7(CSUM_TREE), refs = 2, orig_buf = 29376512 (orig_level = 0), cow_buf = 29409280 (cow_level = 0)
Here is what I have added:
1) ordere_extent:
btrfs_ordered_extent_add
btrfs_ordered_extent_remove
btrfs_ordered_extent_start
btrfs_ordered_extent_put
These provide critical information to understand how ordered_extents are
updated.
2) extent_map:
btrfs_get_extent
extent_map is used in both read and write cases, and it is useful for tracking
how btrfs specific IO is running.
3) writepage:
__extent_writepage
btrfs_writepage_end_io_hook
Pages are cirtical resourses and produce a lot of corner cases during writeback,
so it is valuable to know how page is written to disk.
4) inode:
btrfs_inode_new
btrfs_inode_request
btrfs_inode_evict
These can show where and when a inode is created, when a inode is evicted.
5) sync:
btrfs_sync_file
btrfs_sync_fs
These show sync arguments.
6) transaction:
btrfs_transaction_commit
In transaction based filesystem, it will be useful to know the generation and
who does commit.
7) back reference and cow:
btrfs_delayed_tree_ref
btrfs_delayed_data_ref
btrfs_delayed_ref_head
btrfs_cow_block
Btrfs natively supports back references, these tracepoints are helpful on
understanding btrfs's COW mechanism.
8) chunk:
btrfs_chunk_alloc
btrfs_chunk_free
Chunk is a link between physical offset and logical offset, and stands for space
infomation in btrfs, and these are helpful on tracing space things.
9) reserved_extent:
btrfs_reserved_extent_alloc
btrfs_reserved_extent_free
These can show how btrfs uses its space.
Signed-off-by: Liu Bo <liubo2009@cn.fujitsu.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
Code has been converted over to the new explicit on-stack plugging,
and delay users have been converted to use the new API for that.
So lets kill off the old plugging along with aops->sync_page().
Signed-off-by: Jens Axboe <jaxboe@fusionio.com>
* git://git.kernel.org/pub/scm/linux/kernel/git/mason/btrfs-unstable:
Btrfs: fix fiemap bugs with delalloc
Btrfs: set FMODE_EXCL in btrfs_device->mode
Btrfs: make btrfs_rm_device() fail gracefully
Btrfs: Avoid accessing unmapped kernel address
Btrfs: Fix BTRFS_IOC_SUBVOL_SETFLAGS ioctl
Btrfs: allow balance to explicitly allocate chunks as it relocates
Btrfs: put ENOSPC debugging under a mount option
This fixes a bug introduced in d4d77629, where the device added online
(and therefore initialized via btrfs_init_new_device()) would be left
with the positive bdev->bd_holders after unmount. Since d4d77629 we no
longer OR FMODE_EXCL explicitly on blkdev_put(), set it in
btrfs_device->mode.
Signed-off-by: Ilya Dryomov <idryomov@gmail.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
If shrinking done as part of the online device removal fails add that
device back to the allocation list and increment the rw_devices counter.
This fixes two bugs:
1) we could have a perfectly good device out of alloc list for no good
reason;
2) in the btrfs consisting of two devices, failure in btrfs_rm_device()
could lead to a situation where it was impossible to remove any of the
devices because of the "unable to remove the only writeable device"
error.
Signed-off-by: Ilya Dryomov <idryomov@gmail.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
Memory allocated by calling kstrdup() should be freed.
