Граф коммитов

10448 Коммитов

Автор SHA1 Сообщение Дата
Filipe Manana 69dfa5a2e8 btrfs: fix space cache inconsistency after error loading it from disk
commit 0004ff15ea upstream.

When loading a free space cache from disk, at __load_free_space_cache(),
if we fail to insert a bitmap entry, we still increment the number of
total bitmaps in the btrfs_free_space_ctl structure, which is incorrect
since we failed to add the bitmap entry. On error we then empty the
cache by calling __btrfs_remove_free_space_cache(), which will result
in getting the total bitmaps counter set to 1.

A failure to load a free space cache is not critical, so if a failure
happens we just rebuild the cache by scanning the extent tree, which
happens at block-group.c:caching_thread(). Yet the failure will result
in having the total bitmaps of the btrfs_free_space_ctl always bigger
by 1 then the number of bitmap entries we have. So fix this by having
the total bitmaps counter be incremented only if we successfully added
the bitmap entry.

Fixes: a67509c300 ("Btrfs: add a io_ctl struct and helpers for dealing with the space cache")
Reviewed-by: Anand Jain <anand.jain@oracle.com>
CC: stable@vger.kernel.org # 4.4+
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2023-05-17 11:50:22 +02:00
Anastasia Belova e0710a4979 btrfs: print-tree: parent bytenr must be aligned to sector size
commit c87f318e6f upstream.

Check nodesize to sectorsize in alignment check in print_extent_item.
The comment states that and this is correct, similar check is done
elsewhere in the functions.

Found by Linux Verification Center (linuxtesting.org) with SVACE.

Fixes: ea57788eb7 ("btrfs: require only sector size alignment for parent eb bytenr")
CC: stable@vger.kernel.org # 4.14+
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Anastasia Belova <abelova@astralinux.ru>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2023-05-17 11:50:22 +02:00
Christoph Hellwig bcc401bb86 btrfs: zero the buffer before marking it dirty in btrfs_redirty_list_add
commit c83b56d1dd upstream.

btrfs_redirty_list_add zeroes the buffer data and sets the
EXTENT_BUFFER_NO_CHECK to make sure writeback is fine with a bogus
header.  But it does that after already marking the buffer dirty, which
means that writeback could already be looking at the buffer.

Switch the order of operations around so that the buffer is only marked
dirty when we're ready to write it.

Fixes: d3575156f6 ("btrfs: zoned: redirty released extent buffers")
CC: stable@vger.kernel.org # 5.15+
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2023-05-17 11:50:22 +02:00
Josef Bacik f264be2414 btrfs: don't free qgroup space unless specified
commit d246331b78 upstream.

Boris noticed in his simple quotas testing that he was getting a leak
with Sweet Tea's change to subvol create that stopped doing a
transaction commit.  This was just a side effect of that change.

In the delayed inode code we have an optimization that will free extra
reservations if we think we can pack a dir item into an already modified
leaf.  Previously this wouldn't be triggered in the subvolume create
case because we'd commit the transaction, it was still possible but
much harder to trigger.  It could actually be triggered if we did a
mkdir && subvol create with qgroups enabled.

This occurs because in btrfs_insert_delayed_dir_index(), which gets
called when we're adding the dir item, we do the following:

  btrfs_block_rsv_release(fs_info, trans->block_rsv, bytes, NULL);

if we're able to skip reserving space.

The problem here is that trans->block_rsv points at the temporary block
rsv for the subvolume create, which has qgroup reservations in the block
rsv.

This is a problem because btrfs_block_rsv_release() will do the
following:

  if (block_rsv->qgroup_rsv_reserved >= block_rsv->qgroup_rsv_size) {
	  qgroup_to_release = block_rsv->qgroup_rsv_reserved -
		  block_rsv->qgroup_rsv_size;
	  block_rsv->qgroup_rsv_reserved = block_rsv->qgroup_rsv_size;
  }

The temporary block rsv just has ->qgroup_rsv_reserved set,
->qgroup_rsv_size == 0.  The optimization in
btrfs_insert_delayed_dir_index() sets ->qgroup_rsv_reserved = 0.  Then
later on when we call btrfs_subvolume_release_metadata() which has

  btrfs_block_rsv_release(fs_info, rsv, (u64)-1, &qgroup_to_release);
  btrfs_qgroup_convert_reserved_meta(root, qgroup_to_release);

qgroup_to_release is set to 0, and we do not convert the reserved
metadata space.

The problem here is that the block rsv code has been unconditionally
messing with ->qgroup_rsv_reserved, because the main place this is used
is delalloc, and any time we call btrfs_block_rsv_release() we do it
with qgroup_to_release set, and thus do the proper accounting.

The subvolume code is the only other code that uses the qgroup
reservation stuff, but it's intermingled with the above optimization,
and thus was getting its reservation freed out from underneath it and
thus leaking the reserved space.

The solution is to simply not mess with the qgroup reservations if we
don't have qgroup_to_release set.  This works with the existing code as
anything that messes with the delalloc reservations always have
qgroup_to_release set.  This fixes the leak that Boris was observing.

Reviewed-by: Qu Wenruo <wqu@suse.com>
CC: stable@vger.kernel.org # 5.4+
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2023-05-17 11:50:21 +02:00
Boris Burkov 29478148bb btrfs: fix encoded write i_size corruption with no-holes
commit e7db9e5c6b upstream.

We have observed a btrfs filesystem corruption on workloads using
no-holes and encoded writes via send stream v2. The symptom is that a
file appears to be truncated to the end of its last aligned extent, even
though the final unaligned extent and even the file extent and otherwise
correctly updated inode item have been written.

So if we were writing out a 1MiB+X file via 8 128K extents and one
extent of length X, i_size would be set to 1MiB, but the ninth extent,
nbyte, etc. would all appear correct otherwise.

The source of the race is a narrow (one line of code) window in which a
no-holes fs has read in an updated i_size, but has not yet set a shared
disk_i_size variable to write. Therefore, if two ordered extents run in
parallel (par for the course for receive workloads), the following
sequence can play out: (following "threads" a bit loosely, since there
are callbacks involved for endio but extra threads aren't needed to
cause the issue)

  ENC-WR1 (second to last)                                         ENC-WR2 (last)
  -------                                                          -------
  btrfs_do_encoded_write
    set i_size = 1M
    submit bio B1 ending at 1M
  endio B1
  btrfs_inode_safe_disk_i_size_write
    local i_size = 1M
    falls off a cliff for some reason
							      btrfs_do_encoded_write
								set i_size = 1M+X
								submit bio B2 ending at 1M+X
							      endio B2
							      btrfs_inode_safe_disk_i_size_write
								local i_size = 1M+X
								disk_i_size = 1M+X
    disk_i_size = 1M
							      btrfs_delayed_update_inode
    btrfs_delayed_update_inode

And the delayed inode ends up filled with nbytes=1M+X and isize=1M, and
writes respect i_size and present a corrupted file missing its last
extents.

Fix this by holding the inode lock in the no-holes case so that a thread
can't sneak in a write to disk_i_size that gets overwritten with an out
of date i_size.

Fixes: 41a2ee75aa ("btrfs: introduce per-inode file extent tree")
CC: stable@vger.kernel.org # 5.10+
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Boris Burkov <boris@bur.io>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2023-05-17 11:50:21 +02:00
Naohiro Aota 91f585024e btrfs: zoned: fix wrong use of bitops API in btrfs_ensure_empty_zones
commit 631003e233 upstream.

find_next_bit and find_next_zero_bit take @size as the second parameter and
@offset as the third parameter. They are specified opposite in
btrfs_ensure_empty_zones(). Thanks to the later loop, it never failed to
detect the empty zones. Fix them and (maybe) return the result a bit
faster.

Note: the naming is a bit confusing, size has two meanings here, bitmap
and our range size.

Fixes: 1cd6121f2a ("btrfs: zoned: implement zoned chunk allocator")
CC: stable@vger.kernel.org # 5.15+
Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2023-05-17 11:50:21 +02:00
Filipe Manana 77c6323dad btrfs: fix btrfs_prev_leaf() to not return the same key twice
commit 6f932d4ef0 upstream.

A call to btrfs_prev_leaf() may end up returning a path that points to the
same item (key) again. This happens if while btrfs_prev_leaf(), after we
release the path, a concurrent insertion happens, which moves items off
from a sibling into the front of the previous leaf, and an item with the
computed previous key does not exists.

For example, suppose we have the two following leaves:

  Leaf A

  -------------------------------------------------------------
  | ...   key (300 96 10)   key (300 96 15)   key (300 96 16) |
  -------------------------------------------------------------
              slot 20             slot 21             slot 22

  Leaf B

  -------------------------------------------------------------
  | key (300 96 20)   key (300 96 21)   key (300 96 22)   ... |
  -------------------------------------------------------------
      slot 0             slot 1             slot 2

If we call btrfs_prev_leaf(), from btrfs_previous_item() for example, with
a path pointing to leaf B and slot 0 and the following happens:

1) At btrfs_prev_leaf() we compute the previous key to search as:
   (300 96 19), which is a key that does not exists in the tree;

2) Then we call btrfs_release_path() at btrfs_prev_leaf();

3) Some other task inserts a key at leaf A, that sorts before the key at
   slot 20, for example it has an objectid of 299. In order to make room
   for the new key, the key at slot 22 is moved to the front of leaf B.
   This happens at push_leaf_right(), called from split_leaf().

   After this leaf B now looks like:

  --------------------------------------------------------------------------------
  | key (300 96 16)    key (300 96 20)   key (300 96 21)   key (300 96 22)   ... |
  --------------------------------------------------------------------------------
       slot 0              slot 1             slot 2             slot 3

4) At btrfs_prev_leaf() we call btrfs_search_slot() for the computed
   previous key: (300 96 19). Since the key does not exists,
   btrfs_search_slot() returns 1 and with a path pointing to leaf B
   and slot 1, the item with key (300 96 20);

5) This makes btrfs_prev_leaf() return a path that points to slot 1 of
   leaf B, the same key as before it was called, since the key at slot 0
   of leaf B (300 96 16) is less than the computed previous key, which is
   (300 96 19);

6) As a consequence btrfs_previous_item() returns a path that points again
   to the item with key (300 96 20).

For some users of btrfs_prev_leaf() or btrfs_previous_item() this may not
be functional a problem, despite not making sense to return a new path
pointing again to the same item/key. However for a caller such as
tree-log.c:log_dir_items(), this has a bad consequence, as it can result
in not logging some dir index deletions in case the directory is being
logged without holding the inode's VFS lock (logging triggered while
logging a child inode for example) - for the example scenario above, in
case the dir index keys 17, 18 and 19 were deleted in the current
transaction.

CC: stable@vger.kernel.org # 4.14+
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2023-05-17 11:50:21 +02:00
Qu Wenruo ed7e8beb20 btrfs: scrub: reject unsupported scrub flags
commit 604e6681e1 upstream.

