// SPDX-License-Identifier: GPL-2.0 /* Copyright(c) 2013 - 2018 Intel Corporation. */ #include "iavf_type.h" #include "iavf_adminq.h" #include "iavf_prototype.h" #include /** * iavf_set_mac_type - Sets MAC type * @hw: pointer to the HW structure * * This function sets the mac type of the adapter based on the * vendor ID and device ID stored in the hw structure. **/ enum iavf_status iavf_set_mac_type(struct iavf_hw *hw) { enum iavf_status status = 0; if (hw->vendor_id == PCI_VENDOR_ID_INTEL) { switch (hw->device_id) { case IAVF_DEV_ID_X722_VF: hw->mac.type = IAVF_MAC_X722_VF; break; case IAVF_DEV_ID_VF: case IAVF_DEV_ID_VF_HV: case IAVF_DEV_ID_ADAPTIVE_VF: hw->mac.type = IAVF_MAC_VF; break; default: hw->mac.type = IAVF_MAC_GENERIC; break; } } else { status = IAVF_ERR_DEVICE_NOT_SUPPORTED; } hw_dbg(hw, "found mac: %d, returns: %d\n", hw->mac.type, status); return status; } /** * iavf_aq_str - convert AQ err code to a string * @hw: pointer to the HW structure * @aq_err: the AQ error code to convert **/ const char *iavf_aq_str(struct iavf_hw *hw, enum iavf_admin_queue_err aq_err) { switch (aq_err) { case IAVF_AQ_RC_OK: return "OK"; case IAVF_AQ_RC_EPERM: return "IAVF_AQ_RC_EPERM"; case IAVF_AQ_RC_ENOENT: return "IAVF_AQ_RC_ENOENT"; case IAVF_AQ_RC_ESRCH: return "IAVF_AQ_RC_ESRCH"; case IAVF_AQ_RC_EINTR: return "IAVF_AQ_RC_EINTR"; case IAVF_AQ_RC_EIO: return "IAVF_AQ_RC_EIO"; case IAVF_AQ_RC_ENXIO: return "IAVF_AQ_RC_ENXIO"; case IAVF_AQ_RC_E2BIG: return "IAVF_AQ_RC_E2BIG"; case IAVF_AQ_RC_EAGAIN: return "IAVF_AQ_RC_EAGAIN"; case IAVF_AQ_RC_ENOMEM: return "IAVF_AQ_RC_ENOMEM"; case IAVF_AQ_RC_EACCES: return "IAVF_AQ_RC_EACCES"; case IAVF_AQ_RC_EFAULT: return "IAVF_AQ_RC_EFAULT"; case IAVF_AQ_RC_EBUSY: return "IAVF_AQ_RC_EBUSY"; case IAVF_AQ_RC_EEXIST: return "IAVF_AQ_RC_EEXIST"; case IAVF_AQ_RC_EINVAL: return "IAVF_AQ_RC_EINVAL"; case IAVF_AQ_RC_ENOTTY: return "IAVF_AQ_RC_ENOTTY"; case IAVF_AQ_RC_ENOSPC: return "IAVF_AQ_RC_ENOSPC"; case IAVF_AQ_RC_ENOSYS: return "IAVF_AQ_RC_ENOSYS"; case IAVF_AQ_RC_ERANGE: return "IAVF_AQ_RC_ERANGE"; case IAVF_AQ_RC_EFLUSHED: return "IAVF_AQ_RC_EFLUSHED"; case IAVF_AQ_RC_BAD_ADDR: return "IAVF_AQ_RC_BAD_ADDR"; case IAVF_AQ_RC_EMODE: return "IAVF_AQ_RC_EMODE"; case IAVF_AQ_RC_EFBIG: return "IAVF_AQ_RC_EFBIG"; } snprintf(hw->err_str, sizeof(hw->err_str), "%d", aq_err); return hw->err_str; } /** * iavf_stat_str - convert status err code to a string * @hw: pointer to the HW structure * @stat_err: the status error code to convert **/ const char *iavf_stat_str(struct iavf_hw *hw, enum iavf_status stat_err) { switch (stat_err) { case 0: return "OK"; case IAVF_ERR_NVM: return "IAVF_ERR_NVM"; case IAVF_ERR_NVM_CHECKSUM: return "IAVF_ERR_NVM_CHECKSUM"; case IAVF_ERR_PHY: return "IAVF_ERR_PHY"; case IAVF_ERR_CONFIG: return "IAVF_ERR_CONFIG"; case IAVF_ERR_PARAM: return "IAVF_ERR_PARAM"; case IAVF_ERR_MAC_TYPE: return "IAVF_ERR_MAC_TYPE"; case IAVF_ERR_UNKNOWN_PHY: return "IAVF_ERR_UNKNOWN_PHY"; case IAVF_ERR_LINK_SETUP: return "IAVF_ERR_LINK_SETUP"; case IAVF_ERR_ADAPTER_STOPPED: return "IAVF_ERR_ADAPTER_STOPPED"; case IAVF_ERR_INVALID_MAC_ADDR: return "IAVF_ERR_INVALID_MAC_ADDR"; case IAVF_ERR_DEVICE_NOT_SUPPORTED: return "IAVF_ERR_DEVICE_NOT_SUPPORTED"; case IAVF_ERR_MASTER_REQUESTS_PENDING: return "IAVF_ERR_MASTER_REQUESTS_PENDING"; case IAVF_ERR_INVALID_LINK_SETTINGS: return "IAVF_ERR_INVALID_LINK_SETTINGS"; case IAVF_ERR_AUTONEG_NOT_COMPLETE: return "IAVF_ERR_AUTONEG_NOT_COMPLETE"; case