Signed-off-by: Ilya Dryomov <idryomov@gmail.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
* git://git.kernel.org/pub/scm/linux/kernel/git/mason/btrfs-unstable: (33 commits)
Btrfs: Fix page count calculation
btrfs: Drop __exit attribute on btrfs_exit_compress
btrfs: cleanup error handling in btrfs_unlink_inode()
Btrfs: exclude super blocks when we read in block groups
Btrfs: make sure search_bitmap finds something in remove_from_bitmap
btrfs: fix return value check of btrfs_start_transaction()
btrfs: checking NULL or not in some functions
Btrfs: avoid uninit variable warnings in ordered-data.c
Btrfs: catch errors from btrfs_sync_log
Btrfs: make shrink_delalloc a little friendlier
Btrfs: handle no memory properly in prepare_pages
Btrfs: do error checking in btrfs_del_csums
Btrfs: use the global block reserve if we cannot reserve space
Btrfs: do not release more reserved bytes to the global_block_rsv than we need
Btrfs: fix check_path_shared so it returns the right value
btrfs: check return value of btrfs_start_ioctl_transaction() properly
btrfs: fix return value check of btrfs_join_transaction()
fs/btrfs/inode.c: Add missing IS_ERR test
btrfs: fix missing break in switch phrase
btrfs: fix several uncheck memory allocations
...
The error check of btrfs_start_transaction() is added, and the mistake
of the error check on several places is corrected.
Signed-off-by: Tsutomu Itoh <t-itoh@jp.fujitsu.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/btrfs-unstable: (25 commits)
Btrfs: forced readonly mounts on errors
btrfs: Require CAP_SYS_ADMIN for filesystem rebalance
Btrfs: don't warn if we get ENOSPC in btrfs_block_rsv_check
btrfs: Fix memory leak in btrfs_read_fs_root_no_radix()
btrfs: check NULL or not
btrfs: Don't pass NULL ptr to func that may deref it.
btrfs: mount failure return value fix
btrfs: Mem leak in btrfs_get_acl()
btrfs: fix wrong free space information of btrfs
btrfs: make the chunk allocator utilize the devices better
btrfs: restructure find_free_dev_extent()
btrfs: fix wrong calculation of stripe size
btrfs: try to reclaim some space when chunk allocation fails
btrfs: fix wrong data space statistics
fs/btrfs: Fix build of ctree
Btrfs: fix off by one while setting block groups readonly
Btrfs: Add BTRFS_IOC_SUBVOL_GETFLAGS/SETFLAGS ioctls
Btrfs: Add readonly snapshots support
Btrfs: Refactor btrfs_ioctl_snap_create()
btrfs: Extract duplicate decompress code
...
Filesystem rebalancing (BTRFS_IOC_BALANCE) affects the entire
filesystem and may run uninterruptibly for a long time. This does not
seem to be something that an unprivileged user should be able to do.
Reported-by: Aron Xu <happyaron.xu@gmail.com>
Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
I happened to pass swap partition as root partition in cmdline,
then kernel panic and tell me about "Cannot open root device".
It is not correct, in fact it is a fs type mismatch instead of 'no device'.
Eventually I found btrfs mounting failed with -EIO, it should be -EINVAL.
The logic in init/do_mounts.c:
for (p = fs_names; *p; p += strlen(p)+1) {
int err = do_mount_root(name, p, flags, root_mount_data);
switch (err) {
case 0:
goto out;
case -EACCES:
flags |= MS_RDONLY;
goto retry;
case -EINVAL:
continue;
}
print "Cannot open root device"
panic
}
SO fs type after btrfs will have no chance to mount
Here fix the return value as -EINVAL
Signed-off-by: Dave Young <hidave.darkstar@gmail.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
When we store data by raid profile in btrfs with two or more different size
disks, df command shows there is some free space in the filesystem, but the
user can not write any data in fact, df command shows the wrong free space
information of btrfs.
