Граф коммитов

621 Коммитов

Автор SHA1 Сообщение Дата
Vasily Gorbik c6756b7d0c s390/dasd,zfcp: fix gcc 8 stringop-truncation warnings
ccw "busid" should always be NUL-terminated, as evident from e.g.
get_ccwdev_by_busid doing "return (strcmp(bus_id, dev_name(dev)) == 0)".

Replace all strncpy initializing busid with strlcpy. This fixes the
following gcc 8 warnings:

drivers/s390/scsi/zfcp_aux.c:104:2: warning: 'strncpy' specified bound 20
equals destination size [-Wstringop-truncation]
  strncpy(busid, token, ZFCP_BUS_ID_SIZE);

drivers/s390/block/dasd_eer.c:316:2: warning: 'strncpy' specified bound 10
equals destination size [-Wstringop-truncation]
  strncpy(header.busid, dev_name(&device->cdev->dev), DASD_EER_BUSID_SIZE);

drivers/s390/block/dasd_eer.c:359:2: warning: 'strncpy' specified bound 10
equals destination size [-Wstringop-truncation]
  strncpy(header.busid, dev_name(&device->cdev->dev), DASD_EER_BUSID_SIZE);

drivers/s390/block/dasd_devmap.c:429:3: warning: 'strncpy' specified bound
20 equals destination size [-Wstringop-truncation]
   strncpy(new->bus_id, bus_id, DASD_BUS_ID_SIZE);

Acked-by: Stefan Haberland <sth@linux.ibm.com>
Acked-by: Steffen Maier <maier@linux.ibm.com>
Reviewed-by: Heiko Carstens <heiko.carstens@de.ibm.com>
Signed-off-by: Vasily Gorbik <gor@linux.ibm.com>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
2018-07-02 11:24:52 +02:00
Linus Torvalds 5f85942c2e SCSI misc on 20180610
This is mostly updates to the usual drivers: ufs, qedf, mpt3sas, lpfc,
 xfcp, hisi_sas, cxlflash, qla2xxx.  In the absence of Nic, we're also
 taking target updates which are mostly minor except for the tcmu
 refactor. The only real core change to worry about is the removal of
 high page bouncing (in sas, storvsc and iscsi).  This has been well
 tested and no problems have shown up so far.
 
 Signed-off-by: James E.J. Bottomley <jejb@linux.vnet.ibm.com>
 -----BEGIN PGP SIGNATURE-----
 
 iJwEABMIAEQWIQTnYEDbdso9F2cI+arnQslM7pishQUCWx1pbCYcamFtZXMuYm90
 dG9tbGV5QGhhbnNlbnBhcnRuZXJzaGlwLmNvbQAKCRDnQslM7pishUucAP42pccS
 ziKyiOizuxv9fZ4Q+nXd1A9zhI5tqqpkHjcQegEA40qiZSi3EKGKR8W0UpX7Ntmo
 tqrZJGojx9lnrAM2RbQ=
 =NMXg
 -----END PGP SIGNATURE-----

Merge tag 'scsi-misc' of git://git.kernel.org/pub/scm/linux/kernel/git/jejb/scsi

Pull SCSI updates from James Bottomley:
 "This is mostly updates to the usual drivers: ufs, qedf, mpt3sas, lpfc,
  xfcp, hisi_sas, cxlflash, qla2xxx.

  In the absence of Nic, we're also taking target updates which are
  mostly minor except for the tcmu refactor.

  The only real core change to worry about is the removal of high page
  bouncing (in sas, storvsc and iscsi). This has been well tested and no
  problems have shown up so far"

* tag 'scsi-misc' of git://git.kernel.org/pub/scm/linux/kernel/git/jejb/scsi: (268 commits)
  scsi: lpfc: update driver version to 12.0.0.4
  scsi: lpfc: Fix port initialization failure.
  scsi: lpfc: Fix 16gb hbas failing cq create.
  scsi: lpfc: Fix crash in blk_mq layer when executing modprobe -r lpfc
  scsi: lpfc: correct oversubscription of nvme io requests for an adapter
  scsi: lpfc: Fix MDS diagnostics failure (Rx < Tx)
  scsi: hisi_sas: Mark PHY as in reset for nexus reset
  scsi: hisi_sas: Fix return value when get_free_slot() failed
  scsi: hisi_sas: Terminate STP reject quickly for v2 hw
  scsi: hisi_sas: Add v2 hw force PHY function for internal ATA command
  scsi: hisi_sas: Include TMF elements in struct hisi_sas_slot
  scsi: hisi_sas: Try wait commands before before controller reset
  scsi: hisi_sas: Init disks after controller reset
  scsi: hisi_sas: Create a scsi_host_template per HW module
  scsi: hisi_sas: Reset disks when discovered
  scsi: hisi_sas: Add LED feature for v3 hw
  scsi: hisi_sas: Change common allocation mode of device id
  scsi: hisi_sas: change slot index allocation mode
  scsi: hisi_sas: Introduce hisi_sas_phy_set_linkrate()
  scsi: hisi_sas: fix a typo in hisi_sas_task_prep()
  ...
2018-06-10 13:01:12 -07:00
Jens Remus 16dad27988 scsi: zfcp: enhance comments on fc_link_speed and supported_speed
The comment on fsf_qtcb_bottom_port.supported_speed did read as if the field
can only assume one of two possible values (i.e. 0x1 for 1 GBit/s or 0x2 for
2 GBit/s). This is not true for two reasons: first it is a flag field and
can thus assume any combination and second there are meanwhile more speeds.

Clarify comment on fsf_qtcb_bottom_port.supported_speed and add a comment to
fsf_qtcb_bottom_config.fc_link_speed.

Signed-off-by: Jens Remus <jremus@linux.ibm.com>
Reviewed-by: Steffen Maier <maier@linux.ibm.com>
Reviewed-by: Fedor Loshakov <loshakov@linux.ibm.com>
Acked-by: Benjamin Block <bblock@linux.ibm.com>
Acked-by: Hendrik Brueckner <brueckner@linux.ibm.com>
Signed-off-by: Steffen Maier <maier@linux.ibm.com>
Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com>
2018-05-18 11:28:17 -04:00
Jens Remus 6e2e490080 scsi: zfcp: add port speed capabilities
Add port speed capabilities as defined in FC-LS RPSC ELS that have a
counterpart FC_PORTSPEED_* defined in scsi/scsi_transport_fc.h.

Suggested-by: Steffen Maier <maier@linux.ibm.com>
Signed-off-by: Jens Remus <jremus@linux.ibm.com>
Reviewed-by: Steffen Maier <maier@linux.ibm.com>
Reviewed-by: Fedor Loshakov <loshakov@linux.ibm.com>
Acked-by: Hendrik Brueckner <brueckner@linux.ibm.com>
Acked-by: Benjamin Block <bblock@linux.ibm.com>
Signed-off-by: Steffen Maier <maier@linux.ibm.com>
Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com>
2018-05-18 11:28:16 -04:00
Jens Remus 9e156c54ac scsi: zfcp: assert that the ERP lock is held when tracing a recovery trigger
Otherwise iterating with list_for_each() over the adapter->erp_ready_head
and adapter->erp_running_head lists can lead to an infinite loop. See commit
"zfcp: fix infinite iteration on erp_ready_head list".

The run-time check is only performed for debug kernels which have the kernel
lock validator enabled. Following is an example of the warning that is
reported, if the ERP lock is not held when calling zfcp_dbf_rec_trig():

WARNING: CPU: 0 PID: 604 at drivers/s390/scsi/zfcp_dbf.c:288 zfcp_dbf_rec_trig+0x172/0x188
Modules linked in: ...
CPU: 0 PID: 604 Comm: kworker/u128:3 Not tainted 4.16.0-... #1
Hardware name: IBM 2964 N96 702 (z/VM 6.4.0)
Workqueue: zfcp_q_0.0.1906 zfcp_scsi_rport_work
Krnl PSW : 00000000330fdbf9 00000000367e9728 (zfcp_dbf_rec_trig+0x172/0x188)
           R:0 T:1 IO:1 EX:1 Key:0 M:1 W:0 P:0 AS:3 CC:3 PM:0 RI:0 EA:3
Krnl GPRS: 00000000c57a5d99 3288200000000000 0000000000000000 000000006cc82740
           00000000009d09d6 0000000000000000 00000000000000ff 0000000000000000
           0000000000000000 0000000000e1b5fe 000000006de01d38 0000000076130958
           000000006cc82548 000000006de01a98 00000000009d09d6 000000006a6d3c80
Krnl Code: 00000000009d0ad2: eb7ff0b80004        lmg        %r7,%r15,184(%r15)
           00000000009d0ad8: c0f4000d7dd0        brcl       15,b80678
          #00000000009d0ade: a7f40001            brc        15,9d0ae0
          >00000000009d0ae2: a7f4ff7d            brc        15,9d09dc
           00000000009d0ae6: e340f0f00004        lg         %r4,240(%r15)
           00000000009d0aec: eb7ff0b80004        lmg        %r7,%r15,184(%r15)
           00000000009d0af2: 07f4                bcr        15,%r4
           00000000009d0af4: 0707                bcr        0,%r7
Call Trace:
([<00000000009d09d6>] zfcp_dbf_rec_trig+0x66/0x188)
 [<00000000009dd740>] zfcp_scsi_rport_work+0x98/0x190
 [<0000000000169b34>] process_one_work+0x3d4/0x6f8
 [<000000000016a08a>] worker_thread+0x232/0x418
 [<000000000017219e>] kthread+0x166/0x178
 [<0000000000b815ea>] kernel_thread_starter+0x6/0xc
 [<0000000000b815e4>] kernel_thread_starter+0x0/0xc
2 locks held by kworker/u128:3/604:
 #0:  ((wq_completion)name){+.+.}, at: [<0000000082af1024>] process_one_work+0x1dc/0x6f8
 #1:  ((work_completion)(&port->rport_work)){+.+.}, at: [<0000000082af1024>] process_one_work+0x1dc/0x6f8
Last Breaking-Event-Address:
 [<00000000009d0ade>] zfcp_dbf_rec_trig+0x16e/0x188
---[ end trace b2f4020572e2c124 ]---

Suggested-by: Steffen Maier <maier@linux.ibm.com>
Signed-off-by: Jens Remus <jremus@linux.ibm.com>
Reviewed-by: Benjamin Block <bblock@linux.ibm.com>
Reviewed-by: Steffen Maier <maier@linux.ibm.com>
Signed-off-by: Steffen Maier <maier@linux.ibm.com>
Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com>
2018-05-18 11:28:16 -04:00
Steffen Maier 6919298c98 scsi: zfcp: cleanup indentation for posting FC events
I just happened to see the function header indentation of
zfcp_fc_enqueue_event() and I picked some more from checkpatch:

$ checkpatch.pl --strict -f drivers/s390/scsi/zfcp_fc.c
...
CHECK: Alignment should match open parenthesis
 #113: FILE: drivers/s390/scsi/zfcp_fc.c:113:
+		fc_host_post_event(adapter->scsi_host, fc_get_event_number(),
+				event->code, event->data);

CHECK: Blank lines aren't necessary before a close brace '}'
 #118: FILE: drivers/s390/scsi/zfcp_fc.c:118:
+
+}
...

The change complements v2.6.36 commit 2d1e547f75 ("[SCSI] zfcp: Post
events through FC transport class").

Signed-off-by: Steffen Maier <maier@linux.ibm.com>
Reviewed-by: Benjamin Block <bblock@linux.ibm.com>
Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com>
2018-05-18 11:28:15 -04:00
Steffen Maier 35e9111a1e scsi: zfcp: support SCSI_ADAPTER_RESET via scsi_host sysfs attribute host_reset
Make use of feature introduced with v3.2 commit 2944369144 ("[SCSI] scsi:
Added support for adapter and firmware reset").  The common code interface
was introduced for commit 95d31262b3 ("[SCSI] qla4xxx: Added support for
adapter and firmware reset").

$ echo adapter > /sys/class/scsi_host/host<N>/host_reset

Example trace record formatted with zfcpdbf from s390-tools:

Timestamp      : ...
Area           : REC
Subarea        : 00
Level          : 1
Exception      : -
CPU ID         : ..
Caller         : 0x...
Record ID      : 1                      ZFCP_DBF_REC_TRIG
Tag            : scshr_y                SCSI sysfs host_reset yes
LUN            : 0xffffffffffffffff                     none (invalid)
WWPN           : 0x0000000000000000                     none (invalid)
D_ID           : 0x00000000                             none (invalid)
Adapter status : 0x4500050b
Port status    : 0x00000000                             none (invalid)
LUN status     : 0x00000000                             none (invalid)
Ready count    : 0x00000001
Running count  : 0x00000000
ERP want       : 0x04                   ZFCP_ERP_ACTION_REOPEN_ADAPTER
ERP need       : 0x04                   ZFCP_ERP_ACTION_REOPEN_ADAPTER

This is the common code equivalent to the zfcp-specific
&dev_attr_adapter_failed.attr in zfcp_sysfs_adapter_attrs.attrs[]:

$ echo 0 > /sys/bus/ccw/drivers/zfcp/<devbusid>/failed

The unsupported case returns EOPNOTSUPP:

$ echo firmware > /sys/class/scsi_host/host<N>/host_reset
-bash: echo: write error: Operation not supported

Example trace record formatted with zfcpdbf from s390-tools:

Timestamp      : ...
Area           : SCSI
Subarea        : 00
Level          : 1
Exception      : -
CPU ID         : ..
Caller         : 0x...
Record ID      : 1
Tag            : scshr_n                        SCSI sysfs host_reset no
Request ID     : 0x0000000000000000                     none (invalid)
SCSI ID        : 0xffffffff                             none (invalid)
SCSI LUN       : 0xffffffff                             none (invalid)
SCSI LUN high  : 0xffffffff                             none (invalid)
SCSI result    : 0xffffffa1                     -EOPNOTSUPP==-95
SCSI retries   : 0xff                                   none (invalid)
SCSI allowed   : 0xff                                   none (invalid)
SCSI scribble  : 0xffffffffffffffff                     none (invalid)
SCSI opcode    : ffffffff ffffffff ffffffff ffffffff    none (invalid)
FCP rsp inf cod: 0xff                                   none (invalid)
FCP rsp IU     : 00000000 00000000 00000000 00000000    none (invalid)
                 00000000 00000000

For any other invalid value, common code returns EINVAL without invoking
our callback:

$ echo foo > /sys/class/scsi_host/host<N>/host_reset
-bash: echo: write error: Invalid argument

Signed-off-by: Steffen Maier <maier@linux.ibm.com>
Reviewed-by: Benjamin Block <bblock@linux.ibm.com>
Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com>
2018-05-18 11:28:15 -04:00
Steffen Maier b24bf22d72 scsi: zfcp: explicitly support initiator in scsi_host_template
While the default did already correctly print "Initiator" let's make it
explicit and convert zfcp to the feature.

