Граф коммитов

61 Коммитов

Автор SHA1 Сообщение Дата
Christoffer Dall 2df36a5dd6 arm/arm64: KVM: Fix BE accesses to GICv2 EISR and ELRSR regs
The EIRSR and ELRSR registers are 32-bit registers on GICv2, and we
store these as an array of two such registers on the vgic vcpu struct.
However, we access them as a single 64-bit value or as a bitmap pointer
in the generic vgic code, which breaks BE support.

Instead, store them as u64 values on the vgic structure and do the
word-swapping in the assembly code, which already handles the byte order
for BE systems.

Tested-by: Victor Kamensky <victor.kamensky@linaro.org>
Acked-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
2014-10-16 10:57:41 +02:00
Ard Biesheuvel c40f2f8ff8 arm/arm64: KVM: add 'writable' parameter to kvm_phys_addr_ioremap
Add support for read-only MMIO passthrough mappings by adding a
'writable' parameter to kvm_phys_addr_ioremap. For the moment,
mappings will be read-write even if 'writable' is false, but once
the definition of PAGE_S2_DEVICE gets changed, those mappings will
be created read-only.

Acked-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
2014-10-10 13:07:37 +02:00
Christoffer Dall 0fea6d7628 arm/arm64: KVM: Fix set_clear_sgi_pend_reg offset
The sgi values calculated in read_set_clear_sgi_pend_reg() and
write_set_clear_sgi_pend_reg() were horribly incorrectly multiplied by 4
with catastrophic results in that subfunctions ended up overwriting
memory not allocated for the expected purpose.

This showed up as bugs in kfree() and the kernel complaining a lot of
you turn on memory debugging.

This addresses: http://marc.info/?l=kvm&m=141164910007868&w=2

Reported-by: Shannon Zhao <zhaoshenglong@huawei.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
2014-09-25 19:38:25 +02:00
Marc Zyngier a98f26f183 arm/arm64: KVM: vgic: make number of irqs a configurable attribute
In order to make the number of interrupts configurable, use the new
fancy device management API to add KVM_DEV_ARM_VGIC_GRP_NR_IRQS as
a VGIC configurable attribute.

Userspace can now specify the exact size of the GIC (by increments
of 32 interrupts).

Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2014-09-18 18:48:58 -07:00
Marc Zyngier 4956f2bc1f arm/arm64: KVM: vgic: delay vgic allocation until init time
It is now quite easy to delay the allocation of the vgic tables
until we actually require it to be up and running (when the first
vcpu is kicking around, or someones tries to access the GIC registers).

This allow us to allocate memory for the exact number of CPUs we
have. As nobody configures the number of interrupts just yet,
use a fallback to VGIC_NR_IRQS_LEGACY.

Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2014-09-18 18:48:58 -07:00
Marc Zyngier 5fb66da640 arm/arm64: KVM: vgic: kill VGIC_NR_IRQS
Nuke VGIC_NR_IRQS entierly, now that the distributor instance
contains the number of IRQ allocated to this GIC.

Also add VGIC_NR_IRQS_LEGACY to preserve the current API.

Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2014-09-18 18:48:57 -07:00
Marc Zyngier c3c918361a arm/arm64: KVM: vgic: handle out-of-range MMIO accesses
Now that we can (almost) dynamically size the number of interrupts,
we're facing an interesting issue:

We have to evaluate at runtime whether or not an access hits a valid
register, based on the sizing of this particular instance of the
distributor. Furthermore, the GIC spec says that accessing a reserved
register is RAZ/WI.

For this, add a new field to our range structure, indicating the number
of bits a single interrupts uses. That allows us to find out whether or
not the access is in range.

Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2014-09-18 18:48:57 -07:00
Marc Zyngier fc675e355e arm/arm64: KVM: vgic: kill VGIC_MAX_CPUS
We now have the information about the number of CPU interfaces in
the distributor itself. Let's get rid of VGIC_MAX_CPUS, and just
rely on KVM_MAX_VCPUS where we don't have the choice. Yet.

Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2014-09-18 18:48:57 -07:00
Marc Zyngier fb65ab63b8 arm/arm64: KVM: vgic: Parametrize VGIC_NR_SHARED_IRQS
Having a dynamic number of supported interrupts means that we
cannot relly on VGIC_NR_SHARED_IRQS being fixed anymore.