Since the introduction of scrub interface, the only flag that we support
is BTRFS_SCRUB_READONLY.  Thus there is no sanity checks, if there are
some undefined flags passed in, we just ignore them.

This is problematic if we want to introduce new scrub flags, as we have
no way to determine if such flags are supported.

Address the problem by introducing a check for the flags, and if
unsupported flags are set, return -EOPNOTSUPP to inform the user space.

This check should be backported for all supported kernels before any new
scrub flags are introduced.

CC: stable@vger.kernel.org # 4.14+
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2023-05-11 23:00:39 +09:00
Christoph Hellwig a55a95365e btrfs: fix fast csum implementation detection
commit 68d99ab0e9 upstream.

The BTRFS_FS_CSUM_IMPL_FAST flag is currently set whenever a non-generic
crc32c is detected, which is the incorrect check if the file system uses
a different checksumming algorithm.  Refactor the code to only check
this if crc32c is actually used.  Note that in an ideal world the
information if an algorithm is hardware accelerated or not should be
provided by the crypto API instead, but that's left for another day.

CC: stable@vger.kernel.org # 5.4.x: c8a5f8ca9a9c: btrfs: print checksum type and implementation at mount time
CC: stable@vger.kernel.org # 5.4.x
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2023-04-20 12:13:52 +02:00
David Sterba 6da03c237d btrfs: print checksum type and implementation at mount time
commit c8a5f8ca9a upstream.

Per user request, print the checksum type and implementation at mount
time among the messages. The checksum is user configurable and the
actual crypto implementation is useful to see for performance reasons.
The same information is also available after mount in
/sys/fs/FSID/checksum file.

Example:

  [25.323662] BTRFS info (device vdb): using sha256 (sha256-generic) checksum algorithm

Link: https://github.com/kdave/btrfs-progs/issues/483
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2023-04-20 12:13:52 +02:00
Anand Jain c1310fc7ab btrfs: scan device in non-exclusive mode
commit 50d281fc43 upstream.

This fixes mkfs/mount/check failures due to race with systemd-udevd
scan.

During the device scan initiated by systemd-udevd, other user space
EXCL operations such as mkfs, mount, or check may get blocked and result
in a "Device or resource busy" error. This is because the device
scan process opens the device with the EXCL flag in the kernel.

Two reports were received:

 - btrfs/179 test case, where the fsck command failed with the -EBUSY
   error

 - LTP pwritev03 test case, where mkfs.vfs failed with
   the -EBUSY error, when mkfs.vfs tried to overwrite old btrfs filesystem
   on the device.

In both cases, fsck and mkfs (respectively) were racing with a
systemd-udevd device scan, and systemd-udevd won, resulting in the
-EBUSY error for fsck and mkfs.

Reproducing the problem has been difficult because there is a very
small window during which these userspace threads can race to
acquire the exclusive device open. Even on the system where the problem
was observed, the problem occurrences were anywhere between 10 to 400
iterations and chances of reproducing decreases with debug printk()s.

However, an exclusive device open is unnecessary for the scan process,
as there are no write operations on the device during scan. Furthermore,
during the mount process, the superblock is re-read in the below
function call chain:

  btrfs_mount_root
   btrfs_open_devices
    open_fs_devices
     btrfs_open_one_device
       btrfs_get_bdev_and_sb

So, to fix this issue, removes the FMODE_EXCL flag from the scan
operation, and add a comment.

The case where mkfs may still write to the device and a scan is running,
the btrfs signature is not written at that time so scan will not
recognize such device.

Reported-by: Sherry Yang <sherry.yang@oracle.com>
Reported-by: kernel test robot <oliver.sang@intel.com>
Link: https://lore.kernel.org/oe-lkp/202303170839.fdf23068-oliver.sang@intel.com
CC: stable@vger.kernel.org # 5.4+
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2023-04-05 11:24:59 +02:00
Filipe Manana c976f9233e btrfs: fix race between quota disable and quota assign ioctls
commit 2f1a6be12a upstream.

The quota assign ioctl can currently run in parallel with a quota disable
ioctl call. The assign ioctl uses the quota root, while the disable ioctl
frees that root, and therefore we can have a use-after-free triggered in
the assign ioctl, leading to a trace like the following when KASAN is
enabled:

  [672.723][T736] BUG: KASAN: slab-use-after-free in btrfs_search_slot+0x2962/0x2db0
  [672.723][T736] Read of size 8 at addr ffff888022ec0208 by task btrfs_search_sl/27736
  [672.724][T736]
  [672.725][T736] CPU: 1 PID: 27736 Comm: btrfs_search_sl Not tainted 6.3.0-rc3 #37
  [672.723][T736] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.15.0-1 04/01/2014
  [672.727][T736] Call Trace:
  [672.728][T736]  <TASK>
  [672.728][T736]  dump_stack_lvl+0xd9/0x150
  [672.725][T736]  print_report+0xc1/0x5e0
  [672.720][T736]  ? __virt_addr_valid+0x61/0x2e0
  [672.727][T736]  ? __phys_addr+0xc9/0x150
  [672.725][T736]  ? btrfs_search_slot+0x2962/0x2db0
  [672.722][T736]  kasan_report+0xc0/0xf0
  [672.729][T736]  ? btrfs_search_slot+0x2962/0x2db0
  [672.724][T736]  btrfs_search_slot+0x2962/0x2db0
  [672.723][T736]  ? fs_reclaim_acquire+0xba/0x160
  [672.722][T736]  ? split_leaf+0x13d0/0x13d0
  [672.726][T736]  ? rcu_is_watching+0x12/0xb0
  [672.723][T736]  ? kmem_cache_alloc+0x338/0x3c0
  [672.722][T736]  update_qgroup_status_item+0xf7/0x320
  [672.724][T736]  ? add_qgroup_rb+0x3d0/0x3d0
  [672.739][T736]  ? do_raw_spin_lock+0x12d/0x2b0
  [672.730][T736]  ? spin_bug+0x1d0/0x1d0
  [672.737][T736]  btrfs_run_qgroups+0x5de/0x840
  [672.730][T736]  ? btrfs_qgroup_rescan_worker+0xa70/0xa70
  [672.738][T736]  ? __del_qgroup_relation+0x4ba/0xe00
  [672.738][T736]  btrfs_ioctl+0x3d58/0x5d80
  [672.735][T736]  ? tomoyo_path_number_perm+0x16a/0x550
  [672.737][T736]  ? tomoyo_execute_permission+0x4a0/0x4a0
  [672.731][T736]  ? btrfs_ioctl_get_supported_features+0x50/0x50
  [672.737][T736]  ? __sanitizer_cov_trace_switch+0x54/0x90
  [672.734][T736]  ? do_vfs_ioctl+0x132/0x1660
  [672.730][T736]  ? vfs_fileattr_set+0xc40/0xc40
  [672.730][T736]  ? _raw_spin_unlock_irq+0x2e/0x50
  [672.732][T736]  ? sigprocmask+0xf2/0x340
  [672.737][T736]  ? __fget_files+0x26a/0x480
  [672.732][T736]  ? bpf_lsm_file_ioctl+0x9/0x10
  [672.738][T736]  ? btrfs_ioctl_get_supported_features+0x50/0x50
  [672.736][T736]  __x64_sys_ioctl+0x198/0x210
  [672.736][T736]  do_syscall_64+0x39/0xb0
  [672.731][T736]  entry_SYSCALL_64_after_hwframe+0x63/0xcd
  [672.739][T736] RIP: 0033:0x4556ad
  [672.742][T736]  </TASK>
  [672.743][T736]
  [672.748][T736] Allocated by task 27677:
  [672.743][T736]  kasan_save_stack+0x22/0x40
  [672.741][T736]  kasan_set_track+0x25/0x30
  [672.741][T736]  __kasan_kmalloc+0xa4/0xb0
  [672.749][T736]  btrfs_alloc_root+0x48/0x90
  [672.746][T736]  btrfs_create_tree+0x146/0xa20
  [672.744][T736]  btrfs_quota_enable+0x461/0x1d20
  [672.743][T736]  btrfs_ioctl+0x4a1c/0x5d80
  [672.747][T736]  __x64_sys_ioctl+0x198/0x210
  [672.749][T736]  do_syscall_64+0x39/0xb0
  [672.744][T736]  entry_SYSCALL_64_after_hwframe+0x63/0xcd
  [672.756][T736]
  [672.757][T736] Freed by task 27677:
  [672.759][T736]  kasan_save_stack+0x22/0x40
  [672.759][T736]  kasan_set_track+0x25/0x30
  [672.756][T736]  kasan_save_free_info+0x2e/0x50
  [672.751][T736]  ____kasan_slab_free+0x162/0x1c0
  [672.758][T736]  slab_free_freelist_hook+0x89/0x1c0
  [672.752][T736]  __kmem_cache_free+0xaf/0x2e0
  [672.752][T736]  btrfs_put_root+0x1ff/0x2b0
  [672.759][T736]  btrfs_quota_disable+0x80a/0xbc0
  [672.752][T736]  btrfs_ioctl+0x3e5f/0x5d80
  [672.756][T736]  __x64_sys_ioctl+0x198/0x210
  [672.753][T736]  do_syscall_64+0x39/0xb0
  [672.765][T736]  entry_SYSCALL_64_after_hwframe+0x63/0xcd
  [672.769][T736]
  [672.768][T736] The buggy address belongs to the object at ffff888022ec0000
  [672.768][T736]  which belongs to the cache kmalloc-4k of size 4096
  [672.769][T736] The buggy address is located 520 bytes inside of
  [672.769][T736]  freed 4096-byte region [ffff888022ec0000, ffff888022ec1000)
  [672.760][T736]
  [672.764][T736] The buggy address belongs to the physical page:
  [672.761][T736] page:ffffea00008bb000 refcount:1 mapcount:0 mapping:0000000000000000 index:0x0 pfn:0x22ec0
  [672.766][T736] head:ffffea00008bb000 order:3 entire_mapcount:0 nr_pages_mapped:0 pincount:0
  [672.779][T736] flags: 0xfff00000010200(slab|head|node=0|zone=1|lastcpupid=0x7ff)
  [672.770][T736] raw: 00fff00000010200 ffff888012842140 ffffea000054ba00 dead000000000002
  [672.770][T736] raw: 0000000000000000 0000000000040004 00000001ffffffff 0000000000000000
  [672.771][T736] page dumped because: kasan: bad access detected
  [672.778][T736] page_owner tracks the page as allocated
  [672.777][T736] page last allocated via order 3, migratetype Unmovable, gfp_mask 0xd2040(__GFP_IO|__GFP_NOWARN|__GFP_NORETRY|__GFP_COMP|__GFP_NOMEMALLOC), pid 88
  [672.779][T736]  get_page_from_freelist+0x119c/0x2d50
  [672.779][T736]  __alloc_pages+0x1cb/0x4a0
  [672.776][T736]  alloc_pages+0x1aa/0x270
  [672.773][T736]  allocate_slab+0x260/0x390
  [672.771][T736]  ___slab_alloc+0xa9a/0x13e0
  [672.778][T736]  __slab_alloc.constprop.0+0x56/0xb0
  [672.771][T736]  __kmem_cache_alloc_node+0x136/0x320
  [672.789][T736]  __kmalloc+0x4e/0x1a0
  [672.783][T736]  tomoyo_realpath_from_path+0xc3/0x600
  [672.781][T736]  tomoyo_path_perm+0x22f/0x420
  [672.782][T736]  tomoyo_path_unlink+0x92/0xd0
  [672.780][T736]  security_path_unlink+0xdb/0x150
  [672.788][T736]  do_unlinkat+0x377/0x680
  [672.788][T736]  __x64_sys_unlink+0xca/0x110
  [672.789][T736]  do_syscall_64+0x39/0xb0
  [672.783][T736]  entry_SYSCALL_64_after_hwframe+0x63/0xcd
  [672.784][T736] page last free stack trace:
  [672.787][T736]  free_pcp_prepare+0x4e5/0x920
  [672.787][T736]  free_unref_page+0x1d/0x4e0
  [672.784][T736]  __unfreeze_partials+0x17c/0x1a0
  [672.797][T736]  qlist_free_all+0x6a/0x180
  [672.796][T736]  kasan_quarantine_reduce+0x189/0x1d0
  [672.797][T736]  __kasan_slab_alloc+0x64/0x90
  [672.793][T736]  kmem_cache_alloc+0x17c/0x3c0
  [672.799][T736]  getname_flags.part.0+0x50/0x4e0
  [672.799][T736]  getname_flags+0x9e/0xe0
  [672.792][T736]  vfs_fstatat+0x77/0xb0
  [672.791][T736]  __do_sys_newlstat+0x84/0x100
  [672.798][T736]  do_syscall_64+0x39/0xb0
  [672.796][T736]  entry_SYSCALL_64_after_hwframe+0x63/0xcd
  [672.790][T736]
  [672.791][T736] Memory state around the buggy address:
  [672.799][T736]  ffff888022ec0100: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb
  [672.805][T736]  ffff888022ec0180: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb
  [672.802][T736] >ffff888022ec0200: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb
  [672.809][T736]                       ^
  [672.809][T736]  ffff888022ec0280: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb
  [672.809][T736]  ffff888022ec0300: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb

Fix this by having the qgroup assign ioctl take the qgroup ioctl mutex
before calling btrfs_run_qgroups(), which is what all qgroup ioctls should
call.

Reported-by: butt3rflyh4ck <butterflyhuangxx@gmail.com>
Link: https://lore.kernel.org/linux-btrfs/CAFcO6XN3VD8ogmHwqRk4kbiwtpUSNySu2VAxN8waEPciCHJvMA@mail.gmail.com/
CC: stable@vger.kernel.org # 5.10+
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2023-04-05 11:24:59 +02:00
Johannes Thumshirn 2072e75b49 btrfs: fix percent calculation for bg reclaim message
commit 95cd356ca2 upstream.

We have a report, that the info message for block-group reclaim is
crossing the 100% used mark.

This is happening as we were truncating the divisor for the division
(the block_group->length) to a 32bit value.

Fix this by using div64_u64() to not truncate the divisor.

In the worst case, it can lead to a div by zero error and should be
possible to trigger on 4 disks RAID0, and each device is large enough:

  $ mkfs.btrfs  -f /dev/test/scratch[1234] -m raid1 -d raid0
  btrfs-progs v6.1
  [...]
  Filesystem size:    40.00GiB
  Block group profiles:
    Data:             RAID0             4.00GiB <<<
    Metadata:         RAID1           256.00MiB
    System:           RAID1             8.00MiB

Reported-by: Forza <forza@tnonline.net>
Link: https://lore.kernel.org/linux-btrfs/e99483.c11a58d.1863591ca52@tnonline.net/
Fixes: 5f93e776c6 ("btrfs: zoned: print unusable percentage when reclaiming block groups")
CC: stable@vger.kernel.org # 5.15+
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: David Sterba <dsterba@suse.com>
[ add Qu's note ]
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2023-03-17 08:48:47 +01:00
Boris Burkov 79a0583a31 btrfs: hold block group refcount during async discard
commit 2b5463fcbd upstream.

Async discard does not acquire the block group reference count while it
holds a reference on the discard list. This is generally OK, as the
paths which destroy block groups tend to try to synchronize on
cancelling async discard work. However, relying on cancelling work
requires careful analysis to be sure it is safe from races with
unpinning scheduling more work.

While I am unable to find a race with unpinning in the current code for
either the unused bgs or relocation paths, I believe we have one in an
older version of auto relocation in a Meta internal build. This suggests
that this is in fact an error prone model, and could be fragile to
future changes to these bg deletion paths.

To make this ownership more clear, add a refcount for async discard. If
work is queued for a block group, its refcount should be incremented,
and when work is completed or canceled, it should be decremented.

CC: stable@vger.kernel.org # 5.15+
Signed-off-by: Boris Burkov <boris@bur.io>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2023-03-10 09:39:56 +01:00
David Sterba e430f058d9 btrfs: send: limit number of clones and allocated memory size
[ Upstream commit 33e17b3f5a ]

The arg->clone_sources_count is u64 and can trigger a warning when a
huge value is passed from user space and a huge array is allocated.
Limit the allocated memory to 8MiB (can be increased if needed), which
in turn limits the number of clone sources to 8M / sizeof(struct
clone_root) = 8M / 40 = 209715.  Real world number of clones is from
tens to hundreds, so this is future proof.

Reported-by: syzbot+4376a9a073770c173269@syzkaller.appspotmail.com
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2023-03-03 11:45:52 +01:00
Anand Jain a8178bb1c7 btrfs: free device in btrfs_close_devices for a single device filesystem
commit 5f58d783fd upstream.

We have this check to make sure we don't accidentally add older devices
that may have disappeared and re-appeared with an older generation from
being added to an fs_devices (such as a replace source device). This
makes sense, we don't want stale disks in our file system. However for
single disks this doesn't really make sense.

I've seen this in testing, but I was provided a reproducer from a
project that builds btrfs images on loopback devices. The loopback
device gets cached with the new generation, and then if it is re-used to
generate a new file system we'll fail to mount it because the new fs is
"older" than what we have in cache.

Fix this by freeing the cache when closing the device for a single device
filesystem. This will ensure that the mount command passed device path is
scanned successfully during the next mount.

CC: stable@vger.kernel.org # 5.10+
Reported-by: Daan De Meyer <daandemeyer@fb.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2023-02-14 19:18:03 +01:00
Alexander Potapenko b938059807 btrfs: zlib: zero-initialize zlib workspace
commit eadd7deca0 upstream.

KMSAN reports uses of uninitialized memory in zlib's longest_match()
called on memory originating from zlib_alloc_workspace().
This issue is known by zlib maintainers and is claimed to be harmless,
but to be on the safe side we'd better initialize the memory.

Link: https://zlib.net/zlib_faq.html#faq36
Reported-by: syzbot+14d9e7602ebdf7ec0a60@syzkaller.appspotmail.com
CC: stable@vger.kernel.org # 5.4+
Signed-off-by: Alexander Potapenko <glider@google.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2023-02-14 19:17:56 +01:00
Josef Bacik e65faa7e39 btrfs: limit device extents to the device size
commit 3c538de0f2 upstream.

There was a recent regression in btrfs/177 that started happening with
the size class patches ("btrfs: introduce size class to block group
allocator").  This however isn't a regression introduced by those
patches, but rather the bug was uncovered by a change in behavior in
these patches.  The patches triggered more chunk allocations in the
^free-space-tree case, which uncovered a race with device shrink.

The problem is we will set the device total size to the new size, and
use this to find a hole for a device extent.  However during shrink we
may have device extents allocated past this range, so we could
potentially find a hole in a range past our new shrink size.  We don't
actually limit our found extent to the device size anywhere, we assume
that we will not find a hole past our device size.  This isn't true with
shrink as we're relocating block groups and thus creating holes past the
device size.

Fix this by making sure we do not search past the new device size, and
if we wander into any device extents that start after our device size
simply break from the loop and use whatever hole we've already found.

CC: stable@vger.kernel.org # 4.14+
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2023-02-14 19:17:56 +01:00
Filipe Manana 64287cd456 btrfs: fix race between quota rescan and disable leading to NULL pointer deref
commit b7adbf9ada upstream.

If we have one task trying to start the quota rescan worker while another
one is trying to disable quotas, we can end up hitting a race that results
in the quota rescan worker doing a NULL pointer dereference. The steps for
this are the following:

1) Quotas are enabled;

2) Task A calls the quota rescan ioctl and enters btrfs_qgroup_rescan().
   It calls qgroup_rescan_init() which returns 0 (success) and then joins a
   transaction and commits it;

3) Task B calls the quota disable ioctl and enters btrfs_quota_disable().
   It clears the bit BTRFS_FS_QUOTA_ENABLED from fs_info->flags and calls
   btrfs_qgroup_wait_for_completion(), which returns immediately since the
   rescan worker is not yet running.
   Then it starts a transaction and locks fs_info->qgroup_ioctl_lock;

4) Task A queues the rescan worker, by calling btrfs_queue_work();

5) The rescan worker starts, and calls rescan_should_stop() at the start
   of its while loop, which results in 0 iterations of the loop, since
   the flag BTRFS_FS_QUOTA_ENABLED was cleared from fs_info->flags by
   task B at step 3);

6) Task B sets fs_info->quota_root to NULL;

7) The rescan worker tries to start a transaction and uses
   fs_info->quota_root as the root argument for btrfs_start_transaction().
   This results in a NULL pointer dereference down the call chain of
   btrfs_start_transaction(). The stack trace is something like the one
   reported in Link tag below:

   general protection fault, probably for non-canonical address 0xdffffc0000000041: 0000 [#1] PREEMPT SMP KASAN
   KASAN: null-ptr-deref in range [0x0000000000000208-0x000000000000020f]
   CPU: 1 PID: 34 Comm: kworker/u4:2 Not tainted 6.1.0-syzkaller-13872-gb6bb9676f216 #0
   Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 10/26/2022
   Workqueue: btrfs-qgroup-rescan btrfs_work_helper
   RIP: 0010:start_transaction+0x48/0x10f0 fs/btrfs/transaction.c:564
   Code: 48 89 fb 48 (...)
   RSP: 0018:ffffc90000ab7ab0 EFLAGS: 00010206
   RAX: 0000000000000041 RBX: 0000000000000208 RCX: ffff88801779ba80
   RDX: 0000000000000000 RSI: 0000000000000001 RDI: 0000000000000000
   RBP: dffffc0000000000 R08: 0000000000000001 R09: fffff52000156f5d
   R10: fffff52000156f5d R11: 1ffff92000156f5c R12: 0000000000000000
   R13: 0000000000000001 R14: 0000000000000001 R15: 0000000000000003
   FS:  0000000000000000(0000) GS:ffff8880b9900000(0000) knlGS:0000000000000000
   CS:  0010 DS: 0000 ES: 0000 CR0: 0000000080050033
   CR2: 00007f2bea75b718 CR3: 000000001d0cc000 CR4: 00000000003506e0
   DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
   DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
   Call Trace:
    <TASK>
    btrfs_qgroup_rescan_worker+0x3bb/0x6a0 fs/btrfs/qgroup.c:3402
    btrfs_work_helper+0x312/0x850 fs/btrfs/async-thread.c:280
    process_one_work+0x877/0xdb0 kernel/workqueue.c:2289
    worker_thread+0xb14/0x1330 kernel/workqueue.c:2436
    kthread+0x266/0x300 kernel/kthread.c:376
    ret_from_fork+0x1f/0x30 arch/x86/entry/entry_64.S:308
    </TASK>
   Modules linked in:

So fix this by having the rescan worker function not attempt to start a
transaction if it didn't do any rescan work.

