// SPDX-License-Identifier: GPL-2.0 /* * This file contains common KASAN error reporting code. * * Copyright (c) 2014 Samsung Electronics Co., Ltd. * Author: Andrey Ryabinin * * Some code borrowed from https://github.com/xairy/kasan-prototype by * Andrey Konovalov */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "kasan.h" #include "../slab.h" static unsigned long kasan_flags; #define KASAN_BIT_REPORTED 0 #define KASAN_BIT_MULTI_SHOT 1 enum kasan_arg_fault { KASAN_ARG_FAULT_DEFAULT, KASAN_ARG_FAULT_REPORT, KASAN_ARG_FAULT_PANIC, }; static enum kasan_arg_fault kasan_arg_fault __ro_after_init = KASAN_ARG_FAULT_DEFAULT; /* kasan.fault=report/panic */ static int __init early_kasan_fault(char *arg) { if (!arg) return -EINVAL; if (!strcmp(arg, "report")) kasan_arg_fault = KASAN_ARG_FAULT_REPORT; else if (!strcmp(arg, "panic")) kasan_arg_fault = KASAN_ARG_FAULT_PANIC; else return -EINVAL; return 0; } early_param("kasan.fault", early_kasan_fault); static int __init kasan_set_multi_shot(char *str) { set_bit(KASAN_BIT_MULTI_SHOT, &kasan_flags); return 1; } __setup("kasan_multi_shot", kasan_set_multi_shot); /* * Used to suppress reports within kasan_disable/enable_current() critical * sections, which are used for marking accesses to slab metadata. */ static bool report_suppressed(void) { #if defined(CONFIG_KASAN_GENERIC) || defined(CONFIG_KASAN_SW_TAGS) if (current->kasan_depth) return true; #endif return false; } /* * Used to avoid reporting more than one KASAN bug unless kasan_multi_shot * is enabled. Note that KASAN tests effectively enable kasan_multi_shot * for their duration. */ static bool report_enabled(void) { if (test_bit(KASAN_BIT_MULTI_SHOT, &kasan_flags)) return true; return !test_and_set_bit(KASAN_BIT_REPORTED, &kasan_flags); } #if IS_ENABLED(CONFIG_KASAN_KUNIT_TEST) || IS_ENABLED(CONFIG_KASAN_MODULE_TEST) bool kasan_save_enable_multi_shot(void) { return test_and_set_bit(KASAN_BIT_MULTI_SHOT, &kasan_flags); } EXPORT_SYMBOL_GPL(kasan_save_enable_multi_shot); void kasan_restore_multi_shot(bool enabled) { if (!enabled) clear_bit(KASAN_BIT_MULTI_SHOT, &kasan_flags); } EXPORT_SYMBOL_GPL(kasan_restore_multi_shot); #endif #if IS_ENABLED(CONFIG_KASAN_KUNIT_TEST) static void update_kunit_status(bool sync) { struct kunit *test; struct kunit_resource *resource; struct kunit_kasan_status *status; test = current->kunit_test; if (!test) return; resource = kunit_find_named_resource(test, "kasan_status"); if (!resource) { kunit_set_failure(test); return; } status = (struct kunit_kasan_status *)resource->data; WRITE_ONCE(status->report_found, true); WRITE_ONCE(status->sync_fault, sync); kunit_put_resource(resource); } #else static void update_kunit_status(bool sync) { } #endif static DEFINE_SPINLOCK(report_lock); static void start_report(unsigned long *flags, bool sync) { /* Respect the /proc/sys/kernel/traceoff_on_warning interface. */ disable_trace_on_warning(); /* Update status of the currently running KASAN test. */ update_kunit_status(sync); /* Do not allow LOCKDEP mangling KASAN reports. */ lockdep_off(); /* Make sure we don't end up in loop. */ kasan_disable_current(); spin_lock_irqsave(&report_lock, *flags); pr_err("==================================================================\n"); } static void end_report(unsigned long *flags, void *addr) { if (addr) trace_error_report_end(ERROR_DETECTOR_KASAN, (unsigned long)addr); pr_err("==================================================================\n"); spin_unlock_irqrestore(&report_lock, *flags); if (panic_on_warn && !test_bit(KASAN_BIT_MULTI_SHOT, &kasan_flags)) panic("panic_on_warn set ...\n"); if (kasan_arg_fault == KASAN_ARG_FAULT_PANIC) panic("kasan.fault=panic set ...\n"); add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); lockdep_on(); kasan_enable_current(); } static void print_error_description(struct kasan_report_info *info) { if (info->type == KASAN_REPORT_INVALID_FREE) { pr_err("BUG: KASAN: invalid-free in %pS\n", (void *)info->ip); return; } if (info->type == KASAN_REPORT_DOUBLE_FREE) { pr_err("BUG: KASAN: double-free in %pS\n", (void *)info->ip); return; } pr_err("BUG: KASAN: %s in %pS\n", kasan_get_bug_type(info), (void *)info->ip); if (info->access_size) pr_err("%s of size %zu at addr %px by task %s/%d\n", info->is_write ? "Write" : "Read", info->access_size, info->access_addr, current->comm, task_pid_nr(current)); else pr_err("%s at addr %px by task %s/%d\n", info->is_write ? "Write" : "Read", info->access_addr, current->comm, task_pid_nr(current)); } static