/************************************************************************ * s2io.c: A Linux PCI-X Ethernet driver for S2IO 10GbE Server NIC * Copyright(c) 2002-2005 Neterion Inc. * This software may be used and distributed according to the terms of * the GNU General Public License (GPL), incorporated herein by reference. * Drivers based on or derived from this code fall under the GPL and must * retain the authorship, copyright and license notice. This file is not * a complete program and may only be used when the entire operating * system is licensed under the GPL. * See the file COPYING in this distribution for more information. * * Credits: * Jeff Garzik : For pointing out the improper error condition * check in the s2io_xmit routine and also some * issues in the Tx watch dog function. Also for * patiently answering all those innumerable * questions regaring the 2.6 porting issues. * Stephen Hemminger : Providing proper 2.6 porting mechanism for some * macros available only in 2.6 Kernel. * Francois Romieu : For pointing out all code part that were * deprecated and also styling related comments. * Grant Grundler : For helping me get rid of some Architecture * dependent code. * Christopher Hellwig : Some more 2.6 specific issues in the driver. * * The module loadable parameters that are supported by the driver and a brief * explaination of all the variables. * rx_ring_num : This can be used to program the number of receive rings used * in the driver. * rx_ring_len: This defines the number of descriptors each ring can have. This * is also an array of size 8. * tx_fifo_num: This defines the number of Tx FIFOs thats used int the driver. * tx_fifo_len: This too is an array of 8. Each element defines the number of * Tx descriptors that can be associated with each corresponding FIFO. ************************************************************************/ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* local include */ #include "s2io.h" #include "s2io-regs.h" /* S2io Driver name & version. */ static char s2io_driver_name[] = "Neterion"; static char s2io_driver_version[] = "Version 2.0.2.0"; static inline int RXD_IS_UP2DT(RxD_t *rxdp) { int ret; ret = ((!(rxdp->Control_1 & RXD_OWN_XENA)) && (GET_RXD_MARKER(rxdp->Control_2) != THE_RXD_MARK)); return ret; } /* * Cards with following subsystem_id have a link state indication * problem, 600B, 600C, 600D, 640B, 640C and 640D. * macro below identifies these cards given the subsystem_id. */ #define CARDS_WITH_FAULTY_LINK_INDICATORS(dev_type, subid) \ (dev_type == XFRAME_I_DEVICE) ? \ ((((subid >= 0x600B) && (subid <= 0x600D)) || \ ((subid >= 0x640B) && (subid <= 0x640D))) ? 1 : 0) : 0 #define LINK_IS_UP(val64) (!(val64 & (ADAPTER_STATUS_RMAC_REMOTE_FAULT | \ ADAPTER_STATUS_RMAC_LOCAL_FAULT))) #define TASKLET_IN_USE test_and_set_bit(0, (&sp->tasklet_status)) #define PANIC 1 #define LOW 2 static inline int rx_buffer_level(nic_t * sp, int rxb_size, int ring) { int level = 0; mac_info_t *mac_control; mac_control = &sp->mac_control; if ((mac_control->rings[ring].pkt_cnt - rxb_size) > 16) { level = LOW; if (rxb_size <= MAX_RXDS_PER_BLOCK) { level = PANIC; } } return level; } /* Ethtool related variables and Macros. */ static char s2io_gstrings[][ETH_GSTRING_LEN] = { "Register test\t(offline)", "Eeprom test\t(offline)", "Link test\t(online)", "RLDRAM test\t(offline)", "BIST Test\t(offline)" }; static char ethtool_stats_keys[][ETH_GSTRING_LEN] = { {"tmac_frms"}, {"tmac_data_octets"}, {"tmac_drop_frms"}, {"tmac_mcst_frms"}, {"tmac_bcst_frms"}, {"tmac_pause_ctrl_frms"}, {"tmac_any_err_frms"}, {"tmac_vld_ip_octets"}, {"tmac_vld_ip"}, {"tmac_drop_ip"}, {"tmac_icmp"}, {"tmac_rst_tcp"}, {"tmac_tcp"}, {"tmac_udp"}, {"rmac_vld_frms"}, {"rmac_data_octets"}, {"rmac_fcs_err_frms"}, {"rmac_drop_frms"}, {"rmac_vld_mcst_frms"}, {"rmac_vld_bcst_frms"}, {"rmac_in_rng_len_err_frms"}, {"rmac_long_frms"}, {"rmac_pause_ctrl_frms"}, {"rmac_discarded_frms"}, {"rmac_usized_frms"}, {"rmac_osized_frms"}, {"rmac_frag_frms"}, {"rmac_jabber_frms"}, {"rmac_ip"}, {"rmac_ip_octets"}, {"rmac_hdr_err_ip"}, {"rmac_drop_ip"}, {"rmac_icmp"}, {"rmac_tcp"}, {"rmac_udp"}, {"rmac_err_drp_udp"}, {"rmac_pause_cnt"}, {"rmac_accepted_ip"}, {"rmac_err_tcp"}, {"\n DRIVER STATISTICS"}, {"single_bit_ecc_errs"}, {"double_bit_ecc_errs"}, }; #define S2IO_STAT_LEN sizeof(ethtool_stats_keys)/ ETH_GSTRING_LEN #define S2IO_STAT_STRINGS_LEN S2IO_STAT_LEN * ETH_GSTRING_LEN #define S2IO_TEST_LEN sizeof(s2io_gstrings) / ETH_GSTRING_LEN #define S2IO_STRINGS_LEN S2IO_TEST_LEN * ETH_GSTRING_LEN #define S2IO_TIMER_CONF(timer, handle, arg, exp) \ init_timer(&timer); \ timer.function = handle; \ timer.data = (unsigned long) arg; \ mod_timer(&timer, (jiffies + exp)) \ /* Add the vlan */ static void s2io_vlan_rx_register(struct net_device *dev, struct vlan_group *grp) { nic_t *nic = dev->priv; unsigned long flags; spin_lock_irqsave(&nic->tx_lock, flags); nic->vlgrp = grp; spin_unlock_irqrestore(&nic->tx_lock, flags); } /* Unregister the vlan */ static void s2io_vlan_rx_kill_vid(struct net_device *dev, unsigned long vid) { nic_t *nic = dev->priv; unsigned long flags; spin_lock_irqsave(&nic->tx_lock, flags); if (nic->vlgrp) nic->vlgrp->vlan_devices[vid] = NULL; spin_unlock_irqrestore(&nic->tx_lock, flags); } /* * Constants to be programmed into the Xena's registers, to configure * the XAUI. */ #define SWITCH_SIGN 0xA5A5A5A5A5A5A5A5ULL #define END_SIGN 0x0 static u64 herc_act_dtx_cfg[] = { /* Set address */ 0x80000515BA750000ULL, 0x80000515BA7500E0ULL, /* Write data */ 0x80000515BA750004ULL, 0x80000515BA7500E4ULL, /* Set address */ 0x80010515003F0000ULL, 0x80010515003F00E0ULL, /* Write data */ 0x80010515003F0004ULL, 0x80010515003F00E4ULL, /* Set address */ 0x80020515F2100000ULL, 0x80020515F21000E0ULL, /* Write data */ 0x80020515F2100004ULL, 0x80020515F21000E4ULL, /* Done */ END_SIGN }; static u64 xena_mdio_cfg[] = { /* Reset PMA PLL */ 0xC001010000000000ULL, 0xC0010100000000E0ULL, 0xC0010100008000E4ULL, /* Remove Reset from PMA PLL */ 0xC001010000000000ULL, 0xC0010100000000E0ULL, 0xC0010100000000E4ULL, END_SIGN }; static u64 xena_dtx_cfg[] = { 0x8000051500000000ULL, 0x80000515000000E0ULL, 0x80000515D93500E4ULL, 0x8001051500000000ULL, 0x80010515000000E0ULL, 0x80010515001E00E4ULL, 0x8002051500000000ULL, 0x80020515000000E0ULL, 0x80020515F21000E4ULL, /* Set PADLOOPBACKN */ 0x8002051500000000ULL, 0x80020515000000E0ULL, 0x80020515B20000E4ULL, 0x8003051500000000ULL, 0x80030515000000E0ULL, 0x80030515B20000E4ULL, 0x8004051500000000ULL, 0x80040515000000E0ULL, 0x80040515B20000E4ULL, 0x8005051500000000ULL, 0x80050515000000E0ULL, 0x80050515B20000E4ULL, SWITCH_SIGN, /* Remove PADLOOPBACKN */ 0x8002051500000000ULL, 0x80020515000000E0ULL, 0x80020515F20000E4ULL, 0x8003051500000000ULL, 0x80030515000000E0ULL, 0x80030515F20000E4ULL, 0x8004051500000000ULL, 0x80040515000000E0ULL, 0x80040515F20000E4ULL, 0x8005051500000000ULL, 0x80050515000000E0ULL, 0x80050515F20000E4ULL, END_SIGN }; /* * Constants for Fixing the MacAddress problem seen mostly on * Alpha machines. */ static u64 fix_mac[] = { 0x0060000000000000ULL, 0x0060600000000000ULL, 0x0040600000000000ULL, 0x0000600000000000ULL, 0x0020600000000000ULL, 0x0060600000000000ULL, 0x0020600000000000ULL, 0x0060600000000000ULL, 0x0020600000000000ULL, 0x0060600000000000ULL, 0x0020600000000000ULL, 0x0060600000000000ULL, 0x0020600000000000ULL, 0x0060600000000000ULL, 0x0020600000000000ULL, 0x0060600000000000ULL, 0x0020600000000000ULL, 0x0060600000000000ULL, 0x0020600000000000ULL, 0x0060600000000000ULL, 0x0020600000000000ULL, 0x0060600000000000ULL, 0x0020600000000000ULL, 0x0060600000000000ULL, 0x0020600000000000ULL, 0x0000600000000000ULL, 0x0040600000000000ULL, 0x0060600000000000ULL, END_SIGN }; /* Module Loadable parameters. */ static unsigned int tx_fifo_num = 1; static unsigned int tx_fifo_len[MAX_TX_FIFOS] = {[0 ...(MAX_TX_FIFOS - 1)] = 0 }; static unsigned int rx_ring_num = 1; static unsigned int rx_ring_sz[MAX_RX_RINGS] = {[0 ...(MAX_RX_RINGS - 1)] = 0 }; static unsigned int rts_frm_len[MAX_RX_RINGS] = {[0 ...(MAX_RX_RINGS - 1)] = 0 }; static unsigned int use_continuous_tx_intrs = 1; static unsigned int rmac_pause_time = 65535; static unsigned int mc_pause_threshold_q0q3 = 187; static unsigned int mc_pause_threshold_q4q7 = 187; static unsigned int shared_splits; static unsigned int tmac_util_period = 5; static unsigned int rmac_util_period = 5; static unsigned int bimodal = 0; #ifndef CONFIG_S2IO_NAPI static unsigned int indicate_max_pkts; #endif /* * S2IO device table. * This table lists all the devices that this driver supports. */ static struct pci_device_id s2io_tbl[] __devinitdata = { {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_S2IO_WIN, PCI_ANY_ID, PCI_ANY_ID}, {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_S2IO_UNI, PCI_ANY_ID, PCI_ANY_ID}, {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_HERC_WIN, PCI_ANY_ID, PCI_ANY_ID}, {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_HERC_UNI, PCI_ANY_ID, PCI_ANY_ID}, {0,} }; MODULE_DEVICE_TABLE(pci, s2io_tbl); static struct pci_driver s2io_driver = { .name = "S2IO", .id_table = s2io_tbl, .probe = s2io_init_nic, .remove = __devexit_p(s2io_rem_nic), }; /* A simplifier macro used both by init and free shared_mem Fns(). */ #define TXD_MEM_PAGE_CNT(len, per_each) ((len+per_each - 1) / per_each) /** * init_shared_mem - Allocation and Initialization of Memory * @nic: Device private variable. * Description: The function allocates all the memory areas shared * between the NIC and the driver. This includes Tx descriptors, * Rx descriptors and the statistics block. */ static int init_shared_mem(struct s2io_nic *nic) { u32 size; void *tmp_v_addr, *tmp_v_addr_next; dma_addr_t tmp_p_addr, tmp_p_addr_next; RxD_block_t *pre_rxd_blk = NULL; int i, j, blk_cnt, rx_sz, tx_sz; int lst_size, lst_per_page; struct net_device *dev = nic->dev; #ifdef CONFIG_2BUFF_MODE u64 tmp; buffAdd_t *ba; #endif mac_info_t *mac_control; struct config_param *config; mac_control = &nic->mac_control; config = &nic->config; /* Allocation and initialization of TXDLs in FIOFs */ size = 0; for (i = 0; i < config->tx_fifo_num; i++) { size += config->tx_cfg[i].fifo_len; } if (size > MAX_AVAILABLE_TXDS) { DBG_PRINT(ERR_DBG, "%s: Requested TxDs too high, ", __FUNCTION__); DBG_PRINT(ERR_DBG, "Requested: %d, max supported: 8192\n", size); return FAILURE; } lst_size = (sizeof(TxD_t) * config->max_txds); tx_sz = lst_size * size; lst_per_page = PAGE_SIZE / lst_size; for (i = 0; i < config->tx_fifo_num; i++) { int fifo_len = config->tx_cfg[i].fifo_len; int list_holder_size = fifo_len * sizeof(list_info_hold_t); mac_control->fifos[i].list_info = kmalloc(list_holder_size, GFP_KERNEL); if (!mac_control->fifos[i].list_info) { DBG_PRINT(ERR_DBG, "Malloc failed for list_info\n"); return -ENOMEM; } memset(mac_control->fifos[i].list_info, 0, list_holder_size); } for (i = 0; i < config->tx_fifo_num; i++) { int page_num = TXD_MEM_PAGE_CNT(config->tx_cfg[i].fifo_len, lst_per_page); mac_control->fifos[i].tx_curr_put_info.offset = 0; mac_control->fifos[i].tx_curr_put_info.fifo_len = config->tx_cfg[i].fifo_len - 1; mac_control->fifos[i].tx_curr_get_info.offset = 0; mac_control->fifos[i].tx_curr_get_info.fifo_len = config->tx_cfg[i].fifo_len - 1; mac_control->fifos[i].fifo_no = i; mac_control->fifos[i].nic = nic; mac_control->fifos[i].max_txds = MAX_SKB_FRAGS; for (j = 0; j < page_num; j++) { int k = 0; dma_addr_t tmp_p; void *tmp_v; tmp_v = pci_alloc_consistent(nic->pdev, PAGE_SIZE, &tmp_p); if (!tmp_v) { DBG_PRINT(ERR_DBG, "pci_alloc_consistent "); DBG_PRINT(ERR_DBG, "failed for TxDL\n"); return -ENOMEM; } while (k < lst_per_page) { int l = (j * lst_per_page) + k; if (l == config->tx_cfg[i].fifo_len) break; mac_control->fifos[i].list_info[l].list_virt_addr = tmp_v + (k * lst_size); mac_control->fifos[i].list_info[l].list_phy_addr = tmp_p + (k * lst_size); k++; } } } /* Allocation and initialization of RXDs in Rings */ size = 0; for (i = 0; i < config->rx_ring_num; i++) { if (config->rx_cfg[i].num_rxd % (MAX_RXDS_PER_BLOCK + 1)) { DBG_PRINT(ERR_DBG, "%s: RxD count of ", dev->name); DBG_PRINT(ERR_DBG, "Ring%d is not a multiple of ", i); DBG_PRINT(ERR_DBG, "RxDs per Block"); return FAILURE; } size += config->rx_cfg[i].num_rxd; mac_control->rings[i].block_count = config->rx_cfg[i].num_rxd / (MAX_RXDS_PER_BLOCK + 1); mac_control->rings[i].pkt_cnt = config->rx_cfg[i].num_rxd - mac_control->rings[i].block_count; } size = (size * (sizeof(RxD_t))); rx_sz = size; for (i = 0; i < config->rx_ring_num; i++) { mac_control->rings[i].rx_curr_get_info.block_index = 0; mac_control->rings[i].rx_curr_get_info.offset = 0; mac_control->rings[i].rx_curr_get_info.ring_len = config->rx_cfg[i].num_rxd - 1; mac_control->rings[i].rx_curr_put_info.block_index = 0; mac_control->rings[i].rx_curr_put_info.offset = 0; mac_control->rings[i].rx_curr_put_info.ring_len = config->rx_cfg[i].num_rxd - 1; mac_control->rings[i].nic = nic; mac_control->rings[i].ring_no = i; blk_cnt = config->rx_cfg[i].num_rxd / (MAX_RXDS_PER_BLOCK + 1); /* Allocating all the Rx blocks */ for (j = 0; j < blk_cnt; j++) { #ifndef CONFIG_2BUFF_MODE size = (MAX_RXDS_PER_BLOCK + 1) * (sizeof(RxD_t)); #else size = SIZE_OF_BLOCK; #endif tmp_v_addr = pci_alloc_consistent(nic->pdev, size, &tmp_p_addr); if (tmp_v_addr == NULL) { /* * In case of failure, free_shared_mem() * is called, which should free any * memory that was alloced till the * failure happened. */ mac_control->rings[i].rx_blocks[j].block_virt_addr = tmp_v_addr; return -ENOMEM; } memset(tmp_v_addr, 0, size); mac_control->rings[i].rx_blocks[j].block_virt_addr = tmp_v_addr; mac_control->rings[i].rx_blocks[j].block_dma_addr = tmp_p_addr; } /* Interlinking all Rx Blocks */ for (j = 0; j < blk_cnt; j++) { tmp_v_addr = mac_control->rings[i].rx_blocks[j].block_virt_addr; tmp_v_addr_next = mac_control->rings[i].rx_blocks[(j + 1) % blk_cnt].block_virt_addr; tmp_p_addr = mac_control->rings[i].rx_blocks[j].block_dma_addr; tmp_p_addr_next = mac_control->rings[i].rx_blocks[(j + 1) % blk_cnt].block_dma_addr; pre_rxd_blk = (RxD_block_t *) tmp_v_addr; pre_rxd_blk->reserved_1 = END_OF_BLOCK; /* last RxD * marker. */ #ifndef CONFIG_2BUFF_MODE pre_rxd_blk->reserved_2_pNext_RxD_block = (unsigned long) tmp_v_addr_next; #endif pre_rxd_blk->pNext_RxD_Blk_physical = (u64) tmp_p_addr_next; } } #ifdef CONFIG_2BUFF_MODE /* * Allocation of Storages for buffer addresses in 2BUFF mode * and the buffers as well. */ for (i = 0; i < config->rx_ring_num; i++) { blk_cnt = config->rx_cfg[i].num_rxd / (MAX_RXDS_PER_BLOCK + 1); mac_control->rings[i].ba = kmalloc((sizeof(buffAdd_t *) * blk_cnt), GFP_KERNEL); if (!mac_control->rings[i].ba) return -ENOMEM; for (j = 0; j < blk_cnt; j++) { int k = 0; mac_control->rings[i].ba[j] = kmalloc((sizeof(buffAdd_t) * (MAX_RXDS_PER_BLOCK + 1)), GFP_KERNEL); if (!mac_control->rings[i].ba[j]) return -ENOMEM; while (k != MAX_RXDS_PER_BLOCK) { ba = &mac_control->rings[i].ba[j][k]; ba->ba_0_org = (void *) kmalloc (BUF0_LEN + ALIGN_SIZE, GFP_KERNEL); if (!ba->ba_0_org) return -ENOMEM; tmp = (u64) ba->ba_0_org; tmp += ALIGN_SIZE; tmp &= ~((u64) ALIGN_SIZE); ba->ba_0 = (void *) tmp; ba->ba_1_org = (void *) kmalloc (BUF1_LEN + ALIGN_SIZE, GFP_KERNEL); if (!ba->ba_1_org) return -ENOMEM; tmp = (u64) ba->ba_1_org; tmp += ALIGN_SIZE; tmp &= ~((u64) ALIGN_SIZE); ba->ba_1 = (void *) tmp; k++; } } } #endif /* Allocation and initialization of Statistics block */ size = sizeof(StatInfo_t); mac_control->stats_mem = pci_alloc_consistent (nic->pdev, size, &mac_control->stats_mem_phy); if (!mac_control->stats_mem) { /* * In case of failure, free_shared_mem() is called, which * should free any memory that was alloced till the * failure happened. */ return -ENOMEM; } mac_control->stats_mem_sz = size; tmp_v_addr = mac_control->stats_mem; mac_control->stats_info = (StatInfo_t *) tmp_v_addr; memset(tmp_v_addr, 0, size); DBG_PRINT(INIT_DBG, "%s:Ring Mem PHY: 0x%llx\n", dev->name, (unsigned long long) tmp_p_addr); return SUCCESS; } /** * free_shared_mem - Free the allocated Memory * @nic: Device private variable. * Description: This function is to free all memory locations allocated by * the init_shared_mem() function and return it to the kernel. */ static void free_shared_mem(struct s2io_nic *nic) { int i, j, blk_cnt, size; void *tmp_v_addr; dma_addr_t tmp_p_addr; mac_info_t *mac_control; struct config_param *config; int lst_size, lst_per_page; if (!nic) return; mac_control = &nic->mac_control; config = &nic->config; lst_size = (sizeof(TxD_t) * config->max_txds); lst_per_page = PAGE_SIZE / lst_size; for (i = 0; i < config->tx_fifo_num; i++) { int page_num = TXD_MEM_PAGE_CNT(config->tx_cfg[i].fifo_len, lst_per_page); for (j = 0; j < page_num; j++) { int mem_blks = (j * lst_per_page); if ((!mac_control->fifos[i].list_info) || (!mac_control->fifos[i].list_info[mem_blks]. list_virt_addr)) break; pci_free_consistent(nic->pdev, PAGE_SIZE, mac_control->fifos[i]. list_info[mem_blks]. list_virt_addr, mac_control->fifos[i]. list_info[mem_blks]. list_phy_addr); } kfree(mac_control->fifos[i].list_info); } #ifndef CONFIG_2BUFF_MODE size = (MAX_RXDS_PER_BLOCK + 1) * (sizeof(RxD_t)); #else size = SIZE_OF_BLOCK; #endif for (i = 0; i < config->rx_ring_num; i++) { blk_cnt = mac_control->rings[i].block_count; for (j = 0; j < blk_cnt; j++) { tmp_v_addr = mac_control->rings[i].rx_blocks[j]. block_virt_addr; tmp_p_addr = mac_control->rings[i].rx_blocks[j]. block_dma_addr; if (tmp_v_addr == NULL) break; pci_free_consistent(nic->pdev, size, tmp_v_addr, tmp_p_addr); } } #ifdef CONFIG_2BUFF_MODE /* Freeing buffer storage addresses in 2BUFF mode. */ for (i = 0; i < config->rx_ring_num; i++) { blk_cnt = config->rx_cfg[i].num_rxd / (MAX_RXDS_PER_BLOCK + 1); for (j = 0; j < blk_cnt; j++) { int k = 0; if (!mac_control->rings[i].ba[j]) continue; while (k != MAX_RXDS_PER_BLOCK) { buffAdd_t *ba = &mac_control->rings[i].ba[j][k]; kfree(ba->ba_0_org); kfree(ba->ba_1_org); k++; } kfree(mac_control->rings[i].ba[j]); } if (mac_control->rings[i].ba) kfree(mac_control->rings[i].ba); } #endif if (mac_control->stats_mem) { pci_free_consistent(nic->pdev, mac_control->stats_mem_sz, mac_control->stats_mem, mac_control->stats_mem_phy); } } /** * s2io_verify_pci_mode - */ static int s2io_verify_pci_mode(nic_t *nic) { XENA_dev_config_t *bar0 = (XENA_dev_config_t *) nic->bar0; register u64 val64 = 0; int mode; val64 = readq(&bar0->pci_mode); mode = (u8)GET_PCI_MODE(val64); if ( val64 & PCI_MODE_UNKNOWN_MODE) return -1; /* Unknown PCI mode */ return mode; } /** * s2io_print_pci_mode - */ static int s2io_print_pci_mode(nic_t *nic) { XENA_dev_config_t *bar0 = (XENA_dev_config_t *) nic->bar0; register u64 val64 = 0; int mode; struct config_param *config = &nic->config; val64 = readq(&bar0->pci_mode); mode = (u8)GET_PCI_MODE(val64); if ( val64 & PCI_MODE_UNKNOWN_MODE) return -1; /* Unknown PCI mode */ if (val64 & PCI_MODE_32_BITS) { DBG_PRINT(ERR_DBG, "%s: Device is on 32 bit ", nic->dev->name); } else { DBG_PRINT(ERR_DBG, "%s: Device is on 64 bit ", nic->dev->name); } switch(mode) { case PCI_MODE_PCI_33: DBG_PRINT(ERR_DBG, "33MHz PCI bus\n"); config->bus_speed = 33; break; case PCI_MODE_PCI_66: DBG_PRINT(ERR_DBG, "66MHz PCI bus\n"); config->bus_speed = 133; break; case PCI_MODE_PCIX_M1_66: DBG_PRINT(ERR_DBG, "66MHz PCIX(M1) bus\n"); config->bus_speed = 133; /* Herc doubles the clock rate */ break; case PCI_MODE_PCIX_M1_100: DBG_PRINT(ERR_DBG, "100MHz PCIX(M1) bus\n"); config->bus_speed = 200; break; case PCI_MODE_PCIX_M1_133: DBG_PRINT(ERR_DBG, "133MHz PCIX(M1) bus\n"); config->bus_speed = 266; break; case PCI_MODE_PCIX_M2_66: DBG_PRINT(ERR_DBG, "133MHz PCIX(M2) bus\n"); config->bus_speed = 133; break; case PCI_MODE_PCIX_M2_100: DBG_PRINT(ERR_DBG, "200MHz PCIX(M2) bus\n"); config->bus_speed = 200; break; case PCI_MODE_PCIX_M2_133: DBG_PRINT(ERR_DBG, "266MHz PCIX(M2) bus\n"); config->bus_speed = 266; break; default: return -1; /* Unsupported bus speed */ } return mode; } /** * init_nic - Initialization of hardware * @nic: device peivate variable * Description: The function sequentially configures every block * of the H/W from their reset values. * Return Value: SUCCESS on success and * '-1' on failure (endian settings incorrect). */ static int init_nic(struct s2io_nic *nic) { XENA_dev_config_t __iomem *bar0 = nic->bar0; struct net_device *dev = nic->dev; register u64 val64 = 0; void __iomem *add; u32 time; int i, j; mac_info_t *mac_control; struct config_param *config; int mdio_cnt = 0, dtx_cnt = 0; unsigned long long mem_share; int mem_size; mac_control = &nic->mac_control; config = &nic->config; /* to set the swapper controle on the card */ if(s2io_set_swapper(nic)) { DBG_PRINT(ERR_DBG,"ERROR: Setting Swapper failed\n"); return -1; } /* * Herc requires EOI to be removed from reset before XGXS, so.. */ if (nic->device_type & XFRAME_II_DEVICE) { val64 = 0xA500000000ULL; writeq(val64, &bar0->sw_reset); msleep(500); val64 = readq(&bar0->sw_reset); } /* Remove XGXS from reset state */ val64 = 0; writeq(val64, &bar0->sw_reset); msleep(500); val64 = readq(&bar0->sw_reset); /* Enable Receiving broadcasts */ add = &bar0->mac_cfg; val64 = readq(&bar0->mac_cfg); val64 |= MAC_RMAC_BCAST_ENABLE; writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key); writel((u32) val64, add); writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key); writel((u32) (val64 >> 32), (add + 4)); /* Read registers in all blocks */ val64 = readq(&bar0->mac_int_mask); val64 = readq(&bar0->mc_int_mask); val64 = readq(&bar0->xgxs_int_mask); /* Set MTU */ val64 = dev->mtu; writeq(vBIT(val64, 2, 14), &bar0->rmac_max_pyld_len); /* * Configuring the XAUI Interface of Xena. * *************************************** * To Configure the Xena's XAUI, one has to write a series * of 64 bit values into two registers in a particular * sequence. Hence a macro 'SWITCH_SIGN' has been defined * which will be defined in the array of configuration values * (xena_dtx_cfg & xena_mdio_cfg) at appropriate places * to switch writing from one regsiter to another. We continue * writing these values until we encounter the 'END_SIGN' macro. * For example, After making a series of 21 writes into * dtx_control register the 'SWITCH_SIGN' appears and hence we * start writing into mdio_control until we encounter END_SIGN. */ if (nic->device_type & XFRAME_II_DEVICE) { while (herc_act_dtx_cfg[dtx_cnt] != END_SIGN) { SPECIAL_REG_WRITE(xena_dtx_cfg[dtx_cnt], &bar0->dtx_control, UF); if (dtx_cnt & 0x1) msleep(1); /* Necessary!! */ dtx_cnt++; } } else { while (1) { dtx_cfg: while (xena_dtx_cfg[dtx_cnt] != END_SIGN) { if (xena_dtx_cfg[dtx_cnt] == SWITCH_SIGN) { dtx_cnt++; goto mdio_cfg; } SPECIAL_REG_WRITE(xena_dtx_cfg[dtx_cnt], &bar0->dtx_control, UF); val64 = readq(&bar0->dtx_control); dtx_cnt++; } mdio_cfg: while (xena_mdio_cfg[mdio_cnt] != END_SIGN) { if (xena_mdio_cfg[mdio_cnt] == SWITCH_SIGN) { mdio_cnt++; goto dtx_cfg; } SPECIAL_REG_WRITE(xena_mdio_cfg[mdio_cnt], &bar0->mdio_control, UF); val64 = readq(&bar0->mdio_control); mdio_cnt++; } if ((xena_dtx_cfg[dtx_cnt] == END_SIGN) && (xena_mdio_cfg[mdio_cnt] == END_SIGN)) { break; } else { goto dtx_cfg; } } } /* Tx DMA Initialization */ val64 = 0; writeq(val64, &bar0->tx_fifo_partition_0); writeq(val64, &bar0->tx_fifo_partition_1); writeq(val64, &bar0->tx_fifo_partition_2); writeq(val64, &bar0->tx_fifo_partition_3); for (i = 0, j = 0; i < config->tx_fifo_num; i++) { val64 |= vBIT(config->tx_cfg[i].fifo_len - 1, ((i * 32) + 19), 13) | vBIT(config->tx_cfg[i].fifo_priority, ((i * 32) + 5), 3); if (i == (config->tx_fifo_num - 1)) { if (i % 2 == 0) i++; } switch (i) { case 1: writeq(val64, &bar0->tx_fifo_partition_0); val64 = 0; break; case 3: writeq(val64, &bar0->tx_fifo_partition_1); val64 = 0; break; case 5: writeq(val64, &bar0->tx_fifo_partition_2); val64 = 0; break; case 7: writeq(val64, &bar0->tx_fifo_partition_3); break; } } /* Enable Tx FIFO partition 0. */ val64 = readq(&bar0->tx_fifo_partition_0); val64 |= BIT(0); /* To enable the FIFO partition. */ writeq(val64, &bar0->tx_fifo_partition_0); /* * Disable 4 PCCs for Xena1, 2 and 3 as per H/W bug * SXE-008 TRANSMIT DMA ARBITRATION ISSUE. */ if ((nic->device_type == XFRAME_I_DEVICE) && (get_xena_rev_id(nic->pdev) < 4)) writeq(PCC_ENABLE_FOUR, &bar0->pcc_enable); val64 = readq(&bar0->tx_fifo_partition_0); DBG_PRINT(INIT_DBG, "Fifo partition at: 0x%p is: 0x%llx\n", &bar0->tx_fifo_partition_0, (unsigned long long) val64); /* * Initialization of Tx_PA_CONFIG register to ignore packet * integrity checking. */ val64 = readq(&bar0->tx_pa_cfg); val64 |= TX_PA_CFG_IGNORE_FRM_ERR | TX_PA_CFG_IGNORE_SNAP_OUI | TX_PA_CFG_IGNORE_LLC_CTRL | TX_PA_CFG_IGNORE_L2_ERR; writeq(val64, &bar0->tx_pa_cfg); /* Rx DMA intialization. */ val64 = 0; for (i = 0; i < config->rx_ring_num; i++) { val64 |= vBIT(config->rx_cfg[i].ring_priority, (5 + (i * 8)), 3); } writeq(val64, &bar0->rx_queue_priority); /* * Allocating equal share of memory to all the * configured Rings. */ val64 = 0; if (nic->device_type & XFRAME_II_DEVICE) mem_size = 32; else mem_size = 64; for (i = 0; i < config->rx_ring_num; i++) { switch (i) { case 0: mem_share = (mem_size / config->rx_ring_num + mem_size % config->rx_ring_num); val64 |= RX_QUEUE_CFG_Q0_SZ(mem_share); continue; case 1: mem_share = (mem_size / config->rx_ring_num); val64 |= RX_QUEUE_CFG_Q1_SZ(mem_share); continue; case 2: mem_share = (mem_size / config->rx_ring_num); val64 |= RX_QUEUE_CFG_Q2_SZ(mem_share); continue; case 3: mem_share = (mem_size / config->rx_ring_num); val64 |= RX_QUEUE_CFG_Q3_SZ(mem_share); continue; case 4: mem_share = (mem_size / config->rx_ring_num); val64 |= RX_QUEUE_CFG_Q4_SZ(mem_share); continue; case 5: mem_share = (mem_size / config->rx_ring_num); val64 |= RX_QUEUE_CFG_Q5_SZ(mem_share); continue; case 6: mem_share = (mem_size / config->rx_ring_num); val64 |= RX_QUEUE_CFG_Q6_SZ(mem_share); continue; case 7: mem_share = (mem_size / config->rx_ring_num); val64 |= RX_QUEUE_CFG_Q7_SZ(mem_share); continue; } } writeq(val64, &bar0->rx_queue_cfg); /* * Filling Tx round robin registers * as per the number of FIFOs */ switch (config->tx_fifo_num) { case 1: val64 = 0x0000000000000000ULL; writeq(val64, &bar0->tx_w_round_robin_0); writeq(val64, &bar0->tx_w_round_robin_1); writeq(val64, &bar0->tx_w_round_robin_2); writeq(val64, &bar0->tx_w_round_robin_3); writeq(val64, &bar0->tx_w_round_robin_4); break; case 2: val64 = 0x0000010000010000ULL; writeq(val64, &bar0->tx_w_round_robin_0); val64 = 0x0100000100000100ULL; writeq(val64, &bar0->tx_w_round_robin_1); val64 = 0x0001000001000001ULL; writeq(val64, &bar0->tx_w_round_robin_2); val64 = 0x0000010000010000ULL; writeq(val64, &bar0->tx_w_round_robin_3); val64 = 0x0100000000000000ULL; writeq(val64, &bar0->tx_w_round_robin_4); break; case 3: val64 = 0x0001000102000001ULL; writeq(val64, &bar0->tx_w_round_robin_0); val64 = 0x0001020000010001ULL; writeq(val64, &bar0->tx_w_round_robin_1); val64 = 