$ cat /sys/class/scsi_host/host0/supported_mode
Initiator

$ cat /sys/class/scsi_host/host0/active_mode
Initiator

The default worked, because not setting the field has it initialized to zero
== MODE_UNKNOWN. scsi_host_alloc() sets shost->active_mode = MODE_INITIATOR
in this case. The sysfs accessor function show_shost_supported_mode()
assumes MODE_INITIATOR in this case.  This default behavior was introduced
with v2.6.24 commit 7a39ac3f25 ("[SCSI] make supported_mode default to
initiator.").  The feature flag was introduced with v2.6.24 commit
5dc2b89e12 ("[SCSI] add supported_mode and active_mode attributes to the
host").  So there was no release where zfcp would have shown "unknown".

Signed-off-by: Steffen Maier <maier@linux.ibm.com>
Reviewed-by: Benjamin Block <bblock@linux.ibm.com>
Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com>
2018-05-18 11:28:14 -04:00
Steffen Maier 2fdd45fd20 scsi: zfcp: remove unused return values of ERP trigger functions
Since v2.6.27 commit 553448f6c4 ("[SCSI] zfcp: Message cleanup"), none of
the callers has been interested any more.  Values were not returned
consistently in all ERP trigger functions.

Signed-off-by: Steffen Maier <maier@linux.ibm.com>
Reviewed-by: Benjamin Block <bblock@linux.ibm.com>
Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com>
2018-05-18 11:28:14 -04:00
Steffen Maier 013af857d8 scsi: zfcp: zfcp_erp_action_exists() does only check for running
Simplify its signature to return boolean and rename it to
zfcp_erp_action_is_running() to indicate its actual unmodified semantics.
It has always been used like this since v2.6.0 history commit ea127f975424
("[PATCH] s390 (7/7): zfcp host adapter.").

Signed-off-by: Steffen Maier <maier@linux.ibm.com>
Reviewed-by: Benjamin Block <bblock@linux.ibm.com>
Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com>
2018-05-18 11:28:13 -04:00
Steffen Maier cd4a186aaa scsi: zfcp: remove unused ERP enum values
All constant defines were introduced with v2.6.0 history commit ea127f975424
("[PATCH] s390 (7/7): zfcp host adapter.") and refactored into enums with
commit 287ac01acf ("[SCSI] zfcp: Cleanup code in zfcp_erp.c").

ZFCP_STATUS_ERP_DISMISSING and ZFCP_ERP_STEP_FSF_XCONFIG were never used.

v2.6.27 commit 287ac01acf ("[SCSI] zfcp: Cleanup code in zfcp_erp.c")
removed the use of ZFCP_ERP_ACTION_READY on refactoring
zfcp_erp_action_exists() to now only check adapter->erp_running_head but no
longer adapter->erp_ready_head. The same commit could have changed the
function return type from int to "enum zfcp_erp_act_state".
ZFCP_ERP_ACTION_READY was never used outside of zfcp_erp_action_exists().

Signed-off-by: Steffen Maier <maier@linux.ibm.com>
Reviewed-by: Benjamin Block <bblock@linux.ibm.com>
Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com>
2018-05-18 11:28:12 -04:00
Steffen Maier d39eda54b7 scsi: zfcp: consistently use function name space prefix
I've been mixing up
zfcp_task_mgmt_function() [SCSI] and
zfcp_fsf_fcp_task_mgmt()  [FSF]
so often lately that I wanted to fix this.

SCSI changes complement v2.6.27 commit f76af7d7e3 ("[SCSI] zfcp: Cleanup
of code in zfcp_scsi.c").

While at it, also fixup the other inconsistencies elsewhere.

ERP changes complement v2.6.27 commit 287ac01acf ("[SCSI] zfcp: Cleanup
code in zfcp_erp.c") which introduced status_change_set().

FC changes complement v2.6.32 commit 6f53a2d2ec ("[SCSI] zfcp: Apply
common naming conventions to zfcp_fc").  by renaming a leftover introduced
with v2.6.27 commit cc8c282963 ("[SCSI] zfcp: Automatically attach remote
ports").

FSF changes fixup v2.6.32 commit a4623c467f ("[SCSI] zfcp: Improve request
allocation through mempools").  which replaced zfcp_fsf_alloc_qtcb()
introduced with v2.6.27 commit c41f8cbddd ("[SCSI] zfcp: zfcp_fsf
cleanup.").

SCSI fc_host statistics were introduced with v2.6.16 commit f6cd94b126
("[SCSI] zfcp: transport class adaptations").

SCSI fc_host port_state was introduced with v2.6.27 commit 85a82392fe
("[SCSI] zfcp: Add port_state attribute to sysfs").

SCSI rport setter for dev_loss_tmo was introduced with v2.6.18 commit
338151e066 ("[SCSI] zfcp: make use of fc_remote_port_delete when target
port is unavailable").

Signed-off-by: Steffen Maier <maier@linux.ibm.com>
Reviewed-by: Benjamin Block <bblock@linux.ibm.com>
Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com>
2018-05-18 11:28:12 -04:00
Steffen Maier 5c750d58e9 scsi: zfcp: workqueue: set description for port work items with their WWPN as context
As a prerequisite, complement commit 3d1cb2059d ("workqueue: include
workqueue info when printing debug dump of a worker task") to be usable with
kernel modules by exporting the symbol set_worker_desc().  Current built-in
user was introduced with commit ef3b101925 ("writeback: set worker desc to
identify writeback workers in task dumps").

Can help distinguishing work items which do not have adapter scope.
Description is printed out with task dump for debugging on WARN, BUG, panic,
or magic-sysrq [show-task-states(t)].

Example:
$ echo 0 >| /sys/bus/ccw/drivers/zfcp/0.0.1880/0x50050763031bd327/failed &
$ echo 't' >| /proc/sysrq-trigger
$ dmesg
sysrq: SysRq : Show State
  task                        PC stack   pid father
...
zfcp_q_0.0.1880 S14640  2165      2 0x02000000
Call Trace:
([<00000000009df464>] __schedule+0xbf4/0xc78)
 [<00000000009df57c>] schedule+0x94/0xc0
 [<0000000000168654>] rescuer_thread+0x33c/0x3a0
 [<000000000016f8be>] kthread+0x166/0x178
 [<00000000009e71f2>] kernel_thread_starter+0x6/0xc
 [<00000000009e71ec>] kernel_thread_starter+0x0/0xc
no locks held by zfcp_q_0.0.1880/2165.
...
kworker/u512:2  D11280  2193      2 0x02000000
Workqueue: zfcp_q_0.0.1880 zfcp_scsi_rport_work [zfcp] (zrpd-50050763031bd327)
                                                        ^^^^^^^^^^^^^^^^^^^^^
Call Trace:
([<00000000009df464>] __schedule+0xbf4/0xc78)
 [<00000000009df57c>] schedule+0x94/0xc0
 [<00000000009e50c0>] schedule_timeout+0x488/0x4d0
 [<00000000001e425c>] msleep+0x5c/0x78                  >>test code only<<
 [<000003ff8008a21e>] zfcp_scsi_rport_work+0xbe/0x100 [zfcp]
 [<0000000000167154>] process_one_work+0x3b4/0x718
 [<000000000016771c>] worker_thread+0x264/0x408
 [<000000000016f8be>] kthread+0x166/0x178
 [<00000000009e71f2>] kernel_thread_starter+0x6/0xc
 [<00000000009e71ec>] kernel_thread_starter+0x0/0xc
2 locks held by kworker/u512:2/2193:
 #0:  (name){++++.+}, at: [<0000000000166f4e>] process_one_work+0x1ae/0x718
 #1:  ((&(&port->rport_work)->work)){+.+.+.}, at: [<0000000000166f4e>] process_one_work+0x1ae/0x718
...

=============================================
Showing busy workqueues and worker pools:
workqueue zfcp_q_0.0.1880: flags=0x2000a
  pwq 512: cpus=0-255 flags=0x4 nice=0 active=1/1
    in-flight: 2193:zfcp_scsi_rport_work [zfcp]
pool 512: cpus=0-255 flags=0x4 nice=0 hung=0s workers=4 idle: 5 2354 2311

Work items with adapter scope are already identified by the workqueue name
"zfcp_q_<devbusid>" and the work item function name.

Signed-off-by: Steffen Maier <maier@linux.ibm.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Lai Jiangshan <jiangshanlai@gmail.com>
Reviewed-by: Benjamin Block <bblock@linux.ibm.com>
Acked-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com>
2018-05-18 11:27:21 -04:00
Steffen Maier 674595d851 scsi: zfcp: decouple our scsi_eh callbacks from scsi_cmnd
Note: zfcp_scsi_eh_host_reset_handler() will be converted in a later patch.

zfcp_scsi_eh_device_reset_handler() now only depends on scsi_device.
zfcp_scsi_eh_target_reset_handler() now only depends on scsi_target.
All derive other objects from these intended callback arguments.

zfcp_scsi_eh_target_reset_handler() is special: The FCP channel requires a
valid LUN handle so we try to find ourselves a stand-in scsi_device as
suggested by Hannes Reinecke. If it cannot find a stand-in scsi device,
trace a record like the following (formatted with zfcpdbf from s390-tools):

Timestamp      : ...
Area           : SCSI
Subarea        : 00
Level          : 1
Exception      : -
CPU ID         : ..
Caller         : 0x...
Record ID      : 1
Tag            : tr_nosd        target reset, no SCSI device
Request ID     : 0x0000000000000000                     none (invalid)
SCSI ID        : 0x00000000     SCSI ID/target denoting scope
SCSI LUN       : 0xffffffff                             none (invalid)
SCSI LUN high  : 0xffffffff                             none (invalid)
SCSI result    : 0x00002003     field re-used for midlayer value: FAILED
SCSI retries   : 0xff                                   none (invalid)
SCSI allowed   : 0xff                                   none (invalid)
SCSI scribble  : 0xffffffffffffffff                     none (invalid)
SCSI opcode    : ffffffff ffffffff ffffffff ffffffff    none (invalid)
FCP rsp inf cod: 0xff                                   none (invalid)
FCP rsp IU     : 00000000 00000000 00000000 00000000    none (invalid)
                 00000000 00000000

Actually change the signature of zfcp_task_mgmt_function() used by
zfcp_scsi_eh_device_reset_handler() & zfcp_scsi_eh_target_reset_handler().
Since it was prepared in a previous patch, we only need to delete a local
auto variable which is now the intended argument.

Suggested-by: Hannes Reinecke <hare@suse.com>
Signed-off-by: Steffen Maier <maier@linux.ibm.com>
Reviewed-by: Benjamin Block <bblock@linux.ibm.com>
Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com>
2018-05-18 11:22:11 -04:00
Steffen Maier 42afc6527d scsi: zfcp: decouple TMFs from scsi_cmnd by using fc_block_rport
Intentionally retrieve the rport by walking SCSI common code objects
rather than zfcp_sdev->port->rport.

The latter is used for pairing the calls to fc_remote_port_add() and
fc_remote_port_delete(). [see v2.6.31 commit 379d6bf657 ("[SCSI] zfcp:
Add port only once to FC transport class")]

zfcp_scsi_rport_register() sets zfcp_port.rport to what
fc_remote_port_add() returned.
zfcp_scsi_rport_block() sets zfcp_port.rport = NULL after having called
fc_remote_port_delete().

Hence, while an rport is blocked (or in any subsequent state due to
scsi_transport_fc timeouts such as fast_io_fail_tmo or dev_loss_tmo),
zfcp_port.rport is NULL and cannot serve as argument to fc_block_rport().

During zfcp recovery, a just recovered zfcp_port can have the UNBLOCKED
status flag, but an async rport unblocking has only started via
zfcp_scsi_schedule_rport_register() in zfcp_erp_try_rport_unblock()
[see v4.10 commit 6f2ce1c6af ("scsi: zfcp: fix rport unblock race with
LUN recovery")] in zfcp_erp_action_cleanup(). Now zfcp_erp_wait() can
return. This would be sufficient to successfully send a TMF.
But the rport can still be blocked and zfcp_port.rport can still be NULL
until zfcp_port.rport_work was scheduled and has actually called
fc_remote_port_add() and assigned its return value to zfcp_port.rport.
We need an unblocked rport for a successful scsi_eh TUR.

Similarly, for a zfcp_port which has just lost its UNBLOCKED status flag,
the return of zfcp_erp_wait() can race with zfcp_port.rport_work queued
by zfcp_scsi_schedule_rport_block(). Therefore we cannot reliably access
zfcp_port.rport. However, we'd like to get fc_rport_block()'s opinion on
when fast_io_fail_tmo triggered. While we might use
flush_work(&port->rport_work) to sync with the work item, we can simply use
the other way to get an rport pointer.