# mkfs.btrfs -d raid1 /dev/sda9 /dev/sda10
# btrfs-show
Label: none uuid: a95cd49e-6e33-45b8-8741-a36153ce4b64
Total devices 2 FS bytes used 28.00KB
devid 1 size 5.01GB used 2.03GB path /dev/sda9
devid 2 size 10.00GB used 2.01GB path /dev/sda10
# btrfs device scan /dev/sda9 /dev/sda10
# mount /dev/sda9 /mnt
# dd if=/dev/zero of=tmpfile0 bs=4K count=9999999999
(fill the filesystem)
# sync
# df -TH
Filesystem Type Size Used Avail Use% Mounted on
/dev/sda9 btrfs 17G 8.6G 5.4G 62% /mnt
# btrfs-show
Label: none uuid: a95cd49e-6e33-45b8-8741-a36153ce4b64
Total devices 2 FS bytes used 3.99GB
devid 1 size 5.01GB used 5.01GB path /dev/sda9
devid 2 size 10.00GB used 4.99GB path /dev/sda10
It is because btrfs cannot allocate chunks when one of the pairing disks has
no space, the free space on the other disks can not be used for ever, and should
be subtracted from the total space, but btrfs doesn't subtract this space from
the total. It is strange to the user.
This patch fixes it by calcing the free space that can be used to allocate
chunks.
Implementation:
1. get all the devices free space, and align them by stripe length.
2. sort the devices by the free space.
3. check the free space of the devices,
3.1. if it is not zero, and then check the number of the devices that has
more free space than this device,
if the number of the devices is beyond the min stripe number, the free
space can be used, and add into total free space.
if the number of the devices is below the min stripe number, we can not
use the free space, the check ends.
3.2. if the free space is zero, check the next devices, goto 3.1
This implementation is just likely fake chunk allocation.
After appling this patch, df can show correct space information:
# df -TH
Filesystem Type Size Used Avail Use% Mounted on
/dev/sda9 btrfs 17G 8.6G 0 100% /mnt
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
With this patch, we change the handling method when we can not get enough free
extents with default size.
Implementation:
1. Look up the suitable free extent on each device and keep the search result.
If not find a suitable free extent, keep the max free extent
2. If we get enough suitable free extents with default size, chunk allocation
succeeds.
3. If we can not get enough free extents, but the number of the extent with
default size is >= min_stripes, we just change the mapping information
(reduce the number of stripes in the extent map), and chunk allocation
succeeds.
4. If the number of the extent with default size is < min_stripes, sort the
devices by its max free extent's size descending
5. Use the size of the max free extent on the (num_stripes - 1)th device as the
stripe size to allocate the device space
By this way, the chunk allocator can allocate chunks as large as possible when
the devices' space is not enough and make full use of the devices.
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
- make it return the start position and length of the max free space when it can
not find a suitable free space.
- make it more readability
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
There are two tiny problem:
- One is When we check the chunk size is greater than the max chunk size or not,
we should take mirrors into account, but the original code didn't.
- The other is btrfs shouldn't use the size of the residual free space as the
length of of a dup chunk when doing chunk allocation. It is because the device
space that a dup chunk needs is twice as large as the chunk size, if we use
the size of the residual free space as the length of a dup chunk, we can not
get enough free space. Fix it.
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Reviewed-by: Josef Bacik <josef@redhat.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
* 'for-2.6.38/core' of git://git.kernel.dk/linux-2.6-block: (43 commits)
block: ensure that completion error gets properly traced
blktrace: add missing probe argument to block_bio_complete
block cfq: don't use atomic_t for cfq_group
block cfq: don't use atomic_t for cfq_queue
block: trace event block fix unassigned field
block: add internal hd part table references
block: fix accounting bug on cross partition merges
kref: add kref_test_and_get
bio-integrity: mark kintegrityd_wq highpri and CPU intensive
block: make kblockd_workqueue smarter
Revert "sd: implement sd_check_events()"
block: Clean up exit_io_context() source code.
Fix compile warnings due to missing removal of a 'ret' variable
fs/block: type signature of major_to_index(int) to major_to_index(unsigned)
block: convert !IS_ERR(p) && p to !IS_ERR_NOR_NULL(p)
cfq-iosched: don't check cfqg in choose_service_tree()
fs/splice: Pull buf->ops->confirm() from splice_from_pipe actors
cdrom: export cdrom_check_events()
sd: implement sd_check_events()
sr: implement sr_check_events()
...