IAVF_ERR_RESET_FAILED: return "IAVF_ERR_RESET_FAILED"; case IAVF_ERR_SWFW_SYNC: return "IAVF_ERR_SWFW_SYNC"; case IAVF_ERR_NO_AVAILABLE_VSI: return "IAVF_ERR_NO_AVAILABLE_VSI"; case IAVF_ERR_NO_MEMORY: return "IAVF_ERR_NO_MEMORY"; case IAVF_ERR_BAD_PTR: return "IAVF_ERR_BAD_PTR"; case IAVF_ERR_RING_FULL: return "IAVF_ERR_RING_FULL"; case IAVF_ERR_INVALID_PD_ID: return "IAVF_ERR_INVALID_PD_ID"; case IAVF_ERR_INVALID_QP_ID: return "IAVF_ERR_INVALID_QP_ID"; case IAVF_ERR_INVALID_CQ_ID: return "IAVF_ERR_INVALID_CQ_ID"; case IAVF_ERR_INVALID_CEQ_ID: return "IAVF_ERR_INVALID_CEQ_ID"; case IAVF_ERR_INVALID_AEQ_ID: return "IAVF_ERR_INVALID_AEQ_ID"; case IAVF_ERR_INVALID_SIZE: return "IAVF_ERR_INVALID_SIZE"; case IAVF_ERR_INVALID_ARP_INDEX: return "IAVF_ERR_INVALID_ARP_INDEX"; case IAVF_ERR_INVALID_FPM_FUNC_ID: return "IAVF_ERR_INVALID_FPM_FUNC_ID"; case IAVF_ERR_QP_INVALID_MSG_SIZE: return "IAVF_ERR_QP_INVALID_MSG_SIZE"; case IAVF_ERR_QP_TOOMANY_WRS_POSTED: return "IAVF_ERR_QP_TOOMANY_WRS_POSTED"; case IAVF_ERR_INVALID_FRAG_COUNT: return "IAVF_ERR_INVALID_FRAG_COUNT"; case IAVF_ERR_QUEUE_EMPTY: return "IAVF_ERR_QUEUE_EMPTY"; case IAVF_ERR_INVALID_ALIGNMENT: return "IAVF_ERR_INVALID_ALIGNMENT"; case IAVF_ERR_FLUSHED_QUEUE: return "IAVF_ERR_FLUSHED_QUEUE"; case IAVF_ERR_INVALID_PUSH_PAGE_INDEX: return "IAVF_ERR_INVALID_PUSH_PAGE_INDEX"; case IAVF_ERR_INVALID_IMM_DATA_SIZE: return "IAVF_ERR_INVALID_IMM_DATA_SIZE"; case IAVF_ERR_TIMEOUT: return "IAVF_ERR_TIMEOUT"; case IAVF_ERR_OPCODE_MISMATCH: return "IAVF_ERR_OPCODE_MISMATCH"; case IAVF_ERR_CQP_COMPL_ERROR: return "IAVF_ERR_CQP_COMPL_ERROR"; case IAVF_ERR_INVALID_VF_ID: return "IAVF_ERR_INVALID_VF_ID"; case IAVF_ERR_INVALID_HMCFN_ID: return "IAVF_ERR_INVALID_HMCFN_ID"; case IAVF_ERR_BACKING_PAGE_ERROR: return "IAVF_ERR_BACKING_PAGE_ERROR"; case IAVF_ERR_NO_PBLCHUNKS_AVAILABLE: return "IAVF_ERR_NO_PBLCHUNKS_AVAILABLE"; case IAVF_ERR_INVALID_PBLE_INDEX: return "IAVF_ERR_INVALID_PBLE_INDEX"; case IAVF_ERR_INVALID_SD_INDEX: return "IAVF_ERR_INVALID_SD_INDEX"; case IAVF_ERR_INVALID_PAGE_DESC_INDEX: return "IAVF_ERR_INVALID_PAGE_DESC_INDEX"; case IAVF_ERR_INVALID_SD_TYPE: return "IAVF_ERR_INVALID_SD_TYPE"; case IAVF_ERR_MEMCPY_FAILED: return "IAVF_ERR_MEMCPY_FAILED"; case IAVF_ERR_INVALID_HMC_OBJ_INDEX: return "IAVF_ERR_INVALID_HMC_OBJ_INDEX"; case IAVF_ERR_INVALID_HMC_OBJ_COUNT: return "IAVF_ERR_INVALID_HMC_OBJ_COUNT"; case IAVF_ERR_INVALID_SRQ_ARM_LIMIT: return "IAVF_ERR_INVALID_SRQ_ARM_LIMIT"; case IAVF_ERR_SRQ_ENABLED: return "IAVF_ERR_SRQ_ENABLED"; case IAVF_ERR_ADMIN_QUEUE_ERROR: return "IAVF_ERR_ADMIN_QUEUE_ERROR"; case IAVF_ERR_ADMIN_QUEUE_TIMEOUT: return "IAVF_ERR_ADMIN_QUEUE_TIMEOUT"; case IAVF_ERR_BUF_TOO_SHORT: return "IAVF_ERR_BUF_TOO_SHORT"; case IAVF_ERR_ADMIN_QUEUE_FULL: return "IAVF_ERR_ADMIN_QUEUE_FULL"; case IAVF_ERR_ADMIN_QUEUE_NO_WORK: return "IAVF_ERR_ADMIN_QUEUE_NO_WORK"; case IAVF_ERR_BAD_IWARP_CQE: return "IAVF_ERR_BAD_IWARP_CQE"; case IAVF_ERR_NVM_BLANK_MODE: return "IAVF_ERR_NVM_BLANK_MODE"; case IAVF_ERR_NOT_IMPLEMENTED: return "IAVF_ERR_NOT_IMPLEMENTED"; case IAVF_ERR_PE_DOORBELL_NOT_ENABLED: return "IAVF_ERR_PE_DOORBELL_NOT_ENABLED"; case IAVF_ERR_DIAG_TEST_FAILED: return "IAVF_ERR_DIAG_TEST_FAILED"; case IAVF_ERR_NOT_READY: return "IAVF_ERR_NOT_READY"; case IAVF_NOT_SUPPORTED: return "IAVF_NOT_SUPPORTED"; case IAVF_ERR_FIRMWARE_API_VERSION: return "IAVF_ERR_FIRMWARE_API_VERSION"; case IAVF_ERR_ADMIN_QUEUE_CRITICAL_ERROR: return "IAVF_ERR_ADMIN_QUEUE_CRITICAL_ERROR"; } snprintf(hw->err_str, sizeof(hw->err_str), "%d", stat_err); return hw->err_str; } /** * iavf_debug_aq * @hw: debug mask related to admin queue * @mask: debug mask * @desc: pointer to admin queue descriptor * @buffer: pointer to command buffer * @buf_len: max length of buffer * * Dumps debug log about adminq command with descriptor contents. **/ void iavf_debug_aq(struct iavf_hw *hw, enum iavf_debug_mask mask, void *desc, void *buffer, u16 buf_len) { struct iavf_aq_desc *aq_desc = (struct iavf_aq_desc *)desc; u8 *buf = (u8 *)buffer; if ((!(mask & hw->debug_mask)) || !desc) return; iavf_debug(hw, mask, "AQ CMD: opcode 0x%04X, flags 0x%04X, datalen 0x%04X, retval 0x%04X\n", le16_to_cpu(aq_desc->opcode), le16_to_cpu(aq_desc->flags), le16_to_cpu(aq_desc->datalen), le16_to_cpu(aq_desc->retval)); iavf_debug(hw, mask, "\tcookie (h,l) 0x%08X 0x%08X\n", le32_to_cpu(aq_desc->cookie_high), le32_to_cpu(aq_desc->cookie_low)); iavf_debug(hw, mask, "\tparam (0,1) 0x%08X 0x%08X\n", le32_to_cpu(aq_desc->params.internal.param0), le32_to_cpu(aq_desc->params.internal.param1)); iavf_debug(hw, mask, "\taddr (h,l) 0x%08X 0x%08X\n", le32_to_cpu(aq_desc->params.external.addr_high), le32_to_cpu(aq_desc->params.external.addr_low)); if (buffer && aq_desc->datalen) { u16 len = le16_to_cpu(aq_desc->datalen); iavf_debug(hw, mask, "AQ CMD Buffer:\n"); if (buf_len < len) len = buf_len; /* write the full 16-byte chunks */ if (hw->debug_mask & mask) { char prefix[27]; snprintf(prefix, sizeof(prefix), "iavf %02x:%02x.%x: \t0x", hw->bus.bus_id, hw->bus.device, hw->bus.func); print_hex_dump(KERN_INFO, prefix, DUMP_PREFIX_OFFSET, 16, 1, buf, len, false); } } } /** * iavf_check_asq_alive * @hw: pointer to the hw struct * * Returns true if Queue is enabled else false. **/ bool iavf_check_asq_alive(struct iavf_hw *hw) { if (hw->aq.asq.len) return !!(rd32(hw, hw->aq.asq.len) & IAVF_VF_ATQLEN1_ATQENABLE_MASK); else return false; } /** * iavf_aq_queue_shutdown * @hw: pointer to the hw struct * @unloading: is the driver unloading itself * * Tell the Firmware that we're shutting down the AdminQ and whether * or not the driver is unloading as well. **/ enum iavf_status iavf_aq_queue_shutdown(struct iavf_hw *hw, bool unloading) { struct iavf_aq_desc desc; struct iavf_aqc_queue_shutdown *cmd = (struct iavf_aqc_queue_shutdown *)&desc.params.raw; enum iavf_status status; iavf_fill_default_direct_cmd_desc(&desc, iavf_aqc_opc_queue_shutdown); if (unloading) cmd->driver_unloading = cpu_to_le32(IAVF_AQ_DRIVER_UNLOADING); status = iavf_asq_send_command(hw, &desc, NULL, 0, NULL); return status; } /** * iavf_aq_get_set_rss_lut * @hw: pointer to the hardware structure * @vsi_id: vsi fw index * @pf_lut: for PF table set true, for VSI table set false * @lut: pointer to the lut buffer provided by the caller * @lut_size: size of the lut buffer * @set: set true to set the table, false to get the table * * Internal function to get or set RSS look up table **/ static enum iavf_status iavf_aq_get_set_rss_lut(struct iavf_hw *hw, u16 vsi_id, bool pf_lut, u8 *lut, u16 lut_size, bool set) { enum iavf_status status; struct iavf_aq_desc desc; struct iavf_aqc_get_set_rss_lut *cmd_resp = (struct iavf_aqc_get_set_rss_lut *)&desc.params.raw; if (set) iavf_fill_default_direct_cmd_desc(&desc, iavf_aqc_opc_set_rss_lut); else iavf_fill_default_direct_cmd_desc(&desc, iavf_aqc_opc_get_rss_lut); /* Indirect command */ desc.flags |= cpu_to_le16((u16)IAVF_AQ_FLAG_BUF); desc.flags |= cpu_to_le16((u16)IAVF_AQ_FLAG_RD); cmd_resp->vsi_id = cpu_to_le16((u16)((vsi_id << IAVF_AQC_SET_RSS_LUT_VSI_ID_SHIFT) & IAVF_AQC_SET_RSS_LUT_VSI_ID_MASK)); cmd_resp->vsi_id |= cpu_to_le16((u16)IAVF_AQC_SET_RSS_LUT_VSI_VALID); if (pf_lut) cmd_resp->flags |= cpu_to_le16((u16) ((IAVF_AQC_SET_RSS_LUT_TABLE_TYPE_PF << IAVF_AQC_SET_RSS_LUT_TABLE_TYPE_SHIFT) & IAVF_AQC_SET_RSS_LUT_TABLE_TYPE_MASK)); else cmd_resp->flags |= cpu_to_le16((u16) ((IAVF_AQC_SET_RSS_LUT_TABLE_TYPE_VSI << IAVF_AQC_SET_RSS_LUT_TABLE_TYPE_SHIFT) & IAVF_AQC_SET_RSS_LUT_TABLE_TYPE_MASK)); status = iavf_asq_send_command(hw, &desc, lut, lut_size, NULL); return status; } /** * iavf_aq_get_rss_lut * @hw: pointer to the hardware structure * @vsi_id: vsi fw index * @pf_lut: for PF table set true, for VSI table set false * @lut: pointer to the lut buffer provided by the caller * @lut_size: size of the lut buffer * * get the RSS lookup table, PF or VSI type **/ enum iavf_status iavf_aq_get_rss_lut(struct iavf_hw *hw, u16 vsi_id, bool pf_lut, u8 *lut, u16 lut_size) { return iavf_aq_get_set_rss_lut(hw, vsi_id, pf_lut, lut, lut_size, false); } /** * iavf_aq_set_rss_lut * @hw: pointer to the hardware structure * @vsi_id: vsi fw index * @pf_lut: for PF table set true, for VSI table set false * @lut: pointer to the lut buffer provided by the caller * @lut_size: size of the lut buffer * * set the RSS lookup table, PF or VSI type **/ enum iavf_status iavf_aq_set_rss_lut(struct iavf_hw *hw, u16 vsi_id, bool pf_lut, u8 *lut, u16 lut_size) { return iavf_aq_get_set_rss_lut(hw, vsi_id, pf_lut, lut, lut_size, true); } /** * iavf_aq_get_set_rss_key * @hw: pointer to the hw struct * @vsi_id: vsi fw index * @key: pointer to key info struct * @set: set true to set the key, false to get the key * * get the RSS key per VSI **/ static enum iavf_status iavf_aq_get_set_rss_key(struct iavf_hw *hw, u16 vsi_id, struct iavf_aqc_get_set_rss_key_data *key, bool set) { enum iavf_status status; struct iavf_aq_desc desc; struct iavf_aqc_get_set_rss_key *cmd_resp = (struct iavf_aqc_get_set_rss_key *)&desc.params.raw; u16 key_size = sizeof(struct iavf_aqc_get_set_rss_key_data); if (set) iavf_fill_default_direct_cmd_desc(&desc, iavf_aqc_opc_set_rss_key); else iavf_fill_default_direct_cmd_desc(&desc, iavf_aqc_opc_get_rss_key); /* Indirect command */ desc.flags |= cpu_to_le16((u16)IAVF_AQ_FLAG_BUF); desc.flags |= cpu_to_le16((u16)IAVF_AQ_FLAG_RD); cmd_resp->vsi_id = cpu_to_le16((u16)((vsi_id << IAVF_AQC_SET_RSS_KEY_VSI_ID_SHIFT) & IAVF_AQC_SET_RSS_KEY_VSI_ID_MASK)); cmd_resp->vsi_id |= cpu_to_le16((u16)IAVF_AQC_SET_RSS_KEY_VSI_VALID); status = iavf_asq_send_command(hw, &desc, key, key_size, NULL); return status; } /** * iavf_aq_get_rss_key * @hw: pointer to the hw struct * @vsi_id: vsi fw index * @key: pointer to key info struct * **/ enum iavf_status iavf_aq_get_rss_key(struct iavf_hw *hw, u16 vsi_id, struct iavf_aqc_get_set_rss_key_data *key) { return iavf_aq_get_set_rss_key(hw, vsi_id, key, false); } /** * iavf_aq_set_rss_key * @hw: pointer to the hw struct * @vsi_id: vsi fw index * @key: pointer to key info struct * * set the RSS key per VSI **/ enum iavf_status iavf_aq_set_rss_key(struct iavf_hw *hw, u16 vsi_id, struct iavf_aqc_get_set_rss_key_data *key) { return iavf_aq_get_set_rss_key(hw, vsi_id, key, true); } /* The iavf_ptype_lookup table is used to convert from the 8-bit ptype in the * hardware to a bit-field that can be used by SW to more easily determine the * packet