Signed-off-by: Steffen Maier <maier@linux.ibm.com>
Reviewed-by: Benjamin Block <bblock@linux.ibm.com>
Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com>
2018-05-18 11:22:11 -04:00
Steffen Maier 26f5fa9d47 scsi: zfcp: decouple SCSI setup of TMF from scsi_cmnd
Actually change the signature of zfcp_fsf_fcp_task_mgmt().
Since it was prepared in the previous patch, we only need to delete
a local auto variable which is now the intended argument.

Prepare zfcp_fsf_fcp_task_mgmt's caller zfcp_task_mgmt_function()
to have its function body only depend on a scsi_device and derived objects.

Signed-off-by: Steffen Maier <maier@linux.ibm.com>
Reviewed-by: Benjamin Block <bblock@linux.ibm.com>
Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com>
2018-05-18 11:22:11 -04:00
Steffen Maier 39abb11aca scsi: zfcp: decouple FSF request setup of TMF from scsi_cmnd
In zfcp_fsf_fcp_task_mgmt() resolve the still old argument scsi_cmnd into
scsi_device very early and only depend on scsi_device and derived objects in
the function body.

This prepares to later change the function signature replacing the scsi_cmnd
argument with scsi_device.

Signed-off-by: Steffen Maier <maier@linux.ibm.com>
Reviewed-by: Benjamin Block <bblock@linux.ibm.com>
Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com>
2018-05-18 11:22:11 -04:00
Steffen Maier e0116c91c7 scsi: zfcp: split FCP_CMND IU setup between SCSI I/O and TMF again
This reverts commit 2443c8b23a ("[SCSI] zfcp: Merge FCP task management
setup with regular FCP command setup"), because this introduced a
dependency on the unsuitable SCSI command for scsi_eh / TMF.

Signed-off-by: Steffen Maier <maier@linux.ibm.com>
Reviewed-by: Hannes Reinecke <hare@suse.com>
Reviewed-by: Benjamin Block <bblock@linux.ibm.com>
Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com>
2018-05-18 11:22:11 -04:00
Steffen Maier 266883f2f7 scsi: zfcp: decouple TMF response handler from scsi_cmnd
Originally, I planned for TMF handling to have different context data in
fsf_req->data depending on the TMF scope in fcp_cmnd->fc_tm_flags:

 * scsi_device if FCP_TMF_LUN_RESET,
 * zfcp_port if FCP_TMF_TGT_RESET.

However, the FCP channel requires a valid LUN handle so we now use
scsi_device as context data with any TMF for the time being.

Regular SCSI I/O FCP requests continue using scsi_cmnd as req->data.

Hence, the callers of zfcp_fsf_fcp_handler_common() must resolve req->data
and pass scsi_device as common context.  While at it, remove the detour
zfcp_sdev->port->adapter and use the more direct req->adapter as elsewhere
in this function already.

Signed-off-by: Steffen Maier <maier@linux.ibm.com>
Reviewed-by: Benjamin Block <bblock@linux.ibm.com>
Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com>
2018-05-18 11:22:11 -04:00
Steffen Maier 8221211863 scsi: zfcp: decouple SCSI traces for scsi_eh / TMF from scsi_cmnd
The SCSI command pointer passed to scsi_eh callbacks is just one arbitrary
command of potentially many that are in the eh queue to be processed.  The
command is only used to indirectly pass the TMF scope in terms of SCSI
ID/target and SCSI LUN for LUN reset.

Hence, zfcp had filled in SCSI trace record fields which do not really
belong to the TMF. This was confusing.

Therefore, refactor the TMF tracing to work without SCSI command.  Since the
FCP channel always requires a valid LUN handle, we use SCSI device as common
context for any TMF (even target reset).  To make it even clearer, we set
all bits to 1 for the fields, which do not belong to the TMF, to indicate
that these fields are invalid.

The old zfcp_dbf_scsi() became zfcp_dbf_scsi_common() to now handle both
SCSI commands and TMFs. The old argument scsi_cmnd is now optional and can
be NULL with TMFs. The new argument scsi_device is mandatory to carry
context, as well as SCSI ID/target and SCSI LUN in case of TMFs.

New example trace record formatted with zfcpdbf from s390-tools:

Timestamp      : ...
Area           : SCSI
Subarea        : 00
Level          : 1
Exception      : -
CPU ID         : ..
Caller         : 0x...
Record ID      : 1
Tag            : [lt]r_....
Request ID     : 0x<reqid>              ID of FSF FCP request with TM flag
                 For cases without FSF request: 0x0 for none (invalid)
SCSI ID        : 0x<scsi_id>            SCSI ID/target denoting scope
SCSI LUN       : 0x<scsi_lun>           SCSI LUN denoting scope
SCSI LUN high  : 0x<scsi_lun_high>      SCSI LUN denoting scope
SCSI result    : 0xffffffff                             none (invalid)
SCSI retries   : 0xff                                   none (invalid)
SCSI allowed   : 0xff                                   none (invalid)
SCSI scribble  : 0xffffffffffffffff                     none (invalid)
SCSI opcode    : ffffffff ffffffff ffffffff ffffffff    none (invalid)
FCP rsp inf cod: 0x00                   FCP_RSP info code of TMF
FCP rsp IU     : 00000000 00000000 00000100 00000000 ext FCP_RSP IU
                 00000000 00000008                   ext FCP_RSP IU
FCP rsp IU len : 32                                  FCP_RSP IU length
Payload time   : ...
FCP rsp IU all : 00000000 00000000 00000100 00000000 full FCP_RSP IU
                 00000000 00000008 00000000 00000000 full FCP_RSP IU

Signed-off-by: Steffen Maier <maier@linux.ibm.com>
Reviewed-by: Benjamin Block <bblock@linux.ibm.com>
Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com>
2018-05-18 11:22:11 -04:00
Steffen Maier 6a76550841 scsi: zfcp: fix missing REC trigger trace on enqueue without ERP thread
Example trace record formatted with zfcpdbf from s390-tools:

Timestamp      : ...
Area           : REC
Subarea        : 00
Level          : 1
Exception      : -
CPU ID         : ..
Caller         : 0x...
Record ID      : 1                      ZFCP_DBF_REC_TRIG
Tag            : .......
LUN            : 0x...
WWPN           : 0x...
D_ID           : 0x...
Adapter status : 0x...
Port status    : 0x...
LUN status     : 0x...
Ready count    : 0x...
Running count  : 0x...
ERP want       : 0x0.                   ZFCP_ERP_ACTION_REOPEN_...
ERP need       : 0xc0                   ZFCP_ERP_ACTION_NONE

Signed-off-by: Steffen Maier <maier@linux.ibm.com>
Cc: <stable@vger.kernel.org> #2.6.38+
Reviewed-by: Benjamin Block <bblock@linux.ibm.com>
Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com>
2018-05-18 11:22:11 -04:00
Steffen Maier 8c3d20aada scsi: zfcp: fix missing REC trigger trace for all objects in ERP_FAILED
That other commit introduced an inconsistency because it would trace on
ERP_FAILED for all callers of port forced reopen triggers (not just
terminate_rport_io), but it would not trace on ERP_FAILED for all callers of
other ERP triggers such as adapter, port regular, LUN.

Therefore, generalize that other commit. zfcp_erp_action_enqueue() already
had two early outs which re-used the one zfcp_dbf_rec_trig() call.  All ERP
trigger functions finally run through zfcp_erp_action_enqueue().  So move
the special handling for ZFCP_STATUS_COMMON_ERP_FAILED into
zfcp_erp_action_enqueue() and add another early out with new trace marker
for pseudo ERP need in this case. This removes all early returns from all
ERP trigger functions so we always end up at zfcp_dbf_rec_trig().

Example trace record formatted with zfcpdbf from s390-tools:

Timestamp      : ...
Area           : REC
Subarea        : 00
Level          : 1
Exception      : -
CPU ID         : ..
Caller         : 0x...
Record ID      : 1                      ZFCP_DBF_REC_TRIG
Tag            : .......
LUN            : 0x...
WWPN           : 0x...
D_ID           : 0x...
Adapter status : 0x...
Port status    : 0x...
LUN status     : 0x...
Ready count    : 0x...
Running count  : 0x...
ERP want       : 0x0.                   ZFCP_ERP_ACTION_REOPEN_...
ERP need       : 0xe0                   ZFCP_ERP_ACTION_FAILED

Signed-off-by: Steffen Maier <maier@linux.ibm.com>
Cc: <stable@vger.kernel.org> #2.6.38+
Reviewed-by: Benjamin Block <bblock@linux.ibm.com>
Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com>
2018-05-18 11:22:11 -04:00
Steffen Maier d70aab5592 scsi: zfcp: fix missing REC trigger trace on terminate_rport_io for ERP_FAILED
For problem determination we always want to see when we were invoked on the
terminate_rport_io callback whether we perform something or not.

Temporal event sequence of interest with a long fast_io_fail_tmo of 27 sec:

loose remote port

t   workqueue
[s] zfcp_q_<dev>       IRQ                 zfcperp<dev>

=== ================== =================== ============================

  0                    recv RSCN
                       q p.test_link_work
    block rport
     start fast_io_fail_tmo
    send ADISC ELS
  4                    recv ADISC fail
                       block zfcp_port
                                           port forced reopen
                                           send open port
 12                    recv open port fail
                                           q p.gid_pn_work
                                           zfcp_erp_wakeup
                                           (zfcp_erp_wait would return)
    GID_PN fail

Before this point, we got a SCSI trace with tag "sctrpi1" on fast_io_fail,
e.g. with the typical 5 sec setting.

    port.status |= ERP_FAILED

If fast_io_fail_tmo triggers after this point, we missed a SCSI trace.

    workqueue
    fc_dl_<host>
    ==================
 27 fc_timeout_fail_rport_io
    fc_terminate_rport_io
    zfcp_scsi_terminate_rport_io
    zfcp_erp_port_forced_reopen
    _zfcp_erp_port_forced_reopen
     if (port.status & ERP_FAILED)
      return;

Therefore, write a trace before above early return.

Example trace record formatted with zfcpdbf from s390-tools:

Timestamp      : ...
Area           : REC
Subarea        : 00
Level          : 1
Exception      : -
CPU ID         : ..
Caller         : 0x...
Record ID      : 1                      ZFCP_DBF_REC_TRIG
Tag            : sctrpi1                SCSI terminate rport I/O
LUN            : 0xffffffffffffffff                     none (invalid)
WWPN           : 0x<wwpn>
D_ID           : 0x<n_port_id>
Adapter status : 0x...
Port status    : 0x...
LUN status     : 0x00000000                             none (invalid)
Ready count    : 0x...
Running count  : 0x...
ERP want       : 0x03                   ZFCP_ERP_ACTION_REOPEN_PORT_FORCED
ERP need       : 0xe0                   ZFCP_ERP_ACTION_FAILED

Signed-off-by: Steffen Maier <maier@linux.ibm.com>
Cc: <stable@vger.kernel.org> #2.6.38+
Reviewed-by: Benjamin Block <bblock@linux.ibm.com>
Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com>
2018-05-18 11:22:10 -04:00
Steffen Maier 96d9270499 scsi: zfcp: fix missing REC trigger trace on terminate_rport_io early return
get_device() and its internally used kobject_get() only return NULL if they
get passed NULL as argument. zfcp_get_port_by_wwpn() loops over
adapter->port_list so the iteration variable port is always non-NULL.
Struct device is embedded in struct zfcp_port so &port->dev is always
non-NULL. This is the argument to get_device().  However, if we get an
fc_rport in terminate_rport_io() for which we cannot find a match within
zfcp_get_port_by_wwpn(), the latter can return NULL.  v2.6.30 commit
70932935b6 ("[SCSI] zfcp: Fix oops when port disappears") introduced an
early return without adding a trace record for this case.  Even if we don't
need recovery in this case, for debugging we should still see that our
callback was invoked originally by scsi_transport_fc.

Example trace record formatted with zfcpdbf from s390-tools:

Timestamp      : ...
Area           : REC
Subarea        : 00
Level          : 1
Exception      : -
CPU ID         : ..
Caller         : 0x...
Record ID      : 1
Tag            : sctrpin        SCSI terminate rport I/O, no zfcp port
LUN            : 0xffffffffffffffff                     none (invalid)
WWPN           : 0x<wwpn>               WWPN
D_ID           : 0x<n_port_id>          N_Port-ID
Adapter status : 0x...
Port status    : 0xffffffff             unknown (-1)
LUN status     : 0x00000000                             none (invalid)
Ready count    : 0x...
Running count  : 0x...
ERP want       : 0x03                   ZFCP_ERP_ACTION_REOPEN_PORT_FORCED
ERP need       : 0xc0                   ZFCP_ERP_ACTION_NONE

Signed-off-by: Steffen Maier <maier@linux.ibm.com>
Fixes: 70932935b6 ("[SCSI] zfcp: Fix oops when port disappears")
Cc: <stable@vger.kernel.org> #2.6.38+
Reviewed-by: Benjamin Block <bblock@linux.ibm.com>
Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com>
2018-05-18 11:22:10 -04:00
Steffen Maier 512857a795 scsi: zfcp: fix misleading REC trigger trace where erp_action setup failed
If a SCSI device is deleted during scsi_eh host reset, we cannot get a
reference to the SCSI device anymore since scsi_device_get returns !=0 by
design. Assuming the recovery of adapter and port(s) was successful,
zfcp_erp_strategy_followup_success() attempts to trigger a LUN reset for the
half-gone SCSI device. Unfortunately, it causes the following confusing
trace record which states that zfcp will do a LUN recovery as "ERP need" is
ZFCP_ERP_ACTION_REOPEN_LUN == 1 and equals "ERP want".