* git://git.kernel.org/pub/scm/linux/kernel/git/mason/btrfs-unstable:
Btrfs: prevent RAID level downgrades when space is low
Btrfs: account for missing devices in RAID allocation profiles
Btrfs: EIO when we fail to read tree roots
Btrfs: fix compiler warnings
Btrfs: Make async snapshot ioctl more generic
Btrfs: pwrite blocked when writing from the mmaped buffer of the same page
Btrfs: Fix a crash when mounting a subvolume
Btrfs: fix sync subvol/snapshot creation
Btrfs: Fix page leak in compressed writeback path
Btrfs: do not BUG if we fail to remove the orphan item for dead snapshots
Btrfs: fixup return code for btrfs_del_orphan_item
Btrfs: do not do fast caching if we are allocating blocks for tree_root
Btrfs: deal with space cache errors better
Btrfs: fix use after free in O_DIRECT
When we mount in RAID degraded mode without adding a new device to
replace the failed one, we can end up using the wrong RAID flags for
allocations.
This results in strange combinations of block groups (raid1 in a raid10
filesystem) and corruptions when we try to allocate blocks from single
spindle chunks on drives that are actually missing.
The first device has two small 4MB chunks in it that mkfs creates and
these are usually unused in a raid1 or raid10 setup. But, in -o degraded,
the allocator will fall back to these because the mask of desired raid groups
isn't correct.
The fix here is to count the missing devices as we build up the list
of devices in the system. This count is used when picking the
raid level to make sure we continue using the same levels that were
in place before we lost a drive.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
After recent blkdev_get() modifications, open_by_devnum() and
open_bdev_exclusive() are simple wrappers around blkdev_get().
Replace them with blkdev_get_by_dev() and blkdev_get_by_path().
blkdev_get_by_dev() is identical to open_by_devnum().
blkdev_get_by_path() is slightly different in that it doesn't
automatically add %FMODE_EXCL to @mode.
All users are converted. Most conversions are mechanical and don't
introduce any behavior difference. There are several exceptions.
* btrfs now sets FMODE_EXCL in btrfs_device->mode, so there's no
reason to OR it explicitly on blkdev_put().
* gfs2, nilfs2 and the generic mount_bdev() now set FMODE_EXCL in
sb->s_mode.
* With the above changes, sb->s_mode now always should contain
FMODE_EXCL. WARN_ON_ONCE() added to kill_block_super() to detect
errors.
The new blkdev_get_*() functions are with proper docbook comments.
While at it, add function description to blkdev_get() too.
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Philipp Reisner <philipp.reisner@linbit.com>
Cc: Neil Brown <neilb@suse.de>
Cc: Mike Snitzer <snitzer@redhat.com>
Cc: Joern Engel <joern@lazybastard.org>
Cc: Chris Mason <chris.mason@oracle.com>
Cc: Jan Kara <jack@suse.cz>
Cc: "Theodore Ts'o" <tytso@mit.edu>
Cc: KONISHI Ryusuke <konishi.ryusuke@lab.ntt.co.jp>
Cc: reiserfs-devel@vger.kernel.org
Cc: xfs-masters@oss.sgi.com
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Over time, block layer has accumulated a set of APIs dealing with bdev
open, close, claim and release.
* blkdev_get/put() are the primary open and close functions.
* bd_claim/release() deal with exclusive open.
* open/close_bdev_exclusive() are combination of open and claim and
the other way around, respectively.
* bd_link/unlink_disk_holder() to create and remove holder/slave
symlinks.
* open_by_devnum() wraps bdget() + blkdev_get().
The interface is a bit confusing and the decoupling of open and claim
makes it impossible to properly guarantee exclusive access as
in-kernel open + claim sequence can disturb the existing exclusive
open even before the block layer knows the current open if for another
exclusive access. Reorganize the interface such that,
* blkdev_get() is extended to include exclusive access management.