Instead, make it take the distributor structure as a parameter,
so it can return the right value.

Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2014-09-18 18:48:56 -07:00
Marc Zyngier c1bfb577ad arm/arm64: KVM: vgic: switch to dynamic allocation
So far, all the VGIC data structures are statically defined by the
*maximum* number of vcpus and interrupts it supports. It means that
we always have to oversize it to cater for the worse case.

Start by changing the data structures to be dynamically sizeable,
and allocate them at runtime.

The sizes are still very static though.

Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2014-09-18 18:48:52 -07:00
Marc Zyngier 71afaba4a2 KVM: ARM: vgic: plug irq injection race
As it stands, nothing prevents userspace from injecting an interrupt
before the guest's GIC is actually initialized.

This goes unnoticed so far (as everything is pretty much statically
allocated), but ends up exploding in a spectacular way once we switch
to a more dynamic allocation (the GIC data structure isn't there yet).

The fix is to test for the "ready" flag in the VGIC distributor before
trying to inject the interrupt. Note that in order to avoid breaking
userspace, we have to ignore what is essentially an error.

Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Acked-by: Christoffer Dall <christoffer.dall@linaro.org>
2014-09-18 18:45:06 -07:00
Christoffer Dall 7e362919a5 arm/arm64: KVM: vgic: Clarify and correct vgic documentation
The VGIC virtual distributor implementation documentation was written a
very long time ago, before the true nature of the beast had been
partially absorbed into my bloodstream.  Clarify the docs.

Plus, it fixes an actual bug.  ICFRn, pfff.

Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
2014-09-18 18:44:32 -07:00
Christoffer Dall 9da48b5502 arm/arm64: KVM: vgic: Fix SGI writes to GICD_I{CS}PENDR0
Writes to GICD_ISPENDR0 and GICD_ICPENDR0 ignore all settings of the
pending state for SGIs.  Make sure the implementation handles this
correctly.

Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
2014-09-18 18:44:32 -07:00
Christoffer Dall faa1b46c3e arm/arm64: KVM: vgic: Improve handling of GICD_I{CS}PENDRn
Writes to GICD_ISPENDRn and GICD_ICPENDRn are currently not handled
correctly for level-triggered interrupts.  The spec states that for
level-triggered interrupts, writes to the GICD_ISPENDRn activate the
output of a flip-flop which is in turn or'ed with the actual input
interrupt signal.  Correspondingly, writes to GICD_ICPENDRn simply
deactivates the output of that flip-flop, but does not (of course) affect
the external input signal.  Reads from GICC_IAR will also deactivate the
flip-flop output.

This requires us to track the state of the level-input separately from
the state in the flip-flop.  We therefore introduce two new variables on
the distributor struct to track these two states.  Astute readers may
notice that this is introducing more state than required (because an OR
of the two states gives you the pending state), but the remaining vgic
code uses the pending bitmap for optimized operations to figure out, at
the end of the day, if an interrupt is pending or not on the distributor
side.  Refactoring the code to consider the two state variables all the
places where we currently access the precomputed pending value, did not
look pretty.

Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
2014-09-18 18:44:31 -07:00
Christoffer Dall cced50c928 arm/arm64: KVM: vgic: Clear queued flags on unqueue
If we unqueue a level-triggered interrupt completely, and the LR does
not stick around in the active state (and will therefore no longer
generate a maintenance interrupt), then we should clear the queued flag
so that the vgic can actually queue this level-triggered interrupt at a
later time and deal with its pending state then.

Note: This should actually be properly fixed to handle the active state
on the distributor.

Acked-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
2014-09-18 18:44:31 -07:00
Christoffer Dall dbf20f9d81 arm/arm64: KVM: Rename irq_active to irq_queued
We have a special bitmap on the distributor struct to keep track of when
level-triggered interrupts are queued on the list registers.  This was
named irq_active, which is confusing, because the active state of an
interrupt as per the GIC spec is a different thing, not specifically
related to edge-triggered/level-triggered configurations but rather
indicates an interrupt which has been ack'ed but not yet eoi'ed.

Rename the bitmap and the corresponding accessor functions to irq_queued
to clarify what this is actually used for.

Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
2014-09-18 18:44:30 -07:00
Christoffer Dall 227844f538 arm/arm64: KVM: Rename irq_state to irq_pending
The irq_state field on the distributor struct is ambiguous in its
meaning; the comment says it's the level of the input put, but that
doesn't make much sense for edge-triggered interrupts.  The code
actually uses this state variable to check if the interrupt is in the
pending state on the distributor so clarify the comment and rename the
actual variable and accessor methods.

Acked-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
2014-09-18 18:44:30 -07:00
Christoffer Dall a875dafcf9 Merge remote-tracking branch 'kvm/next' into queue
Conflicts:
	arch/arm64/include/asm/kvm_host.h
	virt/kvm/arm/vgic.c
2014-09-18 18:15:32 -07:00
Will Deacon c06a841bf3 KVM: ARM: vgic: register kvm_device_ops dynamically
Now that we have a dynamic means to register kvm_device_ops, use that
for the ARM VGIC, instead of relying on the static table.

Cc: Gleb Natapov <gleb@kernel.org>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Acked-by: Marc Zyngier <marc.zyngier@arm.com>
Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2014-09-17 13:10:09 +02:00
Will Deacon de56fb1923 KVM: vgic: declare probe function pointer as const
We extract the vgic probe function from the of_device_id data pointer,
which is const. Kill the sparse warning by ensuring that the local
function pointer is also marked as const.

Cc: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
2014-08-27 22:49:45 +02:00
Will Deacon 1fa451bcc6 KVM: vgic: return int instead of bool when checking I/O ranges
vgic_ioaddr_overlap claims to return a bool, but in reality it returns
an int. Shut sparse up by fixing the type signature.

Cc: Christoffer Dall <christoffer.dall@linaro.org>
Cc: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
2014-08-27 22:49:45 +02:00
Paolo Bonzini 5d57686605 KVM/ARM New features for 3.17 include:
- Fixes and code refactoring for stage2 kvm MMU unmap_range
  - Support unmapping IPAs on deleting memslots for arm and arm64
  - Support MMIO mappings in stage2 faults
  - KVM VGIC v2 emulation on GICv3 hardware
  - Big-Endian support for arm/arm64 (guest and host)
  - Debug Architecture support for arm64 (arm32 is on Christoffer's todo list)
  - Detect non page-aligned GICV regions and bail out (plugs guest-can-crash host bug)
 -----BEGIN PGP SIGNATURE-----
 Version: GnuPG v1
 
 iQEcBAABAgAGBQJT3oZTAAoJEEtpOizt6ddyKQIH/1Bj/cZYSkkSf3IJfQhHRbWN
 jS37IBsvcHwjHkRJxCNmQuKP/Ho5XEusluPGrVY25PAgBMl+ouPqAuKzUk+GEab6
 snjJjDFqw0zs0x0h3tg6UwfZdF+eyyIkmFGn8/IATD5P3PPd8kWBVtYnSnZmYK+R
 KJNVcp6RPDrt9kvUDY8Ln9fW99Jl+7CdgQAnc3QkHcXUlanLyrfq+fE1lSzyrbhZ
 ETzyMFAX4kCdc8tflgyyBS4A7+RvfQ6ZIQummxoAMFHIoSk90dtK7ovX68rd9U3e
 yL+mpe130+dTIFpUMbxCnIdE7C0eud3vcgXC6MuWtFjUrxQoaEgsVE+ffGC5tX0=
 =axkp
 -----END PGP SIGNATURE-----

Merge tag 'kvm-arm-for-3.17' of git://git.kernel.org/pub/scm/linux/kernel/git/kvmarm/kvmarm into kvm

KVM/ARM New features for 3.17 include:
 - Fixes and code refactoring for stage2 kvm MMU unmap_range
 - Support unmapping IPAs on deleting memslots for arm and arm64
 - Support MMIO mappings in stage2 faults
 - KVM VGIC v2 emulation on GICv3 hardware
 - Big-Endian support for arm/arm64 (guest and host)
 - Debug Architecture support for arm64 (arm32 is on Christoffer's todo list)

Conflicts:
	virt/kvm/arm/vgic.c [last minute cherry-pick from 3.17 to 3.16]
2014-08-05 09:47:45 +02:00
Marc Zyngier fb3ec67942 KVM: arm64: GICv3: mandate page-aligned GICV region
Just like GICv2 was fixed in 63afbe7a0a
(kvm: arm64: vgic: fix hyp panic with 64k pages on juno platform),
mandate the GICV region to be both aligned on a page boundary and
its size to be a multiple of page size.