Reported-by: syzbot+96977faa68092ad382c4@syzkaller.appspotmail.com
Link: https://lore.kernel.org/linux-btrfs/000000000000e5454b05f065a803@google.com/
Fixes: e804861bd4 ("btrfs: fix deadlock between quota disable and qgroup rescan worker")
CC: stable@vger.kernel.org # 5.4+
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2023-01-24 07:22:46 +01:00
Filipe Manana f2e0e1615d btrfs: do not abort transaction on failure to write log tree when syncing log
commit 16199ad9eb upstream.

When syncing the log, if we fail to write log tree extent buffers, we mark
the log for a full commit and abort the transaction. However we don't need
to abort the transaction, all we really need to do is to make sure no one
can commit a superblock pointing to new log tree roots. Just because we
got a failure writing extent buffers for a log tree, it does not mean we
will also fail to do a transaction commit.

One particular case is if due to a bug somewhere, when writing log tree
extent buffers, the tree checker detects some corruption and the writeout
fails because of that. Aborting the transaction can be very disruptive for
a user, specially if the issue happened on a root filesystem. One example
is the scenario in the Link tag below, where an isolated corruption on log
tree leaves was causing transaction aborts when syncing the log.

Link: https://lore.kernel.org/linux-btrfs/ae169fc6-f504-28f0-a098-6fa6a4dfb612@leemhuis.info/
CC: stable@vger.kernel.org # 5.15+
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2023-01-24 07:22:46 +01:00
Qu Wenruo fdb4a70bb7 btrfs: always report error in run_one_delayed_ref()
[ Upstream commit 39f501d68e ]

Currently we have a btrfs_debug() for run_one_delayed_ref() failure, but
if end users hit such problem, there will be no chance that
btrfs_debug() is enabled.  This can lead to very little useful info for
debugging.

This patch will:

- Add extra info for error reporting
  Including:
  * logical bytenr
  * num_bytes
  * type
  * action
  * ref_mod

- Replace the btrfs_debug() with btrfs_err()

- Move the error reporting into run_one_delayed_ref()
  This is to avoid use-after-free, the @node can be freed in the caller.

This error should only be triggered at most once.

As if run_one_delayed_ref() failed, we trigger the error message, then
causing the call chain to error out:

btrfs_run_delayed_refs()
`- btrfs_run_delayed_refs()
   `- btrfs_run_delayed_refs_for_head()
      `- run_one_delayed_ref()

And we will abort the current transaction in btrfs_run_delayed_refs().
If we have to run delayed refs for the abort transaction,
run_one_delayed_ref() will just cleanup the refs and do nothing, thus no
new error messages would be output.

Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2023-01-24 07:22:42 +01:00
Qu Wenruo d4e6a13eb9 btrfs: make thaw time super block check to also verify checksum
commit 3d17adea74 upstream.

Previous commit a05d3c9153 ("btrfs: check superblock to ensure the fs
was not modified at thaw time") only checks the content of the super
block, but it doesn't really check if the on-disk super block has a
matching checksum.

This patch will add the checksum verification to thaw time superblock
verification.

This involves the following extra changes:

- Export btrfs_check_super_csum()
  As we need to call it in super.c.

- Change the argument list of btrfs_check_super_csum()
  Instead of passing a char *, directly pass struct btrfs_super_block *
  pointer.

- Verify that our checksum type didn't change before checking the
  checksum value, like it's done at mount time

Fixes: a05d3c9153 ("btrfs: check superblock to ensure the fs was not modified at thaw time")
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2023-01-12 11:59:20 +01:00
Qu Wenruo 264241a610 btrfs: check superblock to ensure the fs was not modified at thaw time
[ Upstream commit a05d3c9153 ]

[BACKGROUND]
There is an incident report that, one user hibernated the system, with
one btrfs on removable device still mounted.

Then by some incident, the btrfs got mounted and modified by another
system/OS, then back to the hibernated system.

After resuming from the hibernation, new write happened into the victim btrfs.

Now the fs is completely broken, since the underlying btrfs is no longer
the same one before the hibernation, and the user lost their data due to
various transid mismatch.

[REPRODUCER]
We can emulate the situation using the following small script:

  truncate -s 1G $dev
  mkfs.btrfs -f $dev
  mount $dev $mnt
  fsstress -w -d $mnt -n 500
  sync
  xfs_freeze -f $mnt
  cp $dev $dev.backup

  # There is no way to mount the same cloned fs on the same system,
  # as the conflicting fsid will be rejected by btrfs.
  # Thus here we have to wipe the fs using a different btrfs.
  mkfs.btrfs -f $dev.backup

  dd if=$dev.backup of=$dev bs=1M
  xfs_freeze -u $mnt
  fsstress -w -d $mnt -n 20
  umount $mnt
  btrfs check $dev

The final fsck will fail due to some tree blocks has incorrect fsid.

This is enough to emulate the problem hit by the unfortunate user.

[ENHANCEMENT]
Although such case should not be that common, it can still happen from
time to time.

From the view of btrfs, we can detect any unexpected super block change,
and if there is any unexpected change, we just mark the fs read-only,
and thaw the fs.

By this we can limit the damage to minimal, and I hope no one would lose
their data by this anymore.

Suggested-by: Goffredo Baroncelli <kreijack@libero.it>
Link: https://lore.kernel.org/linux-btrfs/83bf3b4b-7f4c-387a-b286-9251e3991e34@bluemole.com/
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2023-01-12 11:59:17 +01:00
Sasha Levin d7e817e689 btrfs: fix an error handling path in btrfs_defrag_leaves()
[ Upstream commit db0a4a7b8e ]

All error handling paths end to 'out', except this memory allocation
failure.

This is spurious. So branch to the error handling path also in this case.
It will add a call to:

	memset(&root->defrag_progress, 0,
	       sizeof(root->defrag_progress));

Fixes: 6702ed490c ("Btrfs: Add run time btree defrag, and an ioctl to force btree defrag")
Signed-off-by: Christophe JAILLET <christophe.jaillet@wanadoo.fr>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2023-01-12 11:59:08 +01:00
void0red b8e7ed42bc btrfs: fix extent map use-after-free when handling missing device in read_one_chunk
[ Upstream commit 1742e1c90c ]

Store the error code before freeing the extent_map. Though it's
reference counted structure, in that function it's the first and last
allocation so this would lead to a potential use-after-free.

The error can happen eg. when chunk is stored on a missing device and
the degraded mount option is missing.

Bugzilla: https://bugzilla.kernel.org/show_bug.cgi?id=216721
Reported-by: eriri <1527030098@qq.com>
Fixes: adfb69af7d ("btrfs: add_missing_dev() should return the actual error")
CC: stable@vger.kernel.org # 4.9+
Signed-off-by: void0red <void0red@gmail.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2023-01-12 11:59:05 +01:00
Nikolay Borisov 9c3beebd21 btrfs: move missing device handling in a dedicate function
[ Upstream commit ff37c89f94 ]

This simplifies the code flow in read_one_chunk and makes error handling
when handling missing devices a bit simpler by reducing it to a single
check if something went wrong. No functional changes.

Reviewed-by: Su Yue <l@damenly.su>
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Stable-dep-of: 1742e1c90c ("btrfs: fix extent map use-after-free when handling missing device in read_one_chunk")
Signed-off-by: Sasha Levin <sashal@kernel.org>
2023-01-12 11:59:05 +01:00
Sasha Levin 7528b21ceb btrfs: replace strncpy() with strscpy()
[ Upstream commit 63d5429f68 ]

Using strncpy() on NUL-terminated strings are deprecated.  To avoid
possible forming of non-terminated string strscpy() should be used.

Found by Linux Verification Center (linuxtesting.org) with SVACE.

CC: stable@vger.kernel.org # 4.9+
Signed-off-by: Artem Chernyshev <artem.chernyshev@red-soft.ru>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2023-01-12 11:59:05 +01:00
Boris Burkov 99590f29b2 btrfs: fix resolving backrefs for inline extent followed by prealloc
commit 560840afc3 upstream.