@holder argument is added and, if is @FMODE_EXCL specified, it will
gain exclusive access atomically w.r.t. other exclusive accesses.
* blkdev_put() is similarly extended. It now takes @mode argument and
if @FMODE_EXCL is set, it releases an exclusive access. Also, when
the last exclusive claim is released, the holder/slave symlinks are
removed automatically.
* bd_claim/release() and close_bdev_exclusive() are no longer
necessary and either made static or removed.
* bd_link_disk_holder() remains the same but bd_unlink_disk_holder()
is no longer necessary and removed.
* open_bdev_exclusive() becomes a simple wrapper around lookup_bdev()
and blkdev_get(). It also has an unexpected extra bdev_read_only()
test which probably should be moved into blkdev_get().
* open_by_devnum() is modified to take @holder argument and pass it to
blkdev_get().
Most of bdev open/close operations are unified into blkdev_get/put()
and most exclusive accesses are tested atomically at the open time (as
it should). This cleans up code and removes some, both valid and
invalid, but unnecessary all the same, corner cases.
open_bdev_exclusive() and open_by_devnum() can use further cleanup -
rename to blkdev_get_by_path() and blkdev_get_by_devt() and drop
special features. Well, let's leave them for another day.
Most conversions are straight-forward. drbd conversion is a bit more
involved as there was some reordering, but the logic should stay the
same.
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Neil Brown <neilb@suse.de>
Acked-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp>
Acked-by: Mike Snitzer <snitzer@redhat.com>
Acked-by: Philipp Reisner <philipp.reisner@linbit.com>
Cc: Peter Osterlund <petero2@telia.com>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Jan Kara <jack@suse.cz>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Andreas Dilger <adilger.kernel@dilger.ca>
Cc: "Theodore Ts'o" <tytso@mit.edu>
Cc: Mark Fasheh <mfasheh@suse.com>
Cc: Joel Becker <joel.becker@oracle.com>
Cc: Alex Elder <aelder@sgi.com>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: dm-devel@redhat.com
Cc: drbd-dev@lists.linbit.com
Cc: Leo Chen <leochen@broadcom.com>
Cc: Scott Branden <sbranden@broadcom.com>
Cc: Chris Mason <chris.mason@oracle.com>
Cc: Steven Whitehouse <swhiteho@redhat.com>
Cc: Dave Kleikamp <shaggy@linux.vnet.ibm.com>
Cc: Joern Engel <joern@logfs.org>
Cc: reiserfs-devel@vger.kernel.org
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
In the failure path of __btrfs_open_devices(), close_bdev_exclusive()
is called with @flags which doesn't match the one used during
open_bdev_exclusive(). Fix it.
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Chris Mason <chris.mason@oracle.com>
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/btrfs-unstable: (39 commits)
Btrfs: deal with errors from updating the tree log
Btrfs: allow subvol deletion by unprivileged user with -o user_subvol_rm_allowed
Btrfs: make SNAP_DESTROY async
Btrfs: add SNAP_CREATE_ASYNC ioctl
Btrfs: add START_SYNC, WAIT_SYNC ioctls
Btrfs: async transaction commit
Btrfs: fix deadlock in btrfs_commit_transaction
Btrfs: fix lockdep warning on clone ioctl
Btrfs: fix clone ioctl where range is adjacent to extent
Btrfs: fix delalloc checks in clone ioctl
Btrfs: drop unused variable in block_alloc_rsv
Btrfs: cleanup warnings from gcc 4.6 (nonbugs)
Btrfs: Fix variables set but not read (bugs found by gcc 4.6)
Btrfs: Use ERR_CAST helpers
Btrfs: use memdup_user helpers
Btrfs: fix raid code for removing missing drives
Btrfs: Switch the extent buffer rbtree into a radix tree
Btrfs: restructure try_release_extent_buffer()
Btrfs: use the flusher threads for delalloc throttling
Btrfs: tune the chunk allocation to 5% of the FS as metadata
...