Old example trace record formatted with zfcpdbf from s390-tools:

Tag:           : ersfs_3 ERP, trigger, unit reopen, port reopen succeeded
LUN            : 0x<FCP_LUN>
WWPN           : 0x<WWPN>
D_ID           : 0x<N_Port-ID>
Adapter status : 0x5400050b
Port status    : 0x54000001
LUN status     : 0x40000000     ZFCP_STATUS_COMMON_RUNNING
                                but not ZFCP_STATUS_COMMON_UNBLOCKED as it
                                was closed on close part of adapter reopen
ERP want       : 0x01
ERP need       : 0x01           misleading

However, zfcp_erp_setup_act() returns NULL as it cannot get the reference.
Hence, zfcp_erp_action_enqueue() takes an early goto out and _NO_ recovery
actually happens.

We always do want the recovery trigger trace record even if no erp_action
could be enqueued as in this case. For other cases where we did not enqueue
an erp_action, 'need' has always been zero to indicate this. In order to
indicate above goto out, introduce an eyecatcher "flag" to mark the "ERP
need" as 'not needed' but still keep the information which erp_action type,
that zfcp_erp_required_act() had decided upon, is needed.  0xc_ is chosen to
be visibly different from 0x0_ in "ERP want".

New example trace record formatted with zfcpdbf from s390-tools:

Tag:           : ersfs_3 ERP, trigger, unit reopen, port reopen succeeded
LUN            : 0x<FCP_LUN>
WWPN           : 0x<WWPN>
D_ID           : 0x<N_Port-ID>
Adapter status : 0x5400050b
Port status    : 0x54000001
LUN status     : 0x40000000
ERP want       : 0x01
ERP need       : 0xc1           would need LUN ERP, but no action set up
                   ^

Before v2.6.38 commit ae0904f60f ("[SCSI] zfcp: Redesign of the debug
tracing for recovery actions.") we could detect this case because the
"erp_action" field in the trace was NULL. The rework removed erp_action as
argument and field from the trace.

This patch here is for tracing. A fix to allow LUN recovery in the case at
hand is a topic for a separate patch.

See also commit fdbd1c5e27 ("[SCSI] zfcp: Allow running unit/LUN shutdown
without acquiring reference") for a similar case and background info.

Signed-off-by: Steffen Maier <maier@linux.ibm.com>
Fixes: ae0904f60f ("[SCSI] zfcp: Redesign of the debug tracing for recovery actions.")
Cc: <stable@vger.kernel.org> #2.6.38+
Reviewed-by: Benjamin Block <bblock@linux.ibm.com>
Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com>
2018-05-18 11:22:10 -04:00
Steffen Maier 81979ae63e scsi: zfcp: fix missing SCSI trace for retry of abort / scsi_eh TMF
We already have a SCSI trace for the end of abort and scsi_eh TMF. Due to
zfcp_erp_wait() and fc_block_scsi_eh() time can pass between the start of
our eh callback and an actual send/recv of an abort / TMF request.  In order
to see the temporal sequence including any abort / TMF send retries, add a
trace before the above two blocking functions.  This supports problem
determination with scsi_eh and parallel zfcp ERP.

No need to explicitly trace the beginning of our eh callback, since we
typically can send an abort / TMF and see its HBA response (in the worst
case, it's a pseudo response on dismiss all of adapter recovery, e.g. due to
an FSF request timeout [fsrth_1] of the abort / TMF). If we cannot send, we
now get a trace record for the first "abrt_wt" or "[lt]r_wait" which denotes
almost the beginning of the callback.

No need to explicitly trace the wakeup after the above two blocking
functions because the next retry loop causes another trace in any case and
that is sufficient.

Example trace records formatted with zfcpdbf from s390-tools:

Timestamp      : ...
Area           : SCSI
Subarea        : 00
Level          : 1
Exception      : -
CPU ID         : ..
Caller         : 0x...
Record ID      : 1
Tag            : abrt_wt        abort, before zfcp_erp_wait()
Request ID     : 0x0000000000000000                     none (invalid)
SCSI ID        : 0x<scsi_id>
SCSI LUN       : 0x<scsi_lun>
SCSI LUN high  : 0x<scsi_lun_high>
SCSI result    : 0x<scsi_result_of_cmd_to_be_aborted>
SCSI retries   : 0x<retries_of_cmd_to_be_aborted>
SCSI allowed   : 0x<allowed_retries_of_cmd_to_be_aborted>
SCSI scribble  : 0x<req_id_of_cmd_to_be_aborted>
SCSI opcode    : <CDB_of_cmd_to_be_aborted>
FCP rsp inf cod: 0x..                                   none (invalid)
FCP rsp IU     : ...                                    none (invalid)

Timestamp      : ...
Area           : SCSI
Subarea        : 00
Level          : 1
Exception      : -
CPU ID         : ..
Caller         : 0x...
Record ID      : 1
Tag            : lr_wait        LUN reset, before zfcp_erp_wait()
Request ID     : 0x0000000000000000                     none (invalid)
SCSI ID        : 0x<scsi_id>
SCSI LUN       : 0x<scsi_lun>
SCSI LUN high  : 0x<scsi_lun_high>
SCSI result    : 0x...                                  unrelated
SCSI retries   : 0x..                                   unrelated
SCSI allowed   : 0x..                                   unrelated
SCSI scribble  : 0x...                                  unrelated
SCSI opcode    : ...                                    unrelated
FCP rsp inf cod: 0x..                                   none (invalid)
FCP rsp IU     : ...                                    none (invalid)

Signed-off-by: Steffen Maier <maier@linux.ibm.com>
Fixes: 63caf367e1 ("[SCSI] zfcp: Improve reliability of SCSI eh handlers in zfcp")
Fixes: af4de36d91 ("[SCSI] zfcp: Block scsi_eh thread for rport state BLOCKED")
Cc: <stable@vger.kernel.org> #2.6.38+
Reviewed-by: Benjamin Block <bblock@linux.ibm.com>
Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com>
2018-05-18 11:22:10 -04:00
Steffen Maier df30781699 scsi: zfcp: fix missing SCSI trace for result of eh_host_reset_handler
For problem determination we need to see whether and why we were successful
or not. This allows deduction of scsi_eh escalation.

Example trace record formatted with zfcpdbf from s390-tools:

Timestamp      : ...
Area           : SCSI
Subarea        : 00
Level          : 1
Exception      : -
CPU ID         : ..
Caller         : 0x...
Record ID      : 1
Tag            : schrh_r        SCSI host reset handler result
Request ID     : 0x0000000000000000                     none (invalid)
SCSI ID        : 0xffffffff                             none (invalid)
SCSI LUN       : 0xffffffff                             none (invalid)
SCSI LUN high  : 0xffffffff                             none (invalid)
SCSI result    : 0x00002002     field re-used for midlayer value: SUCCESS
                                or in other cases: 0x2009 == FAST_IO_FAIL
SCSI retries   : 0xff                                   none (invalid)
SCSI allowed   : 0xff                                   none (invalid)
SCSI scribble  : 0xffffffffffffffff                     none (invalid)
SCSI opcode    : ffffffff ffffffff ffffffff ffffffff    none (invalid)
FCP rsp inf cod: 0xff                                   none (invalid)
FCP rsp IU     : 00000000 00000000 00000000 00000000    none (invalid)
                 00000000 00000000

v2.6.35 commit a1dbfddd02 ("[SCSI] zfcp: Pass return code from
fc_block_scsi_eh to scsi eh") introduced the first return with something
other than the previously hardcoded single SUCCESS return path.

Signed-off-by: Steffen Maier <maier@linux.ibm.com>
Fixes: a1dbfddd02 ("[SCSI] zfcp: Pass return code from fc_block_scsi_eh to scsi eh")
Cc: <stable@vger.kernel.org> #2.6.38+
Reviewed-by: Jens Remus <jremus@linux.ibm.com>
Reviewed-by: Benjamin Block <bblock@linux.ibm.com>
Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com>
2018-05-18 11:22:10 -04:00
Jens Remus fa89adba19 scsi: zfcp: fix infinite iteration on ERP ready list
zfcp_erp_adapter_reopen() schedules blocking of all of the adapter's
rports via zfcp_scsi_schedule_rports_block() and enqueues a reopen
adapter ERP action via zfcp_erp_action_enqueue(). Both are separately
processed asynchronously and concurrently.

Blocking of rports is done in a kworker by zfcp_scsi_rport_work(). It
calls zfcp_scsi_rport_block(), which then traces a DBF REC "scpdely" via
zfcp_dbf_rec_trig().  zfcp_dbf_rec_trig() acquires the DBF REC spin lock
and then iterates with list_for_each() over the adapter's ERP ready list
without holding the ERP lock. This opens a race window in which the
current list entry can be moved to another list, causing list_for_each()
to iterate forever on the wrong list, as the erp_ready_head is never
encountered as terminal condition.

Meanwhile the ERP action can be processed in the ERP thread by
zfcp_erp_thread(). It calls zfcp_erp_strategy(), which acquires the ERP
lock and then calls zfcp_erp_action_to_running() to move the ERP action
from the ready to the running list.  zfcp_erp_action_to_running() can
move the ERP action using list_move() just during the aforementioned
race window. It then traces a REC RUN "erator1" via zfcp_dbf_rec_run().
zfcp_dbf_rec_run() tries to acquire the DBF REC spin lock. If this is
held by the infinitely looping kworker, it effectively spins forever.

Example Sequence Diagram:

Process                ERP Thread             rport_work
-------------------    -------------------    -------------------
zfcp_erp_adapter_reopen()
zfcp_erp_adapter_block()
zfcp_scsi_schedule_rports_block()
lock ERP                                      zfcp_scsi_rport_work()
zfcp_erp_action_enqueue(ZFCP_ERP_ACTION_REOPEN_ADAPTER)
list_add_tail() on ready                      !(rport_task==RPORT_ADD)
wake_up() ERP thread                          zfcp_scsi_rport_block()
zfcp_dbf_rec_trig()    zfcp_erp_strategy()    zfcp_dbf_rec_trig()
unlock ERP                                    lock DBF REC
zfcp_erp_wait()        lock ERP
|                      zfcp_erp_action_to_running()
|                                             list_for_each() ready
|                      list_move()              current entry
|                        ready to running
|                      zfcp_dbf_rec_run()       endless loop over running
|                      zfcp_dbf_rec_run_lvl()
|                      lock DBF REC spins forever

Any adapter recovery can trigger this, such as setting the device offline
or reboot.

V4.9 commit 4eeaa4f3f1 ("zfcp: close window with unblocked rport
during rport gone") introduced additional tracing of (un)blocking of
rports. It missed that the adapter->erp_lock must be held when calling
zfcp_dbf_rec_trig().

This fix uses the approach formerly introduced by commit aa0fec6239
("[SCSI] zfcp: Fix sparse warning by providing new entry in dbf") that got
later removed by commit ae0904f60f ("[SCSI] zfcp: Redesign of the debug
tracing for recovery actions.").

Introduce zfcp_dbf_rec_trig_lock(), a wrapper for zfcp_dbf_rec_trig() that
acquires and releases the adapter->erp_lock for read.

Reported-by: Sebastian Ott <sebott@linux.ibm.com>
Signed-off-by: Jens Remus <jremus@linux.ibm.com>
Fixes: 4eeaa4f3f1 ("zfcp: close window with unblocked rport during rport gone")
Cc: <stable@vger.kernel.org> # 2.6.32+
Reviewed-by: Benjamin Block <bblock@linux.vnet.ibm.com>
Signed-off-by: Steffen Maier <maier@linux.ibm.com>
Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com>
2018-05-08 00:01:01 -04:00
Christoph Hellwig 31156ec378 bsg-lib: introduce a timeout field in struct bsg_job
The zfcp driver wants to know the timeout for a bsg job, so add a field
to struct bsg_job for it in preparation of not exposing the request
to the bsg-lib users.

Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Benjamin Block <bblock@linux.vnet.ibm.com>
Reviewed-by: Hannes Reinecke <hare@suse.com>
Reviewed-by: Johannes Thumshirn <jthumshirn@suse.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2018-03-13 11:40:21 -06:00
Martin Schwidefsky 9fa1db4c75 s390: add a few more SPDX identifiers
Add the correct SPDX license to a few more files under arch/s390 and
drivers/s390 which have been missed to far.
The SPDX identifier is a legally binding shorthand, which can be used
instead of the full boiler plate text.

Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
2017-12-05 07:51:09 +01:00
Linus Torvalds 22985bf59b Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/s390/linux
Pull s390 fixes from Martin Schwidefsky:

 - SPDX identifiers are added to more of the s390 specific files.

 - The ELF_ET_DYN_BASE base patch from Kees is reverted, with the change
   some old 31-bit programs crash.

 - Bug fixes and cleanups.

* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/s390/linux: (29 commits)
  s390/gs: add compat regset for the guarded storage broadcast control block
  s390: revert ELF_ET_DYN_BASE base changes
  s390: Remove redundant license text
  s390: crypto: Remove redundant license text
  s390: include: Remove redundant license text
  s390: kernel: Remove redundant license text
  s390: add SPDX identifiers to the remaining files
  s390: appldata: add SPDX identifiers to the remaining files
  s390: pci: add SPDX identifiers to the remaining files
  s390: mm: add SPDX identifiers to the remaining files
  s390: crypto: add SPDX identifiers to the remaining files
  s390: kernel: add SPDX identifiers to the remaining files
  s390: sthyi: add SPDX identifiers to the remaining files
  s390: drivers: Remove redundant license text
  s390: crypto: Remove redundant license text
  s390: virtio: add SPDX identifiers to the remaining files
  s390: scsi: zfcp_aux: add SPDX identifier
  s390: net: add SPDX identifiers to the remaining files
  s390: char: add SPDX identifiers to the remaining files
  s390: cio: add SPDX identifiers to the remaining files
  ...
2017-11-30 08:13:36 -08:00
Greg Kroah-Hartman 40bf411ee6 s390: scsi: zfcp_aux: add SPDX identifier
It's good to have SPDX identifiers in all files to make it easier to
audit the kernel tree for correct licenses.

