// SPDX-License-Identifier: GPL-2.0 /* * Performance events ring-buffer code: * * Copyright (C) 2008 Thomas Gleixner * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra * Copyright © 2009 Paul Mackerras, IBM Corp. */ #include #include #include #include #include #include #include "internal.h" static void perf_output_wakeup(struct perf_output_handle *handle) { atomic_set(&handle->rb->poll, EPOLLIN); handle->event->pending_wakeup = 1; irq_work_queue(&handle->event->pending_irq); } /* * We need to ensure a later event_id doesn't publish a head when a former * event isn't done writing. However since we need to deal with NMIs we * cannot fully serialize things. * * We only publish the head (and generate a wakeup) when the outer-most * event completes. */ static void perf_output_get_handle(struct perf_output_handle *handle) { struct perf_buffer *rb = handle->rb; preempt_disable(); /* * Avoid an explicit LOAD/STORE such that architectures with memops * can use them. */ (*(volatile unsigned int *)&rb->nest)++; handle->wakeup = local_read(&rb->wakeup); } static void perf_output_put_handle(struct perf_output_handle *handle) { struct perf_buffer *rb = handle->rb; unsigned long head; unsigned int nest; /* * If this isn't the outermost nesting, we don't have to update * @rb->user_page->data_head. */ nest = READ_ONCE(rb->nest); if (nest > 1) { WRITE_ONCE(rb->nest, nest - 1); goto out; } again: /* * In order to avoid publishing a head value that goes backwards, * we must ensure the load of @rb->head happens after we've * incremented @rb->nest. * * Otherwise we can observe a @rb->head value before one published * by an IRQ/NMI happening between the load and the increment. */ barrier(); head = local_read(&rb->head); /* * IRQ/NMI can happen here and advance @rb->head, causing our * load above to be stale. */ /* * Since the mmap() consumer (userspace) can run on a different CPU: * * kernel user * * if (LOAD ->data_tail) { LOAD ->data_head * (A) smp_rmb() (C) * STORE $data LOAD $data * smp_wmb() (B) smp_mb() (D) * STORE ->data_head STORE ->data_tail * } * * Where A pairs with D, and B pairs with C. * * In our case (A) is a control dependency that separates the load of * the ->data_tail and the stores of $data. In case ->data_tail * indicates there is no room in the buffer to store $data we do not. * * D needs to be a full barrier since it separates the data READ * from the tail WRITE. * * For B a WMB is sufficient since it separates two WRITEs, and for C * an RMB is sufficient since it separates two READs. * * See perf_output_begin(). */ smp_wmb(); /* B, matches C */ WRITE_ONCE(rb->user_page->data_head, head); /* * We must publish the head before decrementing the nest count, * otherwise an IRQ/NMI can publish a more recent head value and our * write will (temporarily) publish a stale value. */ barrier(); WRITE_ONCE(rb->nest, 0); /* * Ensure we decrement @rb->nest before we validate the @rb->head. * Otherwise we cannot be sure we caught the 'last' nested update. */ barrier(); if (unlikely(head != local_read(&rb->head))) { WRITE_ONCE(rb->nest, 1); goto again; } if (handle->wakeup != local_read(&rb->wakeup)) perf_output_wakeup(handle); out: preempt_enable(); } static __always_inline bool ring_buffer_has_space(unsigned long head, unsigned long tail, unsigned long data_size, unsigned int size, bool backward) { if (!backward) return CIRC_SPACE(head, tail, data_size) >= size; else return CIRC_SPACE(tail, head, data_size) >= size; } static __always_inline int __perf_output_begin(struct perf_output_handle *handle, struct perf_sample_data *data, struct perf_event *event, unsigned int size, bool backward) { struct perf_buffer *rb; unsigned long tail, offset, head; int