void print_track(struct kasan_track *track, const char *prefix) { pr_err("%s by task %u:\n", prefix, track->pid); if (track->stack) stack_depot_print(track->stack); else pr_err("(stack is not available)\n"); } static inline struct page *addr_to_page(const void *addr) { if (virt_addr_valid(addr)) return virt_to_head_page(addr); return NULL; } static void describe_object_addr(struct kmem_cache *cache, void *object, const void *addr) { unsigned long access_addr = (unsigned long)addr; unsigned long object_addr = (unsigned long)object; const char *rel_type; int rel_bytes; pr_err("The buggy address belongs to the object at %px\n" " which belongs to the cache %s of size %d\n", object, cache->name, cache->object_size); if (access_addr < object_addr) { rel_type = "to the left"; rel_bytes = object_addr - access_addr; } else if (access_addr >= object_addr + cache->object_size) { rel_type = "to the right"; rel_bytes = access_addr - (object_addr + cache->object_size); } else { rel_type = "inside"; rel_bytes = access_addr - object_addr; } pr_err("The buggy address is located %d bytes %s of\n" " %d-byte region [%px, %px)\n", rel_bytes, rel_type, cache->object_size, (void *)object_addr, (void *)(object_addr + cache->object_size)); } static void describe_object_stacks(struct kmem_cache *cache, void *object, const void *addr, u8 tag) { struct kasan_track *alloc_track; struct kasan_track *free_track; alloc_track = kasan_get_alloc_track(cache, object); if (alloc_track) { print_track(alloc_track, "Allocated"); pr_err("\n"); } free_track = kasan_get_free_track(cache, object, tag); if (free_track) { print_track(free_track, "Freed"); pr_err("\n"); } kasan_print_aux_stacks(cache, object); } static void describe_object(struct kmem_cache *cache, void *object, const void *addr, u8 tag) { if (kasan_stack_collection_enabled()) describe_object_stacks(cache, object, addr, tag); describe_object_addr(cache, object, addr); } static inline bool kernel_or_module_addr(const void *addr) { if (is_kernel((unsigned long)addr)) return true; if (is_module_address((unsigned long)addr)) return true; return false; } static inline bool init_task_stack_addr(const void *addr) { return addr >= (void *)&init_thread_union.stack && (addr <= (void *)&init_thread_union.stack + sizeof(init_thread_union.stack)); } static void print_address_description(void *addr, u8 tag) { struct page *page = addr_to_page(addr); struct slab *slab = kasan_addr_to_slab(addr); dump_stack_lvl(KERN_ERR); pr_err("\n"); if (slab) { struct kmem_cache *cache = slab->slab_cache; void *object = nearest_obj(cache, slab, addr); describe_object(cache, object, addr, tag); pr_err("\n"); } if (kernel_or_module_addr(addr) && !init_task_stack_addr(addr)) { pr_err("The buggy address belongs to the variable:\n"); pr_err(" %pS\n", addr); pr_err("\n"); } if (object_is_on_stack(addr)) { /* * Currently, KASAN supports printing frame information only * for accesses to the task's own stack. */ kasan_print_address_stack_frame(addr); pr_err("\n"); } if (is_vmalloc_addr(addr)) { struct vm_struct *va = find_vm_area(addr); if (va) { pr_err("The buggy address belongs to the virtual mapping at\n" " [%px, %px) created by:\n" " %pS\n", va->addr, va->addr + va->size, va->caller); pr_err("\n"); page = vmalloc_to_page(addr); } } if (page) { pr_err("The buggy address belongs to the physical page:\n"); dump_page(page, "kasan: bad access detected"); pr_err("\n"); } } static bool meta_row_is_guilty(const void *row, const void *addr) { return (row <= addr) && (addr < row + META_MEM_BYTES_PER_ROW); } static int meta_pointer_offset(const void *row, const void *addr) { /* * Memory state around the buggy address: * ff00ff00ff00ff00: 00 00 00 05 fe fe fe fe fe fe fe fe fe fe fe fe * ... * * The length of ">ff00ff00ff00ff00: " is * 3 + (BITS_PER_LONG / 8) * 2 chars. * The length of each granule metadata is 2 bytes * plus 1 byte for space. */ return 3 + (BITS_PER_LONG / 8) * 2 + (addr - row) / KASAN_GRANULE_SIZE * 3 + 1; } static void print_memory_metadata(const void *addr) { int i; void *row; row = (void *)round_down((unsigned long)addr, META_MEM_BYTES_PER_ROW) - META_ROWS_AROUND_ADDR * META_MEM_BYTES_PER_ROW; pr_err("Memory state around the buggy address:\n"); for (i = -META_ROWS_AROUND_ADDR; i <= META_ROWS_AROUND_ADDR; i++) { char buffer[4 + (BITS_PER_LONG / 8) * 2]; char metadata[META_BYTES_PER_ROW]; snprintf(buffer, sizeof(buffer), (i == 0) ? ">%px: " : " %px: ", row); /* * We should not pass a shadow pointer