0x0200000100010200ULL; writeq(val64, &bar0->tx_w_round_robin_2); val64 = 0x0001000102000001ULL; writeq(val64, &bar0->tx_w_round_robin_3); val64 = 0x0001020000000000ULL; writeq(val64, &bar0->tx_w_round_robin_4); break; case 4: val64 = 0x0001020300010200ULL; writeq(val64, &bar0->tx_w_round_robin_0); val64 = 0x0100000102030001ULL; writeq(val64, &bar0->tx_w_round_robin_1); val64 = 0x0200010000010203ULL; writeq(val64, &bar0->tx_w_round_robin_2); val64 = 0x0001020001000001ULL; writeq(val64, &bar0->tx_w_round_robin_3); val64 = 0x0203000100000000ULL; writeq(val64, &bar0->tx_w_round_robin_4); break; case 5: val64 = 0x0001000203000102ULL; writeq(val64, &bar0->tx_w_round_robin_0); val64 = 0x0001020001030004ULL; writeq(val64, &bar0->tx_w_round_robin_1); val64 = 0x0001000203000102ULL; writeq(val64, &bar0->tx_w_round_robin_2); val64 = 0x0001020001030004ULL; writeq(val64, &bar0->tx_w_round_robin_3); val64 = 0x0001000000000000ULL; writeq(val64, &bar0->tx_w_round_robin_4); break; case 6: val64 = 0x0001020304000102ULL; writeq(val64, &bar0->tx_w_round_robin_0); val64 = 0x0304050001020001ULL; writeq(val64, &bar0->tx_w_round_robin_1); val64 = 0x0203000100000102ULL; writeq(val64, &bar0->tx_w_round_robin_2); val64 = 0x0304000102030405ULL; writeq(val64, &bar0->tx_w_round_robin_3); val64 = 0x0001000200000000ULL; writeq(val64, &bar0->tx_w_round_robin_4); break; case 7: val64 = 0x0001020001020300ULL; writeq(val64, &bar0->tx_w_round_robin_0); val64 = 0x0102030400010203ULL; writeq(val64, &bar0->tx_w_round_robin_1); val64 = 0x0405060001020001ULL; writeq(val64, &bar0->tx_w_round_robin_2); val64 = 0x0304050000010200ULL; writeq(val64, &bar0->tx_w_round_robin_3); val64 = 0x0102030000000000ULL; writeq(val64, &bar0->tx_w_round_robin_4); break; case 8: val64 = 0x0001020300040105ULL; writeq(val64, &bar0->tx_w_round_robin_0); val64 = 0x0200030106000204ULL; writeq(val64, &bar0->tx_w_round_robin_1); val64 = 0x0103000502010007ULL; writeq(val64, &bar0->tx_w_round_robin_2); val64 = 0x0304010002060500ULL; writeq(val64, &bar0->tx_w_round_robin_3); val64 = 0x0103020400000000ULL; writeq(val64, &bar0->tx_w_round_robin_4); break; } /* Filling the Rx round robin registers as per the * number of Rings and steering based on QoS. */ switch (config->rx_ring_num) { case 1: val64 = 0x8080808080808080ULL; writeq(val64, &bar0->rts_qos_steering); break; case 2: val64 = 0x0000010000010000ULL; writeq(val64, &bar0->rx_w_round_robin_0); val64 = 0x0100000100000100ULL; writeq(val64, &bar0->rx_w_round_robin_1); val64 = 0x0001000001000001ULL; writeq(val64, &bar0->rx_w_round_robin_2); val64 = 0x0000010000010000ULL; writeq(val64, &bar0->rx_w_round_robin_3); val64 = 0x0100000000000000ULL; writeq(val64, &bar0->rx_w_round_robin_4); val64 = 0x8080808040404040ULL; writeq(val64, &bar0->rts_qos_steering); break; case 3: val64 = 0x0001000102000001ULL; writeq(val64, &bar0->rx_w_round_robin_0); val64 = 0x0001020000010001ULL; writeq(val64, &bar0->rx_w_round_robin_1); val64 = 0x0200000100010200ULL; writeq(val64, &bar0->rx_w_round_robin_2); val64 = 0x0001000102000001ULL; writeq(val64, &bar0->rx_w_round_robin_3); val64 = 0x0001020000000000ULL; writeq(val64, &bar0->rx_w_round_robin_4); val64 = 0x8080804040402020ULL; writeq(val64, &bar0->rts_qos_steering); break; case 4: val64 = 0x0001020300010200ULL; writeq(val64, &bar0->rx_w_round_robin_0); val64 = 0x0100000102030001ULL; writeq(val64, &bar0->rx_w_round_robin_1); val64 = 0x0200010000010203ULL; writeq(val64, &bar0->rx_w_round_robin_2); val64 = 0x0001020001000001ULL; writeq(val64, &bar0->rx_w_round_robin_3); val64 = 0x0203000100000000ULL; writeq(val64, &bar0->rx_w_round_robin_4); val64 = 0x8080404020201010ULL; writeq(val64, &bar0->rts_qos_steering); break; case 5: val64 = 0x0001000203000102ULL; writeq(val64, &bar0->rx_w_round_robin_0); val64 = 0x0001020001030004ULL; writeq(val64, &bar0->rx_w_round_robin_1); val64 = 0x0001000203000102ULL; writeq(val64, &bar0->rx_w_round_robin_2); val64 = 0x0001020001030004ULL; writeq(val64, &bar0->rx_w_round_robin_3); val64 = 0x0001000000000000ULL; writeq(val64, &bar0->rx_w_round_robin_4); val64 = 0x8080404020201008ULL; writeq(val64, &bar0->rts_qos_steering); break; case 6: val64 = 0x0001020304000102ULL; writeq(val64, &bar0->rx_w_round_robin_0); val64 = 0x0304050001020001ULL; writeq(val64, &bar0->rx_w_round_robin_1); val64 = 0x0203000100000102ULL; writeq(val64, &bar0->rx_w_round_robin_2); val64 = 0x0304000102030405ULL; writeq(val64, &bar0->rx_w_round_robin_3); val64 = 0x0001000200000000ULL; writeq(val64, &bar0->rx_w_round_robin_4); val64 = 0x8080404020100804ULL; writeq(val64, &bar0->rts_qos_steering); break; case 7: val64 = 0x0001020001020300ULL; writeq(val64, &bar0->rx_w_round_robin_0); val64 = 0x0102030400010203ULL; writeq(val64, &bar0->rx_w_round_robin_1); val64 = 0x0405060001020001ULL; writeq(val64, &bar0->rx_w_round_robin_2); val64 = 0x0304050000010200ULL; writeq(val64, &bar0->rx_w_round_robin_3); val64 = 0x0102030000000000ULL; writeq(val64, &bar0->rx_w_round_robin_4); val64 = 0x8080402010080402ULL; writeq(val64, &bar0->rts_qos_steering); break; case 8: val64 = 0x0001020300040105ULL; writeq(val64, &bar0->rx_w_round_robin_0); val64 = 0x0200030106000204ULL; writeq(val64, &bar0->rx_w_round_robin_1); val64 = 0x0103000502010007ULL; writeq(val64, &bar0->rx_w_round_robin_2); val64 = 0x0304010002060500ULL; writeq(val64, &bar0->rx_w_round_robin_3); val64 = 0x0103020400000000ULL; writeq(val64, &bar0->rx_w_round_robin_4); val64 = 0x8040201008040201ULL; writeq(val64, &bar0->rts_qos_steering); break; } /* UDP Fix */ val64 = 0; for (i = 0; i < 8; i++) writeq(val64, &bar0->rts_frm_len_n[i]); /* Set the default rts frame length for the rings configured */ val64 = MAC_RTS_FRM_LEN_SET(dev->mtu+22); for (i = 0 ; i < config->rx_ring_num ; i++) writeq(val64, &bar0->rts_frm_len_n[i]); /* Set the frame length for the configured rings * desired by the user */ for (i = 0; i < config->rx_ring_num; i++) { /* If rts_frm_len[i] == 0 then it is assumed that user not * specified frame length steering. * If the user provides the frame length then program * the rts_frm_len register for those values or else * leave it as it is. */ if (rts_frm_len[i] != 0) { writeq(MAC_RTS_FRM_LEN_SET(rts_frm_len[i]), &bar0->rts_frm_len_n[i]); } } /* Program statistics memory */ writeq(mac_control->stats_mem_phy, &bar0->stat_addr); if (nic->device_type == XFRAME_II_DEVICE) { val64 = STAT_BC(0x320); writeq(val64, &bar0->stat_byte_cnt); } /* * Initializing the sampling rate for the device to calculate the * bandwidth utilization. */ val64 = MAC_TX_LINK_UTIL_VAL(tmac_util_period) | MAC_RX_LINK_UTIL_VAL(rmac_util_period); writeq(val64, &bar0->mac_link_util); /* * Initializing the Transmit and Receive Traffic Interrupt * Scheme. */ /* * TTI Initialization. Default Tx timer gets us about * 250 interrupts per sec. Continuous interrupts are enabled * by default. */ if (nic->device_type == XFRAME_II_DEVICE) { int count = (nic->config.bus_speed * 125)/2; val64 = TTI_DATA1_MEM_TX_TIMER_VAL(count); } else { val64 = TTI_DATA1_MEM_TX_TIMER_VAL(0x2078); } val64 |= TTI_DATA1_MEM_TX_URNG_A(0xA) | TTI_DATA1_MEM_TX_URNG_B(0x10) | TTI_DATA1_MEM_TX_URNG_C(0x30) | TTI_DATA1_MEM_TX_TIMER_AC_EN; if (use_continuous_tx_intrs) val64 |= TTI_DATA1_MEM_TX_TIMER_CI_EN; writeq(val64, &bar0->tti_data1_mem); val64 = TTI_DATA2_MEM_TX_UFC_A(0x10) | TTI_DATA2_MEM_TX_UFC_B(0x20) | TTI_DATA2_MEM_TX_UFC_C(0x70) | TTI_DATA2_MEM_TX_UFC_D(0x80); writeq(val64, &bar0->tti_data2_mem); val64 = TTI_CMD_MEM_WE | TTI_CMD_MEM_STROBE_NEW_CMD; writeq(val64, &bar0->tti_command_mem); /* * Once the operation completes, the Strobe bit of the command * register will be reset. We poll for this particular condition * We wait for a maximum of 500ms for the operation to complete, * if it's not complete by then we return error. */ time = 0; while (TRUE) { val64 = readq(&bar0->tti_command_mem); if (!(val64 & TTI_CMD_MEM_STROBE_NEW_CMD)) { break; } if (time > 10) { DBG_PRINT(ERR_DBG, "%s: TTI init Failed\n", dev->name); return -1; } msleep(50); time++; } if (nic->config.bimodal) { int k = 0; for (k = 0; k < config->rx_ring_num; k++) { val64 = TTI_CMD_MEM_WE | TTI_CMD_MEM_STROBE_NEW_CMD; val64 |= TTI_CMD_MEM_OFFSET(0x38+k); writeq(val64, &bar0->tti_command_mem); /* * Once the operation completes, the Strobe bit of the command * register will be reset. We poll for this particular condition * We wait for a maximum of 500ms for the operation to complete, * if it's not complete by then we return error. */ time = 0; while (TRUE) { val64 = readq(&bar0->tti_command_mem); if (!(val64 & TTI_CMD_MEM_STROBE_NEW_CMD)) { break; } if (time > 10) { DBG_PRINT(ERR_DBG, "%s: TTI init Failed\n", dev->name); return -1; } time++; msleep(50); } } } else { /* RTI Initialization */ if (nic->device_type == XFRAME_II_DEVICE) { /* * Programmed to generate Apprx 500 Intrs per * second */ int count = (nic->config.bus_speed * 125)/4; val64 = RTI_DATA1_MEM_RX_TIMER_VAL(count); } else { val64 = RTI_DATA1_MEM_RX_TIMER_VAL(0xFFF); } val64 |= RTI_DATA1_MEM_RX_URNG_A(0xA) | RTI_DATA1_MEM_RX_URNG_B(0x10) | RTI_DATA1_MEM_RX_URNG_C(0x30) | RTI_DATA1_MEM_RX_TIMER_AC_EN; writeq(val64, &bar0->rti_data1_mem); val64 = RTI_DATA2_MEM_RX_UFC_A(0x1) | RTI_DATA2_MEM_RX_UFC_B(0x2) | RTI_DATA2_MEM_RX_UFC_C(0x40) | RTI_DATA2_MEM_RX_UFC_D(0x80); writeq(val64, &bar0->rti_data2_mem); for (i = 0; i < config->rx_ring_num; i++) { val64 = RTI_CMD_MEM_WE | RTI_CMD_MEM_STROBE_NEW_CMD | RTI_CMD_MEM_OFFSET(i); writeq(val64, &bar0->rti_command_mem); /* * Once the operation completes, the Strobe bit of the * command register will be reset. We poll for this * particular condition. We wait for a maximum of 500ms * for the operation to complete, if it's not complete * by then we return error. */ time = 0; while (TRUE) { val64 = readq(&bar0->rti_command_mem); if (!(val64 & RTI_CMD_MEM_STROBE_NEW_CMD)) { break; } if (time > 10) { DBG_PRINT(ERR_DBG, "%s: RTI init Failed\n", dev->name); return -1; } time++; msleep(50); } } } /* * Initializing proper values as Pause threshold into all * the 8 Queues on Rx side. */ writeq(0xffbbffbbffbbffbbULL, &bar0->mc_pause_thresh_q0q3); writeq(0xffbbffbbffbbffbbULL, &bar0->mc_pause_thresh_q4q7); /* Disable RMAC PAD STRIPPING */ add = (void *) &bar0->mac_cfg; val64 = readq(&bar0->mac_cfg); val64 &= ~(MAC_CFG_RMAC_STRIP_PAD); writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key); writel((u32) (val64), add); writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key); writel((u32) (val64 >> 32), (add + 4)); val64 = readq(&bar0->mac_cfg); /* * Set the time value to be inserted in the pause frame * generated by xena. */ val64 = readq(&bar0->rmac_pause_cfg); val64 &= ~(RMAC_PAUSE_HG_PTIME(0xffff)); val64 |= RMAC_PAUSE_HG_PTIME(nic->mac_control.rmac_pause_time); writeq(val64, &bar0->rmac_pause_cfg); /* * Set the Threshold Limit for Generating the pause frame * If the amount of data in any Queue exceeds ratio of * (mac_control.mc_pause_threshold_q0q3 or q4q7)/256 * pause frame is generated */ val64 = 0; for (i = 0; i < 4; i++) { val64 |= (((u64) 0xFF00 | nic->mac_control. mc_pause_threshold_q0q3) << (i * 2 * 8)); } writeq(val64, &bar0->mc_pause_thresh_q0q3); val64 = 0; for (i = 0; i < 4; i++) { val64 |= (((u64) 0xFF00 | nic->mac_control. mc_pause_threshold_q4q7) << (i * 2 * 8)); } writeq(val64, &bar0->mc_pause_thresh_q4q7); /* * TxDMA will stop Read request if the number of read split has * exceeded the limit pointed by shared_splits */ val64 = readq(&bar0->pic_control); val64 |= PIC_CNTL_SHARED_SPLITS(shared_splits); writeq(val64, &bar0->pic_control); /* * Programming the Herc to split every write transaction * that does not start on an ADB to reduce disconnects. */ if (nic->device_type == XFRAME_II_DEVICE) { val64 = WREQ_SPLIT_MASK_SET_MASK(255); writeq(val64, &bar0->wreq_split_mask); } /* Setting Link stability period to 64 ms */ if (nic->device_type == XFRAME_II_DEVICE) { val64 = MISC_LINK_STABILITY_PRD(3); writeq(val64, &bar0->misc_control); } return SUCCESS; } #define LINK_UP_DOWN_INTERRUPT 1 #define MAC_RMAC_ERR_TIMER 2 #if defined(CONFIG_MSI_MODE) || defined(CONFIG_MSIX_MODE) #define s2io_link_fault_indication(x) MAC_RMAC_ERR_TIMER #else int s2io_link_fault_indication(nic_t *nic) { if (nic->device_type == XFRAME_II_DEVICE) return LINK_UP_DOWN_INTERRUPT; else return MAC_RMAC_ERR_TIMER; } #endif /** * en_dis_able_nic_intrs - Enable or Disable the interrupts * @nic: device private variable, * @mask: A mask indicating which Intr block must be modified and, * @flag: A flag indicating whether to enable or disable the Intrs. * Description: This function will either disable or enable the interrupts * depending on the flag argument. The mask argument can be used to * enable/disable any Intr block. * Return Value: NONE. */ static void en_dis_able_nic_intrs(struct s2io_nic *nic, u16 mask, int flag) { XENA_dev_config_t __iomem *bar0 = nic->bar0; register u64 val64 = 0, temp64 = 0; /* Top level interrupt classification */ /* PIC Interrupts */ if ((mask & (TX_PIC_INTR | RX_PIC_INTR))) { /* Enable PIC Intrs in the general intr mask register */ val64 = TXPIC_INT_M | PIC_RX_INT_M; if (flag == ENABLE_INTRS) { temp64 = readq(&bar0->general_int_mask); temp64 &= ~((u64) val64); writeq(temp64, &bar0->general_int_mask); /* * If Hercules adapter enable GPIO otherwise * disabled all PCIX, Flash, MDIO, IIC and GPIO * interrupts for now. * TODO */ if (s2io_link_fault_indication(nic) == LINK_UP_DOWN_INTERRUPT ) { temp64 = readq(&bar0->pic_int_mask); temp64 &= ~((u64) PIC_INT_GPIO); writeq(temp64, &bar0->pic_int_mask); temp64 = readq(&bar0->gpio_int_mask); temp64 &= ~((u64) GPIO_INT_MASK_LINK_UP); writeq(temp64, &bar0->gpio_int_mask); } else { writeq(DISABLE_ALL_INTRS, &bar0->pic_int_mask); } /* * No MSI Support is available presently, so TTI and * RTI interrupts are also disabled. */ } else if (flag == DISABLE_INTRS) { /* * Disable PIC Intrs in the general * intr mask register */ writeq(DISABLE_ALL_INTRS, &bar0->pic_int_mask); temp64 = readq(&bar0->general_int_mask); val64 |= temp64; writeq(val64, &bar0->general_int_mask); } } /* DMA Interrupts */ /* Enabling/Disabling Tx DMA interrupts */ if (mask & TX_DMA_INTR) { /* Enable TxDMA Intrs in the general intr mask register */ val64 = TXDMA_INT_M; if (flag == ENABLE_INTRS) { temp64 = readq(&bar0->general_int_mask); temp64 &= ~((u64) val64); writeq(temp64, &bar0->general_int_mask); /* * Keep all interrupts other than PFC interrupt * and PCC interrupt disabled in DMA level. */ val64 = DISABLE_ALL_INTRS & ~(TXDMA_PFC_INT_M | TXDMA_PCC_INT_M); writeq(val64, &bar0->txdma_int_mask); /* * Enable only the MISC error 1 interrupt in PFC block */ val64 = DISABLE_ALL_INTRS & (~PFC_MISC_ERR_1); writeq(val64, &bar0->pfc_err_mask); /* * Enable only the FB_ECC error interrupt in PCC block */ val64 = DISABLE_ALL_INTRS & (~PCC_FB_ECC_ERR); writeq(val64, &bar0->pcc_err_mask); } else if (flag == DISABLE_INTRS) { /* * Disable TxDMA Intrs in the general intr mask * register */ writeq(DISABLE_ALL_INTRS, &bar0->txdma_int_mask); writeq(DISABLE_ALL_INTRS, &bar0->pfc_err_mask); temp64 = readq(&bar0->general_int_mask); val64 |= temp64; writeq(val64, &bar0->general_int_mask); } } /* Enabling/Disabling Rx DMA interrupts */ if (mask & RX_DMA_INTR) { /* Enable RxDMA Intrs in the general intr mask register */ val64 = RXDMA_INT_M; if (flag == ENABLE_INTRS) { temp64 = readq(&bar0->general_int_mask); temp64 &= ~((u64) val64); writeq(temp64, &bar0->general_int_mask); /* * All RxDMA block interrupts are disabled for now * TODO */ writeq(DISABLE_ALL_INTRS, &bar0->rxdma_int_mask); } else if (flag == DISABLE_INTRS) { /* * Disable RxDMA Intrs in the general intr mask * register */ writeq(DISABLE_ALL_INTRS, &bar0->rxdma_int_mask); temp64 = readq(&bar0->general_int_mask); val64 |= temp64; writeq(val64, &bar0->general_int_mask); } } /* MAC Interrupts */ /* Enabling/Disabling MAC interrupts */ if (mask & (TX_MAC_INTR | RX_MAC_INTR)) { val64 = TXMAC_INT_M | RXMAC_INT_M; if (flag == ENABLE_INTRS) { temp64 = readq(&bar0->general_int_mask); temp64 &= ~((u64) val64); writeq(temp64, &bar0->general_int_mask); /* * All MAC block error interrupts are disabled for now * TODO */ } else if (flag == DISABLE_INTRS) { /* * Disable MAC Intrs in the general intr mask register */ writeq(DISABLE_ALL_INTRS, &bar0->mac_int_mask); writeq(DISABLE_ALL_INTRS, &bar0->mac_rmac_err_mask); temp64 = readq(&bar0->general_int_mask); val64 |= temp64; writeq(val64, &bar0->general_int_mask); } } /* XGXS Interrupts */ if (mask & (TX_XGXS_INTR | RX_XGXS_INTR)) { val64 = TXXGXS_INT_M | RXXGXS_INT_M; if (flag == ENABLE_INTRS) { temp64 = readq(&bar0->general_int_mask); temp64 &= ~((u64) val64); writeq(temp64, &bar0->general_int_mask); /* * All XGXS block error interrupts are disabled for now * TODO */ writeq(DISABLE_ALL_INTRS, &bar0->xgxs_int_mask); } else if (flag == DISABLE_INTRS) { /* * Disable MC Intrs in the general intr mask register */ writeq(DISABLE_ALL_INTRS, &bar0->xgxs_int_mask); temp64 = readq(&bar0->general_int_mask); val64 |= temp64; writeq(val64, &bar0->general_int_mask); } } /* Memory Controller(MC) interrupts */ if (mask & MC_INTR) { val64 = MC_INT_M; if (flag == ENABLE_INTRS) { temp64 = readq(&bar0->general_int_mask); temp64 &= ~((u64) val64); writeq(temp64, &bar0->general_int_mask); /* * Enable all MC Intrs. */ writeq(0x0, &bar0->mc_int_mask); writeq(0x0, &bar0->mc_err_mask); } else if (flag == DISABLE_INTRS) { /* * Disable MC Intrs in the general intr mask register */ writeq(DISABLE_ALL_INTRS, &bar0->mc_int_mask); temp64 = readq(&bar0->general_int_mask); val64 |= temp64; writeq(val64, &bar0->general_int_mask); } } /* Tx traffic interrupts */ if (mask & TX_TRAFFIC_INTR) { val64 = TXTRAFFIC_INT_M; if (flag == ENABLE_INTRS) { temp64 = readq(&bar0->general_int_mask); temp64 &= ~((u64) val64); writeq(temp64, &bar0->general_int_mask); /* * Enable all the Tx side interrupts * writing 0 Enables all 64 TX interrupt levels */ writeq(0x0, &bar0->tx_traffic_mask); } else if (flag == DISABLE_INTRS) { /* * Disable Tx Traffic Intrs in the general intr mask * register. */ writeq(DISABLE_ALL_INTRS, &bar0->tx_traffic_mask); temp64 = readq(&bar0->general_int_mask); val64 |= temp64; writeq(val64, &bar0->general_int_mask); } } /* Rx traffic interrupts */ if (mask & RX_TRAFFIC_INTR) { val64 = RXTRAFFIC_INT_M; if (flag == ENABLE_INTRS) { temp64 = readq(&bar0->general_int_mask); temp64 &= ~((u64) val64); writeq(temp64, &bar0->general_int_mask); /* writing 0 Enables all 8 RX interrupt levels */ writeq(0x0, &bar0->rx_traffic_mask); } else if (flag == DISABLE_INTRS) { /* * Disable Rx Traffic Intrs in the general intr mask * register. */ writeq(DISABLE_ALL_INTRS, &bar0->rx_traffic_mask); temp64 = readq(&bar0->general_int_mask); val64 |= temp64; writeq(val64, &bar0->general_int_mask); } } } static int check_prc_pcc_state(u64 val64, int flag, int rev_id, int herc) { int ret = 0; if (flag == FALSE) { if ((!herc && (rev_id >= 4)) || herc) { if (!(val64 & ADAPTER_STATUS_RMAC_PCC_IDLE) && ((val64 & ADAPTER_STATUS_RC_PRC_QUIESCENT) == ADAPTER_STATUS_RC_PRC_QUIESCENT)) { ret = 1; } }else { if (!(val64 & ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE) && ((val64 & ADAPTER_STATUS_RC_PRC_QUIESCENT) == ADAPTER_STATUS_RC_PRC_QUIESCENT)) { ret = 1; } } } else { if ((!herc && (rev_id >= 4)) || herc) { if (((val64 & ADAPTER_STATUS_RMAC_PCC_IDLE) == ADAPTER_STATUS_RMAC_PCC_IDLE) && (!(val64 & ADAPTER_STATUS_RC_PRC_QUIESCENT) || ((val64 & ADAPTER_STATUS_RC_PRC_QUIESCENT) == ADAPTER_STATUS_RC_PRC_QUIESCENT))) { ret = 1; } } else { if (((val64 & ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE) == ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE) && (!(val64 & ADAPTER_STATUS_RC_PRC_QUIESCENT) || ((val64 & ADAPTER_STATUS_RC_PRC_QUIESCENT) == ADAPTER_STATUS_RC_PRC_QUIESCENT))) { ret = 1; } } } return ret; } /** * verify_xena_quiescence - Checks whether the H/W is ready * @val64 : Value read from adapter status register. * @flag : indicates if the adapter enable bit was ever written once * before. * Description: Returns whether the H/W is ready to go or not. Depending * on whether adapter enable bit was written or not the comparison * differs and the calling function passes the input argument flag to * indicate this. * Return: 1 If xena is quiescence * 0 If Xena is not quiescence */ static int verify_xena_quiescence(nic_t *sp, u64 val64, int flag) { int ret = 0, herc; u64 tmp64 = ~((u64) val64); int rev_id = get_xena_rev_id(sp->pdev); herc = (sp->device_type == XFRAME_II_DEVICE); if (! (tmp64 & (ADAPTER_STATUS_TDMA_READY | ADAPTER_STATUS_RDMA_READY | ADAPTER_STATUS_PFC_READY | ADAPTER_STATUS_TMAC_BUF_EMPTY | ADAPTER_STATUS_PIC_QUIESCENT | ADAPTER_STATUS_MC_DRAM_READY | ADAPTER_STATUS_MC_QUEUES_READY | ADAPTER_STATUS_M_PLL_LOCK | ADAPTER_STATUS_P_PLL_LOCK))) { ret = check_prc_pcc_state(val64, flag, rev_id, herc); } return ret; } /** * fix_mac_address - Fix for Mac addr problem on Alpha platforms * @sp: Pointer to device specifc structure * Description : * New procedure to clear mac address reading problems on Alpha platforms * */ void fix_mac_address(nic_t * sp) { XENA_dev_config_t __iomem *bar0 = sp->bar0; u64 val64; int i = 0; while (fix_mac[i] != END_SIGN) { writeq(fix_mac[i++], &bar0->gpio_control); udelay(10); val64 = readq(&bar0->gpio_control); } } /** * start_nic - Turns the device on * @nic : device private variable. * Description: * This function actually turns the device on. Before this function is * called,all Registers are configured from their reset states * and shared memory is allocated but the NIC is still quiescent. On * calling this function, the device interrupts are cleared and the NIC is * literally switched on by writing into the adapter control register. * Return Value: * SUCCESS on success and -1 on failure. */ static int start_nic(struct s2io_nic *nic) { XENA_dev_config_t __iomem *bar0 = nic->bar0; struct net_device *dev = nic->dev; register u64 val64 = 0; u16 interruptible; u16 subid, i; mac_info_t *mac_control; struct config_param *config; mac_control = &nic->mac_control; config = &nic->config; /* PRC Initialization and configuration */ for (i = 0; i < config->rx_ring_num; i++) { writeq((u64) mac_control->rings[i].rx_blocks[0].block_dma_addr, &bar0->prc_rxd0_n[i]); val64 = readq(&bar0->prc_ctrl_n[i]); if (nic->config.bimodal) val64 |= PRC_CTRL_BIMODAL_INTERRUPT; #ifndef CONFIG_2BUFF_MODE val64 |= PRC_CTRL_RC_ENABLED; #else val64 |= PRC_CTRL_RC_ENABLED | PRC_CTRL_RING_MODE_3; #endif writeq(val64, &bar0->prc_ctrl_n[i]); } #ifdef CONFIG_2BUFF_MODE /* Enabling 2 buffer mode by writing into Rx_pa_cfg reg. */ val64 = readq(&bar0->rx_pa_cfg); val64 |= RX_PA_CFG_IGNORE_L2_ERR; writeq(val64, &bar0->rx_pa_cfg); #endif /* * Enabling MC-RLDRAM. After enabling the device, we timeout * for around 100ms, which is approximately the time required * for the device to be ready for operation. */ val64 = readq(&bar0->mc_rldram_mrs); val64 |= MC_RLDRAM_QUEUE_SIZE_ENABLE | MC_RLDRAM_MRS_ENABLE; SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF); val64 = readq(&bar0->mc_rldram_mrs); msleep(100); /* Delay by around 100 ms. */ /* Enabling ECC Protection. */ val64 = readq(&bar0->adapter_control); val64 &= ~ADAPTER_ECC_EN; writeq(val64, &bar0->adapter_control); /* * Clearing any possible Link state change interrupts that * could have popped up just before Enabling the card. */ val64 = readq(&bar0->mac_rmac_err_reg); if (val64) writeq(val64, &bar0->mac_rmac_err_reg); /* * Verify if the device is ready to be enabled, if so enable * it. */ val64 = readq(&bar0->adapter_status); if (!verify_xena_quiescence(nic, val64, nic->device_enabled_once)) { DBG_PRINT(ERR_DBG, "%s: device is not ready, ", dev->name); DBG_PRINT(ERR_DBG, "Adapter status reads: 0x%llx\n", (unsigned long long) val64); return FAILURE; } /* Enable select interrupts */ interruptible = TX_TRAFFIC_INTR | RX_TRAFFIC_INTR | MC_INTR; interruptible |= TX_PIC_INTR | RX_PIC_INTR; interruptible |= TX_MAC_INTR | RX_MAC_INTR; en_dis_able_nic_intrs(nic, interruptible, ENABLE_INTRS); /* * With some switches, link might be already up at this point. * Because of this weird behavior, when we enable laser, * we may not get link. We need to handle this. We cannot * figure out which switch is misbehaving. So we are forced to * make a global change. */ /* Enabling Laser. */ val64 = readq(&bar0->adapter_control); val64 |= ADAPTER_EOI_TX_ON; writeq(val64, &bar0->adapter_control); /* SXE-002: Initialize link and activity LED */ subid = nic->pdev->subsystem_device; if (((subid & 0xFF) >= 0x07) && (nic->device_type == XFRAME_I_DEVICE)) { val64 = readq(&bar0->gpio_control); val64 |= 0x0000800000000000ULL; writeq(val64, &bar0->gpio_control); val64 = 0x0411040400000000ULL; writeq(val64, (void __iomem *) ((u8 *) bar0 + 0x2700)); } /* * Don't see link state interrupts on certain switches, so * directly scheduling a link state task from here. */ schedule_work(&nic->set_link_task); return SUCCESS; } /** * free_tx_buffers - Free all queued Tx buffers * @nic : device private variable. * Description: * Free all queued Tx buffers. * Return Value: void */ static void free_tx_buffers(struct s2io_nic *nic) { struct net_device *dev = nic->dev; struct sk_buff *skb; TxD_t *txdp; int i, j; mac_info_t *mac_control; struct config_param *config; int cnt = 0, frg_cnt; mac_control = &nic->mac_control; config = &nic->config; for (i = 0; i < config->tx_fifo_num; i++) { for (j = 0; j < config->tx_cfg[i].fifo_len - 1; j++) { txdp = (TxD_t *) mac_control->fifos[i].list_info[j]. list_virt_addr; skb = (struct sk_buff *) ((unsigned long) txdp-> Host_Control); if (skb == NULL) { memset(txdp, 0, sizeof(TxD_t) * config->max_txds); continue; } frg_cnt = skb_shinfo(skb)->nr_frags; pci_unmap_single(nic->pdev, (dma_addr_t) txdp->Buffer_Pointer, skb->len - skb->data_len, PCI_DMA_TODEVICE); if (frg_cnt) { TxD_t *temp; temp = txdp; txdp++; for (j = 0; j < frg_cnt; j++, txdp++) { skb_frag_t *frag = &skb_shinfo(skb)->frags[j]; pci_unmap_page(nic->pdev, (dma_addr_t) txdp-> Buffer_Pointer, frag->size, PCI_DMA_TODEVICE); } txdp = temp; } dev_kfree_skb(skb); memset(txdp, 0, sizeof(TxD_t) * config->max_txds); cnt++; } DBG_PRINT(INTR_DBG, "%s:forcibly freeing %d skbs on FIFO%d\n", dev->name, cnt, i); mac_control->fifos[i].tx_curr_get_info.offset = 0; mac_control->fifos[i].tx_curr_put_info.offset = 0; } } /** * stop_nic - To stop the nic * @nic ; device private variable. * Description: * This function does exactly the opposite of what the start_nic() * function does. This function is called to stop the device. * Return Value: * void. */ static void stop_nic(struct s2io_nic *nic) { XENA_dev_config_t __iomem *bar0 = nic->bar0; register u64 val64 = 0; u16 interruptible, i; mac_info_t *mac_control; struct config_param *config; mac_control = &nic->mac_control; config = &nic->config; /* Disable all interrupts */ interruptible = TX_TRAFFIC_INTR | RX_TRAFFIC_INTR | MC_INTR; interruptible |= TX_PIC_INTR | RX_PIC_INTR; interruptible |= TX_MAC_INTR | RX_MAC_INTR; en_dis_able_nic_intrs(nic, interruptible, DISABLE_INTRS); /* Disable PRCs */ for (i = 0; i < config->rx_ring_num; i++) { val64 = readq(&bar0->prc_ctrl_n[i]); val64 &= ~((u64) PRC_CTRL_RC_ENABLED); writeq(val64, &bar0->prc_ctrl_n[i]); } } /** * fill_rx_buffers - Allocates the Rx side skbs * @nic: device private variable * @ring_no: ring number * Description: * The function allocates Rx side skbs and puts the physical * address of these buffers into the RxD buffer pointers, so that the NIC * can DMA the received frame into these locations. * The NIC supports 3 receive modes, viz * 1. single buffer, * 2. three buffer and * 3. Five buffer modes. * Each mode defines how many fragments the received frame will be split * up into by the NIC. The frame is split into L3 header, L4 Header, * L4 payload in three buffer mode and in 5 buffer mode, L4 payload itself * is split into 3 fragments. As of now only single buffer mode is * supported. * Return Value: * SUCCESS on success or an appropriate -ve value on failure. */ int fill_rx_buffers(struct s2io_nic *nic, int ring_no) { struct net_device *dev = nic->dev; struct sk_buff *skb; RxD_t *rxdp; int off, off1, size, block_no, block_no1; int offset, offset1; u32 alloc_tab = 0; u32 alloc_cnt; mac_info_t *mac_control; struct config_param *config; #ifdef CONFIG_2BUFF_MODE RxD_t *rxdpnext; int nextblk; u64 tmp; buffAdd_t *ba; dma_addr_t rxdpphys; #endif #ifndef CONFIG_S2IO_NAPI unsigned long flags; #endif mac_control = &nic->mac_control; config = &nic->config; alloc_cnt = mac_control->rings[ring_no].pkt_cnt - atomic_read(&nic->rx_bufs_left[ring_no]); size = dev->mtu + HEADER_ETHERNET_II_802_3_SIZE + HEADER_802_2_SIZE + HEADER_SNAP_SIZE; while (alloc_tab < alloc_cnt) { block_no = mac_control->rings[ring_no].rx_curr_put_info. block_index; block_no1 = mac_control->rings[ring_no].rx_curr_get_info. block_index; off = mac_control->rings[ring_no].rx_curr_put_info.offset; off1 = mac_control->rings[ring_no].rx_curr_get_info.offset; #ifndef CONFIG_2BUFF_MODE offset = block_no * (MAX_RXDS_PER_BLOCK + 1) + off; offset1 = block_no1 * (MAX_RXDS_PER_BLOCK + 1) + off1; #else offset = block_no * (MAX_RXDS_PER_BLOCK) + off; offset1 = block_no1 * (MAX_RXDS_PER_BLOCK) + off1; #endif rxdp = mac_control->rings[ring_no].rx_blocks[block_no]. block_virt_addr + off; if ((offset == offset1) && (rxdp->Host_Control)) { DBG_PRINT(INTR_DBG, "%s: Get and Put", dev->name); DBG_PRINT(INTR_DBG, " info equated\n"); goto end; } #ifndef CONFIG_2BUFF_MODE if (rxdp->Control_1 == END_OF_BLOCK) { mac_control->rings[ring_no].rx_curr_put_info. block_index++; mac_control->rings[ring_no].rx_curr_put_info. block_index %= mac_control->rings[ring_no].block_count; block_no = mac_control->rings[ring_no].rx_curr_put_info. block_index; off++; off %= (MAX_RXDS_PER_BLOCK + 1); mac_control->rings[ring_no].rx_curr_put_info.offset = off; rxdp = (RxD_t *) ((unsigned long) rxdp->Control_2); DBG_PRINT(INTR_DBG, "%s: Next block at: %p\n", dev->name, rxdp); } #ifndef CONFIG_S2IO_NAPI spin_lock_irqsave(&nic->put_lock, flags); mac_control->rings[ring_no].put_pos = (block_no * (MAX_RXDS_PER_BLOCK + 1)) + off; spin_unlock_irqrestore(&nic->put_lock, flags); #endif #else if (rxdp->Host_Control == END_OF_BLOCK) { mac_control->rings[ring_no].rx_curr_put_info. block_index++; mac_control->rings[ring_no].rx_curr_put_info.block_index %= mac_control->rings[ring_no].block_count; block_no = mac_control->rings[ring_no].rx_curr_put_info .block_index; off = 0; DBG_PRINT(INTR_DBG, "%s: block%d at: 0x%llx\n", dev->name, block_no, (unsigned long long) rxdp->Control_1); mac_control->rings[ring_no].rx_curr_put_info.offset = off; rxdp = mac_control->rings[ring_no].rx_blocks[block_no]. block_virt_addr; } #ifndef CONFIG_S2IO_NAPI spin_lock_irqsave(&nic->put_lock, flags); mac_control->rings[ring_no].put_pos = (block_no * (MAX_RXDS_PER_BLOCK + 1)) + off; spin_unlock_irqrestore(&nic->put_lock, flags); #endif #endif #ifndef CONFIG_2BUFF_MODE if (rxdp->Control_1 & RXD_OWN_XENA) #else if (rxdp->Control_2 & BIT(0)) #endif { mac_control->rings[ring_no].rx_curr_put_info. offset = off; goto end; } #ifdef CONFIG_2BUFF_MODE /* * RxDs Spanning cache lines will be replenished only * if the succeeding RxD is also owned by Host. It * will always be the ((8*i)+3) and ((8*i)+6) * descriptors for the 48 byte descriptor. The offending * decsriptor is of-course the 3rd descriptor. */ rxdpphys = mac_control->rings[ring_no].rx_blocks[block_no]. block_dma_addr + (off * sizeof(RxD_t)); if (((u64) (rxdpphys)) % 128 > 80) { rxdpnext = mac_control->rings[ring_no].rx_blocks[block_no]. block_virt_addr + (off + 1); if (rxdpnext->Host_Control == END_OF_BLOCK) { nextblk = (block_no + 1) % (mac_control->rings[ring_no].block_count); rxdpnext = mac_control->rings[ring_no].rx_blocks [nextblk].block_virt_addr; } if (rxdpnext->Control_2 & BIT(0)) goto end; } #endif #ifndef CONFIG_2BUFF_MODE skb = dev_alloc_skb(size + NET_IP_ALIGN); #else skb = dev_alloc_skb(dev->mtu + ALIGN_SIZE + BUF0_LEN + 4); #endif if (!skb) { DBG_PRINT(ERR_DBG, "%s: Out of ", dev->name); DBG_PRINT(ERR_DBG, "memory to allocate SKBs\n"); return -ENOMEM; } #ifndef CONFIG_2BUFF_MODE skb_reserve(skb, NET_IP_ALIGN); memset(rxdp, 0, sizeof(RxD_t)); rxdp->Buffer0_ptr = pci_map_single (nic->pdev, skb->data, size, PCI_DMA_FROMDEVICE); rxdp->Control_2 &= (~MASK_BUFFER0_SIZE); rxdp->Control_2 |= SET_BUFFER0_SIZE(size); rxdp->Host_Control = (unsigned long) (skb); rxdp->Control_1 |= RXD_OWN_XENA; off++; off %= (MAX_RXDS_PER_BLOCK + 1); mac_control->rings[ring_no].rx_curr_put_info.offset = off; #else ba = &mac_control->rings[ring_no].ba[block_no][off]; skb_reserve(skb, BUF0_LEN); tmp = ((unsigned long) skb->data & ALIGN_SIZE); if (tmp) skb_reserve(skb, (ALIGN_SIZE + 1) - tmp); memset(rxdp, 0, sizeof(RxD_t)); rxdp->Buffer2_ptr = pci_map_single (nic->pdev, skb->data, dev->mtu + BUF0_LEN + 4, PCI_DMA_FROMDEVICE); rxdp->Buffer0_ptr = pci_map_single(nic->pdev, ba->ba_0, BUF0_LEN, PCI_DMA_FROMDEVICE); rxdp->Buffer1_ptr = pci_map_single(nic->pdev, ba->ba_1, BUF1_LEN, PCI_DMA_FROMDEVICE); rxdp->Control_2 = SET_BUFFER2_SIZE(dev->mtu + 4); rxdp->Control_2 |= SET_BUFFER0_SIZE(BUF0_LEN); rxdp->Control_2 |= SET_BUFFER1_SIZE(1); /* dummy. */ rxdp->Control_2 |= BIT(0); /* Set Buffer_Empty bit. */ rxdp->Host_Control = (u64) ((unsigned long) (skb)); rxdp->Control_1 |= RXD_OWN_XENA; off++; mac_control->rings[ring_no].rx_curr_put_info.offset = off; #endif rxdp->Control_2 |= SET_RXD_MARKER; atomic_inc(&nic->rx_bufs_left[ring_no]); alloc_tab++; } end: return SUCCESS; } /** * free_rx_buffers - Frees all Rx buffers * @sp: device private variable. * Description: * This function will free all Rx buffers allocated by host. * Return Value: * NONE. */ static void free_rx_buffers(struct s2io_nic *sp) { struct net_device *dev = sp->dev; int i, j, blk = 0, off, buf_cnt = 0; RxD_t *rxdp; struct sk_buff *skb; mac_info_t *mac_control; struct config_param *config; #ifdef CONFIG_2BUFF_MODE buffAdd_t *ba; #endif mac_control = &sp->mac_control; config = &sp->config; for (i = 0; i < config->rx_ring_num; i++) { for (j = 0, blk = 0; j < config->rx_cfg[i].num_rxd; j++) { off = j % (MAX_RXDS_PER_BLOCK + 1); rxdp = mac_control->rings[i].rx_blocks[blk]. block_virt_addr + off; #ifndef CONFIG_2BUFF_MODE if (rxdp->Control_1 == END_OF_BLOCK) { rxdp = (RxD_t *) ((unsigned long) rxdp-> Control_2); j++; blk++; } #else if (rxdp->Host_Control == END_OF_BLOCK) { blk++; continue; } #endif if (!(rxdp->Control_1 & RXD_OWN_XENA)) { memset(rxdp, 0, sizeof(RxD_t)); continue; } skb = (struct sk_buff *) ((unsigned long) rxdp-> Host_Control); if (skb) { #ifndef CONFIG_2BUFF_MODE pci_unmap_single(sp->pdev, (dma_addr_t) rxdp->Buffer0_ptr, dev->mtu + HEADER_ETHERNET_II_802_3_SIZE + HEADER_802_2_SIZE + HEADER_SNAP_SIZE, PCI_DMA_FROMDEVICE); #else ba = &mac_control->rings[i].ba[blk][off]; pci_unmap_single(sp->pdev, (dma_addr_t) rxdp->Buffer0_ptr, BUF0_LEN, PCI_DMA_FROMDEVICE); pci_unmap_single(sp->pdev, (dma_addr_t) rxdp->Buffer1_ptr, BUF1_LEN, PCI_DMA_FROMDEVICE); pci_unmap_single(sp->pdev, (dma_addr_t) rxdp->Buffer2_ptr, dev->mtu + BUF0_LEN + 4, PCI_DMA_FROMDEVICE); #endif dev_kfree_skb(skb); atomic_dec(&sp->rx_bufs_left[i]); buf_cnt++; } memset(rxdp, 0, sizeof(RxD_t)); } mac_control->rings[i].rx_curr_put_info.block_index = 0; mac_control->rings[i].rx_curr_get_info.block_index = 0; mac_control->rings[i].rx_curr_put_info.offset = 0; mac_control->rings[i].rx_curr_get_info.offset = 0; atomic_set(&sp->rx_bufs_left[i], 0); DBG_PRINT(INIT_DBG, "%s:Freed 0x%x Rx Buffers on ring%d\n", dev->name, buf_cnt, i); } } /** * s2io_poll - Rx interrupt handler for NAPI support * @dev : pointer to the device structure. * @budget : The number of packets that were budgeted to be processed * during one pass through the 'Poll" function. * Description: * Comes into picture only if NAPI support has been incorporated. It does * the same thing that rx_intr_handler does, but not in a interrupt context * also It will process only a given number of packets. * Return value: * 0 on success and 1 if there are No Rx packets to be processed. */ #if defined(CONFIG_S2IO_NAPI) static int s2io_poll(struct net_device *dev, int *budget) { nic_t *nic = dev->priv; int pkt_cnt = 0, org_pkts_to_process; mac_info_t *mac_control; struct config_param *config; XENA_dev_config_t *bar0 = (XENA_dev_config_t *) nic->bar0; u64 val64; int i; atomic_inc(&nic->isr_cnt); mac_control = &nic->mac_control; config = &nic->config; nic->pkts_to_process = *budget; if (nic->pkts_to_process > dev->quota) nic->pkts_to_process = dev->quota; org_pkts_to_process = nic->pkts_to_process; val64 = readq(&bar0->rx_traffic_int); writeq(val64, &bar0->rx_traffic_int); for (i = 0; i < config->rx_ring_num; i++) { rx_intr_handler(&mac_control->rings[i]); pkt_cnt = org_pkts_to_process - nic->pkts_to_process; if (!nic->pkts_to_process) { /* Quota for the current iteration has been met */ goto no_rx; } } if (!pkt_cnt) pkt_cnt = 1; dev->quota -= pkt_cnt; *budget -= pkt_cnt; netif_rx_complete(dev); for (i = 0; i < config->rx_ring_num; i++) { if (fill_rx_buffers(nic, i) == -ENOMEM) { DBG_PRINT(ERR_DBG, "%s:Out of memory", dev->name); DBG_PRINT(ERR_DBG, " in Rx Poll!!\n"); break; } } /* Re enable the Rx interrupts. */ en_dis_able_nic_intrs(nic, RX_TRAFFIC_INTR, ENABLE_INTRS); atomic_dec(&nic->isr_cnt); return 0; no_rx: dev->quota -= pkt_cnt; *budget -= pkt_cnt; for (i = 0; i < config->rx_ring_num; i++) { if (fill_rx_buffers(nic, i) == -ENOMEM) { DBG_PRINT(ERR_DBG, "%s:Out of memory", dev->name); DBG_PRINT(ERR_DBG, " in Rx Poll!!\n"); break; } } atomic_dec(&nic->isr_cnt); return 1; } #endif /** * rx_intr_handler - Rx interrupt handler * @nic: device private variable. * Description: * If the interrupt is because of a received frame or if the * receive ring contains fresh as yet un-processed frames,this function is * called. It picks out the RxD at which place the last Rx processing had * stopped and sends the skb to the OSM's Rx handler and then increments * the offset. * Return Value: * NONE. */ static void rx_intr_handler(ring_info_t *ring_data) { nic_t *nic = ring_data->nic; struct net_device *dev = (struct net_device *) nic->dev; int get_block, get_offset, put_block, put_offset, ring_bufs; rx_curr_get_info_t get_info, put_info; RxD_t *rxdp; struct sk_buff *skb; #ifndef CONFIG_S2IO_NAPI int pkt_cnt = 0; #endif spin_lock(&nic->rx_lock); if (atomic_read(&nic->card_state) == CARD_DOWN) { DBG_PRINT(ERR_DBG, "%s: %s going down for reset\n", __FUNCTION__, dev->name); spin_unlock(&nic->rx_lock); } get_info = ring_data->rx_curr_get_info; get_block = get_info.block_index; put_info = ring_data->rx_curr_put_info; put_block = put_info.block_index; ring_bufs = get_info.ring_len+1; rxdp = ring_data->rx_blocks[get_block].block_virt_addr + get_info.offset; get_offset = (get_block * (MAX_RXDS_PER_BLOCK + 1)) + get_info.offset; #ifndef CONFIG_S2IO_NAPI spin_lock(&nic->put_lock); put_offset = ring_data->put_pos; spin_unlock(&nic->put_lock); #else put_offset = (put_block * (MAX_RXDS_PER_BLOCK + 1)) + put_info.offset; #endif while (RXD_IS_UP2DT(rxdp) && (((get_offset + 1) % ring_bufs) != put_offset)) { skb = (struct sk_buff *) ((unsigned long)rxdp->Host_Control); if (skb == NULL) { DBG_PRINT(ERR_DBG, "%s: The skb is ", dev->name); DBG_PRINT(ERR_DBG, "Null in Rx Intr\n"); spin_unlock(&nic->rx_lock); return; } #ifndef CONFIG_2BUFF_MODE pci_unmap_single(nic->pdev, (dma_addr_t) rxdp->Buffer0_ptr, dev->mtu + HEADER_ETHERNET_II_802_3_SIZE + HEADER_802_2_SIZE + HEADER_SNAP_SIZE, PCI_DMA_FROMDEVICE); #else pci_unmap_single(nic->pdev, (dma_addr_t) rxdp->Buffer0_ptr, BUF0_LEN, PCI_DMA_FROMDEVICE); pci_unmap_single(nic->pdev, (dma_addr_t) rxdp->Buffer1_ptr, BUF1_LEN, PCI_DMA_FROMDEVICE); pci_unmap_single(nic->pdev, (dma_addr_t) rxdp->Buffer2_ptr, dev->mtu + BUF0_LEN + 4, PCI_DMA_FROMDEVICE); #endif rx_osm_handler(ring_data, rxdp); get_info.offset++; ring_data->rx_curr_get_info.offset = get_info.offset; rxdp = ring_data->rx_blocks[get_block].block_virt_addr + get_info.offset; if (get_info.offset && (!