have_lost, page_shift; struct { struct perf_event_header header; u64 id; u64 lost; } lost_event; rcu_read_lock(); /* * For inherited events we send all the output towards the parent. */ if (event->parent) event = event->parent; rb = rcu_dereference(event->rb); if (unlikely(!rb)) goto out; if (unlikely(rb->paused)) { if (rb->nr_pages) { local_inc(&rb->lost); atomic64_inc(&event->lost_samples); } goto out; } handle->rb = rb; handle->event = event; have_lost = local_read(&rb->lost); if (unlikely(have_lost)) { size += sizeof(lost_event); if (event->attr.sample_id_all) size += event->id_header_size; } perf_output_get_handle(handle); do { tail = READ_ONCE(rb->user_page->data_tail); offset = head = local_read(&rb->head); if (!rb->overwrite) { if (unlikely(!ring_buffer_has_space(head, tail, perf_data_size(rb), size, backward))) goto fail; } /* * The above forms a control dependency barrier separating the * @tail load above from the data stores below. Since the @tail * load is required to compute the branch to fail below. * * A, matches D; the full memory barrier userspace SHOULD issue * after reading the data and before storing the new tail * position. * * See perf_output_put_handle(). */ if (!backward) head += size; else head -= size; } while (local_cmpxchg(&rb->head, offset, head) != offset); if (backward) { offset = head; head = (u64)(-head); } /* * We rely on the implied barrier() by local_cmpxchg() to ensure * none of the data stores below can be lifted up by the compiler. */ if (unlikely(head - local_read(&rb->wakeup) > rb->watermark)) local_add(rb->watermark, &rb->wakeup); page_shift = PAGE_SHIFT + page_order(rb); handle->page = (offset >> page_shift) & (rb->nr_pages - 1); offset &= (1UL << page_shift) - 1; handle->addr = rb->data_pages[handle->page] + offset; handle->size = (1UL << page_shift) - offset; if (unlikely(have_lost)) { lost_event.header.size = sizeof(lost_event); lost_event.header.type = PERF_RECORD_LOST; lost_event.header.misc = 0; lost_event.id = event->id; lost_event.lost = local_xchg(&rb->lost, 0); /* XXX mostly redundant; @data is already fully initializes */ perf_event_header__init_id(&lost_event.header, data, event); perf_output_put(handle, lost_event); perf_event__output_id_sample(event, handle, data); } return 0; fail: local_inc(&rb->lost); atomic64_inc(&event->lost_samples); perf_output_put_handle(handle); out: rcu_read_unlock(); return -ENOSPC; } int perf_output_begin_forward(struct perf_output_handle *handle, struct perf_sample_data *data, struct perf_event *event, unsigned int size) { return __perf_output_begin(handle, data, event, size, false); } int perf_output_begin_backward(struct perf_output_handle *handle, struct perf_sample_data *data, struct perf_event *event, unsigned int size) { return __perf_output_begin(handle, data, event, size, true); } int perf_output_begin(struct perf_output_handle *handle, struct perf_sample_data *data, struct perf_event *event, unsigned int size) { return __perf_output_begin(handle, data, event, size, unlikely(is_write_backward(event))); } unsigned int perf_output_copy(struct perf_output_handle *handle, const void *buf, unsigned int len) { return __output_copy(handle, buf, len); } unsigned int perf_output_skip(struct perf_output_handle *handle, unsigned int len) { return __output_skip(handle, NULL, len); } void perf_output_end(struct perf_output_handle *handle) { perf_output_put_handle(handle); rcu_read_unlock(); } static void ring_buffer_init(struct perf_buffer *rb, long watermark, int flags) { long max_size = perf_data_size(rb); if (watermark) rb->watermark = min(max_size, watermark); if (!rb->watermark) rb->watermark = max_size / 2; if (flags & RING_BUFFER_WRITABLE) rb->overwrite = 0; else rb->overwrite = 1; refcount_set(&rb->refcount, 1); INIT_LIST_HEAD(&rb->event_list); spin_lock_init(&rb->event_lock); /* * perf_output_begin() only checks rb->paused, therefore * rb->paused must be true if we have no pages for output. */ if (!rb->nr_pages) rb->paused = 1; mutex_init(&rb->aux_mutex); } void perf_aux_output_flag(struct perf_output_handle *handle, u64 flags) { /* * OVERWRITE is determined by perf_aux_output_end() and can't * be passed in directly. */ if (WARN_ON_ONCE(flags & PERF_AUX_FLAG_OVERWRITE)) return; handle->aux_flags |= flags; } EXPORT_SYMBOL_GPL(perf_aux_output_flag); /* * This is called before hardware starts writing to the AUX area to * obtain an output handle and make sure there's room in the buffer. * When the capture completes, call perf_aux_output_end() to commit * the recorded data to the buffer. * * The ordering is similar to that of perf_output_{begin,end}, with * the exception of (B), which should be taken care of by the pmu * driver, since ordering rules will differ depending on hardware. * * Call this from pmu::start(); see the comment in perf_aux_output_end() * about its use in pmu callbacks. Both can also be called from the PMI * handler if needed. */ void *perf_aux_output_begin(struct perf_output_handle *handle, struct perf_event *event) { struct perf_event *output_event = event; unsigned long aux_head, aux_tail; struct perf_buffer *rb; unsigned int nest; if (output_event->parent) output_event = output_event->parent; /* * Since this will typically be open across pmu::add/pmu::del, we * grab ring_buffer's refcount instead of holding rcu read lock * to make sure it doesn't disappear under us. */ rb = ring_buffer_get(output_event); if (!rb) return NULL; if (!rb_has_aux(rb)) goto err; /* * If aux_mmap_count is zero, the aux buffer is in perf_mmap_close(), * about to get freed, so we leave immediately. * * Checking rb::aux_mmap_count and rb::refcount has to be done in * the same order, see perf_mmap_close. Otherwise we end up freeing * aux pages in this path, which is a bug, because in_atomic(). */ if (!atomic_read(&rb->aux_mmap_count)) goto err; if (!refcount_inc_not_zero(&rb->aux_refcount)) goto err; nest = READ_ONCE(rb->aux_nest); /* * Nesting is not supported for AUX area, make sure nested * writers are caught early */ if (WARN_ON_ONCE(nest)) goto err_put; WRITE_ONCE(rb->aux_nest, nest + 1); aux_head = rb->aux_head; handle->rb = rb; handle->event = event; handle->head = aux_head; handle->size = 0; handle->aux_flags = 0; /* * In overwrite mode, AUX data stores do not depend on aux_tail, * therefore (A) control dependency barrier does not exist. The * (B) <-> (C) ordering is still observed by the pmu driver. */ if (!rb->aux_overwrite) { aux_tail = READ_ONCE(rb->user_page->aux_tail); handle->wakeup = rb->aux_wakeup + rb->aux_watermark; if (aux_head - aux_tail < perf_aux_size(rb)) handle->size = CIRC_SPACE(aux_head, aux_tail, perf_aux_size(rb)); /* * handle->size computation depends on aux_tail load; this forms a * control dependency barrier separating aux_tail load from aux data * store that will be enabled on successful return */ if (!handle->size) { /* A, matches D */ event->pending_disable = smp_processor_id(); perf_output_wakeup(handle); WRITE_ONCE(rb->aux_nest, 0); goto err_put; } } return handle->rb->aux_priv; err_put: /* can't be last */ rb_free_aux(rb); err: ring_buffer_put(rb); handle->event = NULL; return NULL; } EXPORT_SYMBOL_GPL(perf_aux_output_begin); static __always_inline bool rb_need_aux_wakeup(struct perf_buffer *rb) { if (rb->aux_overwrite) return false; if (rb->aux_head - rb->aux_wakeup >= rb->aux_watermark) { rb->aux_wakeup = rounddown(rb->aux_head, rb->aux_watermark); return