If a file consists of an inline extent followed by a regular or prealloc
extent, then a legitimate attempt to resolve a logical address in the
non-inline region will result in add_all_parents reading the invalid
offset field of the inline extent. If the inline extent item is placed
in the leaf eb s.t. it is the first item, attempting to access the
offset field will not only be meaningless, it will go past the end of
the eb and cause this panic:

  [17.626048] BTRFS warning (device dm-2): bad eb member end: ptr 0x3fd4 start 30834688 member offset 16377 size 8
  [17.631693] general protection fault, probably for non-canonical address 0x5088000000000: 0000 [#1] SMP PTI
  [17.635041] CPU: 2 PID: 1267 Comm: btrfs Not tainted 5.12.0-07246-g75175d5adc74-dirty #199
  [17.637969] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.14.0-0-g155821a1990b-prebuilt.qemu.org 04/01/2014
  [17.641995] RIP: 0010:btrfs_get_64+0xe7/0x110
  [17.649890] RSP: 0018:ffffc90001f73a08 EFLAGS: 00010202
  [17.651652] RAX: 0000000000000001 RBX: ffff88810c42d000 RCX: 0000000000000000
  [17.653921] RDX: 0005088000000000 RSI: ffffc90001f73a0f RDI: 0000000000000001
  [17.656174] RBP: 0000000000000ff9 R08: 0000000000000007 R09: c0000000fffeffff
  [17.658441] R10: ffffc90001f73790 R11: ffffc90001f73788 R12: ffff888106afe918
  [17.661070] R13: 0000000000003fd4 R14: 0000000000003f6f R15: cdcdcdcdcdcdcdcd
  [17.663617] FS:  00007f64e7627d80(0000) GS:ffff888237c80000(0000) knlGS:0000000000000000
  [17.666525] CS:  0010 DS: 0000 ES: 0000 CR0: 0000000080050033
  [17.668664] CR2: 000055d4a39152e8 CR3: 000000010c596002 CR4: 0000000000770ee0
  [17.671253] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
  [17.673634] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
  [17.676034] PKRU: 55555554
  [17.677004] Call Trace:
  [17.677877]  add_all_parents+0x276/0x480
  [17.679325]  find_parent_nodes+0xfae/0x1590
  [17.680771]  btrfs_find_all_leafs+0x5e/0xa0
  [17.682217]  iterate_extent_inodes+0xce/0x260
  [17.683809]  ? btrfs_inode_flags_to_xflags+0x50/0x50
  [17.685597]  ? iterate_inodes_from_logical+0xa1/0xd0
  [17.687404]  iterate_inodes_from_logical+0xa1/0xd0
  [17.689121]  ? btrfs_inode_flags_to_xflags+0x50/0x50
  [17.691010]  btrfs_ioctl_logical_to_ino+0x131/0x190
  [17.692946]  btrfs_ioctl+0x104a/0x2f60
  [17.694384]  ? selinux_file_ioctl+0x182/0x220
  [17.695995]  ? __x64_sys_ioctl+0x84/0xc0
  [17.697394]  __x64_sys_ioctl+0x84/0xc0
  [17.698697]  do_syscall_64+0x33/0x40
  [17.700017]  entry_SYSCALL_64_after_hwframe+0x44/0xae
  [17.701753] RIP: 0033:0x7f64e72761b7
  [17.709355] RSP: 002b:00007ffefb067f58 EFLAGS: 00000246 ORIG_RAX: 0000000000000010
  [17.712088] RAX: ffffffffffffffda RBX: 0000000000000003 RCX: 00007f64e72761b7
  [17.714667] RDX: 00007ffefb067fb0 RSI: 00000000c0389424 RDI: 0000000000000003
  [17.717386] RBP: 00007ffefb06d188 R08: 000055d4a390d2b0 R09: 00007f64e7340a60
  [17.719938] R10: 0000000000000231 R11: 0000000000000246 R12: 0000000000000001
  [17.722383] R13: 0000000000000000 R14: 00000000c0389424 R15: 000055d4a38fd2a0
  [17.724839] Modules linked in:

Fix the bug by detecting the inline extent item in add_all_parents and
skipping to the next extent item.

CC: stable@vger.kernel.org # 4.9+
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Boris Burkov <boris@bur.io>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2023-01-12 11:58:50 +01:00
Filipe Manana 50f993da94 btrfs: do not BUG_ON() on ENOMEM when dropping extent items for a range
commit 162d053e15 upstream.

If we get -ENOMEM while dropping file extent items in a given range, at
btrfs_drop_extents(), due to failure to allocate memory when attempting to
increment the reference count for an extent or drop the reference count,
we handle it with a BUG_ON(). This is excessive, instead we can simply
abort the transaction and return the error to the caller. In fact most
callers of btrfs_drop_extents(), directly or indirectly, already abort
the transaction if btrfs_drop_extents() returns any error.

Also, we already have error paths at btrfs_drop_extents() that may return
-ENOMEM and in those cases we abort the transaction, like for example
anything that changes the b+tree may return -ENOMEM due to a failure to
allocate a new extent buffer when COWing an existing extent buffer, such
as a call to btrfs_duplicate_item() for example.

So replace the BUG_ON() calls with proper logic to abort the transaction
and return the error.

Reported-by: syzbot+0b1fb6b0108c27419f9f@syzkaller.appspotmail.com
Link: https://lore.kernel.org/linux-btrfs/00000000000089773e05ee4b9cb4@google.com/
CC: stable@vger.kernel.org # 5.4+
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-12-31 13:14:47 +01:00
Filipe Manana dae93f4168 btrfs: send: avoid unaligned encoded writes when attempting to clone range
[ Upstream commit a11452a370 ]

When trying to see if we can clone a file range, there are cases where we
end up sending two write operations in case the inode from the source root
has an i_size that is not sector size aligned and the length from the
current offset to its i_size is less than the remaining length we are
trying to clone.

Issuing two write operations when we could instead issue a single write
operation is not incorrect. However it is not optimal, specially if the
extents are compressed and the flag BTRFS_SEND_FLAG_COMPRESSED was passed
to the send ioctl. In that case we can end up sending an encoded write
with an offset that is not sector size aligned, which makes the receiver
fallback to decompressing the data and writing it using regular buffered
IO (so re-compressing the data in case the fs is mounted with compression
enabled), because encoded writes fail with -EINVAL when an offset is not
sector size aligned.

The following example, which triggered a bug in the receiver code for the
fallback logic of decompressing + regular buffer IO and is fixed by the
patchset referred in a Link at the bottom of this changelog, is an example
where we have the non-optimal behaviour due to an unaligned encoded write:

   $ cat test.sh
   #!/bin/bash

   DEV=/dev/sdj
   MNT=/mnt/sdj

   mkfs.btrfs -f $DEV > /dev/null
   mount -o compress $DEV $MNT

   # File foo has a size of 33K, not aligned to the sector size.
   xfs_io -f -c "pwrite -S 0xab 0 33K" $MNT/foo

   xfs_io -f -c "pwrite -S 0xcd 0 64K" $MNT/bar

   # Now clone the first 32K of file bar into foo at offset 0.
   xfs_io -c "reflink $MNT/bar 0 0 32K" $MNT/foo

   # Snapshot the default subvolume and create a full send stream (v2).
   btrfs subvolume snapshot -r $MNT $MNT/snap

   btrfs send --compressed-data -f /tmp/test.send $MNT/snap

   echo -e "\nFile bar in the original filesystem:"
   od -A d -t x1 $MNT/snap/bar

   umount $MNT
   mkfs.btrfs -f $DEV > /dev/null
   mount $DEV $MNT

   echo -e "\nReceiving stream in a new filesystem..."
   btrfs receive -f /tmp/test.send $MNT

   echo -e "\nFile bar in the new filesystem:"
   od -A d -t x1 $MNT/snap/bar

   umount $MNT

Before this patch, the send stream included one regular write and one
encoded write for file 'bar', with the later being not sector size aligned
and causing the receiver to fallback to decompression + buffered writes.
The output of the btrfs receive command in verbose mode (-vvv):

   (...)
   mkfile o258-7-0
   rename o258-7-0 -> bar
   utimes
   clone bar - source=foo source offset=0 offset=0 length=32768
   write bar - offset=32768 length=1024
   encoded_write bar - offset=33792, len=4096, unencoded_offset=33792, unencoded_file_len=31744, unencoded_len=65536, compression=1, encryption=0
   encoded_write bar - falling back to decompress and write due to errno 22 ("Invalid argument")
   (...)

This patch avoids the regular write followed by an unaligned encoded write
so that we end up sending a single encoded write that is aligned. So after
this patch the stream content is (output of btrfs receive -vvv):

   (...)
   mkfile o258-7-0
   rename o258-7-0 -> bar
   utimes
   clone bar - source=foo source offset=0 offset=0 length=32768
   encoded_write bar - offset=32768, len=4096, unencoded_offset=32768, unencoded_file_len=32768, unencoded_len=65536, compression=1, encryption=0
   (...)

So we get more optimal behaviour and avoid the silent data loss bug in
versions of btrfs-progs affected by the bug referred by the Link tag
below (btrfs-progs v5.19, v5.19.1, v6.0 and v6.0.1).

Link: https://lore.kernel.org/linux-btrfs/cover.1668529099.git.fdmanana@suse.com/
Reviewed-by: Boris Burkov <boris@bur.io>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2022-12-14 11:37:16 +01:00
ChenXiaoSong 044da1a371 btrfs: qgroup: fix sleep from invalid context bug in btrfs_qgroup_inherit()
[ Upstream commit f7e942b5bb ]

Syzkaller reported BUG as follows:

  BUG: sleeping function called from invalid context at
       include/linux/sched/mm.h:274
  Call Trace:
   <TASK>
   dump_stack_lvl+0xcd/0x134
   __might_resched.cold+0x222/0x26b
   kmem_cache_alloc+0x2e7/0x3c0
   update_qgroup_limit_item+0xe1/0x390
   btrfs_qgroup_inherit+0x147b/0x1ee0
   create_subvol+0x4eb/0x1710
   btrfs_mksubvol+0xfe5/0x13f0
   __btrfs_ioctl_snap_create+0x2b0/0x430
   btrfs_ioctl_snap_create_v2+0x25a/0x520
   btrfs_ioctl+0x2a1c/0x5ce0
   __x64_sys_ioctl+0x193/0x200
   do_syscall_64+0x35/0x80

Fix this by calling qgroup_dirty() on @dstqgroup, and update limit item in
btrfs_run_qgroups() later outside of the spinlock context.

CC: stable@vger.kernel.org # 4.9+
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: ChenXiaoSong <chenxiaosong2@huawei.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2022-12-08 11:28:38 +01:00
Nikolay Borisov da86809ab8 btrfs: move QUOTA_ENABLED check to rescan_should_stop from btrfs_qgroup_rescan_worker
[ Upstream commit db5df25412 ]

Instead of having 2 places that short circuit the qgroup leaf scan have
everything in the qgroup_rescan_leaf function. In addition to that, also
ensure that the inconsistent qgroup flag is set when rescan_should_stop
returns true. This both retains the old behavior when -EINTR was set in
the body of the loop and at the same time also extends this behavior
when scanning is interrupted due to remount or unmount operations.

Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Stable-dep-of: f7e942b5bb ("btrfs: qgroup: fix sleep from invalid context bug in btrfs_qgroup_inherit()")
Signed-off-by: Sasha Levin <sashal@kernel.org>
2022-12-08 11:28:38 +01:00
Anand Jain 6b4544a131 btrfs: free btrfs_path before copying inodes to userspace
[ Upstream commit 418ffb9e3c ]

btrfs_ioctl_logical_to_ino() frees the search path after the userspace
copy from the temp buffer @inodes. Which potentially can lead to a lock
splat.

Fix this by freeing the path before we copy @inodes to userspace.

CC: stable@vger.kernel.org # 4.19+
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2022-12-08 11:28:38 +01:00
David Sterba c7ae3becee btrfs: sink iterator parameter to btrfs_ioctl_logical_to_ino
[ Upstream commit e3059ec06b ]

There's only one function we pass to iterate_inodes_from_logical as
iterator, so we can drop the indirection and call it directly, after
moving the function to backref.c

Signed-off-by: David Sterba <dsterba@suse.com>
Stable-dep-of: 418ffb9e3c ("btrfs: free btrfs_path before copying inodes to userspace")
Signed-off-by: Sasha Levin <sashal@kernel.org>
2022-12-08 11:28:38 +01:00
Zhen Lei b8dc245909 btrfs: sysfs: normalize the error handling branch in btrfs_init_sysfs()
commit ffdbb44f2f upstream.