This prevents a guest from being able to poke at regions where we
have no idea what is sitting there.

Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
2014-07-31 15:59:40 +02:00
Will Deacon 63afbe7a0a kvm: arm64: vgic: fix hyp panic with 64k pages on juno platform
If the physical address of GICV isn't page-aligned, then we end up
creating a stage-2 mapping of the page containing it, which causes us to
map neighbouring memory locations directly into the guest.

As an example, consider a platform with GICV at physical 0x2c02f000
running a 64k-page host kernel. If qemu maps this into the guest at
0x80010000, then guest physical addresses 0x80010000 - 0x8001efff will
map host physical region 0x2c020000 - 0x2c02efff. Accesses to these
physical regions may cause UNPREDICTABLE behaviour, for example, on the
Juno platform this will cause an SError exception to EL3, which brings
down the entire physical CPU resulting in RCU stalls / HYP panics / host
crashing / wasted weeks of debugging.

SBSA recommends that systems alias the 4k GICV across the bounding 64k
region, in which case GICV physical could be described as 0x2c020000 in
the above scenario.

This patch fixes the problem by failing the vgic probe if the physical
base address or the size of GICV aren't page-aligned. Note that this
generated a warning in dmesg about freeing enabled IRQs, so I had to
move the IRQ enabling later in the probe.

Cc: Christoffer Dall <christoffer.dall@linaro.org>
Cc: Marc Zyngier <marc.zyngier@arm.com>
Cc: Gleb Natapov <gleb@kernel.org>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Joel Schopp <joel.schopp@amd.com>
Cc: Don Dutile <ddutile@redhat.com>
Acked-by: Peter Maydell <peter.maydell@linaro.org>
Acked-by: Joel Schopp <joel.schopp@amd.com>
Acked-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
2014-07-30 14:35:42 +02:00
Victor Kamensky 9662fb4854 ARM64: KVM: fix vgic_bitmap_get_reg function for BE 64bit case
Fix vgic_bitmap_get_reg function to return 'right' word address of
'unsigned long' bitmap value in case of BE 64bit image.

Signed-off-by: Victor Kamensky <victor.kamensky@linaro.org>
Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2014-07-11 04:57:42 -07:00
Victor Kamensky 1c9f04717c ARM: KVM: vgic mmio should hold data as LE bytes array in BE case
According to recent clarifications of mmio.data array meaning -
the mmio.data array should hold bytes as they would appear in
memory. Vgic is little endian device. And in case of BE image
kernel side that emulates vgic, holds data in BE form. So we
need to byteswap cpu<->le32 vgic registers when we read/write them
from mmio.data[].

Change has no effect in LE case because cpu already runs in le32.

Signed-off-by: Victor Kamensky <victor.kamensky@linaro.org>
Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org>
Acked-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2014-07-11 04:57:39 -07:00
Marc Zyngier 67b2abfedb arm64: KVM: vgic: enable GICv2 emulation on top on GICv3 hardware
Add the last missing bits that enable GICv2 emulation on top of
GICv3 hardware.

Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2014-07-11 04:57:37 -07:00
Marc Zyngier b2fb1c0d37 KVM: ARM: vgic: add the GICv3 backend
Introduce the support code for emulating a GICv2 on top of GICv3
hardware.

Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2014-07-11 04:57:36 -07:00
Marc Zyngier 1a9b13056d arm64: KVM: split GICv2 world switch from hyp code
Move the GICv2 world switch code into its own file, and add the
necessary indirection to the arm64 switch code.

Also introduce a new type field to the vgic_params structure.

Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2014-07-11 04:57:36 -07:00
Marc Zyngier f982cf4e9c KVM: ARM: vgic: revisit implementation of irqchip_in_kernel
So far, irqchip_in_kernel() was implemented by testing the value of
vctrl_base, which worked fine with GICv2.

With GICv3, this field is useless, as we're using system registers
instead of a emmory mapped interface. To solve this, add a boolean
flag indicating if the we're using a vgic or not.

Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2014-07-11 04:57:35 -07:00
Marc Zyngier 8f186d522c KVM: ARM: vgic: split GICv2 backend from the main vgic code
Brutally hack the innocent vgic code, and move the GICv2 specific code
to its own file, using vgic_ops and vgic_params as a way to pass
information between the two blocks.

Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2014-07-11 04:57:34 -07:00
Marc Zyngier ca85f623e3 KVM: ARM: introduce vgic_params structure
Move all the data specific to a given GIC implementation into its own
little structure.

Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2014-07-11 04:57:34 -07:00
Marc Zyngier da8dafd177 KVM: ARM: vgic: introduce vgic_enable
Move the code dealing with enabling the VGIC on to vgic_ops.

Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2014-07-11 04:57:33 -07:00
Marc Zyngier beee38b9d0 KVM: ARM: vgic: abstract VMCR access
Instead of directly messing with with the GICH_VMCR bits for the CPU
interface save/restore code, add accessors that encode/decode the
entire set of registers exposed by VMCR.

Not the most efficient thing, but given that this code is only used
by the save/restore code, performance is far from being critical.

Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2014-07-11 04:57:33 -07:00
Marc Zyngier 909d9b5025 KVM: ARM: vgic: move underflow handling to vgic_ops
Move the code dealing with LR underflow handling to its own functions,
and make them accessible through vgic_ops.

Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2014-07-11 04:57:33 -07:00
Marc Zyngier 495dd859f3 KVM: ARM: vgic: abstract MISR decoding
Instead of directly dealing with the GICH_MISR bits, move the code to
its own function and use a couple of public flags to represent the
actual state.

Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2014-07-11 04:57:32 -07:00
Marc Zyngier 8d6a0313c1 KVM: ARM: vgic: abstract EISR bitmap access
Move the GICH_EISR access to its own function.

Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2014-07-11 04:57:32 -07:00
Marc Zyngier 69bb2c9fbc KVM: ARM: vgic: abstract access to the ELRSR bitmap
Move the GICH_ELRSR access to its own functions, and add them to
the vgic_ops structure.

Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2014-07-11 04:57:31 -07:00
Marc Zyngier 8d5c6b06a5 KVM: ARM: vgic: introduce vgic_ops and LR manipulation primitives
In order to split the various register manipulation from the main vgic
code, introduce a vgic_ops structure, and start by abstracting the
LR manipulation code with a couple of accessors.

Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2014-07-11 04:57:31 -07:00
Marc Zyngier eede821dbf KVM: arm/arm64: vgic: move GICv2 registers to their own structure
In order to make way for the GICv3 registers, move the v2-specific
registers to their own structure.

Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2014-07-11 04:57:31 -07:00
Haibin Wang 30c2117085 KVM: ARM: vgic: Fix the overlap check action about setting the GICD & GICC base address.
Currently below check in vgic_ioaddr_overlap will always succeed,
because the vgic dist base and vgic cpu base are still kept UNDEF
after initialization. The code as follows will be return forever.

	if (IS_VGIC_ADDR_UNDEF(dist) || IS_VGIC_ADDR_UNDEF(cpu))
                return 0;

So, before invoking the vgic_ioaddr_overlap, it needs to set the
corresponding base address firstly.

Signed-off-by: Haibin Wang <wanghaibin.wang@huawei.com>
Acked-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
2014-04-29 02:01:43 -07:00
Andre Przywara f2ae85b2ab KVM: arm/arm64: vgic: fix GICD_ICFGR register accesses
Since KVM internally represents the ICFGR registers by stuffing two
of them into one word, the offset for accessing the internal
representation and the one for the MMIO based access are different.
So keep the original offset around, but adjust the internal array
offset by one bit.

Reported-by: Haibin Wang <wanghaibin.wang@huawei.com>
Signed-off-by: Andre Przywara <andre.przywara@arm.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
2014-04-28 04:06:22 -07:00
Haibin Wang 91021a6c8f KVM: ARM: vgic: Fix sgi dispatch problem
When dispatch SGI(mode == 0), that is the vcpu of VM should send
sgi to the cpu which the target_cpus list.
So, there must add the "break" to branch of case 0.

Cc: <stable@vger.kernel.org> # 3.10+
Signed-off-by: Haibin Wang <wanghaibin.wang@huawei.com>
Acked-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
2014-04-28 03:30:46 -07:00
Ming Lei 553f809e23 arm, kvm: fix double lock on cpu_add_remove_lock
Commit 8146875de7 (arm, kvm: Fix CPU hotplug callback registration)
holds the lock before calling the two functions:

	kvm_vgic_hyp_init()
	kvm_timer_hyp_init()

and both the two functions are calling register_cpu_notifier()
to register cpu notifier, so cause double lock on cpu_add_remove_lock.