type. * * Macros are used to shorten the table lines and make this table human * readable. * * We store the PTYPE in the top byte of the bit field - this is just so that * we can check that the table doesn't have a row missing, as the index into * the table should be the PTYPE. * * Typical work flow: * * IF NOT iavf_ptype_lookup[ptype].known * THEN * Packet is unknown * ELSE IF iavf_ptype_lookup[ptype].outer_ip == IAVF_RX_PTYPE_OUTER_IP * Use the rest of the fields to look at the tunnels, inner protocols, etc * ELSE * Use the enum iavf_rx_l2_ptype to decode the packet type * ENDIF */ /* macro to make the table lines short, use explicit indexing with [PTYPE] */ #define IAVF_PTT(PTYPE, OUTER_IP, OUTER_IP_VER, OUTER_FRAG, T, TE, TEF, I, PL)\ [PTYPE] = { \ 1, \ IAVF_RX_PTYPE_OUTER_##OUTER_IP, \ IAVF_RX_PTYPE_OUTER_##OUTER_IP_VER, \ IAVF_RX_PTYPE_##OUTER_FRAG, \ IAVF_RX_PTYPE_TUNNEL_##T, \ IAVF_RX_PTYPE_TUNNEL_END_##TE, \ IAVF_RX_PTYPE_##TEF, \ IAVF_RX_PTYPE_INNER_PROT_##I, \ IAVF_RX_PTYPE_PAYLOAD_LAYER_##PL } #define IAVF_PTT_UNUSED_ENTRY(PTYPE) [PTYPE] = { 0, 0, 0, 0, 0, 0, 0, 0, 0 } /* shorter macros makes the table fit but are terse */ #define IAVF_RX_PTYPE_NOF IAVF_RX_PTYPE_NOT_FRAG #define IAVF_RX_PTYPE_FRG IAVF_RX_PTYPE_FRAG #define IAVF_RX_PTYPE_INNER_PROT_TS IAVF_RX_PTYPE_INNER_PROT_TIMESYNC /* Lookup table mapping the 8-bit HW PTYPE to the bit field for decoding */ struct iavf_rx_ptype_decoded iavf_ptype_lookup[BIT(8)] = { /* L2 Packet types */ IAVF_PTT_UNUSED_ENTRY(0), IAVF_PTT(1, L2, NONE, NOF, NONE, NONE, NOF, NONE, PAY2), IAVF_PTT(2, L2, NONE, NOF, NONE, NONE, NOF, TS, PAY2), IAVF_PTT(3, L2, NONE, NOF, NONE, NONE, NOF, NONE, PAY2), IAVF_PTT_UNUSED_ENTRY(4), IAVF_PTT_UNUSED_ENTRY(5), IAVF_PTT(6, L2, NONE, NOF, NONE, NONE, NOF, NONE, PAY2), IAVF_PTT(7, L2, NONE, NOF, NONE, NONE, NOF, NONE, PAY2), IAVF_PTT_UNUSED_ENTRY(8), IAVF_PTT_UNUSED_ENTRY(9), IAVF_PTT(10, L2, NONE, NOF, NONE, NONE, NOF, NONE, PAY2), IAVF_PTT(11, L2, NONE, NOF, NONE, NONE, NOF, NONE, NONE), IAVF_PTT(12, L2, NONE, NOF, NONE, NONE, NOF, NONE, PAY3), IAVF_PTT(13, L2, NONE, NOF, NONE, NONE, NOF, NONE, PAY3), IAVF_PTT(14, L2, NONE, NOF, NONE, NONE, NOF, NONE, PAY3), IAVF_PTT(15, L2, NONE, NOF, NONE, NONE, NOF, NONE, PAY3), IAVF_PTT(16, L2, NONE, NOF, NONE, NONE, NOF, NONE, PAY3), IAVF_PTT(17, L2, NONE, NOF, NONE, NONE, NOF, NONE, PAY3), IAVF_PTT(18, L2, NONE, NOF, NONE, NONE, NOF, NONE, PAY3), IAVF_PTT(19, L2, NONE, NOF, NONE, NONE, NOF, NONE, PAY3), IAVF_PTT(20, L2, NONE, NOF, NONE, NONE, NOF, NONE, PAY3), IAVF_PTT(21, L2, NONE, NOF, NONE, NONE, NOF, NONE, PAY3), /* Non Tunneled IPv4 */ IAVF_PTT(22, IP, IPV4, FRG, NONE, NONE, NOF, NONE, PAY3), IAVF_PTT(23, IP, IPV4, NOF, NONE, NONE, NOF, NONE, PAY3), IAVF_PTT(24, IP, IPV4, NOF, NONE, NONE, NOF, UDP, PAY4), IAVF_PTT_UNUSED_ENTRY(25), IAVF_PTT(26, IP, IPV4, NOF, NONE, NONE, NOF, TCP, PAY4), IAVF_PTT(27, IP, IPV4, NOF, NONE, NONE, NOF, SCTP, PAY4), IAVF_PTT(28, IP, IPV4, NOF, NONE, NONE, NOF, ICMP, PAY4), /* IPv4 --> IPv4 */ IAVF_PTT(29, IP, IPV4, NOF, IP_IP, IPV4, FRG, NONE, PAY3), IAVF_PTT(30, IP, IPV4, NOF, IP_IP, IPV4, NOF, NONE, PAY3), IAVF_PTT(31, IP, IPV4, NOF, IP_IP, IPV4, NOF, UDP, PAY4), IAVF_PTT_UNUSED_ENTRY(32), IAVF_PTT(33, IP, IPV4, NOF, IP_IP, IPV4, NOF, TCP, PAY4), IAVF_PTT(34, IP, IPV4, NOF, IP_IP, IPV4, NOF, SCTP, PAY4), IAVF_PTT(35, IP, IPV4, NOF, IP_IP, IPV4, NOF, ICMP, PAY4), /* IPv4 --> IPv6 */ IAVF_PTT(36, IP, IPV4, NOF, IP_IP, IPV6, FRG, NONE, PAY3), IAVF_PTT(37, IP, IPV4, NOF, IP_IP, IPV6, NOF, NONE, PAY3), IAVF_PTT(38, IP, IPV4, NOF, IP_IP, IPV6, NOF, UDP, PAY4), IAVF_PTT_UNUSED_ENTRY(39), IAVF_PTT(40, IP, IPV4, NOF, IP_IP, IPV6, NOF, TCP, PAY4), IAVF_PTT(41, IP, IPV4, NOF, IP_IP, IPV6, NOF, SCTP, PAY4), IAVF_PTT(42, IP, IPV4, NOF, IP_IP, IPV6, NOF, ICMP, PAY4), /* IPv4 --> GRE/NAT */ IAVF_PTT(43, IP, IPV4, NOF, IP_GRENAT, NONE, NOF, NONE, PAY3), /* IPv4 --> GRE/NAT --> IPv4 */ IAVF_PTT(44, IP, IPV4, NOF, IP_GRENAT, IPV4, FRG, NONE, PAY3), IAVF_PTT(45, IP, IPV4, NOF, IP_GRENAT, IPV4, NOF, NONE, PAY3), IAVF_PTT(46, IP, IPV4, NOF, IP_GRENAT, IPV4, NOF, UDP, PAY4), IAVF_PTT_UNUSED_ENTRY(47), IAVF_PTT(48, IP, IPV4, NOF, IP_GRENAT, IPV4, NOF, TCP, PAY4), IAVF_PTT(49, IP, IPV4, NOF, IP_GRENAT, IPV4, NOF, SCTP, PAY4), IAVF_PTT(50, IP, IPV4, NOF, IP_GRENAT, IPV4, NOF, ICMP, PAY4), /* IPv4 --> GRE/NAT --> IPv6 */ IAVF_PTT(51, IP, IPV4, NOF, IP_GRENAT, IPV6, FRG, NONE, PAY3), IAVF_PTT(52, IP, IPV4, NOF, IP_GRENAT, IPV6, NOF, NONE, PAY3), IAVF_PTT(53, IP, IPV4, NOF, IP_GRENAT, IPV6, NOF, UDP, PAY4), IAVF_PTT_UNUSED_ENTRY(54), IAVF_PTT(55, IP, IPV4, NOF, IP_GRENAT, IPV6, NOF, TCP, PAY4), IAVF_PTT(56, IP, IPV4, NOF, IP_GRENAT, IPV6, NOF, SCTP, PAY4), IAVF_PTT(57, IP, IPV4, NOF, IP_GRENAT, IPV6, NOF, ICMP, PAY4), /* IPv4 --> GRE/NAT --> MAC */ IAVF_PTT(58, IP, IPV4, NOF, IP_GRENAT_MAC, NONE, NOF, NONE, PAY3), /* IPv4 --> GRE/NAT --> MAC --> IPv4 */ IAVF_PTT(59, IP, IPV4, NOF, IP_GRENAT_MAC, IPV4, FRG, NONE, PAY3), IAVF_PTT(60, IP, IPV4, NOF, IP_GRENAT_MAC, IPV4, NOF, NONE, PAY3), IAVF_PTT(61, IP, IPV4, NOF, IP_GRENAT_MAC, IPV4, NOF, UDP, PAY4), IAVF_PTT_UNUSED_ENTRY(62), IAVF_PTT(63, IP, IPV4, NOF, IP_GRENAT_MAC, IPV4, NOF, TCP, PAY4), IAVF_PTT(64, IP, IPV4, NOF, IP_GRENAT_MAC, IPV4, NOF, SCTP, PAY4), IAVF_PTT(65, IP, IPV4, NOF, IP_GRENAT_MAC, IPV4, NOF, ICMP, PAY4), /* IPv4 --> GRE/NAT -> MAC --> IPv6 */ IAVF_PTT(66, IP, IPV4, NOF, IP_GRENAT_MAC, IPV6, FRG, NONE, PAY3), IAVF_PTT(67, IP, IPV4, NOF, IP_GRENAT_MAC, IPV6, NOF, NONE, PAY3), IAVF_PTT(68, IP, IPV4, NOF, IP_GRENAT_MAC, IPV6, NOF, UDP, PAY4), IAVF_PTT_UNUSED_ENTRY(69), IAVF_PTT(70, IP, IPV4, NOF, IP_GRENAT_MAC, IPV6, NOF, TCP, PAY4), IAVF_PTT(71, IP, IPV4, NOF, IP_GRENAT_MAC, IPV6, NOF, SCTP, PAY4), IAVF_PTT(72, IP, IPV4, NOF, IP_GRENAT_MAC, IPV6, NOF, ICMP, PAY4), /* IPv4 --> GRE/NAT --> MAC/VLAN */ IAVF_PTT(73, IP, IPV4, NOF, IP_GRENAT_MAC_VLAN, NONE, NOF, NONE, PAY3), /* IPv4 ---> GRE/NAT -> MAC/VLAN --> IPv4 */ IAVF_PTT(74, IP, IPV4, NOF, IP_GRENAT_MAC_VLAN, IPV4, FRG, NONE, PAY3), IAVF_PTT(75, IP, IPV4, NOF, IP_GRENAT_MAC_VLAN, IPV4, NOF, NONE, PAY3), IAVF_PTT(76, IP, IPV4, NOF, IP_GRENAT_MAC_VLAN, IPV4, NOF, UDP, PAY4), IAVF_PTT_UNUSED_ENTRY(77), IAVF_PTT(78, IP, IPV4, NOF, IP_GRENAT_MAC_VLAN, IPV4, NOF, TCP, PAY4), IAVF_PTT(79, IP, IPV4, NOF, IP_GRENAT_MAC_VLAN, IPV4, NOF, SCTP, PAY4), IAVF_PTT(80, IP, IPV4, NOF, IP_GRENAT_MAC_VLAN, IPV4, NOF, ICMP, PAY4), /* IPv4 -> GRE/NAT -> MAC/VLAN --> IPv6 */ IAVF_PTT(81, IP, IPV4, NOF, IP_GRENAT_MAC_VLAN, IPV6, FRG, NONE, PAY3), IAVF_PTT(82, IP, IPV4, NOF, IP_GRENAT_MAC_VLAN, IPV6, NOF, NONE, PAY3), IAVF_PTT(83, IP, IPV4, NOF, IP_GRENAT_MAC_VLAN, IPV6, NOF, UDP, PAY4), IAVF_PTT_UNUSED_ENTRY(84), IAVF_PTT(85, IP, IPV4, NOF, IP_GRENAT_MAC_VLAN, IPV6, NOF, TCP, PAY4), IAVF_PTT(86, IP, IPV4, NOF, IP_GRENAT_MAC_VLAN, IPV6, NOF, SCTP, PAY4), IAVF_PTT(87, IP, IPV4, NOF, IP_GRENAT_MAC_VLAN, IPV6, NOF, ICMP, PAY4), /* Non Tunneled IPv6 */ IAVF_PTT(88, IP, IPV6, FRG, NONE, NONE, NOF, NONE, PAY3), IAVF_PTT(89, IP, IPV6, NOF, NONE, NONE, NOF, NONE, PAY3), IAVF_PTT(90, IP, IPV6, NOF, NONE, NONE, NOF, UDP, PAY4), IAVF_PTT_UNUSED_ENTRY(91), IAVF_PTT(92, IP, IPV6, NOF, NONE, NONE, NOF, TCP, PAY4), IAVF_PTT(93, IP, IPV6, NOF, NONE, NONE, NOF, SCTP, PAY4), IAVF_PTT(94, IP, IPV6, NOF, NONE, NONE, NOF, ICMP, PAY4), /* IPv6 --> IPv4 */ IAVF_PTT(95, IP, IPV6, NOF, IP_IP, IPV4, FRG, NONE, PAY3), IAVF_PTT(96, IP, IPV6, NOF, IP_IP, IPV4, NOF, NONE, PAY3), IAVF_PTT(97, IP, IPV6, NOF, IP_IP, IPV4, NOF, UDP, PAY4), IAVF_PTT_UNUSED_ENTRY(98), IAVF_PTT(99, IP, IPV6, NOF, IP_IP, IPV4, NOF, TCP, PAY4), IAVF_PTT(100, IP, IPV6, NOF, IP_IP, IPV4, NOF, SCTP, PAY4), IAVF_PTT(101, IP, IPV6, NOF, IP_IP, IPV4, NOF, ICMP, PAY4), /* IPv6 --> IPv6 */ IAVF_PTT(102, IP, IPV6, NOF, IP_IP, IPV6, FRG, NONE, PAY3), IAVF_PTT(103, IP, IPV6, NOF, IP_IP, IPV6, NOF, NONE, PAY3), IAVF_PTT(104, IP, IPV6, NOF, IP_IP, IPV6, NOF, UDP, PAY4), IAVF_PTT_UNUSED_ENTRY(105), IAVF_PTT(106, IP, IPV6, NOF, IP_IP, IPV6, NOF, TCP, PAY4), IAVF_PTT(107, IP, IPV6, NOF, IP_IP, IPV6, NOF, SCTP, PAY4), IAVF_PTT(108, IP, IPV6, NOF, IP_IP, IPV6, NOF, ICMP, PAY4), /* IPv6 --> GRE/NAT */ IAVF_PTT(109, IP, IPV6, NOF, IP_GRENAT, NONE, NOF, NONE, PAY3), /* IPv6 --> GRE/NAT -> IPv4 */ IAVF_PTT(110, IP, IPV6, NOF, IP_GRENAT, IPV4, FRG, NONE, PAY3), IAVF_PTT(111, IP, IPV6, NOF, IP_GRENAT, IPV4, NOF, NONE, PAY3), IAVF_PTT(112, IP, IPV6, NOF, IP_GRENAT, IPV4, NOF, UDP, PAY4), IAVF_PTT_UNUSED_ENTRY(113), IAVF_PTT(114, IP, IPV6, NOF, IP_GRENAT, IPV4, NOF, TCP, PAY4), IAVF_PTT(115, IP, IPV6, NOF, IP_GRENAT, IPV4, NOF, SCTP, PAY4), IAVF_PTT(116, IP, IPV6, NOF, IP_GRENAT, IPV4, NOF, ICMP, PAY4), /* IPv6 --> GRE/NAT -> IPv6 */ IAVF_PTT(117, IP, IPV6, NOF, IP_GRENAT, IPV6, FRG, NONE, PAY3), IAVF_PTT(118, IP, IPV6, NOF, IP_GRENAT, IPV6, NOF, NONE, PAY3), IAVF_PTT(119, IP, IPV6, NOF, IP_GRENAT, IPV6, NOF, UDP, PAY4), IAVF_PTT_UNUSED_ENTRY(120), IAVF_PTT(121, IP, IPV6, NOF, IP_GRENAT, IPV6, NOF, TCP, PAY4), IAVF_PTT(122, IP, IPV6, NOF, IP_GRENAT, IPV6, NOF, SCTP, PAY4), IAVF_PTT(123, IP, IPV6, NOF, IP_GRENAT, IPV6, NOF, ICMP, PAY4), /* IPv6 --> GRE/NAT -> MAC */ IAVF_PTT(124, IP, IPV6, NOF, IP_GRENAT_MAC, NONE, NOF, NONE, PAY3), /* IPv6 --> GRE/NAT -> MAC -> IPv4 */ IAVF_PTT(125, IP, IPV6, NOF, IP_GRENAT_MAC, IPV4, FRG, NONE, PAY3), IAVF_PTT(126, IP, IPV6, NOF, IP_GRENAT_MAC, IPV4, NOF, NONE, PAY3), IAVF_PTT(127, IP, IPV6, NOF, IP_GRENAT_MAC, IPV4, NOF, UDP, PAY4), IAVF_PTT_UNUSED_ENTRY(128), IAVF_PTT(129, IP, IPV6, NOF, IP_GRENAT_MAC, IPV4, NOF, TCP, PAY4), IAVF_PTT(130, IP, IPV6, NOF, IP_GRENAT_MAC, IPV4, NOF, SCTP, PAY4), IAVF_PTT(131, IP, IPV6, NOF, IP_GRENAT_MAC, IPV4, NOF, ICMP, PAY4), /* IPv6 --> GRE/NAT -> MAC -> IPv6 */ IAVF_PTT(132, IP, IPV6, NOF, IP_GRENAT_MAC, IPV6, FRG, NONE, PAY3), IAVF_PTT(133, IP, IPV6, NOF, IP_GRENAT_MAC, IPV6, NOF, NONE, PAY3), IAVF_PTT(134, IP, IPV6, NOF, IP_GRENAT_MAC, IPV6, NOF, UDP, PAY4), IAVF_PTT_UNUSED_ENTRY(135), IAVF_PTT(136, IP, IPV6, NOF, IP_GRENAT_MAC, IPV6, NOF, TCP, PAY4), IAVF_PTT(137, IP, IPV6, NOF, IP_GRENAT_MAC, IPV6, NOF, SCTP, PAY4), IAVF_PTT(138, IP, IPV6, NOF, IP_GRENAT_MAC, IPV6, NOF, ICMP, PAY4), /* IPv6 --> GRE/NAT -> MAC/VLAN */ IAVF_PTT(139, IP, IPV6, NOF, IP_GRENAT_MAC_VLAN, NONE, NOF, NONE, PAY3), /* IPv6 --> GRE/NAT -> MAC/VLAN --> IPv4 */ IAVF_PTT(140, IP, IPV6, NOF, IP_GRENAT_MAC_VLAN, IPV4, FRG, NONE, PAY3), IAVF_PTT(141, IP, IPV6, NOF, IP_GRENAT_MAC_VLAN, IPV4, NOF, NONE, PAY3), IAVF_PTT(142, IP, IPV6, NOF, IP_GRENAT_MAC_VLAN, IPV4, NOF, UDP, PAY4), IAVF_PTT_UNUSED_ENTRY(143), IAVF_PTT(144, IP, IPV6, NOF, IP_GRENAT_MAC_VLAN, IPV4, NOF, TCP, PAY4), IAVF_PTT(145, IP, IPV6, NOF, IP_GRENAT_MAC_VLAN, IPV4, NOF, SCTP, PAY4), IAVF_PTT(146, IP, IPV6, NOF, IP_GRENAT_MAC_VLAN, IPV4, NOF, ICMP, PAY4), /* IPv6 --> GRE/NAT -> MAC/VLAN --> IPv6 */ IAVF_PTT(147, IP, IPV6, NOF, IP_GRENAT_MAC_VLAN, IPV6, FRG, NONE, PAY3), IAVF_PTT(148, IP, IPV6, NOF, IP_GRENAT_MAC_VLAN, IPV6, NOF, NONE, PAY3), IAVF_PTT(149, IP, IPV6, NOF, IP_GRENAT_MAC_VLAN, IPV6, NOF, UDP, PAY4), IAVF_PTT_UNUSED_ENTRY(150), IAVF_PTT(151, IP, IPV6, NOF, IP_GRENAT_MAC_VLAN, IPV6, NOF, TCP, PAY4), IAVF_PTT(152, IP, IPV6, NOF, IP_GRENAT_MAC_VLAN, IPV6, NOF, SCTP, PAY4), IAVF_PTT(153, IP, IPV6, NOF, IP_GRENAT_MAC_VLAN, IPV6, NOF, ICMP, PAY4), /* unused entries */ [154 ... 255] = { 0, 0, 0, 0, 0, 0, 0, 0, 0 } }; /** * iavf_aq_send_msg_to_pf * @hw: pointer to the hardware structure * @v_opcode: opcodes for VF-PF communication * @v_retval: return error code * @msg: pointer to the msg buffer * @msglen: msg length * @cmd_details: pointer to command details * * Send message to PF driver using admin queue. By default, this message * is sent asynchronously, i.e. iavf_asq_send_command() does not wait for * completion before returning. **/ enum iavf_status iavf_aq_send_msg_to_pf(struct iavf_hw *hw, enum virtchnl_ops v_opcode, enum iavf_status v_retval, u8 *msg, u16 msglen, struct iavf_asq_cmd_details *cmd_details) { struct iavf_asq_cmd_details details; struct iavf_aq_desc desc; enum iavf_status status; iavf_fill_default_direct_cmd_desc(&desc, iavf_aqc_opc_send_msg_to_pf); desc.flags |= cpu_to_le16((u16)IAVF_AQ_FLAG_SI); desc.cookie_high = cpu_to_le32(v_opcode); desc.cookie_low = cpu_to_le32(v_retval); if (msglen) { desc.flags |= cpu_to_le16((u16)(IAVF_AQ_FLAG_BUF | IAVF_AQ_FLAG_RD)); if (msglen > IAVF_AQ_LARGE_BUF) desc.flags |= cpu_to_le16((u16)IAVF_AQ_FLAG_LB); desc.datalen = cpu_to_le16(msglen); } if (!cmd_details) { memset(&details, 0, sizeof(details)); details.async = true; cmd_details = &details; } status = iavf_asq_send_command(hw, &desc, msg, msglen, cmd_details); return status; } /** * iavf_vf_parse_hw_config * @hw: pointer to the hardware structure * @msg: pointer to the virtual channel VF resource structure * * Given a VF resource message from the PF, populate the hw struct * with appropriate information. **/ void iavf_vf_parse_hw_config(struct iavf_hw *hw, struct virtchnl_vf_resource *msg) { struct virtchnl_vsi_resource *vsi_res; int i; vsi_res = &msg->vsi_res[0]; hw->dev_caps.num_vsis = msg->num_vsis; hw->dev_caps.num_rx_qp = msg->num_queue_pairs; hw->dev_caps.num_tx_qp = msg->num_queue_pairs; hw->dev_caps.num_msix_vectors_vf = msg->max_vectors; hw->dev_caps.dcb = msg->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_L2; hw->dev_caps.fcoe = 0; for (i = 0; i < msg->num_vsis; i++) { if (vsi_res->vsi_type == VIRTCHNL_VSI_SRIOV) { ether_addr_copy(hw->mac.perm_addr, vsi_res->default_mac_addr); ether_addr_copy(hw->mac.addr, vsi_res->default_mac_addr); } vsi_res++; } } /** * iavf_vf_reset * @hw: pointer to the hardware structure * * Send a VF_RESET message to the PF. Does not wait for response from PF * as none will be forthcoming. Immediately after calling this function, * the admin queue should be shut down and (optionally) reinitialized. **/ enum iavf_status iavf_vf_reset(struct iavf_hw *hw) { return iavf_aq_send_msg_to_pf(hw, VIRTCHNL_OP_RESET_VF, 0, NULL, 0, NULL); }