Although kset_unregister() can eventually remove all attribute files,
explicitly rolling back with the matching function makes the code logic
look clearer.

CC: stable@vger.kernel.org # 5.4+
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Zhen Lei <thunder.leizhen@huawei.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-12-02 17:41:12 +01:00
Christoph Hellwig 914baca57a btrfs: use kvcalloc in btrfs_get_dev_zone_info
commit 8fe97d47b5 upstream.

Otherwise the kernel memory allocator seems to be unhappy about failing
order 6 allocations for the zones array, that cause 100% reproducible
mount failures in my qemu setup:

  [26.078981] mount: page allocation failure: order:6, mode:0x40dc0(GFP_KERNEL|__GFP_COMP|__GFP_ZERO), nodemask=(null)
  [26.079741] CPU: 0 PID: 2965 Comm: mount Not tainted 6.1.0-rc5+ #185
  [26.080181] Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS rel-1.14.0-0-g155821a1990b-prebuilt.qemu.org 04/01/2014
  [26.080950] Call Trace:
  [26.081132]  <TASK>
  [26.081291]  dump_stack_lvl+0x56/0x6f
  [26.081554]  warn_alloc+0x117/0x140
  [26.081808]  ? __alloc_pages_direct_compact+0x1b5/0x300
  [26.082174]  __alloc_pages_slowpath.constprop.0+0xd0e/0xde0
  [26.082569]  __alloc_pages+0x32a/0x340
  [26.082836]  __kmalloc_large_node+0x4d/0xa0
  [26.083133]  ? trace_kmalloc+0x29/0xd0
  [26.083399]  kmalloc_large+0x14/0x60
  [26.083654]  btrfs_get_dev_zone_info+0x1b9/0xc00
  [26.083980]  ? _raw_spin_unlock_irqrestore+0x28/0x50
  [26.084328]  btrfs_get_dev_zone_info_all_devices+0x54/0x80
  [26.084708]  open_ctree+0xed4/0x1654
  [26.084974]  btrfs_mount_root.cold+0x12/0xde
  [26.085288]  ? lock_is_held_type+0xe2/0x140
  [26.085603]  legacy_get_tree+0x28/0x50
  [26.085876]  vfs_get_tree+0x1d/0xb0
  [26.086139]  vfs_kern_mount.part.0+0x6c/0xb0
  [26.086456]  btrfs_mount+0x118/0x3a0
  [26.086728]  ? lock_is_held_type+0xe2/0x140
  [26.087043]  legacy_get_tree+0x28/0x50
  [26.087323]  vfs_get_tree+0x1d/0xb0
  [26.087587]  path_mount+0x2ba/0xbe0
  [26.087850]  ? _raw_spin_unlock_irqrestore+0x38/0x50
  [26.088217]  __x64_sys_mount+0xfe/0x140
  [26.088506]  do_syscall_64+0x35/0x80
  [26.088776]  entry_SYSCALL_64_after_hwframe+0x63/0xcd

Fixes: 5b31646898 ("btrfs: get zone information of zoned block devices")
CC: stable@vger.kernel.org # 5.15+
Reviewed-by: Damien Le Moal <damien.lemoal@opensource.wdc.com>
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-12-02 17:41:12 +01:00
Christoph Hellwig c1e6d4bfde btrfs: zoned: fix missing endianness conversion in sb_write_pointer
commit c51f0e6a12 upstream.

generation is an on-disk __le64 value, so use btrfs_super_generation to
convert it to host endian before comparing it.

Fixes: 12659251ca ("btrfs: implement log-structured superblock for ZONED mode")
CC: stable@vger.kernel.org # 5.15+
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-12-02 17:41:12 +01:00
Anand Jain d88bf6be02 btrfs: free btrfs_path before copying subvol info to userspace
commit 013c1c5585 upstream.

btrfs_ioctl_get_subvol_info() frees the search path after the userspace
copy from the temp buffer @subvol_info. This can lead to a lock splat
warning.

Fix this by freeing the path before we copy it to userspace.

CC: stable@vger.kernel.org # 4.19+
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-12-02 17:41:12 +01:00
Anand Jain f218b404fc btrfs: free btrfs_path before copying fspath to userspace
commit 8cf96b409d upstream.

btrfs_ioctl_ino_to_path() frees the search path after the userspace copy
from the temp buffer @ipath->fspath. Which potentially can lead to a lock
splat warning.

Fix this by freeing the path before we copy it to userspace.

CC: stable@vger.kernel.org # 4.19+
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-12-02 17:41:12 +01:00
Josef Bacik fea9397101 btrfs: free btrfs_path before copying root refs to userspace
commit b740d80616 upstream.

Syzbot reported the following lockdep splat

======================================================
WARNING: possible circular locking dependency detected
6.0.0-rc7-syzkaller-18095-gbbed346d5a96 #0 Not tainted
------------------------------------------------------
syz-executor307/3029 is trying to acquire lock:
ffff0000c02525d8 (&mm->mmap_lock){++++}-{3:3}, at: __might_fault+0x54/0xb4 mm/memory.c:5576

but task is already holding lock:
ffff0000c958a608 (btrfs-root-00){++++}-{3:3}, at: __btrfs_tree_read_lock fs/btrfs/locking.c:134 [inline]
ffff0000c958a608 (btrfs-root-00){++++}-{3:3}, at: btrfs_tree_read_lock fs/btrfs/locking.c:140 [inline]
ffff0000c958a608 (btrfs-root-00){++++}-{3:3}, at: btrfs_read_lock_root_node+0x13c/0x1c0 fs/btrfs/locking.c:279

which lock already depends on the new lock.

the existing dependency chain (in reverse order) is:

-> #3 (btrfs-root-00){++++}-{3:3}:
       down_read_nested+0x64/0x84 kernel/locking/rwsem.c:1624
       __btrfs_tree_read_lock fs/btrfs/locking.c:134 [inline]
       btrfs_tree_read_lock fs/btrfs/locking.c:140 [inline]
       btrfs_read_lock_root_node+0x13c/0x1c0 fs/btrfs/locking.c:279
       btrfs_search_slot_get_root+0x74/0x338 fs/btrfs/ctree.c:1637
       btrfs_search_slot+0x1b0/0xfd8 fs/btrfs/ctree.c:1944
       btrfs_update_root+0x6c/0x5a0 fs/btrfs/root-tree.c:132
       commit_fs_roots+0x1f0/0x33c fs/btrfs/transaction.c:1459
       btrfs_commit_transaction+0x89c/0x12d8 fs/btrfs/transaction.c:2343
       flush_space+0x66c/0x738 fs/btrfs/space-info.c:786
       btrfs_async_reclaim_metadata_space+0x43c/0x4e0 fs/btrfs/space-info.c:1059
       process_one_work+0x2d8/0x504 kernel/workqueue.c:2289
       worker_thread+0x340/0x610 kernel/workqueue.c:2436
       kthread+0x12c/0x158 kernel/kthread.c:376
       ret_from_fork+0x10/0x20 arch/arm64/kernel/entry.S:860

-> #2 (&fs_info->reloc_mutex){+.+.}-{3:3}:
       __mutex_lock_common+0xd4/0xca8 kernel/locking/mutex.c:603
       __mutex_lock kernel/locking/mutex.c:747 [inline]
       mutex_lock_nested+0x38/0x44 kernel/locking/mutex.c:799
       btrfs_record_root_in_trans fs/btrfs/transaction.c:516 [inline]
       start_transaction+0x248/0x944 fs/btrfs/transaction.c:752
       btrfs_start_transaction+0x34/0x44 fs/btrfs/transaction.c:781
       btrfs_create_common+0xf0/0x1b4 fs/btrfs/inode.c:6651
       btrfs_create+0x8c/0xb0 fs/btrfs/inode.c:6697
       lookup_open fs/namei.c:3413 [inline]
       open_last_lookups fs/namei.c:3481 [inline]
       path_openat+0x804/0x11c4 fs/namei.c:3688
       do_filp_open+0xdc/0x1b8 fs/namei.c:3718
       do_sys_openat2+0xb8/0x22c fs/open.c:1313
       do_sys_open fs/open.c:1329 [inline]
       __do_sys_openat fs/open.c:1345 [inline]
       __se_sys_openat fs/open.c:1340 [inline]
       __arm64_sys_openat+0xb0/0xe0 fs/open.c:1340
       __invoke_syscall arch/arm64/kernel/syscall.c:38 [inline]
       invoke_syscall arch/arm64/kernel/syscall.c:52 [inline]
       el0_svc_common+0x138/0x220 arch/arm64/kernel/syscall.c:142
       do_el0_svc+0x48/0x164 arch/arm64/kernel/syscall.c:206
       el0_svc+0x58/0x150 arch/arm64/kernel/entry-common.c:636
       el0t_64_sync_handler+0x84/0xf0 arch/arm64/kernel/entry-common.c:654
       el0t_64_sync+0x18c/0x190 arch/arm64/kernel/entry.S:581

-> #1 (sb_internal#2){.+.+}-{0:0}:
       percpu_down_read include/linux/percpu-rwsem.h:51 [inline]
       __sb_start_write include/linux/fs.h:1826 [inline]
       sb_start_intwrite include/linux/fs.h:1948 [inline]
       start_transaction+0x360/0x944 fs/btrfs/transaction.c:683
       btrfs_join_transaction+0x30/0x40 fs/btrfs/transaction.c:795
       btrfs_dirty_inode+0x50/0x140 fs/btrfs/inode.c:6103
       btrfs_update_time+0x1c0/0x1e8 fs/btrfs/inode.c:6145
       inode_update_time fs/inode.c:1872 [inline]
       touch_atime+0x1f0/0x4a8 fs/inode.c:1945
       file_accessed include/linux/fs.h:2516 [inline]
       btrfs_file_mmap+0x50/0x88 fs/btrfs/file.c:2407
       call_mmap include/linux/fs.h:2192 [inline]
       mmap_region+0x7fc/0xc14 mm/mmap.c:1752
       do_mmap+0x644/0x97c mm/mmap.c:1540
       vm_mmap_pgoff+0xe8/0x1d0 mm/util.c:552
       ksys_mmap_pgoff+0x1cc/0x278 mm/mmap.c:1586
       __do_sys_mmap arch/arm64/kernel/sys.c:28 [inline]
       __se_sys_mmap arch/arm64/kernel/sys.c:21 [inline]
       __arm64_sys_mmap+0x58/0x6c arch/arm64/kernel/sys.c:21
       __invoke_syscall arch/arm64/kernel/syscall.c:38 [inline]
       invoke_syscall arch/arm64/kernel/syscall.c:52 [inline]
       el0_svc_common+0x138/0x220 arch/arm64/kernel/syscall.c:142
       do_el0_svc+0x48/0x164 arch/arm64/kernel/syscall.c:206
       el0_svc+0x58/0x150 arch/arm64/kernel/entry-common.c:636
       el0t_64_sync_handler+0x84/0xf0 arch/arm64/kernel/entry-common.c:654
       el0t_64_sync+0x18c/0x190 arch/arm64/kernel/entry.S:581