Update the drivers/s390/scsi/zfcp_aux.c file with the correct SPDX
license identifier based on the license text in the file itself.  The
SPDX identifier is a legally binding shorthand, which can be used
instead of the full boiler plate text.

This work is based on a script and data from Thomas Gleixner, Philippe
Ombredanne, and Kate Stewart.

Cc: Steffen Maier <maier@linux.vnet.ibm.com>
Cc: Benjamin Block <bblock@linux.vnet.ibm.com>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Kate Stewart <kstewart@linuxfoundation.org>
Cc: Philippe Ombredanne <pombredanne@nexb.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
2017-11-24 14:28:44 +01:00
Kees Cook 841b86f328 treewide: Remove TIMER_FUNC_TYPE and TIMER_DATA_TYPE casts
With all callbacks converted, and the timer callback prototype
switched over, the TIMER_FUNC_TYPE cast is no longer needed,
so remove it. Conversion was done with the following scripts:

    perl -pi -e 's|\(TIMER_FUNC_TYPE\)||g' \
        $(git grep TIMER_FUNC_TYPE | cut -d: -f1 | sort -u)

    perl -pi -e 's|\(TIMER_DATA_TYPE\)||g' \
        $(git grep TIMER_DATA_TYPE | cut -d: -f1 | sort -u)

The now unused macros are also dropped from include/linux/timer.h.

Signed-off-by: Kees Cook <keescook@chromium.org>
2017-11-21 16:35:54 -08:00
Steffen Maier 5c13db9b5d zfcp: purely mechanical update using timer API, plus blank lines
erp_memwait only occurs in seldom memory pressure situations.
The typical case never uses the associated timer and thus also
does not need to initialize the timer.
Also, we don't want to re-initialize the timer each time we re-use an
erp_action in zfcp_erp_setup_act() [see also v4.14-rc7 commit ab31fd0ce6
("scsi: zfcp: fix erp_action use-before-initialize in REC action trace")
for erp_action life cycle].
Hence, retain the lazy inintialization of zfcp_erp_action.timer
in zfcp_erp_strategy_memwait().

Add an empty line after declarations in zfcp_erp_timeout_handler()
and zfcp_fsf_request_timeout_handler() even though it was also missing
before the timer conversion.

Fix checkpatch warning:
WARNING: function definition argument 'struct timer_list *' should also have an identifier name
+extern void zfcp_erp_timeout_handler(struct timer_list *);

Depends-on: v4.14-rc3 commit 686fef928b ("timer: Prepare to change timer callback argument type")
Signed-off-by: Steffen Maier <maier@linux.vnet.ibm.com>
Reviewed-by: Jens Remus <jremus@linux.vnet.ibm.com>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
2017-11-16 15:06:19 +01:00
Kees Cook 75492a5156 s390/scsi: Convert timers to use timer_setup()
In preparation for unconditionally passing the struct timer_list pointer to
all timer callbacks, switch to using the new timer_setup() and from_timer()
to pass the timer pointer explicitly.

Cc: Steffen Maier <maier@linux.vnet.ibm.com>
Cc: Benjamin Block <bblock@linux.vnet.ibm.com>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: linux-s390@vger.kernel.org
Signed-off-by: Kees Cook <keescook@chromium.org>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
2017-11-16 15:06:17 +01:00
Linus Torvalds ead751507d License cleanup: add SPDX license identifiers to some files
Many source files in the tree are missing licensing information, which
 makes it harder for compliance tools to determine the correct license.
 
 By default all files without license information are under the default
 license of the kernel, which is GPL version 2.
 
 Update the files which contain no license information with the 'GPL-2.0'
 SPDX license identifier.  The SPDX identifier is a legally binding
 shorthand, which can be used instead of the full boiler plate text.
 
 This patch is based on work done by Thomas Gleixner and Kate Stewart and
 Philippe Ombredanne.
 
 How this work was done:
 
 Patches were generated and checked against linux-4.14-rc6 for a subset of
 the use cases:
  - file had no licensing information it it.
  - file was a */uapi/* one with no licensing information in it,
  - file was a */uapi/* one with existing licensing information,
 
 Further patches will be generated in subsequent months to fix up cases
 where non-standard license headers were used, and references to license
 had to be inferred by heuristics based on keywords.
 
 The analysis to determine which SPDX License Identifier to be applied to
 a file was done in a spreadsheet of side by side results from of the
 output of two independent scanners (ScanCode & Windriver) producing SPDX
 tag:value files created by Philippe Ombredanne.  Philippe prepared the
 base worksheet, and did an initial spot review of a few 1000 files.
 
 The 4.13 kernel was the starting point of the analysis with 60,537 files
 assessed.  Kate Stewart did a file by file comparison of the scanner
 results in the spreadsheet to determine which SPDX license identifier(s)
 to be applied to the file. She confirmed any determination that was not
 immediately clear with lawyers working with the Linux Foundation.
 
 Criteria used to select files for SPDX license identifier tagging was:
  - Files considered eligible had to be source code files.
  - Make and config files were included as candidates if they contained >5
    lines of source
  - File already had some variant of a license header in it (even if <5
    lines).
 
 All documentation files were explicitly excluded.
 
 The following heuristics were used to determine which SPDX license
 identifiers to apply.
 
  - when both scanners couldn't find any license traces, file was
    considered to have no license information in it, and the top level
    COPYING file license applied.
 
    For non */uapi/* files that summary was:
 
    SPDX license identifier                            # files
    ---------------------------------------------------|-------
    GPL-2.0                                              11139
 
    and resulted in the first patch in this series.
 
    If that file was a */uapi/* path one, it was "GPL-2.0 WITH
    Linux-syscall-note" otherwise it was "GPL-2.0".  Results of that was:
 
    SPDX license identifier                            # files
    ---------------------------------------------------|-------
    GPL-2.0 WITH Linux-syscall-note                        930
 
    and resulted in the second patch in this series.
 
  - if a file had some form of licensing information in it, and was one
    of the */uapi/* ones, it was denoted with the Linux-syscall-note if
    any GPL family license was found in the file or had no licensing in
    it (per prior point).  Results summary:
 
    SPDX license identifier                            # files
    ---------------------------------------------------|------
    GPL-2.0 WITH Linux-syscall-note                       270
    GPL-2.0+ WITH Linux-syscall-note                      169
    ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause)    21
    ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause)    17
    LGPL-2.1+ WITH Linux-syscall-note                      15
    GPL-1.0+ WITH Linux-syscall-note                       14
    ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause)    5
    LGPL-2.0+ WITH Linux-syscall-note                       4
    LGPL-2.1 WITH Linux-syscall-note                        3
    ((GPL-2.0 WITH Linux-syscall-note) OR MIT)              3
    ((GPL-2.0 WITH Linux-syscall-note) AND MIT)             1
 
    and that resulted in the third patch in this series.
 
  - when the two scanners agreed on the detected license(s), that became
    the concluded license(s).
 
  - when there was disagreement between the two scanners (one detected a
    license but the other didn't, or they both detected different
    licenses) a manual inspection of the file occurred.
 
  - In most cases a manual inspection of the information in the file
    resulted in a clear resolution of the license that should apply (and
    which scanner probably needed to revisit its heuristics).
 
  - When it was not immediately clear, the license identifier was
    confirmed with lawyers working with the Linux Foundation.
 
  - If there was any question as to the appropriate license identifier,
    the file was flagged for further research and to be revisited later
    in time.
 
 In total, over 70 hours of logged manual review was done on the
 spreadsheet to determine the SPDX license identifiers to apply to the
 source files by Kate, Philippe, Thomas and, in some cases, confirmation
 by lawyers working with the Linux Foundation.
 
 Kate also obtained a third independent scan of the 4.13 code base from
 FOSSology, and compared selected files where the other two scanners
 disagreed against that SPDX file, to see if there was new insights.  The
 Windriver scanner is based on an older version of FOSSology in part, so
 they are related.
 
 Thomas did random spot checks in about 500 files from the spreadsheets
 for the uapi headers and agreed with SPDX license identifier in the
 files he inspected. For the non-uapi files Thomas did random spot checks
 in about 15000 files.
 
 In initial set of patches against 4.14-rc6, 3 files were found to have
 copy/paste license identifier errors, and have been fixed to reflect the
 correct identifier.
 
 Additionally Philippe spent 10 hours this week doing a detailed manual
 inspection and review of the 12,461 patched files from the initial patch
 version early this week with:
  - a full scancode scan run, collecting the matched texts, detected
    license ids and scores
  - reviewing anything where there was a license detected (about 500+
    files) to ensure that the applied SPDX license was correct
  - reviewing anything where there was no detection but the patch license
    was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied
    SPDX license was correct
 
 This produced a worksheet with 20 files needing minor correction.  This
 worksheet was then exported into 3 different .csv files for the
 different types of files to be modified.
 
 These .csv files were then reviewed by Greg.  Thomas wrote a script to
 parse the csv files and add the proper SPDX tag to the file, in the
 format that the file expected.  This script was further refined by Greg
 based on the output to detect more types of files automatically and to
 distinguish between header and source .c files (which need different
 comment types.)  Finally Greg ran the script using the .csv files to
 generate the patches.
 
 Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
 Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com>
 Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
 Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
 -----BEGIN PGP SIGNATURE-----
 
 iG0EABECAC0WIQT0tgzFv3jCIUoxPcsxR9QN2y37KQUCWfswbQ8cZ3JlZ0Brcm9h
 aC5jb20ACgkQMUfUDdst+ykvEwCfXU1MuYFQGgMdDmAZXEc+xFXZvqgAoKEcHDNA
 6dVh26uchcEQLN/XqUDt
 =x306
 -----END PGP SIGNATURE-----

Merge tag 'spdx_identifiers-4.14-rc8' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/driver-core

Pull initial SPDX identifiers from Greg KH:
 "License cleanup: add SPDX license identifiers to some files

  Many source files in the tree are missing licensing information, which
  makes it harder for compliance tools to determine the correct license.

  By default all files without license information are under the default
  license of the kernel, which is GPL version 2.

  Update the files which contain no license information with the
  'GPL-2.0' SPDX license identifier. The SPDX identifier is a legally
  binding shorthand, which can be used instead of the full boiler plate
  text.

  This patch is based on work done by Thomas Gleixner and Kate Stewart
  and Philippe Ombredanne.

  How this work was done:

  Patches were generated and checked against linux-4.14-rc6 for a subset
  of the use cases:

   - file had no licensing information it it.

   - file was a */uapi/* one with no licensing information in it,

   - file was a */uapi/* one with existing licensing information,

  Further patches will be generated in subsequent months to fix up cases
  where non-standard license headers were used, and references to
  license had to be inferred by heuristics based on keywords.

  The analysis to determine which SPDX License Identifier to be applied
  to a file was done in a spreadsheet of side by side results from of
  the output of two independent scanners (ScanCode & Windriver)
  producing SPDX tag:value files created by Philippe Ombredanne.
  Philippe prepared the base worksheet, and did an initial spot review
  of a few 1000 files.

  The 4.13 kernel was the starting point of the analysis with 60,537
  files assessed. Kate Stewart did a file by file comparison of the
  scanner results in the spreadsheet to determine which SPDX license
  identifier(s) to be applied to the file. She confirmed any
  determination that was not immediately clear with lawyers working with
  the Linux Foundation.

  Criteria used to select files for SPDX license identifier tagging was:

   - Files considered eligible had to be source code files.

   - Make and config files were included as candidates if they contained
     >5 lines of source

   - File already had some variant of a license header in it (even if <5
     lines).

  All documentation files were explicitly excluded.

  The following heuristics were used to determine which SPDX license
  identifiers to apply.

   - when both scanners couldn't find any license traces, file was
     considered to have no license information in it, and the top level
     COPYING file license applied.

     For non */uapi/* files that summary was:

       SPDX license identifier                            # files
       ---------------------------------------------------|-------
       GPL-2.0                                              11139

     and resulted in the first patch in this series.

     If that file was a */uapi/* path one, it was "GPL-2.0 WITH
     Linux-syscall-note" otherwise it was "GPL-2.0". Results of that
     was:

       SPDX license identifier                            # files
       ---------------------------------------------------|-------
       GPL-2.0 WITH Linux-syscall-note                        930

     and resulted in the second patch in this series.

   - if a file had some form of licensing information in it, and was one
     of the */uapi/* ones, it was denoted with the Linux-syscall-note if
     any GPL family license was found in the file or had no licensing in
     it (per prior point). Results summary:

       SPDX license identifier                            # files
       ---------------------------------------------------|------
       GPL-2.0 WITH Linux-syscall-note                       270
       GPL-2.0+ WITH Linux-syscall-note                      169
       ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause)    21
       ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause)    17
       LGPL-2.1+ WITH Linux-syscall-note                      15
       GPL-1.0+ WITH Linux-syscall-note                       14
       ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause)    5
       LGPL-2.0+ WITH Linux-syscall-note                       4
       LGPL-2.1 WITH Linux-syscall-note                        3
       ((GPL-2.0 WITH Linux-syscall-note) OR MIT)              3
       ((GPL-2.0 WITH Linux-syscall-note) AND MIT)             1

     and that resulted in the third patch in this series.