Fix up trivial conflicts in fs/btrfs/super.c and fs/fs-writeback.c, and
remove use of INIT_RCU_HEAD in fs/btrfs/extent_io.c (that init macro was
useless and removed in commit 5e8067adfdba: "rcu head remove init")
These are all the cases where a variable is set, but not read which are
not bugs as far as I can see, but simply leftovers.
Still needs more review.
Found by gcc 4.6's new warnings
Signed-off-by: Andi Kleen <ak@linux.intel.com>
Cc: Chris Mason <chris.mason@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
When btrfs is mounted in degraded mode, it has some internal structures
to track the missing devices. This missing device is setup as readonly,
but the mapping code can get upset when we try to write to it.
This changes the mapping code to return -EIO instead of oops when we try
to write to the readonly device.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
Switch to the WRITE_FLUSH_FUA flag for log writes, remove the EOPNOTSUPP
detection for barriers and stop setting the barrier flag for discards.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Acked-by: Chris Mason <chris.mason@oracle.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Jens Axboe <jaxboe@fusionio.com>
Remove the current bio flags and reuse the request flags for the bio, too.
This allows to more easily trace the type of I/O from the filesystem
down to the block driver. There were two flags in the bio that were
missing in the requests: BIO_RW_UNPLUG and BIO_RW_AHEAD. Also I've
renamed two request flags that had a superflous RW in them.
Note that the flags are in bio.h despite having the REQ_ name - as
blkdev.h includes bio.h that is the only way to go for now.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jens Axboe <jaxboe@fusionio.com>
Besides simplify the code, this change makes sure all metadata
reservation for normal metadata operations are released after
committing transaction.
Changes since V1:
Add code that check if unlink and rmdir will free space.
Add ENOSPC handling for clone ioctl.
Signed-off-by: Yan Zheng <zheng.yan@oracle.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
* 'master' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/btrfs-unstable:
Btrfs: make sure the chunk allocator doesn't create zero length chunks
Btrfs: fix data enospc check overflow
A recent commit allowed for smaller chunks to be created, but didn't
make sure they were always bigger than a stripe. After some divides,
this led to zero length stripes.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
* git://git.kernel.org/pub/scm/linux/kernel/git/mason/btrfs-unstable:
Btrfs: add check for changed leaves in setup_leaf_for_split
Btrfs: create snapshot references in same commit as snapshot
Btrfs: fix small race with delalloc flushing waitqueue's
Btrfs: use add_to_page_cache_lru, use __page_cache_alloc
Btrfs: fix chunk allocate size calculation
Btrfs: kill max_extent mount option
Btrfs: fail to mount if we have problems reading the block groups
Btrfs: check btrfs_get_extent return for IS_ERR()
Btrfs: handle kmalloc() failure in inode lookup ioctl
Btrfs: dereferencing freed memory
Btrfs: Simplify num_stripes's calculation logical for __btrfs_alloc_chunk()
Btrfs: Add error handle for btrfs_search_slot() in btrfs_read_chunk_tree()
Btrfs: Remove unnecessary finish_wait() in wait_current_trans()
Btrfs: add NULL check for do_walk_down()
Btrfs: remove duplicate include in ioctl.c
Fix trivial conflict in fs/btrfs/compression.c due to slab.h include
cleanups.
If the amount of free space left in a device is less than what we think should
be the minimum size, just ignore the minimum size and use the amount we have. I
ran into this running tests on a 600mb volume, the chunk allocator wouldn't let
me allocate the last 52mb of the disk for data because we want to have at least
64mb chunks for data. This patch fixes that problem. Thanks,
Signed-off-by: Josef Bacik <josef@redhat.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
We can use this simple method to make source more readable.