true; } return false; } /* * Commit the data written by hardware into the ring buffer by adjusting * aux_head and posting a PERF_RECORD_AUX into the perf buffer. It is the * pmu driver's responsibility to observe ordering rules of the hardware, * so that all the data is externally visible before this is called. * * Note: this has to be called from pmu::stop() callback, as the assumption * of the AUX buffer management code is that after pmu::stop(), the AUX * transaction must be stopped and therefore drop the AUX reference count. */ void perf_aux_output_end(struct perf_output_handle *handle, unsigned long size) { bool wakeup = !!(handle->aux_flags & PERF_AUX_FLAG_TRUNCATED); struct perf_buffer *rb = handle->rb; unsigned long aux_head; /* in overwrite mode, driver provides aux_head via handle */ if (rb->aux_overwrite) { handle->aux_flags |= PERF_AUX_FLAG_OVERWRITE; aux_head = handle->head; rb->aux_head = aux_head; } else { handle->aux_flags &= ~PERF_AUX_FLAG_OVERWRITE; aux_head = rb->aux_head; rb->aux_head += size; } /* * Only send RECORD_AUX if we have something useful to communicate * * Note: the OVERWRITE records by themselves are not considered * useful, as they don't communicate any *new* information, * aside from the short-lived offset, that becomes history at * the next event sched-in and therefore isn't useful. * The userspace that needs to copy out AUX data in overwrite * mode should know to use user_page::aux_head for the actual * offset. So, from now on we don't output AUX records that * have *only* OVERWRITE flag set. */ if (size || (handle->aux_flags & ~(u64)PERF_AUX_FLAG_OVERWRITE)) perf_event_aux_event(handle->event, aux_head, size, handle->aux_flags); WRITE_ONCE(rb->user_page->aux_head, rb->aux_head); if (rb_need_aux_wakeup(rb)) wakeup = true; if (wakeup) { if (handle->aux_flags & PERF_AUX_FLAG_TRUNCATED) handle->event->pending_disable = smp_processor_id(); perf_output_wakeup(handle); } handle->event = NULL; WRITE_ONCE(rb->aux_nest, 0); /* can't be last */ rb_free_aux(rb); ring_buffer_put(rb); } EXPORT_SYMBOL_GPL(perf_aux_output_end); /* * Skip over a given number of bytes in the AUX buffer, due to, for example, * hardware's alignment constraints. */ int perf_aux_output_skip(struct perf_output_handle *handle, unsigned long size) { struct perf_buffer *rb = handle->rb; if (size > handle->size) return -ENOSPC; rb->aux_head += size; WRITE_ONCE(rb->user_page->aux_head, rb->aux_head); if (rb_need_aux_wakeup(rb)) { perf_output_wakeup(handle); handle->wakeup = rb->aux_wakeup + rb->aux_watermark; } handle->head = rb->aux_head; handle->size -= size; return 0; } EXPORT_SYMBOL_GPL(perf_aux_output_skip); void *perf_get_aux(struct perf_output_handle *handle) { /* this is only valid between perf_aux_output_begin and *_end */ if (!handle->event) return NULL; return handle->rb->aux_priv; } EXPORT_SYMBOL_GPL(perf_get_aux); /* * Copy out AUX data from an AUX handle. */ long perf_output_copy_aux(struct perf_output_handle *aux_handle, struct perf_output_handle *handle, unsigned long from, unsigned long to) { struct perf_buffer *rb = aux_handle->rb; unsigned long tocopy, remainder, len = 0; void *addr; from &= (rb->aux_nr_pages << PAGE_SHIFT) - 1; to &= (rb->aux_nr_pages << PAGE_SHIFT) - 1; do { tocopy = PAGE_SIZE - offset_in_page(from); if (to > from) tocopy = min(tocopy, to - from); if (!tocopy) break; addr = rb->aux_pages[from >> PAGE_SHIFT]; addr += offset_in_page(from); remainder = perf_output_copy(handle, addr, tocopy); if (remainder) return -EFAULT; len += tocopy; from += tocopy; from &= (rb->aux_nr_pages << PAGE_SHIFT) - 1; } while (to != from); return len; } #define PERF_AUX_GFP (GFP_KERNEL | __GFP_ZERO | __GFP_NOWARN | __GFP_NORETRY) static struct page *rb_alloc_aux_page(int node, int order) { struct page *page; if (order > MAX_ORDER) order = MAX_ORDER; do { page = alloc_pages_node(node, PERF_AUX_GFP, order); } while (!page && order--); if (page && order) { /* * Communicate the allocation size to the driver: * if we managed to secure a high-order allocation, * set its first page's private to this order; * !PagePrivate(page) means it's just a normal page. */ split_page(page, order); SetPagePrivate(page); set_page_private(page, order); } return page; } static void rb_free_aux_page(struct perf_buffer *rb, int idx) { struct page *page = virt_to_page(rb->aux_pages[idx]); ClearPagePrivate(page); page->mapping = NULL; __free_page(page); } static void __rb_free_aux(struct perf_buffer *rb) { int pg; /* * Should never happen, the last reference should be dropped from * perf_mmap_close() path, which first stops aux transactions (which * in turn are the atomic holders of aux_refcount) and then does the * last rb_free_aux(). */ WARN_ON_ONCE(in_atomic()); if (rb->aux_priv) { rb->free_aux(rb->aux_priv); rb->free_aux = NULL; rb->aux_priv = NULL; } if (rb->aux_nr_pages) { for (pg = 0; pg < rb->aux_nr_pages; pg++) rb_free_aux_page(rb, pg); kfree(rb->aux_pages); rb->aux_nr_pages = 0; } } int rb_alloc_aux(struct perf_buffer *rb, struct perf_event *event, pgoff_t pgoff, int nr_pages, long watermark, int flags) { bool overwrite = !(flags & RING_BUFFER_WRITABLE); int node = (event->cpu == -1) ? -1 : cpu_to_node(event->cpu); int ret = -ENOMEM, max_order; if (!has_aux(event)) return -EOPNOTSUPP; if (!overwrite) { /* * Watermark defaults to half the buffer, and so does the * max_order, to aid PMU drivers in double buffering. */ if (!watermark) watermark = min_t(unsigned long, U32_MAX, (unsigned long)nr_pages << (PAGE_SHIFT - 1)); /* * Use aux_watermark as the basis for chunking to * help PMU drivers honor the watermark. */ max_order = get_order(watermark); } else { /* * We need to start with the max_order that fits in nr_pages, * not the other way around, hence ilog2() and not get_order. */ max_order = ilog2(nr_pages); watermark = 0; } /* * kcalloc_node() is unable to allocate buffer if the size is larger * than: PAGE_SIZE << MAX_ORDER; directly bail out in this case. */ if (get_order((unsigned long)nr_pages * sizeof(void *)) > MAX_ORDER) return -ENOMEM; rb->aux_pages = kcalloc_node(nr_pages, sizeof(void *), GFP_KERNEL, node); if (!rb->aux_pages) return -ENOMEM; rb->free_aux = event->pmu->free_aux; for (rb->aux_nr_pages = 0; rb->aux_nr_pages < nr_pages;) { struct page *page; int last, order; order = min(max_order, ilog2(nr_pages - rb->aux_nr_pages)); page = rb_alloc_aux_page(node, order); if (!page) goto out; for (last = rb->aux_nr_pages + (1 << page_private(page)); last > rb->aux_nr_pages; rb->aux_nr_pages++) rb->aux_pages[rb->aux_nr_pages] = page_address(page++); } /* * In overwrite mode, PMUs that don't support SG may not handle more * than one contiguous allocation, since they rely on PMI to do double * buffering. In this case, the entire buffer has to be one contiguous * chunk. */ if ((event->pmu->capabilities & PERF_PMU_CAP_AUX_NO_SG) && overwrite) { struct page *page = virt_to_page(rb->aux_pages[0]); if (page_private(page) != max_order) goto out; } rb->aux_priv = event->pmu->setup_aux(event, rb->aux_pages, nr_pages, overwrite); if (!rb->aux_priv) goto out; ret = 0; /* * aux_pages (and pmu driver's private data, aux_priv) will be * referenced in both producer's and consumer's contexts, thus * we keep a refcount here to make sure either of the two can * reference them safely. */ refcount_set(&rb->aux_refcount, 1); rb->aux_overwrite = overwrite; rb->aux_watermark = watermark; out: if (!ret) rb->aux_pgoff = pgoff; else __rb_free_aux(rb); return ret; } void rb_free_aux(struct perf_buffer *rb) { if (refcount_dec_and_test(&rb->aux_refcount)) __rb_free_aux(rb); } #ifndef CONFIG_PERF_USE_VMALLOC /* * Back perf_mmap() with regular GFP_KERNEL-0 pages. */ static struct page * __perf_mmap_to_page(struct perf_buffer *rb, unsigned long pgoff) { if (pgoff > rb->nr_pages) return NULL; if (pgoff == 0) return virt_to_page(rb->user_page); return virt_to_page(rb->data_pages[pgoff - 1]); } static void *perf_mmap_alloc_page(int cpu) { struct page *page; int node; node = (cpu == -1) ? cpu : cpu_to_node(cpu); page = alloc_pages_node(node, GFP_KERNEL | __GFP_ZERO, 0); if (!page) return NULL; return page_address(page); } static void perf_mmap_free_page(void *addr) { struct page *page = virt_to_page(addr); page->mapping = NULL; __free_page(page); } struct perf_buffer *rb_alloc(int nr_pages, long watermark, int cpu, int flags) { struct perf_buffer *rb; unsigned long size; int i, node; size = sizeof(struct perf_buffer); size += nr_pages * sizeof(void *); if (order_base_2(size) >= PAGE_SHIFT+MAX_ORDER) goto fail; node = (cpu == -1) ? cpu : cpu_to_node(cpu); rb = kzalloc_node(size, GFP_KERNEL, node); if (!rb) goto fail; rb->user_page = perf_mmap_alloc_page(cpu); if (!rb->user_page) goto fail_user_page; for (i = 0; i < nr_pages; i++) { rb->data_pages[i] = perf_mmap_alloc_page(cpu); if (!rb->data_pages[i]) goto fail_data_pages; } rb->nr_pages = nr_pages; ring_buffer_init(rb, watermark, flags); return rb; fail_data_pages: for (i--; i >= 0; i--) perf_mmap_free_page(rb->data_pages[i]); perf_mmap_free_page(rb->user_page); fail_user_page: kfree(rb); fail: return NULL; } void rb_free(struct perf_buffer *rb) { int i; perf_mmap_free_page(rb->user_page); for (i = 0; i < rb->nr_pages; i++) perf_mmap_free_page(rb->data_pages[i]); kfree(rb); } #else static struct page * __perf_mmap_to_page(struct perf_buffer *rb, unsigned long pgoff) { /* The '>' counts in the user page. */ if (pgoff > data_page_nr(rb)) return NULL; return vmalloc_to_page((void *)rb->user_page + pgoff * PAGE_SIZE); } static void perf_mmap_unmark_page(void *addr) { struct page *page = vmalloc_to_page(addr); page->mapping = NULL; } static void rb_free_work(struct work_struct *work) { struct perf_buffer *rb; void *base; int i, nr; rb = container_of(work, struct perf_buffer, work); nr = data_page_nr(rb); base = rb->user_page; /* The '<=' counts in the user page. */ for (i = 0; i <= nr; i++) perf_mmap_unmark_page(base + (i * PAGE_SIZE)); vfree(base); kfree(rb); } void rb_free(struct perf_buffer *rb) { schedule_work(&rb->work); } struct perf_buffer *rb_alloc(int nr_pages, long watermark, int cpu, int flags) { struct perf_buffer *rb; unsigned long size; void *all_buf; int node; size = sizeof(struct perf_buffer); size += sizeof(void *); node = (cpu == -1) ? cpu : cpu_to_node(cpu); rb = kzalloc_node(size, GFP_KERNEL, node); if (!rb) goto fail; INIT_WORK(&rb->work, rb_free_work); all_buf = vmalloc_user((nr_pages + 1) * PAGE_SIZE); if (!all_buf) goto fail_all_buf; rb->user_page = all_buf; rb->data_pages[0] = all_buf + PAGE_SIZE; if (nr_pages) { rb->nr_pages = 1; rb->page_order = ilog2(nr_pages); } ring_buffer_init(rb, watermark, flags); return rb; fail_all_buf: kfree(rb); fail: return NULL; } #endif struct page * perf_mmap_to_page(struct perf_buffer *rb, unsigned long pgoff) { if (rb->aux_nr_pages) { /* above AUX space */ if (pgoff > rb->aux_pgoff + rb->aux_nr_pages) return NULL; /* AUX space */ if (pgoff >= rb->aux_pgoff) { int aux_pgoff = array_index_nospec(pgoff - rb->aux_pgoff, rb->aux_nr_pages); return virt_to_page(rb->aux_pages[aux_pgoff]); } } return __perf_mmap_to_page(rb, pgoff); }