-> #0 (&mm->mmap_lock){++++}-{3:3}:
       check_prev_add kernel/locking/lockdep.c:3095 [inline]
       check_prevs_add kernel/locking/lockdep.c:3214 [inline]
       validate_chain kernel/locking/lockdep.c:3829 [inline]
       __lock_acquire+0x1530/0x30a4 kernel/locking/lockdep.c:5053
       lock_acquire+0x100/0x1f8 kernel/locking/lockdep.c:5666
       __might_fault+0x7c/0xb4 mm/memory.c:5577
       _copy_to_user include/linux/uaccess.h:134 [inline]
       copy_to_user include/linux/uaccess.h:160 [inline]
       btrfs_ioctl_get_subvol_rootref+0x3a8/0x4bc fs/btrfs/ioctl.c:3203
       btrfs_ioctl+0xa08/0xa64 fs/btrfs/ioctl.c:5556
       vfs_ioctl fs/ioctl.c:51 [inline]
       __do_sys_ioctl fs/ioctl.c:870 [inline]
       __se_sys_ioctl fs/ioctl.c:856 [inline]
       __arm64_sys_ioctl+0xd0/0x140 fs/ioctl.c:856
       __invoke_syscall arch/arm64/kernel/syscall.c:38 [inline]
       invoke_syscall arch/arm64/kernel/syscall.c:52 [inline]
       el0_svc_common+0x138/0x220 arch/arm64/kernel/syscall.c:142
       do_el0_svc+0x48/0x164 arch/arm64/kernel/syscall.c:206
       el0_svc+0x58/0x150 arch/arm64/kernel/entry-common.c:636
       el0t_64_sync_handler+0x84/0xf0 arch/arm64/kernel/entry-common.c:654
       el0t_64_sync+0x18c/0x190 arch/arm64/kernel/entry.S:581

other info that might help us debug this:

Chain exists of:
  &mm->mmap_lock --> &fs_info->reloc_mutex --> btrfs-root-00

 Possible unsafe locking scenario:

       CPU0                    CPU1
       ----                    ----
  lock(btrfs-root-00);
                               lock(&fs_info->reloc_mutex);
                               lock(btrfs-root-00);
  lock(&mm->mmap_lock);

 *** DEADLOCK ***

1 lock held by syz-executor307/3029:
 #0: ffff0000c958a608 (btrfs-root-00){++++}-{3:3}, at: __btrfs_tree_read_lock fs/btrfs/locking.c:134 [inline]
 #0: ffff0000c958a608 (btrfs-root-00){++++}-{3:3}, at: btrfs_tree_read_lock fs/btrfs/locking.c:140 [inline]
 #0: ffff0000c958a608 (btrfs-root-00){++++}-{3:3}, at: btrfs_read_lock_root_node+0x13c/0x1c0 fs/btrfs/locking.c:279

stack backtrace:
CPU: 0 PID: 3029 Comm: syz-executor307 Not tainted 6.0.0-rc7-syzkaller-18095-gbbed346d5a96 #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 09/30/2022
Call trace:
 dump_backtrace+0x1c4/0x1f0 arch/arm64/kernel/stacktrace.c:156
 show_stack+0x2c/0x54 arch/arm64/kernel/stacktrace.c:163
 __dump_stack lib/dump_stack.c:88 [inline]
 dump_stack_lvl+0x104/0x16c lib/dump_stack.c:106
 dump_stack+0x1c/0x58 lib/dump_stack.c:113
 print_circular_bug+0x2c4/0x2c8 kernel/locking/lockdep.c:2053
 check_noncircular+0x14c/0x154 kernel/locking/lockdep.c:2175
 check_prev_add kernel/locking/lockdep.c:3095 [inline]
 check_prevs_add kernel/locking/lockdep.c:3214 [inline]
 validate_chain kernel/locking/lockdep.c:3829 [inline]
 __lock_acquire+0x1530/0x30a4 kernel/locking/lockdep.c:5053
 lock_acquire+0x100/0x1f8 kernel/locking/lockdep.c:5666
 __might_fault+0x7c/0xb4 mm/memory.c:5577
 _copy_to_user include/linux/uaccess.h:134 [inline]
 copy_to_user include/linux/uaccess.h:160 [inline]
 btrfs_ioctl_get_subvol_rootref+0x3a8/0x4bc fs/btrfs/ioctl.c:3203
 btrfs_ioctl+0xa08/0xa64 fs/btrfs/ioctl.c:5556
 vfs_ioctl fs/ioctl.c:51 [inline]
 __do_sys_ioctl fs/ioctl.c:870 [inline]
 __se_sys_ioctl fs/ioctl.c:856 [inline]
 __arm64_sys_ioctl+0xd0/0x140 fs/ioctl.c:856
 __invoke_syscall arch/arm64/kernel/syscall.c:38 [inline]
 invoke_syscall arch/arm64/kernel/syscall.c:52 [inline]
 el0_svc_common+0x138/0x220 arch/arm64/kernel/syscall.c:142
 do_el0_svc+0x48/0x164 arch/arm64/kernel/syscall.c:206
 el0_svc+0x58/0x150 arch/arm64/kernel/entry-common.c:636
 el0t_64_sync_handler+0x84/0xf0 arch/arm64/kernel/entry-common.c:654
 el0t_64_sync+0x18c/0x190 arch/arm64/kernel/entry.S:581

We do generally the right thing here, copying the references into a
temporary buffer, however we are still holding the path when we do
copy_to_user from the temporary buffer.  Fix this by freeing the path
before we copy to user space.

Reported-by: syzbot+4ef9e52e464c6ff47d9d@syzkaller.appspotmail.com
CC: stable@vger.kernel.org # 4.19+
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-12-02 17:41:12 +01:00
Filipe Manana b02a025dd1 btrfs: remove pointless and double ulist frees in error paths of qgroup tests
[ Upstream commit d0ea17aec1 ]

Several places in the qgroup self tests follow the pattern of freeing the
ulist pointer they passed to btrfs_find_all_roots() if the call to that
function returned an error. That is pointless because that function always
frees the ulist in case it returns an error.

Also In some places like at test_multiple_refs(), after a call to
btrfs_qgroup_account_extent() we also leave "old_roots" and "new_roots"
pointing to ulists that were freed, because btrfs_qgroup_account_extent()
has freed those ulists, and if after that the next call to
btrfs_find_all_roots() fails, we call ulist_free() on the "old_roots"
ulist again, resulting in a double free.

So remove those calls to reduce the code size and avoid double ulist
free in case of an error.

Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2022-11-26 09:24:32 +01:00
Qu Wenruo 49ca2227c4 btrfs: raid56: properly handle the error when unable to find the missing stripe
[ Upstream commit f15fb2cd97 ]

In raid56_alloc_missing_rbio(), if we can not determine where the
missing device is inside the full stripe, we just BUG_ON().

This is not necessary especially the only caller inside scrub.c is
already properly checking the return value, and will treat it as a
memory allocation failure.

Fix the error handling by:

- Add an extra warning for the reason
  Although personally speaking it may be better to be an ASSERT().

- Properly free the allocated rbio

Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2022-11-26 09:24:31 +01:00
Johannes Thumshirn 91c38504e5 btrfs: zoned: initialize device's zone info for seeding
commit a8d1b1647b upstream.

When performing seeding on a zoned filesystem it is necessary to
initialize each zoned device's btrfs_zoned_device_info structure,
otherwise mounting the filesystem will cause a NULL pointer dereference.

This was uncovered by fstests' testcase btrfs/163.

CC: stable@vger.kernel.org # 5.15+
Signed-off-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-11-16 09:58:27 +01:00
Zhang Xiaoxu 432c30ba3f btrfs: selftests: fix wrong error check in btrfs_free_dummy_root()
commit 9b2f20344d upstream.

The btrfs_alloc_dummy_root() uses ERR_PTR as the error return value
rather than NULL, if error happened, there will be a NULL pointer
dereference:

  BUG: KASAN: null-ptr-deref in btrfs_free_dummy_root+0x21/0x50 [btrfs]
  Read of size 8 at addr 000000000000002c by task insmod/258926

  CPU: 2 PID: 258926 Comm: insmod Tainted: G        W          6.1.0-rc2+ #5
  Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.14.0-1.fc33 04/01/2014
  Call Trace:
   <TASK>
   dump_stack_lvl+0x34/0x44
   kasan_report+0xb7/0x140
   kasan_check_range+0x145/0x1a0
   btrfs_free_dummy_root+0x21/0x50 [btrfs]
   btrfs_test_free_space_cache+0x1a8c/0x1add [btrfs]
   btrfs_run_sanity_tests+0x65/0x80 [btrfs]
   init_btrfs_fs+0xec/0x154 [btrfs]
   do_one_initcall+0x87/0x2a0
   do_init_module+0xdf/0x320
   load_module+0x3006/0x3390
   __do_sys_finit_module+0x113/0x1b0
   do_syscall_64+0x35/0x80
 entry_SYSCALL_64_after_hwframe+0x46/0xb0

Fixes: aaedb55bc0 ("Btrfs: add tests for btrfs_get_extent")
CC: stable@vger.kernel.org # 4.9+
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: Zhang Xiaoxu <zhangxiaoxu5@huawei.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-11-16 09:58:27 +01:00
Liu Shixin c9fe4719c6 btrfs: fix match incorrectly in dev_args_match_device
commit 0fca385d6e upstream.

syzkaller found a failed assertion:

  assertion failed: (args->devid != (u64)-1) || args->missing, in fs/btrfs/volumes.c:6921

This can be triggered when we set devid to (u64)-1 by ioctl. In this
case, the match of devid will be skipped and the match of device may
succeed incorrectly.

Patch 562d7b1512 introduced this function which is used to match device.
This function contains two matching scenarios, we can distinguish them by
checking the value of args->missing rather than check whether args->devid
and args->uuid is default value.

Reported-by: syzbot+031687116258450f9853@syzkaller.appspotmail.com
Fixes: 562d7b1512 ("btrfs: handle device lookup with btrfs_dev_lookup_args")
CC: stable@vger.kernel.org # 5.16+
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Liu Shixin <liushixin2@huawei.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-11-16 09:58:27 +01:00
David Sterba 450d748070 btrfs: fix type of parameter generation in btrfs_get_dentry
commit 2398091f9c upstream.

The type of parameter generation has been u32 since the beginning,
however all callers pass a u64 generation, so unify the types to prevent
potential loss.