Signed-off-by: Zhao Lei <zhaolei@cn.fujitsu.com>
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
We need to check return value of btrfs_search_slot() in
btrfs_read_chunk_tree() and do corresponding error handing.
Signed-off-by: Zhao Lei <zhaolei@cn.fujitsu.com>
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
percpu.h is included by sched.h and module.h and thus ends up being
included when building most .c files. percpu.h includes slab.h which
in turn includes gfp.h making everything defined by the two files
universally available and complicating inclusion dependencies.
percpu.h -> slab.h dependency is about to be removed. Prepare for
this change by updating users of gfp and slab facilities include those
headers directly instead of assuming availability. As this conversion
needs to touch large number of source files, the following script is
used as the basis of conversion.
http://userweb.kernel.org/~tj/misc/slabh-sweep.py
The script does the followings.
* Scan files for gfp and slab usages and update includes such that
only the necessary includes are there. ie. if only gfp is used,
gfp.h, if slab is used, slab.h.
* When the script inserts a new include, it looks at the include
blocks and try to put the new include such that its order conforms
to its surrounding. It's put in the include block which contains
core kernel includes, in the same order that the rest are ordered -
alphabetical, Christmas tree, rev-Xmas-tree or at the end if there
doesn't seem to be any matching order.
* If the script can't find a place to put a new include (mostly
because the file doesn't have fitting include block), it prints out
an error message indicating which .h file needs to be added to the
file.
The conversion was done in the following steps.
1. The initial automatic conversion of all .c files updated slightly
over 4000 files, deleting around 700 includes and adding ~480 gfp.h
and ~3000 slab.h inclusions. The script emitted errors for ~400
files.
2. Each error was manually checked. Some didn't need the inclusion,
some needed manual addition while adding it to implementation .h or
embedding .c file was more appropriate for others. This step added
inclusions to around 150 files.
3. The script was run again and the output was compared to the edits
from #2 to make sure no file was left behind.
4. Several build tests were done and a couple of problems were fixed.
e.g. lib/decompress_*.c used malloc/free() wrappers around slab
APIs requiring slab.h to be added manually.
5. The script was run on all .h files but without automatically
editing them as sprinkling gfp.h and slab.h inclusions around .h
files could easily lead to inclusion dependency hell. Most gfp.h
inclusion directives were ignored as stuff from gfp.h was usually
wildly available and often used in preprocessor macros. Each
slab.h inclusion directive was examined and added manually as
necessary.
6. percpu.h was updated not to include slab.h.
7. Build test were done on the following configurations and failures
were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my
distributed build env didn't work with gcov compiles) and a few
more options had to be turned off depending on archs to make things
build (like ipr on powerpc/64 which failed due to missing writeq).
* x86 and x86_64 UP and SMP allmodconfig and a custom test config.
* powerpc and powerpc64 SMP allmodconfig
* sparc and sparc64 SMP allmodconfig
* ia64 SMP allmodconfig
* s390 SMP allmodconfig
* alpha SMP allmodconfig
* um on x86_64 SMP allmodconfig
8. percpu.h modifications were reverted so that it could be applied as
a separate patch and serve as bisection point.
Given the fact that I had only a couple of failures from tests on step
6, I'm fairly confident about the coverage of this conversion patch.
If there is a breakage, it's likely to be something in one of the arch
headers which should be easily discoverable easily on most builds of
the specific arch.
Signed-off-by: Tejun Heo <tj@kernel.org>
Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
After callling submit_bio, the bio can be freed at any time. The
btrfs submission thread helper was checking the bio flags too late,
which might not give the correct answer.
When CONFIG_DEBUG_PAGE_ALLOC is turned on, it can lead to oopsen.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
We can use btrfs_stack_device_id() to get dev_item->devid
Signed-off-by: Xiao Guangrong <xiaoguangrong@cn.fujitsu.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
When we scan devices in a multi-device filesystem, we memorize the original
name. If the device gets a new name, later scans don't update the
in-kernel structures related to it, and we're not able to mount the
filesystem.