   - when the two scanners agreed on the detected license(s), that
     became the concluded license(s).

   - when there was disagreement between the two scanners (one detected
     a license but the other didn't, or they both detected different
     licenses) a manual inspection of the file occurred.

   - In most cases a manual inspection of the information in the file
     resulted in a clear resolution of the license that should apply
     (and which scanner probably needed to revisit its heuristics).

   - When it was not immediately clear, the license identifier was
     confirmed with lawyers working with the Linux Foundation.

   - If there was any question as to the appropriate license identifier,
     the file was flagged for further research and to be revisited later
     in time.

  In total, over 70 hours of logged manual review was done on the
  spreadsheet to determine the SPDX license identifiers to apply to the
  source files by Kate, Philippe, Thomas and, in some cases,
  confirmation by lawyers working with the Linux Foundation.

  Kate also obtained a third independent scan of the 4.13 code base from
  FOSSology, and compared selected files where the other two scanners
  disagreed against that SPDX file, to see if there was new insights.
  The Windriver scanner is based on an older version of FOSSology in
  part, so they are related.

  Thomas did random spot checks in about 500 files from the spreadsheets
  for the uapi headers and agreed with SPDX license identifier in the
  files he inspected. For the non-uapi files Thomas did random spot
  checks in about 15000 files.

  In initial set of patches against 4.14-rc6, 3 files were found to have
  copy/paste license identifier errors, and have been fixed to reflect
  the correct identifier.

  Additionally Philippe spent 10 hours this week doing a detailed manual
  inspection and review of the 12,461 patched files from the initial
  patch version early this week with:

   - a full scancode scan run, collecting the matched texts, detected
     license ids and scores

   - reviewing anything where there was a license detected (about 500+
     files) to ensure that the applied SPDX license was correct

   - reviewing anything where there was no detection but the patch
     license was not GPL-2.0 WITH Linux-syscall-note to ensure that the
     applied SPDX license was correct

  This produced a worksheet with 20 files needing minor correction. This
  worksheet was then exported into 3 different .csv files for the
  different types of files to be modified.

  These .csv files were then reviewed by Greg. Thomas wrote a script to
  parse the csv files and add the proper SPDX tag to the file, in the
  format that the file expected. This script was further refined by Greg
  based on the output to detect more types of files automatically and to
  distinguish between header and source .c files (which need different
  comment types.) Finally Greg ran the script using the .csv files to
  generate the patches.

  Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
  Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com>
  Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
  Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>"

* tag 'spdx_identifiers-4.14-rc8' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/driver-core:
  License cleanup: add SPDX license identifier to uapi header files with a license
  License cleanup: add SPDX license identifier to uapi header files with no license
  License cleanup: add SPDX GPL-2.0 license identifier to files with no license
2017-11-02 10:04:46 -07:00
Greg Kroah-Hartman b24413180f License cleanup: add SPDX GPL-2.0 license identifier to files with no license
Many source files in the tree are missing licensing information, which
makes it harder for compliance tools to determine the correct license.

By default all files without license information are under the default
license of the kernel, which is GPL version 2.

Update the files which contain no license information with the 'GPL-2.0'
SPDX license identifier.  The SPDX identifier is a legally binding
shorthand, which can be used instead of the full boiler plate text.

This patch is based on work done by Thomas Gleixner and Kate Stewart and
Philippe Ombredanne.

How this work was done:

Patches were generated and checked against linux-4.14-rc6 for a subset of
the use cases:
 - file had no licensing information it it.
 - file was a */uapi/* one with no licensing information in it,
 - file was a */uapi/* one with existing licensing information,

Further patches will be generated in subsequent months to fix up cases
where non-standard license headers were used, and references to license
had to be inferred by heuristics based on keywords.

The analysis to determine which SPDX License Identifier to be applied to
a file was done in a spreadsheet of side by side results from of the
output of two independent scanners (ScanCode & Windriver) producing SPDX
tag:value files created by Philippe Ombredanne.  Philippe prepared the
base worksheet, and did an initial spot review of a few 1000 files.

The 4.13 kernel was the starting point of the analysis with 60,537 files
assessed.  Kate Stewart did a file by file comparison of the scanner
results in the spreadsheet to determine which SPDX license identifier(s)
to be applied to the file. She confirmed any determination that was not
immediately clear with lawyers working with the Linux Foundation.

Criteria used to select files for SPDX license identifier tagging was:
 - Files considered eligible had to be source code files.
 - Make and config files were included as candidates if they contained >5
   lines of source
 - File already had some variant of a license header in it (even if <5
   lines).

All documentation files were explicitly excluded.

The following heuristics were used to determine which SPDX license
identifiers to apply.

 - when both scanners couldn't find any license traces, file was
   considered to have no license information in it, and the top level
   COPYING file license applied.

   For non */uapi/* files that summary was:

   SPDX license identifier                            # files
   ---------------------------------------------------|-------
   GPL-2.0                                              11139

   and resulted in the first patch in this series.

   If that file was a */uapi/* path one, it was "GPL-2.0 WITH
   Linux-syscall-note" otherwise it was "GPL-2.0".  Results of that was:

   SPDX license identifier                            # files
   ---------------------------------------------------|-------
   GPL-2.0 WITH Linux-syscall-note                        930

   and resulted in the second patch in this series.

 - if a file had some form of licensing information in it, and was one
   of the */uapi/* ones, it was denoted with the Linux-syscall-note if
   any GPL family license was found in the file or had no licensing in
   it (per prior point).  Results summary:

   SPDX license identifier                            # files
   ---------------------------------------------------|------
   GPL-2.0 WITH Linux-syscall-note                       270
   GPL-2.0+ WITH Linux-syscall-note                      169
   ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause)    21
   ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause)    17
   LGPL-2.1+ WITH Linux-syscall-note                      15
   GPL-1.0+ WITH Linux-syscall-note                       14
   ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause)    5
   LGPL-2.0+ WITH Linux-syscall-note                       4
   LGPL-2.1 WITH Linux-syscall-note                        3
   ((GPL-2.0 WITH Linux-syscall-note) OR MIT)              3
   ((GPL-2.0 WITH Linux-syscall-note) AND MIT)             1

   and that resulted in the third patch in this series.

 - when the two scanners agreed on the detected license(s), that became
   the concluded license(s).

 - when there was disagreement between the two scanners (one detected a
   license but the other didn't, or they both detected different
   licenses) a manual inspection of the file occurred.

 - In most cases a manual inspection of the information in the file
   resulted in a clear resolution of the license that should apply (and
   which scanner probably needed to revisit its heuristics).

 - When it was not immediately clear, the license identifier was
   confirmed with lawyers working with the Linux Foundation.

 - If there was any question as to the appropriate license identifier,
   the file was flagged for further research and to be revisited later
   in time.

In total, over 70 hours of logged manual review was done on the
spreadsheet to determine the SPDX license identifiers to apply to the
source files by Kate, Philippe, Thomas and, in some cases, confirmation
by lawyers working with the Linux Foundation.

Kate also obtained a third independent scan of the 4.13 code base from
FOSSology, and compared selected files where the other two scanners
disagreed against that SPDX file, to see if there was new insights.  The
Windriver scanner is based on an older version of FOSSology in part, so
they are related.

Thomas did random spot checks in about 500 files from the spreadsheets
for the uapi headers and agreed with SPDX license identifier in the
files he inspected. For the non-uapi files Thomas did random spot checks
in about 15000 files.

In initial set of patches against 4.14-rc6, 3 files were found to have
copy/paste license identifier errors, and have been fixed to reflect the
correct identifier.

Additionally Philippe spent 10 hours this week doing a detailed manual
inspection and review of the 12,461 patched files from the initial patch
version early this week with:
 - a full scancode scan run, collecting the matched texts, detected
   license ids and scores
 - reviewing anything where there was a license detected (about 500+
   files) to ensure that the applied SPDX license was correct
 - reviewing anything where there was no detection but the patch license
   was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied
   SPDX license was correct

This produced a worksheet with 20 files needing minor correction.  This
worksheet was then exported into 3 different .csv files for the
different types of files to be modified.

These .csv files were then reviewed by Greg.  Thomas wrote a script to
parse the csv files and add the proper SPDX tag to the file, in the
format that the file expected.  This script was further refined by Greg
based on the output to detect more types of files automatically and to
distinguish between header and source .c files (which need different
comment types.)  Finally Greg ran the script using the .csv files to
generate the patches.

Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-11-02 11:10:55 +01:00
Steffen Maier ab31fd0ce6 scsi: zfcp: fix erp_action use-before-initialize in REC action trace
v4.10 commit 6f2ce1c6af ("scsi: zfcp: fix rport unblock race with LUN
recovery") extended accessing parent pointer fields of struct
zfcp_erp_action for tracing.  If an erp_action has never been enqueued
before, these parent pointer fields are uninitialized and NULL. Examples
are zfcp objects freshly added to the parent object's children list,
before enqueueing their first recovery subsequently. In
zfcp_erp_try_rport_unblock(), we iterate such list. Accessing erp_action
fields can cause a NULL pointer dereference.  Since the kernel can read
from lowcore on s390, it does not immediately cause a kernel page
fault. Instead it can cause hangs on trying to acquire the wrong
erp_action->adapter->dbf->rec_lock in zfcp_dbf_rec_action_lvl()
                      ^bogus^
while holding already other locks with IRQs disabled.

Real life example from attaching lots of LUNs in parallel on many CPUs:

crash> bt 17723
PID: 17723  TASK: ...               CPU: 25  COMMAND: "zfcperp0.0.1800"
 LOWCORE INFO:
  -psw      : 0x0404300180000000 0x000000000038e424
  -function : _raw_spin_lock_wait_flags at 38e424
...
 #0 [fdde8fc90] zfcp_dbf_rec_action_lvl at 3e0004e9862 [zfcp]
 #1 [fdde8fce8] zfcp_erp_try_rport_unblock at 3e0004dfddc [zfcp]
 #2 [fdde8fd38] zfcp_erp_strategy at 3e0004e0234 [zfcp]
 #3 [fdde8fda8] zfcp_erp_thread at 3e0004e0a12 [zfcp]
 #4 [fdde8fe60] kthread at 173550
 #5 [fdde8feb8] kernel_thread_starter at 10add2

zfcp_adapter
 zfcp_port
  zfcp_unit <address>, 0x404040d600000000
  scsi_device NULL, returning early!
zfcp_scsi_dev.status = 0x40000000
0x40000000 ZFCP_STATUS_COMMON_RUNNING

crash> zfcp_unit <address>
struct zfcp_unit {
  erp_action = {
    adapter = 0x0,
    port = 0x0,
    unit = 0x0,
  },
}

zfcp_erp_action is always fully embedded into its container object. Such
container object is never moved in its object tree (only add or delete).
Hence, erp_action parent pointers can never change.

To fix the issue, initialize the erp_action parent pointers before
adding the erp_action container to any list and thus before it becomes
accessible from outside of its initializing function.

In order to also close the time window between zfcp_erp_setup_act()
memsetting the entire erp_action to zero and setting the parent pointers
again, drop the memset and instead explicitly initialize individually
all erp_action fields except for parent pointers. To be extra careful
not to introduce any other unintended side effect, even keep zeroing the
erp_action fields for list and timer. Also double-check with
WARN_ON_ONCE that erp_action parent pointers never change, so we get to
know when we would deviate from previous behavior.

Signed-off-by: Steffen Maier <maier@linux.vnet.ibm.com>
Fixes: 6f2ce1c6af ("scsi: zfcp: fix rport unblock race with LUN recovery")
Cc: <stable@vger.kernel.org> #2.6.32+
Reviewed-by: Benjamin Block <bblock@linux.vnet.ibm.com>
Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com>
2017-10-16 22:45:26 -04:00
Martin Peschke f32c9e03d4 scsi: zfcp: early returns for traces disabled via level
This patch adds early checks to avoid burning CPU cycles on
the assembly of trace entries which would be skipped anyway.

Introduce a static const variable to keep the trace level to check with
debug_level_enabled() in sync with the actual trace emit with
debug_event(). In order not to refactor the SAN tracing too much,
simply use a define instead.

This change is only for the non / semi hot paths,
while the actual (I/O) hot path was already improved earlier:
zfcp_dbf_scsi() is already guarded by its only caller _zfcp_dbf_scsi()
since commit dcd20e2316 ("[SCSI] zfcp: Only collect SCSI debug data for
matching trace levels").
zfcp_dbf_hba_fsf_res() is already guarded by its only caller
zfcp_dbf_hba_fsf_response() since commit 2e261af84c ("[SCSI] zfcp: Only
collect FSF/HBA debug data for matching trace levels").

Signed-off-by: Martin Peschke <mpeschke@linux.vnet.ibm.com>
[maier@linux.vnet.ibm.com: rebase, reword, default level 3 branch prediction]
Signed-off-by: Steffen Maier <maier@linux.vnet.ibm.com>
Reviewed-by: Benjamin Block <bblock@linux.vnet.ibm.com>
Signed-off-by: Benjamin Block <bblock@linux.vnet.ibm.com>
Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com>
2017-08-10 19:37:03 -04:00
Martin Peschke b096ef863e scsi: zfcp: clean up unnecessary module_param_named() with no_auto_port_rescan
Improves commit 43f60cbd56 ("[SCSI] zfcp: No automatic port_rescan on
events")

Signed-off-by: Martin Peschke <mpeschke@linux.vnet.ibm.com>
[maier@linux.vnet.ibm.com: reword, underscore in description to match sysfs]
Signed-off-by: Steffen Maier <maier@linux.vnet.ibm.com>
Reviewed-by: Benjamin Block <bblock@linux.vnet.ibm.com>
Signed-off-by: Benjamin Block <bblock@linux.vnet.ibm.com>
Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com>
2017-08-10 19:37:03 -04:00
Martin Peschke 5ec2196060 scsi: zfcp: clean up a member of struct zfcp_qdio that was assigned but never used
v2.6.38 commit a54ca0f62f ("[SCSI] zfcp: Redesign of the debug tracing
for HBA records.")
dropped trace information previously introduced with
v2.6.27 commit c3baa9a26c ("[SCSI] zfcp: Add information about interrupt
to trace.")
but kept and needlessly assigned a now no longer used struct field.