CC: stable@vger.kernel.org # 4.9+
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-11-10 18:15:38 +01:00
Josef Bacik 007058eb82 btrfs: fix tree mod log mishandling of reallocated nodes
commit 968b715831 upstream.

We have been seeing the following panic in production

  kernel BUG at fs/btrfs/tree-mod-log.c:677!
  invalid opcode: 0000 [#1] SMP
  RIP: 0010:tree_mod_log_rewind+0x1b4/0x200
  RSP: 0000:ffffc9002c02f890 EFLAGS: 00010293
  RAX: 0000000000000003 RBX: ffff8882b448c700 RCX: 0000000000000000
  RDX: 0000000000008000 RSI: 00000000000000a7 RDI: ffff88877d831c00
  RBP: 0000000000000002 R08: 000000000000009f R09: 0000000000000000
  R10: 0000000000000000 R11: 0000000000100c40 R12: 0000000000000001
  R13: ffff8886c26d6a00 R14: ffff88829f5424f8 R15: ffff88877d831a00
  FS:  00007fee1d80c780(0000) GS:ffff8890400c0000(0000) knlGS:0000000000000000
  CS:  0010 DS: 0000 ES: 0000 CR0: 0000000080050033
  CR2: 00007fee1963a020 CR3: 0000000434f33002 CR4: 00000000007706e0
  DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
  DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
  PKRU: 55555554
  Call Trace:
   btrfs_get_old_root+0x12b/0x420
   btrfs_search_old_slot+0x64/0x2f0
   ? tree_mod_log_oldest_root+0x3d/0xf0
   resolve_indirect_ref+0xfd/0x660
   ? ulist_alloc+0x31/0x60
   ? kmem_cache_alloc_trace+0x114/0x2c0
   find_parent_nodes+0x97a/0x17e0
   ? ulist_alloc+0x30/0x60
   btrfs_find_all_roots_safe+0x97/0x150
   iterate_extent_inodes+0x154/0x370
   ? btrfs_search_path_in_tree+0x240/0x240
   iterate_inodes_from_logical+0x98/0xd0
   ? btrfs_search_path_in_tree+0x240/0x240
   btrfs_ioctl_logical_to_ino+0xd9/0x180
   btrfs_ioctl+0xe2/0x2ec0
   ? __mod_memcg_lruvec_state+0x3d/0x280
   ? do_sys_openat2+0x6d/0x140
   ? kretprobe_dispatcher+0x47/0x70
   ? kretprobe_rethook_handler+0x38/0x50
   ? rethook_trampoline_handler+0x82/0x140
   ? arch_rethook_trampoline_callback+0x3b/0x50
   ? kmem_cache_free+0xfb/0x270
   ? do_sys_openat2+0xd5/0x140
   __x64_sys_ioctl+0x71/0xb0
   do_syscall_64+0x2d/0x40

Which is this code in tree_mod_log_rewind()

	switch (tm->op) {
        case BTRFS_MOD_LOG_KEY_REMOVE_WHILE_FREEING:
		BUG_ON(tm->slot < n);

This occurs because we replay the nodes in order that they happened, and
when we do a REPLACE we will log a REMOVE_WHILE_FREEING for every slot,
starting at 0.  'n' here is the number of items in this block, which in
this case was 1, but we had 2 REMOVE_WHILE_FREEING operations.

The actual root cause of this was that we were replaying operations for
a block that shouldn't have been replayed.  Consider the following
sequence of events

1. We have an already modified root, and we do a btrfs_get_tree_mod_seq().
2. We begin removing items from this root, triggering KEY_REPLACE for
   it's child slots.
3. We remove one of the 2 children this root node points to, thus triggering
   the root node promotion of the remaining child, and freeing this node.
4. We modify a new root, and re-allocate the above node to the root node of
   this other root.

The tree mod log looks something like this

	logical 0	op KEY_REPLACE (slot 1)			seq 2
	logical 0	op KEY_REMOVE (slot 1)			seq 3
	logical 0	op KEY_REMOVE_WHILE_FREEING (slot 0)	seq 4
	logical 4096	op LOG_ROOT_REPLACE (old logical 0)	seq 5
	logical 8192	op KEY_REMOVE_WHILE_FREEING (slot 1)	seq 6
	logical 8192	op KEY_REMOVE_WHILE_FREEING (slot 0)	seq 7
	logical 0	op LOG_ROOT_REPLACE (old logical 8192)	seq 8

>From here the bug is triggered by the following steps

1.  Call btrfs_get_old_root() on the new_root.
2.  We call tree_mod_log_oldest_root(btrfs_root_node(new_root)), which is
    currently logical 0.
3.  tree_mod_log_oldest_root() calls tree_mod_log_search_oldest(), which
    gives us the KEY_REPLACE seq 2, and since that's not a
    LOG_ROOT_REPLACE we incorrectly believe that we don't have an old
    root, because we expect that the most recent change should be a
    LOG_ROOT_REPLACE.
4.  Back in tree_mod_log_oldest_root() we don't have a LOG_ROOT_REPLACE,
    so we don't set old_root, we simply use our existing extent buffer.
5.  Since we're using our existing extent buffer (logical 0) we call
    tree_mod_log_search(0) in order to get the newest change to start the
    rewind from, which ends up being the LOG_ROOT_REPLACE at seq 8.
6.  Again since we didn't find an old_root we simply clone logical 0 at
    it's current state.
7.  We call tree_mod_log_rewind() with the cloned extent buffer.
8.  Set n = btrfs_header_nritems(logical 0), which would be whatever the
    original nritems was when we COWed the original root, say for this
    example it's 2.
9.  We start from the newest operation and work our way forward, so we
    see LOG_ROOT_REPLACE which we ignore.
10. Next we see KEY_REMOVE_WHILE_FREEING for slot 0, which triggers the
    BUG_ON(tm->slot < n), because it expects if we've done this we have a
    completely empty extent buffer to replay completely.

The correct thing would be to find the first LOG_ROOT_REPLACE, and then
get the old_root set to logical 8192.  In fact making that change fixes
this particular problem.

However consider the much more complicated case.  We have a child node
in this tree and the above situation.  In the above case we freed one
of the child blocks at the seq 3 operation.  If this block was also
re-allocated and got new tree mod log operations we would have a
different problem.  btrfs_search_old_slot(orig root) would get down to
the logical 0 root that still pointed at that node.  However in
btrfs_search_old_slot() we call tree_mod_log_rewind(buf) directly.  This
is not context aware enough to know which operations we should be
replaying.  If the block was re-allocated multiple times we may only
want to replay a range of operations, and determining what that range is
isn't possible to determine.

We could maybe solve this by keeping track of which root the node
belonged to at every tree mod log operation, and then passing this
around to make sure we're only replaying operations that relate to the
root we're trying to rewind.

However there's a simpler way to solve this problem, simply disallow
reallocations if we have currently running tree mod log users.  We
already do this for leaf's, so we're simply expanding this to nodes as
well.  This is a relatively uncommon occurrence, and the problem is
complicated enough I'm worried that we will still have corner cases in
the reallocation case.  So fix this in the most straightforward way
possible.

Fixes: bd989ba359 ("Btrfs: add tree modification log functions")
CC: stable@vger.kernel.org # 3.3+
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-11-10 18:15:37 +01:00
Filipe Manana 336fdd295c btrfs: fix lost file sync on direct IO write with nowait and dsync iocb
commit 8184620ae2 upstream.

When doing a direct IO write using a iocb with nowait and dsync set, we
end up not syncing the file once the write completes.

This is because we tell iomap to not call generic_write_sync(), which
would result in calling btrfs_sync_file(), in order to avoid a deadlock
since iomap can call it while we are holding the inode's lock and
btrfs_sync_file() needs to acquire the inode's lock. The deadlock happens
only if the write happens synchronously, when iomap_dio_rw() calls
iomap_dio_complete() before it returns. Instead we do the sync ourselves
at btrfs_do_write_iter().

For a nowait write however we can end up not doing the sync ourselves at
at btrfs_do_write_iter() because the write could have been queued, and
therefore we get -EIOCBQUEUED returned from iomap in such case. That makes
us skip the sync call at btrfs_do_write_iter(), as we don't do it for
any error returned from btrfs_direct_write(). We can't simply do the call
even if -EIOCBQUEUED is returned, since that would block the task waiting
for IO, both for the data since there are bios still in progress as well
as potentially blocking when joining a log transaction and when syncing
the log (writing log trees, super blocks, etc).

So let iomap do the sync call itself and in order to avoid deadlocks for
the case of synchronous writes (without nowait), use __iomap_dio_rw() and
have ourselves call iomap_dio_complete() after unlocking the inode.

A test case will later be sent for fstests, after this is fixed in Linus'
tree.

Fixes: 51bd9563b6 ("btrfs: fix deadlock due to page faults during direct IO reads and writes")
Reported-by: Марк Коренберг <socketpair@gmail.com>
Link: https://lore.kernel.org/linux-btrfs/CAEmTpZGRKbzc16fWPvxbr6AfFsQoLmz-Lcg-7OgJOZDboJ+SGQ@mail.gmail.com/
CC: stable@vger.kernel.org # 6.0+
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-11-10 18:15:37 +01:00
Filipe Manana f46ea5fa33 btrfs: fix ulist leaks in error paths of qgroup self tests
[ Upstream commit d37de92b38 ]

In the test_no_shared_qgroup() and test_multiple_refs() qgroup self tests,
if we fail to add the tree ref, remove the extent item or remove the
extent ref, we are returning from the test function without freeing the
"old_roots" ulist that was allocated by the previous calls to
btrfs_find_all_roots(). Fix that by calling ulist_free() before returning.

Fixes: 442244c963 ("btrfs: qgroup: Switch self test to extent-oriented qgroup mechanism.")
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2022-11-10 18:15:30 +01:00
Filipe Manana 222a3d5330 btrfs: fix inode list leak during backref walking at find_parent_nodes()
[ Upstream commit 92876eec38 ]

During backref walking, at find_parent_nodes(), if we are dealing with a
data extent and we get an error while resolving the indirect backrefs, at
resolve_indirect_refs(), or in the while loop that iterates over the refs
in the direct refs rbtree, we end up leaking the inode lists attached to
the direct refs we have in the direct refs rbtree that were not yet added
to the refs ulist passed as argument to find_parent_nodes(). Since they
were not yet added to the refs ulist and prelim_release() does not free
the lists, on error the caller can only free the lists attached to the
refs that were added to the refs ulist, all the remaining refs get their
inode lists never freed, therefore leaking their memory.

Fix this by having prelim_release() always free any attached inode list
to each ref found in the rbtree, and have find_parent_nodes() set the
ref's inode list to NULL once it transfers ownership of the inode list
to a ref added to the refs ulist passed to find_parent_nodes().

Fixes: 86d5f99442 ("btrfs: convert prelimary reference tracking to use rbtrees")
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2022-11-10 18:15:29 +01:00