to generic * function, because generic functions may try to * access kasan mapping for the passed address. */ kasan_metadata_fetch_row(&metadata[0], row); print_hex_dump(KERN_ERR, buffer, DUMP_PREFIX_NONE, META_BYTES_PER_ROW, 1, metadata, META_BYTES_PER_ROW, 0); if (meta_row_is_guilty(row, addr)) pr_err("%*c\n", meta_pointer_offset(row, addr), '^'); row += META_MEM_BYTES_PER_ROW; } } static void print_report(struct kasan_report_info *info) { void *addr = kasan_reset_tag(info->access_addr); u8 tag = get_tag(info->access_addr); print_error_description(info); if (addr_has_metadata(addr)) kasan_print_tags(tag, info->first_bad_addr); pr_err("\n"); if (addr_has_metadata(addr)) { print_address_description(addr, tag); print_memory_metadata(info->first_bad_addr); } else { dump_stack_lvl(KERN_ERR); } } static void complete_report_info(struct kasan_report_info *info) { void *addr = kasan_reset_tag(info->access_addr); if (info->type == KASAN_REPORT_ACCESS) info->first_bad_addr = kasan_find_first_bad_addr( info->access_addr, info->access_size); else info->first_bad_addr = addr; } void kasan_report_invalid_free(void *ptr, unsigned long ip, enum kasan_report_type type) { unsigned long flags; struct kasan_report_info info; /* * Do not check report_suppressed(), as an invalid-free cannot be * caused by accessing slab metadata and thus should not be * suppressed by kasan_disable/enable_current() critical sections. */ if (unlikely(!report_enabled())) return; start_report(&flags, true); info.type = type; info.access_addr = ptr; info.access_size = 0; info.is_write = false; info.ip = ip; complete_report_info(&info); print_report(&info); end_report(&flags, ptr); } /* * kasan_report() is the only reporting function that uses * user_access_save/restore(): kasan_report_invalid_free() cannot be called * from a UACCESS region, and kasan_report_async() is not used on x86. */ bool kasan_report(unsigned long addr, size_t size, bool is_write, unsigned long ip) { bool ret = true; void *ptr = (void *)addr; unsigned long ua_flags = user_access_save(); unsigned long irq_flags; struct kasan_report_info info; if (unlikely(report_suppressed()) || unlikely(!report_enabled())) { ret = false; goto out; } start_report(&irq_flags, true); info.type = KASAN_REPORT_ACCESS; info.access_addr = ptr; info.access_size = size; info.is_write = is_write; info.ip = ip; complete_report_info(&info); print_report(&info); end_report(&irq_flags, ptr); out: user_access_restore(ua_flags); return ret; } #ifdef CONFIG_KASAN_HW_TAGS void kasan_report_async(void) { unsigned long flags; /* * Do not check report_suppressed(), as kasan_disable/enable_current() * critical sections do not affect Hardware Tag-Based KASAN. */ if (unlikely(!report_enabled())) return; start_report(&flags, false); pr_err("BUG: KASAN: invalid-access\n"); pr_err("Asynchronous fault: no details available\n"); pr_err("\n"); dump_stack_lvl(KERN_ERR); end_report(&flags, NULL); } #endif /* CONFIG_KASAN_HW_TAGS */ #ifdef CONFIG_KASAN_INLINE /* * With CONFIG_KASAN_INLINE, accesses to bogus pointers (outside the high * canonical half of the address space) cause out-of-bounds shadow memory reads * before the actual access. For addresses in the low canonical half of the * address space, as well as most non-canonical addresses, that out-of-bounds * shadow memory access lands in the non-canonical part of the address space. * Help the user figure out what the original bogus pointer was. */ void kasan_non_canonical_hook(unsigned long addr) { unsigned long orig_addr; const char *bug_type; if (addr < KASAN_SHADOW_OFFSET) return; orig_addr = (addr - KASAN_SHADOW_OFFSET) << KASAN_SHADOW_SCALE_SHIFT; /* * For faults near the shadow address for NULL, we can be fairly certain * that this is a KASAN shadow memory access. * For faults that correspond to shadow for low canonical addresses, we * can still be pretty sure - that shadow region is a fairly narrow * chunk of the non-canonical address space. * But faults that look like shadow for non-canonical addresses are a * really large chunk of the address space. In that case, we still * print the decoded address, but make it clear that this is not * necessarily what's actually going on. */ if (orig_addr < PAGE_SIZE) bug_type = "null-ptr-deref"; else if (orig_addr < TASK_SIZE) bug_type = "probably user-memory-access"; else bug_type = "maybe wild-memory-access"; pr_alert("KASAN: %s in range [0x%016lx-0x%016lx]\n", bug_type, orig_addr, orig_addr + KASAN_GRANULE_SIZE - 1); } #endif