Signed-off-by: Martin Peschke <mpeschke@linux.vnet.ibm.com>
[maier@linux.vnet.ibm.com: reword, added git history]
Signed-off-by: Steffen Maier <maier@linux.vnet.ibm.com>
Reviewed-by: Benjamin Block <bblock@linux.vnet.ibm.com>
Signed-off-by: Benjamin Block <bblock@linux.vnet.ibm.com>
Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com>
2017-08-10 19:37:02 -04:00
Steffen Maier 46e5ee1f74 scsi: zfcp: clean up no longer existent prototype from zfcp API header
Commit a54ca0f62f ("[SCSI] zfcp: Redesign of the debug tracing for HBA
records.") refactored zfcp_dbf_hba_berr into zfcp_dbf_hba_bit_err
but added the prototype for the latter without removing it for the former.

Suggested-by: Martin Peschke <mpeschke@linux.vnet.ibm.com>
Signed-off-by: Steffen Maier <maier@linux.vnet.ibm.com>
Reviewed-by: Benjamin Block <bblock@linux.vnet.ibm.com>
Signed-off-by: Benjamin Block <bblock@linux.vnet.ibm.com>
Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com>
2017-08-10 19:37:02 -04:00
Martin Peschke 5f03e98b0f scsi: zfcp: clean up redundant code with fall through in link down SRB switch case
Signed-off-by: Martin Peschke <mpeschke@linux.vnet.ibm.com>
[maier@linux.vnet.ibm.com: re-worded short description for more details]
Signed-off-by: Steffen Maier <maier@linux.vnet.ibm.com>
Reviewed-by: Benjamin Block <bblock@linux.vnet.ibm.com>
Signed-off-by: Benjamin Block <bblock@linux.vnet.ibm.com>
Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com>
2017-08-10 19:37:01 -04:00
Steffen Maier 5b2fc2a12c scsi: zfcp: fix kernel doc comment typos for struct zfcp_dbf_scsi
Improves commit 250a1352b9 ("[SCSI] zfcp: Redesign of the debug tracing
for SCSI records.")

Signed-off-by: Steffen Maier <maier@linux.vnet.ibm.com>
Reviewed-by: Benjamin Block <bblock@linux.vnet.ibm.com>
Signed-off-by: Benjamin Block <bblock@linux.vnet.ibm.com>
Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com>
2017-08-10 19:37:01 -04:00
Steffen Maier 9d464fc1b1 scsi: zfcp: use endianness conversions with common FC(P) struct fields
Just to silence sparse. Since zfcp only exists for s390 and
s390 is big endian, this has been working correctly without conversions
and all the new conversions are NOPs so no performance impact.

Nonetheless, use the conversion on the constant expression where possible.

NB: N_Port-IDs have always been handled with hton24 or ntoh24 conversions
because they also convert to / from character array.

Affected common code structs and .fields are:

HOT I/O PATH:
fcp_cmnd .fc_dl
   FCP command: regular SCSI I/O, including DIX case

SEMI-HOT I/O PATH:
fcp_cmnd .fc_dl
   recovery FCP command: task management function (LUN / target reset)
fcp_resp_ext
   FCP response having FCP_SNS_LEN_VAL with .fr_rsp_len .fr_sns_len
   FCP response having FCP_RESID_UNDER with .fr_resid

RECOVERY / DISCOVERY PATHS:
fc_ct_hdr .ct_cmd .ct_mr_size
   zfcp auto port scan [GPN_FT] with fc_gpn_ft_resp.fp_wwpn,
   recovery for returned port [GID_PN] with fc_ns_gid_pn.fn_wwpn,
   get symbolic port name [GSPN],
   register symbolic port name [RSPN] (NPIV only).
fc_els_rscn .rscn_plen
   incoming ELS (RSCN).
fc_els_flogi .fl_wwpn .fl_wwnn
   incoming ELS (PLOGI),
   port open response with .fl_csp.sp_bb_data .fl_cssp[0..3].cp_class,
   FCP channel physical port,
   point-to-point peer (P2P only).
fc_els_logo .fl_n_port_wwn
   incoming ELS (LOGO).
fc_els_adisc .adisc_wwnn .adisc_wwpn
   path test after RSCN for gone target port.

Since v4.10 commit 05de97003c ("linux/types.h: enable endian checks for
all sparse builds"), below sparse endianness reports appear by default.
Previously, one needed to pass argument CF="-D__CHECK_ENDIAN__" to make
as in: $ make C=1 CF="-D__CHECK_ENDIAN__" M=drivers/s390/scsi.

Silenced sparse warnings and one error:

$ make C=1 M=drivers/s390/scsi
...
  CHECK   drivers/s390/scsi/zfcp_dbf.c
drivers/s390/scsi/zfcp_dbf.c:463:22: warning: restricted __be16 degrades to integer
drivers/s390/scsi/zfcp_dbf.c:476:28: warning: restricted __be16 degrades to integer
  CC      drivers/s390/scsi/zfcp_dbf.o
...
  CHECK   drivers/s390/scsi/zfcp_fc.c
drivers/s390/scsi/zfcp_fc.c:263:26: warning: restricted __be16 degrades to integer
drivers/s390/scsi/zfcp_fc.c:299:41: warning: incorrect type in argument 2 (different base types)
drivers/s390/scsi/zfcp_fc.c:299:41:    expected unsigned long long [unsigned] [usertype] wwpn
drivers/s390/scsi/zfcp_fc.c:299:41:    got restricted __be64 [usertype] fl_wwpn
drivers/s390/scsi/zfcp_fc.c:309:40: warning: incorrect type in argument 2 (different base types)
drivers/s390/scsi/zfcp_fc.c:309:40:    expected unsigned long long [unsigned] [usertype] wwpn
drivers/s390/scsi/zfcp_fc.c:309:40:    got restricted __be64 [usertype] fl_n_port_wwn
drivers/s390/scsi/zfcp_fc.c:338:31: warning: restricted __be16 degrades to integer
drivers/s390/scsi/zfcp_fc.c:355:24: warning: incorrect type in assignment (different base types)
drivers/s390/scsi/zfcp_fc.c:355:24:    expected restricted __be16 [usertype] ct_cmd
drivers/s390/scsi/zfcp_fc.c:355:24:    got unsigned short [unsigned] [usertype] cmd
drivers/s390/scsi/zfcp_fc.c:356:28: warning: incorrect type in assignment (different base types)
drivers/s390/scsi/zfcp_fc.c:356:28:    expected restricted __be16 [usertype] ct_mr_size
drivers/s390/scsi/zfcp_fc.c:356:28:    got int
drivers/s390/scsi/zfcp_fc.c:379:36: warning: incorrect type in assignment (different base types)
drivers/s390/scsi/zfcp_fc.c:379:36:    expected restricted __be64 [usertype] fn_wwpn
drivers/s390/scsi/zfcp_fc.c:379:36:    got unsigned long long [unsigned] [usertype] wwpn
drivers/s390/scsi/zfcp_fc.c:463:18: warning: restricted __be64 degrades to integer
drivers/s390/scsi/zfcp_fc.c:465:17: warning: cast from restricted __be64
drivers/s390/scsi/zfcp_fc.c:473:20: warning: incorrect type in assignment (different base types)
drivers/s390/scsi/zfcp_fc.c:473:20:    expected unsigned long long [unsigned] [usertype] wwnn
drivers/s390/scsi/zfcp_fc.c:473:20:    got restricted __be64 [usertype] fl_wwnn
drivers/s390/scsi/zfcp_fc.c:474:29: warning: incorrect type in assignment (different base types)
drivers/s390/scsi/zfcp_fc.c:474:29:    expected unsigned int [unsigned] [usertype] maxframe_size
drivers/s390/scsi/zfcp_fc.c:474:29:    got restricted __be16 [usertype] sp_bb_data
drivers/s390/scsi/zfcp_fc.c:476:30: warning: restricted __be16 degrades to integer
drivers/s390/scsi/zfcp_fc.c:478:30: warning: restricted __be16 degrades to integer
drivers/s390/scsi/zfcp_fc.c:480:30: warning: restricted __be16 degrades to integer
drivers/s390/scsi/zfcp_fc.c:482:30: warning: restricted __be16 degrades to integer
drivers/s390/scsi/zfcp_fc.c:500:28: warning: incorrect type in assignment (different base types)
drivers/s390/scsi/zfcp_fc.c:500:28:    expected unsigned long long [unsigned] [usertype] wwnn
drivers/s390/scsi/zfcp_fc.c:500:28:    got restricted __be64 [usertype] adisc_wwnn
drivers/s390/scsi/zfcp_fc.c:502:38: warning: restricted __be64 degrades to integer
drivers/s390/scsi/zfcp_fc.c:541:40: warning: incorrect type in assignment (different base types)
drivers/s390/scsi/zfcp_fc.c:541:40:    expected restricted __be64 [usertype] adisc_wwpn
drivers/s390/scsi/zfcp_fc.c:541:40:    got unsigned long long [unsigned] [usertype] port_name
drivers/s390/scsi/zfcp_fc.c:542:40: warning: incorrect type in assignment (different base types)
drivers/s390/scsi/zfcp_fc.c:542:40:    expected restricted __be64 [usertype] adisc_wwnn
drivers/s390/scsi/zfcp_fc.c:542:40:    got unsigned long long [unsigned] [usertype] node_name
drivers/s390/scsi/zfcp_fc.c:669:16: warning: restricted __be16 degrades to integer
drivers/s390/scsi/zfcp_fc.c:696:24: warning: restricted __be64 degrades to integer
drivers/s390/scsi/zfcp_fc.c:699:54: warning: incorrect type in argument 2 (different base types)
drivers/s390/scsi/zfcp_fc.c:699:54:    expected unsigned long long [unsigned] [usertype] <noident>
drivers/s390/scsi/zfcp_fc.c:699:54:    got restricted __be64 [usertype] fp_wwpn
  CC      drivers/s390/scsi/zfcp_fc.o
  CHECK   drivers/s390/scsi/zfcp_fsf.c
drivers/s390/scsi/zfcp_fsf.c:479:34: warning: incorrect type in assignment (different base types)
drivers/s390/scsi/zfcp_fsf.c:479:34:    expected unsigned long long [unsigned] [usertype] port_name
drivers/s390/scsi/zfcp_fsf.c:479:34:    got restricted __be64 [usertype] fl_wwpn
drivers/s390/scsi/zfcp_fsf.c:480:34: warning: incorrect type in assignment (different base types)
drivers/s390/scsi/zfcp_fsf.c:480:34:    expected unsigned long long [unsigned] [usertype] node_name
drivers/s390/scsi/zfcp_fsf.c:480:34:    got restricted __be64 [usertype] fl_wwnn
drivers/s390/scsi/zfcp_fsf.c:506:36: warning: incorrect type in assignment (different base types)
drivers/s390/scsi/zfcp_fsf.c:506:36:    expected unsigned long long [unsigned] [usertype] peer_wwpn
drivers/s390/scsi/zfcp_fsf.c:506:36:    got restricted __be64 [usertype] fl_wwpn
drivers/s390/scsi/zfcp_fsf.c:507:36: warning: incorrect type in assignment (different base types)
drivers/s390/scsi/zfcp_fsf.c:507:36:    expected unsigned long long [unsigned] [usertype] peer_wwnn
drivers/s390/scsi/zfcp_fsf.c:507:36:    got restricted __be64 [usertype] fl_wwnn
drivers/s390/scsi/zfcp_fc.h:269:46: warning: restricted __be32 degrades to integer
drivers/s390/scsi/zfcp_fc.h:270:29: error: incompatible types in comparison expression (different base types)

Signed-off-by: Steffen Maier <maier@linux.vnet.ibm.com>
Reviewed-by: Benjamin Block <bblock@linux.vnet.ibm.com>
Signed-off-by: Benjamin Block <bblock@linux.vnet.ibm.com>
Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com>
2017-08-10 19:37:00 -04:00
Steffen Maier df00d7b8d5 scsi: zfcp: use common code fcp_cmnd and fcp_resp with union in fsf_qtcb_bottom_io
This eases crash dump analysis by automatically dissecting these
protocol headers at least somewhat rather than getting a string
interpretation of large unstructured character array buffer fields.

Also, we can get rid of some unnecessary and error-prone type casts.

This change is possible since v2.6.33 commit 4318e08c84
("[SCSI] zfcp: Update FCP protocol related code").

Signed-off-by: Steffen Maier <maier@linux.vnet.ibm.com>
Reviewed-by: Benjamin Block <bblock@linux.vnet.ibm.com>
Signed-off-by: Benjamin Block <bblock@linux.vnet.ibm.com>
Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com>
2017-08-10 19:37:00 -04:00
Steffen Maier 394134fd9f scsi: zfcp: clarify that we don't need "link" test on failed open port
Signed-off-by: Steffen Maier <maier@linux.vnet.ibm.com>
Reviewed-by: Benjamin Block <bblock@linux.vnet.ibm.com>
Signed-off-by: Benjamin Block <bblock@linux.vnet.ibm.com>
Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com>
2017-08-10 19:36:59 -04:00
Steffen Maier ab8ab4be78 scsi: zfcp: more fitting constant for fc_ct_hdr.ct_reason on port scan response
v2.6.33 commit dbf5dfe9db ("[SCSI] zfcp: Use common code definitions for
FC CT structs") replaced own definitions with common code definitions.
While FC_BA_RJT_UNABLE happens to be defined with the same value 9 as
FC_FS_RJT_UNABL and thus also works, here we should use the latter from
fc_gs.h.
See also its use in libfc's fc_disc_gpn_ft_resp().