(get_info.offset % MAX_RXDS_PER_BLOCK))) { get_info.offset = 0; ring_data->rx_curr_get_info.offset = get_info.offset; get_block++; get_block %= ring_data->block_count; ring_data->rx_curr_get_info.block_index = get_block; rxdp = ring_data->rx_blocks[get_block].block_virt_addr; } get_offset = (get_block * (MAX_RXDS_PER_BLOCK + 1)) + get_info.offset; #ifdef CONFIG_S2IO_NAPI nic->pkts_to_process -= 1; if (!nic->pkts_to_process) break; #else pkt_cnt++; if ((indicate_max_pkts) && (pkt_cnt > indicate_max_pkts)) break; #endif } spin_unlock(&nic->rx_lock); } /** * tx_intr_handler - Transmit interrupt handler * @nic : device private variable * Description: * If an interrupt was raised to indicate DMA complete of the * Tx packet, this function is called. It identifies the last TxD * whose buffer was freed and frees all skbs whose data have already * DMA'ed into the NICs internal memory. * Return Value: * NONE */ static void tx_intr_handler(fifo_info_t *fifo_data) { nic_t *nic = fifo_data->nic; struct net_device *dev = (struct net_device *) nic->dev; tx_curr_get_info_t get_info, put_info; struct sk_buff *skb; TxD_t *txdlp; u16 j, frg_cnt; get_info = fifo_data->tx_curr_get_info; put_info = fifo_data->tx_curr_put_info; txdlp = (TxD_t *) fifo_data->list_info[get_info.offset]. list_virt_addr; while ((!(txdlp->Control_1 & TXD_LIST_OWN_XENA)) && (get_info.offset != put_info.offset) && (txdlp->Host_Control)) { /* Check for TxD errors */ if (txdlp->Control_1 & TXD_T_CODE) { unsigned long long err; err = txdlp->Control_1 & TXD_T_CODE; DBG_PRINT(ERR_DBG, "***TxD error %llx\n", err); } skb = (struct sk_buff *) ((unsigned long) txdlp->Host_Control); if (skb == NULL) { DBG_PRINT(ERR_DBG, "%s: Null skb ", __FUNCTION__); DBG_PRINT(ERR_DBG, "in Tx Free Intr\n"); return; } frg_cnt = skb_shinfo(skb)->nr_frags; nic->tx_pkt_count++; pci_unmap_single(nic->pdev, (dma_addr_t) txdlp->Buffer_Pointer, skb->len - skb->data_len, PCI_DMA_TODEVICE); if (frg_cnt) { TxD_t *temp; temp = txdlp; txdlp++; for (j = 0; j < frg_cnt; j++, txdlp++) { skb_frag_t *frag = &skb_shinfo(skb)->frags[j]; if (!txdlp->Buffer_Pointer) break; pci_unmap_page(nic->pdev, (dma_addr_t) txdlp-> Buffer_Pointer, frag->size, PCI_DMA_TODEVICE); } txdlp = temp; } memset(txdlp, 0, (sizeof(TxD_t) * fifo_data->max_txds)); /* Updating the statistics block */ nic->stats.tx_bytes += skb->len; dev_kfree_skb_irq(skb); get_info.offset++; get_info.offset %= get_info.fifo_len + 1; txdlp = (TxD_t *) fifo_data->list_info [get_info.offset].list_virt_addr; fifo_data->tx_curr_get_info.offset = get_info.offset; } spin_lock(&nic->tx_lock); if (netif_queue_stopped(dev)) netif_wake_queue(dev); spin_unlock(&nic->tx_lock); } /** * alarm_intr_handler - Alarm Interrrupt handler * @nic: device private variable * Description: If the interrupt was neither because of Rx packet or Tx * complete, this function is called. If the interrupt was to indicate * a loss of link, the OSM link status handler is invoked for any other * alarm interrupt the block that raised the interrupt is displayed * and a H/W reset is issued. * Return Value: * NONE */ static void alarm_intr_handler(struct s2io_nic *nic) { struct net_device *dev = (struct net_device *) nic->dev; XENA_dev_config_t __iomem *bar0 = nic->bar0; register u64 val64 = 0, err_reg = 0; /* Handling link status change error Intr */ if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) { err_reg = readq(&bar0->mac_rmac_err_reg); writeq(err_reg, &bar0->mac_rmac_err_reg); if (err_reg & RMAC_LINK_STATE_CHANGE_INT) { schedule_work(&nic->set_link_task); } } /* Handling Ecc errors */ val64 = readq(&bar0->mc_err_reg); writeq(val64, &bar0->mc_err_reg); if (val64 & (MC_ERR_REG_ECC_ALL_SNG | MC_ERR_REG_ECC_ALL_DBL)) { if (val64 & MC_ERR_REG_ECC_ALL_DBL) { nic->mac_control.stats_info->sw_stat. double_ecc_errs++; DBG_PRINT(ERR_DBG, "%s: Device indicates ", dev->name); DBG_PRINT(ERR_DBG, "double ECC error!!\n"); netif_stop_queue(dev); schedule_work(&nic->rst_timer_task); } else { nic->mac_control.stats_info->sw_stat. single_ecc_errs++; } } /* In case of a serious error, the device will be Reset. */ val64 = readq(&bar0->serr_source); if (val64 & SERR_SOURCE_ANY) { DBG_PRINT(ERR_DBG, "%s: Device indicates ", dev->name); DBG_PRINT(ERR_DBG, "serious error!!\n"); netif_stop_queue(dev); schedule_work(&nic->rst_timer_task); } /* * Also as mentioned in the latest Errata sheets if the PCC_FB_ECC * Error occurs, the adapter will be recycled by disabling the * adapter enable bit and enabling it again after the device * becomes Quiescent. */ val64 = readq(&bar0->pcc_err_reg); writeq(val64, &bar0->pcc_err_reg); if (val64 & PCC_FB_ECC_DB_ERR) { u64 ac = readq(&bar0->adapter_control); ac &= ~(ADAPTER_CNTL_EN); writeq(ac, &bar0->adapter_control); ac = readq(&bar0->adapter_control); schedule_work(&nic->set_link_task); } /* Other type of interrupts are not being handled now, TODO */ } /** * wait_for_cmd_complete - waits for a command to complete. * @sp : private member of the device structure, which is a pointer to the * s2io_nic structure. * Description: Function that waits for a command to Write into RMAC * ADDR DATA registers to be completed and returns either success or * error depending on whether the command was complete or not. * Return value: * SUCCESS on success and FAILURE on failure. */ int wait_for_cmd_complete(nic_t * sp) { XENA_dev_config_t __iomem *bar0 = sp->bar0; int ret = FAILURE, cnt = 0; u64 val64; while (TRUE) { val64 = readq(&bar0->rmac_addr_cmd_mem); if (!(val64 & RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING)) { ret = SUCCESS; break; } msleep(50); if (cnt++ > 10) break; } return ret; } /** * s2io_reset - Resets the card. * @sp : private member of the device structure. * Description: Function to Reset the card. This function then also * restores the previously saved PCI configuration space registers as * the card reset also resets the configuration space. * Return value: * void. */ void s2io_reset(nic_t * sp) { XENA_dev_config_t __iomem *bar0 = sp->bar0; u64 val64; u16 subid, pci_cmd; /* Back up the PCI-X CMD reg, dont want to lose MMRBC, OST settings */ if (sp->device_type == XFRAME_I_DEVICE) pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER, &(pci_cmd)); val64 = SW_RESET_ALL; writeq(val64, &bar0->sw_reset); /* * At this stage, if the PCI write is indeed completed, the * card is reset and so is the PCI Config space of the device. * So a read cannot be issued at this stage on any of the * registers to ensure the write into "sw_reset" register * has gone through. * Question: Is there any system call that will explicitly force * all the write commands still pending on the bus to be pushed * through? * As of now I'am just giving a 250ms delay and hoping that the * PCI write to sw_reset register is done by this time. */ msleep(250); if (!(sp->device_type & XFRAME_II_DEVICE)) { /* Restore the PCI state saved during initializarion. */ pci_restore_state(sp->pdev); pci_write_config_word(sp->pdev, PCIX_COMMAND_REGISTER, pci_cmd); } else { pci_set_master(sp->pdev); } s2io_init_pci(sp); msleep(250); /* Set swapper to enable I/O register access */ s2io_set_swapper(sp); /* Clear certain PCI/PCI-X fields after reset */ pci_read_config_word(sp->pdev, PCI_COMMAND, &pci_cmd); pci_cmd &= 0x7FFF; /* Clear parity err detect bit */ pci_write_config_word(sp->pdev, PCI_COMMAND, pci_cmd); val64 = readq(&bar0->txpic_int_reg); val64 &= ~BIT(62); /* Clearing PCI_STATUS error reflected here */ writeq(val64, &bar0->txpic_int_reg); /* Clearing PCIX Ecc status register */ pci_write_config_dword(sp->pdev, 0x68, 0); /* Reset device statistics maintained by OS */ memset(&sp->stats, 0, sizeof (struct net_device_stats)); /* SXE-002: Configure link and activity LED to turn it off */ subid = sp->pdev->subsystem_device; if (((subid & 0xFF) >= 0x07) && (sp->device_type == XFRAME_I_DEVICE)) { val64 = readq(&bar0->gpio_control); val64 |= 0x0000800000000000ULL; writeq(val64, &bar0->gpio_control); val64 = 0x0411040400000000ULL; writeq(val64, (void __iomem *) ((u8 *) bar0 + 0x2700)); } /* * Clear spurious ECC interrupts that would have occured on * XFRAME II cards after reset. */ if (sp->device_type == XFRAME_II_DEVICE) { val64 = readq(&bar0->pcc_err_reg); writeq(val64, &bar0->pcc_err_reg); } sp->device_enabled_once = FALSE; } /** * s2io_set_swapper - to set the swapper controle on the card * @sp : private member of the device structure, * pointer to the s2io_nic structure. * Description: Function to set the swapper control on the card * correctly depending on the 'endianness' of the system. * Return value: * SUCCESS on success and FAILURE on failure. */ int s2io_set_swapper(nic_t * sp) { struct net_device *dev = sp->dev; XENA_dev_config_t __iomem *bar0 = sp->bar0; u64 val64, valt, valr; /* * Set proper endian settings and verify the same by reading * the PIF Feed-back register. */ val64 = readq(&bar0->pif_rd_swapper_fb); if (val64 != 0x0123456789ABCDEFULL) { int i = 0; u64 value[] = { 0xC30000C3C30000C3ULL, /* FE=1, SE=1 */ 0x8100008181000081ULL, /* FE=1, SE=0 */ 0x4200004242000042ULL, /* FE=0, SE=1 */ 0}; /* FE=0, SE=0 */ while(i<4) { writeq(value[i], &bar0->swapper_ctrl); val64 = readq(&bar0->pif_rd_swapper_fb); if (val64 == 0x0123456789ABCDEFULL) break; i++; } if (i == 4) { DBG_PRINT(ERR_DBG, "%s: Endian settings are wrong, ", dev->name); DBG_PRINT(ERR_DBG, "feedback read %llx\n", (unsigned long long) val64); return FAILURE; } valr = value[i]; } else { valr = readq(&bar0->swapper_ctrl); } valt = 0x0123456789ABCDEFULL; writeq(valt, &bar0->xmsi_address); val64 = readq(&bar0->xmsi_address); if(val64 != valt) { int i = 0; u64 value[] = { 0x00C3C30000C3C300ULL, /* FE=1, SE=1 */ 0x0081810000818100ULL, /* FE=1, SE=0 */ 0x0042420000424200ULL, /* FE=0, SE=1 */ 0}; /* FE=0, SE=0 */ while(i<4) { writeq((value[i] | valr), &bar0->swapper_ctrl); writeq(valt, &bar0->xmsi_address); val64 = readq(&bar0->xmsi_address); if(val64 == valt) break; i++; } if(i == 4) { unsigned long long x = val64; DBG_PRINT(ERR_DBG, "Write failed, Xmsi_addr "); DBG_PRINT(ERR_DBG, "reads:0x%llx\n", x); return FAILURE; } } val64 = readq(&bar0->swapper_ctrl); val64 &= 0xFFFF000000000000ULL; #ifdef __BIG_ENDIAN /* * The device by default set to a big endian format, so a * big endian driver need not set anything. */ val64 |= (SWAPPER_CTRL_TXP_FE | SWAPPER_CTRL_TXP_SE | SWAPPER_CTRL_TXD_R_FE | SWAPPER_CTRL_TXD_W_FE | SWAPPER_CTRL_TXF_R_FE | SWAPPER_CTRL_RXD_R_FE | SWAPPER_CTRL_RXD_W_FE | SWAPPER_CTRL_RXF_W_FE | SWAPPER_CTRL_XMSI_FE | SWAPPER_CTRL_XMSI_SE | SWAPPER_CTRL_STATS_FE | SWAPPER_CTRL_STATS_SE); writeq(val64, &bar0->swapper_ctrl); #else /* * Initially we enable all bits to make it accessible by the * driver, then we selectively enable only those bits that * we want to set. */ val64 |= (SWAPPER_CTRL_TXP_FE | SWAPPER_CTRL_TXP_SE | SWAPPER_CTRL_TXD_R_FE | SWAPPER_CTRL_TXD_R_SE | SWAPPER_CTRL_TXD_W_FE | SWAPPER_CTRL_TXD_W_SE | SWAPPER_CTRL_TXF_R_FE | SWAPPER_CTRL_RXD_R_FE | SWAPPER_CTRL_RXD_R_SE | SWAPPER_CTRL_RXD_W_FE | SWAPPER_CTRL_RXD_W_SE | SWAPPER_CTRL_RXF_W_FE | SWAPPER_CTRL_XMSI_FE | SWAPPER_CTRL_XMSI_SE | SWAPPER_CTRL_STATS_FE | SWAPPER_CTRL_STATS_SE); writeq(val64, &bar0->swapper_ctrl); #endif val64 = readq(&bar0->swapper_ctrl); /* * Verifying if endian settings are accurate by reading a * feedback register. */ val64 = readq(&bar0->pif_rd_swapper_fb); if (val64 != 0x0123456789ABCDEFULL) { /* Endian settings are incorrect, calls for another dekko. */ DBG_PRINT(ERR_DBG, "%s: Endian settings are wrong, ", dev->name); DBG_PRINT(ERR_DBG, "feedback read %llx\n", (unsigned long long) val64); return FAILURE; } return SUCCESS; } /* ********************************************************* * * Functions defined below concern the OS part of the driver * * ********************************************************* */ /** * s2io_open - open entry point of the driver * @dev : pointer to the device structure. * Description: * This function is the open entry point of the driver. It mainly calls a * function to allocate Rx buffers and inserts them into the buffer * descriptors and then enables the Rx part of the NIC. * Return value: * 0 on success and an appropriate (-)ve integer as defined in errno.h * file on failure. */ int s2io_open(struct net_device *dev) { nic_t *sp = dev->priv; int err = 0; /* * Make sure you have link off by default every time * Nic is initialized */ netif_carrier_off(dev); sp->last_link_state = 0; /* Initialize H/W and enable interrupts */ if (s2io_card_up(sp)) { DBG_PRINT(ERR_DBG, "%s: H/W initialization failed\n", dev->name); err = -ENODEV; goto hw_init_failed; } /* After proper initialization of H/W, register ISR */ err = request_irq((int) sp->pdev->irq, s2io_isr, SA_SHIRQ, sp->name, dev); if (err) { DBG_PRINT(ERR_DBG, "%s: ISR registration failed\n", dev->name); goto isr_registration_failed; } if (s2io_set_mac_addr(dev, dev->dev_addr) == FAILURE) { DBG_PRINT(ERR_DBG, "Set Mac Address Failed\n"); err = -ENODEV; goto setting_mac_address_failed; } netif_start_queue(dev); return 0; setting_mac_address_failed: free_irq(sp->pdev->irq, dev); isr_registration_failed: del_timer_sync(&sp->alarm_timer); s2io_reset(sp); hw_init_failed: return err; } /** * s2io_close -close entry point of the driver * @dev : device pointer. * Description: * This is the stop entry point of the driver. It needs to undo exactly * whatever was done by the open entry point,thus it's usually referred to * as the close function.Among other things this function mainly stops the * Rx side of the NIC and frees all the Rx buffers in the Rx rings. * Return value: * 0 on success and an appropriate (-)ve integer as defined in errno.h * file on failure. */ int s2io_close(struct net_device *dev) { nic_t *sp = dev->priv; flush_scheduled_work(); netif_stop_queue(dev); /* Reset card, kill tasklet and free Tx and Rx buffers. */ s2io_card_down(sp); free_irq(sp->pdev->irq, dev); sp->device_close_flag = TRUE; /* Device is shut down. */ return 0; } /** * s2io_xmit - Tx entry point of te driver * @skb : the socket buffer containing the Tx data. * @dev : device pointer. * Description : * This function is the Tx entry point of the driver. S2IO NIC supports * certain protocol assist features on Tx side, namely CSO, S/G, LSO. * NOTE: when device cant queue the pkt,just the trans_start variable will * not be upadted. * Return value: * 0 on success & 1 on failure. */ int s2io_xmit(struct sk_buff *skb, struct net_device *dev) { nic_t *sp = dev->priv; u16 frg_cnt, frg_len, i, queue, queue_len, put_off, get_off; register u64 val64; TxD_t *txdp; TxFIFO_element_t __iomem *tx_fifo; unsigned long flags; #ifdef NETIF_F_TSO int mss; #endif u16 vlan_tag = 0; int vlan_priority = 0; mac_info_t *mac_control; struct config_param *config; mac_control = &sp->mac_control; config = &sp->config; DBG_PRINT(TX_DBG, "%s: In Neterion Tx routine\n", dev->name); spin_lock_irqsave(&sp->tx_lock, flags); if (atomic_read(&sp->card_state) == CARD_DOWN) { DBG_PRINT(TX_DBG, "%s: Card going down for reset\n", dev->name); spin_unlock_irqrestore(&sp->tx_lock, flags); dev_kfree_skb(skb); return 0; } queue = 0; /* Get Fifo number to Transmit based on vlan priority */ if (sp->vlgrp && vlan_tx_tag_present(skb)) { vlan_tag = vlan_tx_tag_get(skb); vlan_priority = vlan_tag >> 13; queue = config->fifo_mapping[vlan_priority]; } put_off = (u16) mac_control->fifos[queue].tx_curr_put_info.offset; get_off = (u16) mac_control->fifos[queue].tx_curr_get_info.offset; txdp = (TxD_t *) mac_control->fifos[queue].list_info[put_off]. list_virt_addr; queue_len = mac_control->fifos[queue].tx_curr_put_info.fifo_len + 1; /* Avoid "put" pointer going beyond "get" pointer */ if (txdp->Host_Control || (((put_off + 1) % queue_len) == get_off)) { DBG_PRINT(ERR_DBG, "Error in xmit, No free TXDs.