This patch updates device name during scaning.
Signed-off-by: TARUISI Hiroaki <taruishi.hiroak@jp.fujitsu.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
The submit_bio helper thread can decide to loop back around to
service more bios. This commit forces it to unplug first, which helps
reduce the latency seen by submitters.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
If you have a disk failure in RAID1 and then add a new disk to the
array, and then try to remove the missing volume, it will fail. The
reason is the sanity check only looks at the total number of rw devices,
which is just 2 because we have 2 good disks and 1 bad one. Instead
check the total number of devices in the array to make sure we can
actually remove the device. Tested this with a failed disk setup and
with this test we can now run
btrfs-vol -r missing /mount/point
and it works fine.
Signed-off-by: Josef Bacik <josef@redhat.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
Hit this problem while testing RAID1 failure stuff. open_bdev_exclusive
returns ERR_PTR(), not NULL. So change the return value properly. This
is important if you accidently specify a device that doesn't exist when
trying to add a new device to an array, you will panic the box
dereferencing bdev.
Signed-off-by: Josef Bacik <josef@redhat.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
If a RAID setup has chunks that span multiple disks, and one of those
disks has failed, btrfs_chunk_readonly will return 1 since one of the
disks in that chunk's stripes is dead and therefore not writeable. So
instead if we are in degraded mode, return 0 so we can go ahead and
allocate stuff. Without this patch all of the block groups in a RAID1
setup will end up read-only, which will mean we can't add new disks to
the array since we won't be able to make allocations.
Signed-off-by: Josef Bacik <josef@redhat.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
Stanse found 2 memory leaks in relocate_block_group and
__btrfs_map_block. cluster and multi are not freed/assigned on all
paths. Fix that.
Signed-off-by: Jiri Slaby <jslaby@suse.cz>
Cc: linux-btrfs@vger.kernel.org
Signed-off-by: Chris Mason <chris.mason@oracle.com>
This patch makes us a bit less zealous about making sure we have enough free
metadata space by pearing down the size of new metadata chunks to 256mb instead
of 1gb. Also, we used to try an allocate metadata chunks when allocating data,
but that sort of thing is done elsewhere now so we can just remove it. With my
-ENOSPC test I used to have 3gb reserved for metadata out of 75gb, now I have
1.7gb. Thanks,
Signed-off-by: Josef Bacik <josef@redhat.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
Currently, we can panic the box if the first block group we go to move is of a
type where there is no space left to move those extents. For example, if we
fill the disk up with data, and then we try to balance and we have no room to
move the data nor room to allocate new chunks, we will panic. Change this by
checking to see if we have room to move this chunk around, and if not, return
-ENOSPC and move on to the next chunk. This will make sure we remove block
groups that are moveable, like if we have alot of empty metadata block groups,
and then that way we make room to be able to balance our data chunks as well.
Tested this with an fs that would panic on btrfs-vol -b normally, but no longer
panics with this patch.
V1->V2:
-actually search for a free extent on the device to make sure we can allocate a
chunk if need be.
-fix btrfs_shrink_device to make sure we actually try to relocate all the
chunks, and then if we can't return -ENOSPC so if we are doing a btrfs-vol -r
we don't remove the device with data still on it.
-check to make sure the block group we are going to relocate isn't the last one
in that particular space
-fix a bug in btrfs_shrink_device where we would change the device's size and
not fix it if we fail to do our relocate
Signed-off-by: Josef Bacik <jbacik@redhat.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
There are two main users of the extent_map tree. The
first is regular file inodes, where it is evenly spread
between readers and writers.
The second is the chunk allocation tree, which maps blocks from
logical addresses to phyiscal ones, and it is 99.99% reads.
The mapping tree is a point of lock contention during heavy IO
workloads, so this commit switches things to a rw lock.
Signed-off-by: Chris Mason <chris.mason@oracle.com>