Signed-off-by: Steffen Maier <maier@linux.vnet.ibm.com>
Reviewed-by: Benjamin Block <bblock@linux.vnet.ibm.com>
Signed-off-by: Benjamin Block <bblock@linux.vnet.ibm.com>
Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com>
2017-08-10 19:36:59 -04:00
Steffen Maier 5d4a3d0a2f scsi: zfcp: trace high part of "new" 64 bit SCSI LUN
Complements debugging aspects of the otherwise functionally complete
v3.17 commit 9cb78c16f5 ("scsi: use 64-bit LUNs").

While I don't have access to a target exporting 3 or 4 level LUNs,
I did test it by explicitly attaching a non-existent fake 4 level LUN
by means of zfcp sysfs attribute "unit_add".
In order to see corresponding trace records of otherwise successful
events, we had to increase the trace level of area SCSI and HBA to 6.

$ echo 6 > /sys/kernel/debug/s390dbf/zfcp_0.0.1880_scsi/level
$ echo 6 > /sys/kernel/debug/s390dbf/zfcp_0.0.1880_hba/level

$ echo 0x4011402240334044 > \
  /sys/bus/ccw/drivers/zfcp/0.0.1880/0x50050763031bd327/unit_add

Example output formatted by an updated zfcpdbf from the s390-tools
package interspersed with kernel messages at scsi_logging_level=4605:

Timestamp      : ...
Area           : REC
Subarea        : 00
Level          : 1
Exception      : -
CPU ID         : ..
Caller         : 0x...
Record ID      : 1
Tag            : scsla_1
LUN            : 0x4011402240334044
WWPN           : 0x50050763031bd327
D_ID           : 0x00......
Adapter status : 0x5400050b
Port status    : 0x54000001
LUN status     : 0x41000000
Ready count    : 0x00000001
Running count  : 0x00000000
ERP want       : 0x01
ERP need       : 0x01

scsi 2:0:0:4630896905707208721: scsi scan: INQUIRY pass 1 length 36
scsi 2:0:0:4630896905707208721: scsi scan: INQUIRY successful with code 0x0

Timestamp      : ...
Area           : HBA
Subarea        : 00
Level          : 6
Exception      : -
CPU ID         : ..
Caller         : 0x...
Record ID      : 1
Tag            : fs_norm
Request ID     : 0x<inquiry2-req-id>
Request status : 0x00000010
FSF cmnd       : 0x00000001
FSF sequence no: 0x...
FSF issued     : ...
FSF stat       : 0x00000000
FSF stat qual  : 00000000 00000000 00000000 00000000
Prot stat      : 0x00000001
Prot stat qual : ........ ........ 00000000 00000000
Port handle    : 0x...
LUN handle     : 0x...
|
Timestamp      : ...
Area           : SCSI
Subarea        : 00
Level          : 6
Exception      : -
CPU ID         : ..
Caller         : 0x...
Record ID      : 1
Tag            : rsl_nor
Request ID     : 0x<inquiry2-req-id>
SCSI ID        : 0x00000000
SCSI LUN       : 0x40224011
SCSI LUN high  : 0x40444033 <=======================
SCSI result    : 0x00000000
SCSI retries   : 0x00
SCSI allowed   : 0x03
SCSI scribble  : 0x<inquiry2-req-id>
SCSI opcode    : 12000000 a4000000 00000000 00000000
FCP rsp inf cod: 0x00
FCP rsp IU     : 00000000 00000000 00000000 00000000
                 00000000 00000000

scsi 2:0:0:4630896905707208721: scsi scan: INQUIRY pass 2 length 164
scsi 2:0:0:4630896905707208721: scsi scan: INQUIRY successful with code 0x0
scsi 2:0:0:4630896905707208721: scsi scan: peripheral device type of 31, \
no device added

Signed-off-by: Steffen Maier <maier@linux.vnet.ibm.com>
Fixes: 9cb78c16f5 ("scsi: use 64-bit LUNs")
Cc: <stable@vger.kernel.org> #3.17+
Reviewed-by: Benjamin Block <bblock@linux.vnet.ibm.com>
Reviewed-by: Jens Remus <jremus@linux.vnet.ibm.com>
Signed-off-by: Benjamin Block <bblock@linux.vnet.ibm.com>
Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com>
2017-08-10 19:36:58 -04:00
Steffen Maier fdb7cee3b9 scsi: zfcp: trace HBA FSF response by default on dismiss or timedout late response
At the default trace level, we only trace unsuccessful events including
FSF responses.

zfcp_dbf_hba_fsf_response() only used protocol status and FSF status to
decide on an unsuccessful response. However, this is only one of multiple
possible sources determining a failed struct zfcp_fsf_req.

An FSF request can also "fail" if its response runs into an ERP timeout
or if it gets dismissed because a higher level recovery was triggered
[trace tags "erscf_1" or "erscf_2" in zfcp_erp_strategy_check_fsfreq()].
FSF requests with ERP timeout are:
FSF_QTCB_EXCHANGE_CONFIG_DATA, FSF_QTCB_EXCHANGE_PORT_DATA,
FSF_QTCB_OPEN_PORT_WITH_DID or FSF_QTCB_CLOSE_PORT or
FSF_QTCB_CLOSE_PHYSICAL_PORT for target ports,
FSF_QTCB_OPEN_LUN, FSF_QTCB_CLOSE_LUN.
One example is slow queue processing which can cause follow-on errors,
e.g. FSF_PORT_ALREADY_OPEN after FSF_QTCB_OPEN_PORT_WITH_DID timed out.
In order to see the root cause, we need to see late responses even if the
channel presented them successfully with FSF_PROT_GOOD and FSF_GOOD.
Example trace records formatted with zfcpdbf from the s390-tools package:

Timestamp      : ...
Area           : REC
Subarea        : 00
Level          : 1
Exception      : -
CPU ID         : ..
Caller         : ...
Record ID      : 1
Tag            : fcegpf1
LUN            : 0xffffffffffffffff
WWPN           : 0x<WWPN>
D_ID           : 0x00<D_ID>
Adapter status : 0x5400050b
Port status    : 0x41200000
LUN status     : 0x00000000
Ready count    : 0x00000001
Running count  : 0x...
ERP want       : 0x02				ZFCP_ERP_ACTION_REOPEN_PORT
ERP need       : 0x02				ZFCP_ERP_ACTION_REOPEN_PORT
|
Timestamp      : ...				30 seconds later
Area           : REC
Subarea        : 00
Level          : 1
Exception      : -
CPU ID         : ..
Caller         : ...
Record ID      : 2
Tag            : erscf_2
LUN            : 0xffffffffffffffff
WWPN           : 0x<WWPN>
D_ID           : 0x00<D_ID>
Adapter status : 0x5400050b
Port status    : 0x41200000
LUN status     : 0x00000000
Request ID     : 0x<request_ID>
ERP status     : 0x10000000			ZFCP_STATUS_ERP_TIMEDOUT
ERP step       : 0x0800				ZFCP_ERP_STEP_PORT_OPENING
ERP action     : 0x02				ZFCP_ERP_ACTION_REOPEN_PORT
ERP count      : 0x00
|
Timestamp      : ...				later than previous record
Area           : HBA
Subarea        : 00
Level          : 5	> default level		=> 3	<= default level
Exception      : -
CPU ID         : 00
Caller         : ...
Record ID      : 1
Tag            : fs_qtcb			=> fs_rerr
Request ID     : 0x<request_ID>
Request status : 0x00001010			ZFCP_STATUS_FSFREQ_DISMISSED
						| ZFCP_STATUS_FSFREQ_CLEANUP
FSF cmnd       : 0x00000005
FSF sequence no: 0x...
FSF issued     : ...				> 30 seconds ago
FSF stat       : 0x00000000			FSF_GOOD
FSF stat qual  : 00000000 00000000 00000000 00000000
Prot stat      : 0x00000001			FSF_PROT_GOOD
Prot stat qual : 00000000 00000000 00000000 00000000
Port handle    : 0x...
LUN handle     : 0x00000000
QTCB log length: ...
QTCB log info  : ...

In case of problems detecting that new responses are waiting on the input
queue, we sooner or later trigger adapter recovery due to an FSF request
timeout (trace tag "fsrth_1").
FSF requests with FSF request timeout are:
typically FSF_QTCB_ABORT_FCP_CMND; but theoretically also
FSF_QTCB_EXCHANGE_CONFIG_DATA or FSF_QTCB_EXCHANGE_PORT_DATA via sysfs,
FSF_QTCB_OPEN_PORT_WITH_DID or FSF_QTCB_CLOSE_PORT for WKA ports,
FSF_QTCB_FCP_CMND for task management function (LUN / target reset).
One or more pending requests can meanwhile have FSF_PROT_GOOD and FSF_GOOD
because the channel filled in the response via DMA into the request's QTCB.

In a theroretical case, inject code can create an erroneous FSF request
on purpose. If data router is enabled, it uses deferred error reporting.
A READ SCSI command can succeed with FSF_PROT_GOOD, FSF_GOOD, and
SAM_STAT_GOOD. But on writing the read data to host memory via DMA,
it can still fail, e.g. if an intentionally wrong scatter list does not
provide enough space. Rather than getting an unsuccessful response,
we get a QDIO activate check which in turn triggers adapter recovery.
One or more pending requests can meanwhile have FSF_PROT_GOOD and FSF_GOOD
because the channel filled in the response via DMA into the request's QTCB.
Example trace records formatted with zfcpdbf from the s390-tools package:

Timestamp      : ...
Area           : HBA
Subarea        : 00
Level          : 6	> default level		=> 3	<= default level
Exception      : -
CPU ID         : ..
Caller         : ...
Record ID      : 1
Tag            : fs_norm			=> fs_rerr
Request ID     : 0x<request_ID2>
Request status : 0x00001010			ZFCP_STATUS_FSFREQ_DISMISSED
						| ZFCP_STATUS_FSFREQ_CLEANUP
FSF cmnd       : 0x00000001
FSF sequence no: 0x...
FSF issued     : ...
FSF stat       : 0x00000000			FSF_GOOD
FSF stat qual  : 00000000 00000000 00000000 00000000
Prot stat      : 0x00000001			FSF_PROT_GOOD
Prot stat qual : ........ ........ 00000000 00000000
Port handle    : 0x...
LUN handle     : 0x...
|
Timestamp      : ...
Area           : SCSI
Subarea        : 00
Level          : 3
Exception      : -
CPU ID         : ..
Caller         : ...
Record ID      : 1
Tag            : rsl_err
Request ID     : 0x<request_ID2>
SCSI ID        : 0x...
SCSI LUN       : 0x...
SCSI result    : 0x000e0000			DID_TRANSPORT_DISRUPTED
SCSI retries   : 0x00
SCSI allowed   : 0x05
SCSI scribble  : 0x<request_ID2>
SCSI opcode    : 28...				Read(10)
FCP rsp inf cod: 0x00
FCP rsp IU     : 00000000 00000000 00000000 00000000
                                         ^^	SAM_STAT_GOOD
                 00000000 00000000

Only with luck in both above cases, we could see a follow-on trace record
of an unsuccesful event following a successful but late FSF response with
FSF_PROT_GOOD and FSF_GOOD. Typically this was the case for I/O requests
resulting in a SCSI trace record "rsl_err" with DID_TRANSPORT_DISRUPTED
[On ZFCP_STATUS_FSFREQ_DISMISSED, zfcp_fsf_protstatus_eval() sets
ZFCP_STATUS_FSFREQ_ERROR seen by the request handler functions as failure].
However, the reason for this follow-on trace was invisible because the
corresponding HBA trace record was missing at the default trace level
(by default hidden records with tags "fs_norm", "fs_qtcb", or "fs_open").

On adapter recovery, after we had shut down the QDIO queues, we perform
unsuccessful pseudo completions with flag ZFCP_STATUS_FSFREQ_DISMISSED
for each pending FSF request in zfcp_fsf_req_dismiss_all().
In order to find the root cause, we need to see all pseudo responses even
if the channel presented them successfully with FSF_PROT_GOOD and FSF_GOOD.

Therefore, check zfcp_fsf_req.status for ZFCP_STATUS_FSFREQ_DISMISSED
or ZFCP_STATUS_FSFREQ_ERROR and trace with a new tag "fs_rerr".

It does not matter that there are numerous places which set
ZFCP_STATUS_FSFREQ_ERROR after the location where we trace an FSF response
early. These cases are based on protocol status != FSF_PROT_GOOD or
== FSF_PROT_FSF_STATUS_PRESENTED and are thus already traced by default
as trace tag "fs_perr" or "fs_ferr" respectively.

NB: The trace record with tag "fssrh_1" for status read buffers on dismiss
all remains. zfcp_fsf_req_complete() handles this and returns early.
All other FSF request types are handled separately and as described above.

Signed-off-by: Steffen Maier <maier@linux.vnet.ibm.com>
Fixes: 8a36e4532e ("[SCSI] zfcp: enhancement of zfcp debug features")
Fixes: 2e261af84c ("[SCSI] zfcp: Only collect FSF/HBA debug data for matching trace levels")
Cc: <stable@vger.kernel.org> #2.6.38+
Reviewed-by: Benjamin Block <bblock@linux.vnet.ibm.com>
Signed-off-by: Benjamin Block <bblock@linux.vnet.ibm.com>
Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com>
2017-08-10 19:36:57 -04:00