\n"); netif_stop_queue(dev); dev_kfree_skb(skb); spin_unlock_irqrestore(&sp->tx_lock, flags); return 0; } /* A buffer with no data will be dropped */ if (!skb->len) { DBG_PRINT(TX_DBG, "%s:Buffer has no data..\n", dev->name); dev_kfree_skb(skb); spin_unlock_irqrestore(&sp->tx_lock, flags); return 0; } #ifdef NETIF_F_TSO mss = skb_shinfo(skb)->tso_size; if (mss) { txdp->Control_1 |= TXD_TCP_LSO_EN; txdp->Control_1 |= TXD_TCP_LSO_MSS(mss); } #endif frg_cnt = skb_shinfo(skb)->nr_frags; frg_len = skb->len - skb->data_len; txdp->Buffer_Pointer = pci_map_single (sp->pdev, skb->data, frg_len, PCI_DMA_TODEVICE); txdp->Host_Control = (unsigned long) skb; if (skb->ip_summed == CHECKSUM_HW) { txdp->Control_2 |= (TXD_TX_CKO_IPV4_EN | TXD_TX_CKO_TCP_EN | TXD_TX_CKO_UDP_EN); } txdp->Control_2 |= config->tx_intr_type; if (sp->vlgrp && vlan_tx_tag_present(skb)) { txdp->Control_2 |= TXD_VLAN_ENABLE; txdp->Control_2 |= TXD_VLAN_TAG(vlan_tag); } txdp->Control_1 |= (TXD_BUFFER0_SIZE(frg_len) | TXD_GATHER_CODE_FIRST); txdp->Control_1 |= TXD_LIST_OWN_XENA; /* For fragmented SKB. */ for (i = 0; i < frg_cnt; i++) { skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; /* A '0' length fragment will be ignored */ if (!frag->size) continue; txdp++; txdp->Buffer_Pointer = (u64) pci_map_page (sp->pdev, frag->page, frag->page_offset, frag->size, PCI_DMA_TODEVICE); txdp->Control_1 |= TXD_BUFFER0_SIZE(frag->size); } txdp->Control_1 |= TXD_GATHER_CODE_LAST; tx_fifo = mac_control->tx_FIFO_start[queue]; val64 = mac_control->fifos[queue].list_info[put_off].list_phy_addr; writeq(val64, &tx_fifo->TxDL_Pointer); wmb(); val64 = (TX_FIFO_LAST_TXD_NUM(frg_cnt) | TX_FIFO_FIRST_LIST | TX_FIFO_LAST_LIST); #ifdef NETIF_F_TSO if (mss) val64 |= TX_FIFO_SPECIAL_FUNC; #endif writeq(val64, &tx_fifo->List_Control); put_off++; put_off %= mac_control->fifos[queue].tx_curr_put_info.fifo_len + 1; mac_control->fifos[queue].tx_curr_put_info.offset = put_off; /* Avoid "put" pointer going beyond "get" pointer */ if (((put_off + 1) % queue_len) == get_off) { DBG_PRINT(TX_DBG, "No free TxDs for xmit, Put: 0x%x Get:0x%x\n", put_off, get_off); netif_stop_queue(dev); } dev->trans_start = jiffies; spin_unlock_irqrestore(&sp->tx_lock, flags); return 0; } static void s2io_alarm_handle(unsigned long data) { nic_t *sp = (nic_t *)data; alarm_intr_handler(sp); mod_timer(&sp->alarm_timer, jiffies + HZ / 2); } static void s2io_txpic_intr_handle(nic_t *sp) { XENA_dev_config_t *bar0 = (XENA_dev_config_t *) sp->bar0; u64 val64; val64 = readq(&bar0->pic_int_status); if (val64 & PIC_INT_GPIO) { val64 = readq(&bar0->gpio_int_reg); if ((val64 & GPIO_INT_REG_LINK_DOWN) && (val64 & GPIO_INT_REG_LINK_UP)) { val64 |= GPIO_INT_REG_LINK_DOWN; val64 |= GPIO_INT_REG_LINK_UP; writeq(val64, &bar0->gpio_int_reg); goto masking; } if (((sp->last_link_state == LINK_UP) && (val64 & GPIO_INT_REG_LINK_DOWN)) || ((sp->last_link_state == LINK_DOWN) && (val64 & GPIO_INT_REG_LINK_UP))) { val64 = readq(&bar0->gpio_int_mask); val64 |= GPIO_INT_MASK_LINK_DOWN; val64 |= GPIO_INT_MASK_LINK_UP; writeq(val64, &bar0->gpio_int_mask); s2io_set_link((unsigned long)sp); } masking: if (sp->last_link_state == LINK_UP) { /*enable down interrupt */ val64 = readq(&bar0->gpio_int_mask); /* unmasks link down intr */ val64 &= ~GPIO_INT_MASK_LINK_DOWN; /* masks link up intr */ val64 |= GPIO_INT_MASK_LINK_UP; writeq(val64, &bar0->gpio_int_mask); } else { /*enable UP Interrupt */ val64 = readq(&bar0->gpio_int_mask); /* unmasks link up interrupt */ val64 &= ~GPIO_INT_MASK_LINK_UP; /* masks link down interrupt */ val64 |= GPIO_INT_MASK_LINK_DOWN; writeq(val64, &bar0->gpio_int_mask); } } } /** * s2io_isr - ISR handler of the device . * @irq: the irq of the device. * @dev_id: a void pointer to the dev structure of the NIC. * @pt_regs: pointer to the registers pushed on the stack. * Description: This function is the ISR handler of the device. It * identifies the reason for the interrupt and calls the relevant * service routines. As a contongency measure, this ISR allocates the * recv buffers, if their numbers are below the panic value which is * presently set to 25% of the original number of rcv buffers allocated. * Return value: * IRQ_HANDLED: will be returned if IRQ was handled by this routine * IRQ_NONE: will be returned if interrupt is not from our device */ static irqreturn_t s2io_isr(int irq, void *dev_id, struct pt_regs *regs) { struct net_device *dev = (struct net_device *) dev_id; nic_t *sp = dev->priv; XENA_dev_config_t __iomem *bar0 = sp->bar0; int i; u64 reason = 0, val64; mac_info_t *mac_control; struct config_param *config; atomic_inc(&sp->isr_cnt); mac_control = &sp->mac_control; config = &sp->config; /* * Identify the cause for interrupt and call the appropriate * interrupt handler. Causes for the interrupt could be; * 1. Rx of packet. * 2. Tx complete. * 3. Link down. * 4. Error in any functional blocks of the NIC. */ reason = readq(&bar0->general_int_status); if (!reason) { /* The interrupt was not raised by Xena. */ atomic_dec(&sp->isr_cnt); return IRQ_NONE; } #ifdef CONFIG_S2IO_NAPI if (reason & GEN_INTR_RXTRAFFIC) { if (netif_rx_schedule_prep(dev)) { en_dis_able_nic_intrs(sp, RX_TRAFFIC_INTR, DISABLE_INTRS); __netif_rx_schedule(dev); } } #else /* If Intr is because of Rx Traffic */ if (reason & GEN_INTR_RXTRAFFIC) { /* * rx_traffic_int reg is an R1 register, writing all 1's * will ensure that the actual interrupt causing bit get's * cleared and hence a read can be avoided. */ val64 = 0xFFFFFFFFFFFFFFFFULL; writeq(val64, &bar0->rx_traffic_int); for (i = 0; i < config->rx_ring_num; i++) { rx_intr_handler(&mac_control->rings[i]); } } #endif /* If Intr is because of Tx Traffic */ if (reason & GEN_INTR_TXTRAFFIC) { /* * tx_traffic_int reg is an R1 register, writing all 1's * will ensure that the actual interrupt causing bit get's * cleared and hence a read can be avoided. */ val64 = 0xFFFFFFFFFFFFFFFFULL; writeq(val64, &bar0->tx_traffic_int); for (i = 0; i < config->tx_fifo_num; i++) tx_intr_handler(&mac_control->fifos[i]); } if (reason & GEN_INTR_TXPIC) s2io_txpic_intr_handle(sp); /* * If the Rx buffer count is below the panic threshold then * reallocate the buffers from the interrupt handler itself, * else schedule a tasklet to reallocate the buffers. */ #ifndef CONFIG_S2IO_NAPI for (i = 0; i < config->rx_ring_num; i++) { int ret; int rxb_size = atomic_read(&sp->rx_bufs_left[i]); int level = rx_buffer_level(sp, rxb_size, i); if ((level == PANIC) && (!TASKLET_IN_USE)) { DBG_PRINT(INTR_DBG, "%s: Rx BD hit ", dev->name); DBG_PRINT(INTR_DBG, "PANIC levels\n"); if ((ret = fill_rx_buffers(sp, i)) == -ENOMEM) { DBG_PRINT(ERR_DBG, "%s:Out of memory", dev->name); DBG_PRINT(ERR_DBG, " in ISR!!\n"); clear_bit(0, (&sp->tasklet_status)); atomic_dec(&sp->isr_cnt); return IRQ_HANDLED; } clear_bit(0, (&sp->tasklet_status)); } else if (level == LOW) { tasklet_schedule(&sp->task); } } #endif atomic_dec(&sp->isr_cnt); return IRQ_HANDLED; } /** * s2io_updt_stats - */ static void s2io_updt_stats(nic_t *sp) { XENA_dev_config_t __iomem *bar0 = sp->bar0; u64 val64; int cnt = 0; if (atomic_read(&sp->card_state) == CARD_UP) { /* Apprx 30us on a 133 MHz bus */ val64 = SET_UPDT_CLICKS(10) | STAT_CFG_ONE_SHOT_EN | STAT_CFG_STAT_EN; writeq(val64, &bar0->stat_cfg); do { udelay(100); val64 = readq(&bar0->stat_cfg); if (!(val64 & BIT(0))) break; cnt++; if (cnt == 5) break; /* Updt failed */ } while(1); } } /** * s2io_get_stats - Updates the device statistics structure. * @dev : pointer to the device structure. * Description: * This function updates the device statistics structure in the s2io_nic * structure and returns a pointer to the same. * Return value: * pointer to the updated net_device_stats structure. */ struct net_device_stats *s2io_get_stats(struct net_device *dev) { nic_t *sp = dev->priv; mac_info_t *mac_control; struct config_param *config; mac_control = &sp->mac_control; config = &sp->config; /* Configure Stats for immediate updt */ s2io_updt_stats(sp); sp->stats.tx_packets = le32_to_cpu(mac_control->stats_info->tmac_frms); sp->stats.tx_errors = le32_to_cpu(mac_control->stats_info->tmac_any_err_frms); sp->stats.rx_errors = le32_to_cpu(mac_control->stats_info->rmac_drop_frms); sp->stats.multicast = le32_to_cpu(mac_control->stats_info->rmac_vld_mcst_frms); sp->stats.rx_length_errors = le32_to_cpu(mac_control->stats_info->rmac_long_frms); return (&sp->stats); } /** * s2io_set_multicast - entry point for multicast address enable/disable. * @dev : pointer to the device structure * Description: * This function is a driver entry point which gets called by the kernel * whenever multicast addresses must be enabled/disabled. This also gets * called to set/reset promiscuous mode. Depending on the deivce flag, we * determine, if multicast address must be enabled or if promiscuous mode * is to be disabled etc. * Return value: * void. */ static void s2io_set_multicast(struct net_device *dev) { int i, j, prev_cnt; struct dev_mc_list *mclist; nic_t *sp = dev->priv; XENA_dev_config_t __iomem *bar0 = sp->bar0; u64 val64 = 0, multi_mac = 0x010203040506ULL, mask = 0xfeffffffffffULL; u64 dis_addr = 0xffffffffffffULL, mac_addr = 0; void __iomem *add; if ((dev->flags & IFF_ALLMULTI) && (!sp->m_cast_flg)) { /* Enable all Multicast addresses */ writeq(RMAC_ADDR_DATA0_MEM_ADDR(multi_mac), &bar0->rmac_addr_data0_mem); writeq(RMAC_ADDR_DATA1_MEM_MASK(mask), &bar0->rmac_addr_data1_mem); val64 = RMAC_ADDR_CMD_MEM_WE | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD | RMAC_ADDR_CMD_MEM_OFFSET(MAC_MC_ALL_MC_ADDR_OFFSET); writeq(val64, &bar0->rmac_addr_cmd_mem); /* Wait till command completes */ wait_for_cmd_complete(sp); sp->m_cast_flg = 1; sp->all_multi_pos = MAC_MC_ALL_MC_ADDR_OFFSET; } else if ((dev->flags & IFF_ALLMULTI) && (sp->m_cast_flg)) { /* Disable all Multicast addresses */ writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr), &bar0->rmac_addr_data0_mem); writeq(RMAC_ADDR_DATA1_MEM_MASK(0x0), &bar0->rmac_addr_data1_mem); val64 = RMAC_ADDR_CMD_MEM_WE | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD | RMAC_ADDR_CMD_MEM_OFFSET(sp->all_multi_pos); writeq(val64, &bar0->rmac_addr_cmd_mem); /* Wait till command completes */ wait_for_cmd_complete(sp); sp->m_cast_flg = 0; sp->all_multi_pos = 0; } if ((dev->flags & IFF_PROMISC) && (!sp->promisc_flg)) { /* Put the NIC into promiscuous mode */ add = &bar0->mac_cfg; val64 = readq(&bar0->mac_cfg); val64 |= MAC_CFG_RMAC_PROM_ENABLE; writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key); writel((u32) val64, add); writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key); writel((u32) (val64 >> 32), (add + 4)); val64 = readq(&bar0->mac_cfg); sp->promisc_flg = 1; DBG_PRINT(ERR_DBG, "%s: entered promiscuous mode\n", dev->name); } else if (!