Considered that both two functions are only called inside
kvm_arch_init() with holding cpu_add_remove_lock, so simply use
__register_cpu_notifier() to fix the problem.

Fixes: 8146875de7 (arm, kvm: Fix CPU hotplug callback registration)
Signed-off-by: Ming Lei <tom.leiming@gmail.com>
Reviewed-by: Srivatsa S. Bhat <srivatsa.bhat@linux.vnet.ibm.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2014-04-08 13:15:54 +02:00
Christoffer Dall 2a2f3e269c arm64: KVM: Add VGIC device control for arm64
This fixes the build breakage introduced by
c07a0191ef and adds support for the device
control API and save/restore of the VGIC state for ARMv8.

The defines were simply missing from the arm64 header files and
uaccess.h must be implicitly imported from somewhere else on arm.

Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2014-02-14 11:09:49 +01:00
Christoffer Dall fa20f5aea5 KVM: arm-vgic: Support CPU interface reg access
Implement support for the CPU interface register access driven by MMIO
address offsets from the CPU interface base address.  Useful for user
space to support save/restore of the VGIC state.

This commit adds support only for the same logic as the current VGIC
support, and no more.  For example, the active priority registers are
handled as RAZ/WI, just like setting priorities on the emulated
distributor.

Acked-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
2013-12-21 10:02:10 -08:00
Christoffer Dall 90a5355ee7 KVM: arm-vgic: Add GICD_SPENDSGIR and GICD_CPENDSGIR handlers
Handle MMIO accesses to the two registers which should support both the
case where the VMs want to read/write either of these registers and the
case where user space reads/writes these registers to do save/restore of
the VGIC state.

Note that the added complexity compared to simple set/clear enable
registers stems from the bookkeping of source cpu ids.  It may be
possible to change the underlying data structure to simplify the
complexity, but since this is not in the critical path at all, this will
do.

Also note that reading this register from a live guest will not be
accurate compared to on hardware, because some state may be living on
the CPU LRs and the only way to give a consistent read would be to force
stop all the VCPUs and request them to unqueu the LR state onto the
distributor.  Until we have an actual user of live reading this
register, we can live with the difference.

Acked-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
2013-12-21 10:02:04 -08:00
Christoffer Dall cbd333a4bf KVM: arm-vgic: Support unqueueing of LRs to the dist
To properly access the VGIC state from user space it is very unpractical
to have to loop through all the LRs in all register access functions.
Instead, support moving all pending state from LRs to the distributor,
but leave active state LRs alone.

Note that to accurately present the active and pending state to VCPUs
reading these distributor registers from a live VM, we would have to
stop all other VPUs than the calling VCPU and ask each CPU to unqueue
their LR state onto the distributor and add fields to track active state
on the distributor side as well.  We don't have any users of such
functionality yet and there are other inaccuracies of the GIC emulation,
so don't provide accurate synchronized access to this state just yet.
However, when the time comes, having this function should help.

Acked-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
2013-12-21 10:01:44 -08:00
Christoffer Dall c07a0191ef KVM: arm-vgic: Add vgic reg access from dev attr
Add infrastructure to handle distributor and cpu interface register
accesses through the KVM_{GET/SET}_DEVICE_ATTR interface by adding the
KVM_DEV_ARM_VGIC_GRP_DIST_REGS and KVM_DEV_ARM_VGIC_GRP_CPU_REGS groups
and defining the semantics of the attr field to be the MMIO offset as
specified in the GICv2 specs.

Missing register accesses or other changes in individual register access
functions to support save/restore of the VGIC state is added in
subsequent patches.

Acked-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
2013-12-21 10:01:39 -08:00
Christoffer Dall 1006e8cb22 KVM: arm-vgic: Make vgic mmio functions more generic
Rename the vgic_ranges array to vgic_dist_ranges to be more specific and
to prepare for handling CPU interface register access as well (for
save/restore of VGIC state).

Pass offset from distributor or interface MMIO base to
find_matching_range function instead of the physical address of the
access in the VM memory map.  This allows other callers unaware of the
VM specifics, but with generic VGIC knowledge to reuse the function.

Acked-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
2013-12-21 10:01:31 -08:00