(dev->flags & IFF_PROMISC) && (sp->promisc_flg)) { /* Remove the NIC from promiscuous mode */ add = &bar0->mac_cfg; val64 = readq(&bar0->mac_cfg); val64 &= ~MAC_CFG_RMAC_PROM_ENABLE; writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key); writel((u32) val64, add); writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key); writel((u32) (val64 >> 32), (add + 4)); val64 = readq(&bar0->mac_cfg); sp->promisc_flg = 0; DBG_PRINT(ERR_DBG, "%s: left promiscuous mode\n", dev->name); } /* Update individual M_CAST address list */ if ((!sp->m_cast_flg) && dev->mc_count) { if (dev->mc_count > (MAX_ADDRS_SUPPORTED - MAC_MC_ADDR_START_OFFSET - 1)) { DBG_PRINT(ERR_DBG, "%s: No more Rx filters ", dev->name); DBG_PRINT(ERR_DBG, "can be added, please enable "); DBG_PRINT(ERR_DBG, "ALL_MULTI instead\n"); return; } prev_cnt = sp->mc_addr_count; sp->mc_addr_count = dev->mc_count; /* Clear out the previous list of Mc in the H/W. */ for (i = 0; i < prev_cnt; i++) { writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr), &bar0->rmac_addr_data0_mem); writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL), &bar0->rmac_addr_data1_mem); val64 = RMAC_ADDR_CMD_MEM_WE | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD | RMAC_ADDR_CMD_MEM_OFFSET (MAC_MC_ADDR_START_OFFSET + i); writeq(val64, &bar0->rmac_addr_cmd_mem); /* Wait for command completes */ if (wait_for_cmd_complete(sp)) { DBG_PRINT(ERR_DBG, "%s: Adding ", dev->name); DBG_PRINT(ERR_DBG, "Multicasts failed\n"); return; } } /* Create the new Rx filter list and update the same in H/W. */ for (i = 0, mclist = dev->mc_list; i < dev->mc_count; i++, mclist = mclist->next) { memcpy(sp->usr_addrs[i].addr, mclist->dmi_addr, ETH_ALEN); for (j = 0; j < ETH_ALEN; j++) { mac_addr |= mclist->dmi_addr[j]; mac_addr <<= 8; } mac_addr >>= 8; writeq(RMAC_ADDR_DATA0_MEM_ADDR(mac_addr), &bar0->rmac_addr_data0_mem); writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL), &bar0->rmac_addr_data1_mem); val64 = RMAC_ADDR_CMD_MEM_WE | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD | RMAC_ADDR_CMD_MEM_OFFSET (i + MAC_MC_ADDR_START_OFFSET); writeq(val64, &bar0->rmac_addr_cmd_mem); /* Wait for command completes */ if (wait_for_cmd_complete(sp)) { DBG_PRINT(ERR_DBG, "%s: Adding ", dev->name); DBG_PRINT(ERR_DBG, "Multicasts failed\n"); return; } } } } /** * s2io_set_mac_addr - Programs the Xframe mac address * @dev : pointer to the device structure. * @addr: a uchar pointer to the new mac address which is to be set. * Description : This procedure will program the Xframe to receive * frames with new Mac Address * Return value: SUCCESS on success and an appropriate (-)ve integer * as defined in errno.h file on failure. */ int s2io_set_mac_addr(struct net_device *dev, u8 * addr) { nic_t *sp = dev->priv; XENA_dev_config_t __iomem *bar0 = sp->bar0; register u64 val64, mac_addr = 0; int i; /* * Set the new MAC address as the new unicast filter and reflect this * change on the device address registered with the OS. It will be * at offset 0. */ for (i = 0; i < ETH_ALEN; i++) { mac_addr <<= 8; mac_addr |= addr[i]; } writeq(RMAC_ADDR_DATA0_MEM_ADDR(mac_addr), &bar0->rmac_addr_data0_mem); val64 = RMAC_ADDR_CMD_MEM_WE | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD | RMAC_ADDR_CMD_MEM_OFFSET(0); writeq(val64, &bar0->rmac_addr_cmd_mem); /* Wait till command completes */ if (wait_for_cmd_complete(sp)) { DBG_PRINT(ERR_DBG, "%s: set_mac_addr failed\n", dev->name); return FAILURE; } return SUCCESS; } /** * s2io_ethtool_sset - Sets different link parameters. * @sp : private member of the device structure, which is a pointer to the * s2io_nic structure. * @info: pointer to the structure with parameters given by ethtool to set * link information. * Description: * The function sets different link parameters provided by the user onto * the NIC. * Return value: * 0 on success. */ static int s2io_ethtool_sset(struct net_device *dev, struct ethtool_cmd *info) { nic_t *sp = dev->priv; if ((info->autoneg == AUTONEG_ENABLE) || (info->speed != SPEED_10000) || (info->duplex != DUPLEX_FULL)) return -EINVAL; else { s2io_close(sp->dev); s2io_open(sp->dev); } return 0; } /** * s2io_ethtol_gset - Return link specific information. * @sp : private member of the device structure, pointer to the * s2io_nic structure. * @info : pointer to the structure with parameters given by ethtool * to return link information. * Description: * Returns link specific information like speed, duplex etc.. to ethtool. * Return value : * return 0 on success. */ static int s2io_ethtool_gset(struct net_device *dev, struct ethtool_cmd *info) { nic_t *sp = dev->priv; info->supported = (SUPPORTED_10000baseT_Full | SUPPORTED_FIBRE); info->advertising = (SUPPORTED_10000baseT_Full | SUPPORTED_FIBRE); info->port = PORT_FIBRE; /* info->transceiver?? TODO */ if (netif_carrier_ok(sp->dev)) { info->speed = 10000; info->duplex = DUPLEX_FULL; } else { info->speed = -1; info->duplex = -1; } info->autoneg = AUTONEG_DISABLE; return 0; } /** * s2io_ethtool_gdrvinfo - Returns driver specific information. * @sp : private member of the device structure, which is a pointer to the * s2io_nic structure. * @info : pointer to the structure with parameters given by ethtool to * return driver information. * Description: * Returns driver specefic information like name, version etc.. to ethtool. * Return value: * void */ static void s2io_ethtool_gdrvinfo(struct net_device *dev, struct ethtool_drvinfo *info) { nic_t *sp = dev->priv; strncpy(info->driver, s2io_driver_name, sizeof(s2io_driver_name)); strncpy(info->version, s2io_driver_version, sizeof(s2io_driver_version)); strncpy(info->fw_version, "", 32); strncpy(info->bus_info, pci_name(sp->pdev), 32); info->regdump_len = XENA_REG_SPACE; info->eedump_len = XENA_EEPROM_SPACE; info->testinfo_len = S2IO_TEST_LEN; info->n_stats = S2IO_STAT_LEN; } /** * s2io_ethtool_gregs - dumps the entire space of Xfame into the buffer. * @sp: private member of the device structure, which is a pointer to the * s2io_nic structure. * @regs : pointer to the structure with parameters given by ethtool for * dumping the registers. * @reg_space: The input argumnet into which all the registers are dumped. * Description: * Dumps the entire register space of xFrame NIC into the user given * buffer area. * Return value : * void . */ static void s2io_ethtool_gregs(struct net_device *dev, struct ethtool_regs *regs, void *space) { int i; u64 reg; u8 *reg_space = (u8 *) space; nic_t *sp = dev->priv; regs->len = XENA_REG_SPACE; regs->version = sp->pdev->subsystem_device; for (i = 0; i < regs->len; i += 8) { reg = readq(sp->bar0 + i); memcpy((reg_space + i), ®, 8); } } /** * s2io_phy_id - timer function that alternates adapter LED. * @data : address of the private member of the device structure, which * is a pointer to the s2io_nic structure, provided as an u32. * Description: This is actually the timer function that alternates the * adapter LED bit of the adapter control bit to set/reset every time on * invocation. The timer is set for 1/2 a second, hence tha NIC blinks * once every second. */ static void s2io_phy_id(unsigned long data) { nic_t *sp = (nic_t *) data; XENA_dev_config_t __iomem *bar0 = sp->bar0; u64 val64 = 0; u16 subid; subid = sp->pdev->subsystem_device; if ((sp->device_type == XFRAME_II_DEVICE) || ((subid & 0xFF) >= 0x07)) { val64 = readq(&bar0->gpio_control); val64 ^= GPIO_CTRL_GPIO_0; writeq(val64, &bar0->gpio_control); } else { val64 = readq(&bar0->adapter_control); val64 ^= ADAPTER_LED_ON; writeq(val64, &bar0->adapter_control); } mod_timer(&sp->id_timer, jiffies + HZ / 2); } /** * s2io_ethtool_idnic - To physically identify the nic on the system. * @sp : private member of the device structure, which is a pointer to the * s2io_nic structure. * @id : pointer to the structure with identification parameters given by * ethtool. * Description: Used to physically identify the NIC on the system. * The Link LED will blink for a time specified by the user for * identification. * NOTE: The Link has to be Up to be able to blink the LED. Hence * identification is possible only if it's link is up. * Return value: * int , returns 0 on success */ static int s2io_ethtool_idnic(struct net_device *dev, u32 data) { u64 val64 = 0, last_gpio_ctrl_val; nic_t *sp = dev->priv; XENA_dev_config_t __iomem *bar0 = sp->bar0; u16 subid; subid = sp->pdev->subsystem_device; last_gpio_ctrl_val = readq(&bar0->gpio_control); if ((sp->device_type == XFRAME_I_DEVICE) && ((subid & 0xFF) < 0x07)) { val64 = readq(&bar0->adapter_control); if (!(val64 & ADAPTER_CNTL_EN)) { printk(KERN_ERR "Adapter Link down, cannot blink LED\n"); return -EFAULT; } } if (sp->id_timer.function == NULL) { init_timer(&sp->id_timer); sp->id_timer.function = s2io_phy_id; sp->id_timer.data = (unsigned long) sp; } mod_timer(&sp->id_timer, jiffies); if (data) msleep_interruptible(data * HZ); else msleep_interruptible(MAX_FLICKER_TIME); del_timer_sync(&sp->id_timer); if (CARDS_WITH_FAULTY_LINK_INDICATORS(sp->device_type, subid)) { writeq(last_gpio_ctrl_val, &bar0->gpio_control); last_gpio_ctrl_val = readq(&bar0->gpio_control); } return 0; } /** * s2io_ethtool_getpause_data -Pause frame frame generation and reception. * @sp : private member of the device structure, which is a pointer to the * s2io_nic structure. * @ep : pointer to the structure with pause parameters given by ethtool. * Description: * Returns the Pause frame generation and reception capability of the NIC. * Return value: * void */ static void s2io_ethtool_getpause_data(struct net_device *dev, struct ethtool_pauseparam *ep) { u64 val64; nic_t *sp = dev->priv; XENA_dev_config_t __iomem *bar0 = sp->bar0; val64 = readq(&bar0->rmac_pause_cfg); if (val64 & RMAC_PAUSE_GEN_ENABLE) ep->tx_pause = TRUE; if (val64 & RMAC_PAUSE_RX_ENABLE) ep->rx_pause = TRUE; ep->autoneg = FALSE; } /** * s2io_ethtool_setpause_data - set/reset pause frame generation. * @sp : private member of the device structure, which is a pointer to the * s2io_nic structure. * @ep : pointer to the structure with pause parameters given by ethtool. * Description: * It can be used to set or reset Pause frame generation or reception * support of the NIC. * Return value: * int, returns 0 on Success */ static int s2io_ethtool_setpause_data(struct net_device *dev, struct ethtool_pauseparam *ep) { u64 val64; nic_t *sp = dev->priv; XENA_dev_config_t __iomem *bar0 = sp->bar0; val64 = readq(&bar0->rmac_pause_cfg); if (ep->tx_pause) val64 |= RMAC_PAUSE_GEN_ENABLE; else val64 &= ~RMAC_PAUSE_GEN_ENABLE; if (ep->rx_pause) val64 |= RMAC_PAUSE_RX_ENABLE; else val64 &= ~RMAC_PAUSE_RX_ENABLE; writeq(val64, &bar0->rmac_pause_cfg); return 0; } /** * read_eeprom - reads 4 bytes of data from user given offset. * @sp : private member of the device structure, which is a pointer to the * s2io_nic structure. * @off : offset at which the data must be written * @data : Its an output parameter where the data read at the given * offset is stored. * Description: * Will read 4 bytes of data from the user given offset and return the * read data. * NOTE: Will allow to read only part of the EEPROM visible through the * I2C bus. * Return value: * -1 on failure and 0 on success. */ #define S2IO_DEV_ID 5 static int read_eeprom(nic_t * sp, int off, u32 * data) { int ret = -1; u32 exit_cnt = 0; u64 val64; XENA_dev_config_t __iomem *bar0 = sp->bar0; val64 = I2C_CONTROL_DEV_ID(S2IO_DEV_ID) | I2C_CONTROL_ADDR(off) | I2C_CONTROL_BYTE_CNT(0x3) | I2C_CONTROL_READ | I2C_CONTROL_CNTL_START; SPECIAL_REG_WRITE(val64, &bar0->i2c_control, LF); while (exit_cnt < 5) { val64 = readq(&bar0->i2c_control); if (I2C_CONTROL_CNTL_END(val64)) { *data = I2C_CONTROL_GET_DATA(val64); ret = 0; break; } msleep(50); exit_cnt++; } return ret; } /** * write_eeprom - actually writes the relevant part of the data value. * @sp : private member of the device structure, which is a pointer to the * s2io_nic structure. * @off : offset at which the data must be written * @data : The data that is to be written * @cnt : Number of bytes of the data that are actually to be written into * the Eeprom. (max of 3) * Description: * Actually writes the relevant part of the data value into the Eeprom * through the I2C bus. * Return value: * 0 on success, -1 on failure. */ static int write_eeprom(nic_t * sp, int off, u32 data, int cnt) { int exit_cnt = 0, ret = -1; u64 val64; XENA_dev_config_t __iomem *bar0 = sp->bar0; val64 = I2C_CONTROL_DEV_ID(S2IO_DEV_ID) | I2C_CONTROL_ADDR(off) | I2C_CONTROL_BYTE_CNT(cnt) | I2C_CONTROL_SET_DATA(data) | I2C_CONTROL_CNTL_START; SPECIAL_REG_WRITE(val64, &bar0->i2c_control, LF); while (exit_cnt < 5) { val64 = readq(&bar0->i2c_control); if (I2C_CONTROL_CNTL_END(val64)) { if (!(val64 & I2C_CONTROL_NACK)) ret = 0; break; } msleep(50); exit_cnt++; } return ret; } /** * s2io_ethtool_geeprom - reads the value stored in the Eeprom. * @sp : private member of the device structure, which is a pointer to the * s2io_nic structure. * @eeprom : pointer to the user level structure provided by ethtool, * containing all relevant information. * @data_buf : user defined value to be written into Eeprom. * Description: Reads the values stored in the Eeprom at given offset * for a given length. Stores these values int the input argument data * buffer 'data_buf' and returns these to the caller (ethtool.) * Return value: * int 0 on success */ static int s2io_ethtool_geeprom(struct net_device *dev, struct ethtool_eeprom *eeprom, u8 * data_buf) { u32 data, i, valid; nic_t *sp = dev->priv; eeprom->magic = sp->pdev->vendor | (sp->pdev->device << 16); if ((eeprom->offset + eeprom->len) > (XENA_EEPROM_SPACE)) eeprom->len = XENA_EEPROM_SPACE - eeprom->offset; for (i = 0; i < eeprom->len; i += 4) { if (read_eeprom(sp, (eeprom->offset + i), &data)) { DBG_PRINT(ERR_DBG, "Read of EEPROM failed\n"); return -EFAULT; } valid = INV(data); memcpy((data_buf + i), &valid, 4); } return 0; } /** * s2io_ethtool_seeprom - tries to write the user provided value in Eeprom * @sp : private member of the device structure, which is a pointer to the * s2io_nic structure. * @eeprom : pointer to the user level structure provided by ethtool, * containing all relevant information. * @data_buf ; user defined value to be written into Eeprom. * Description: * Tries to write the user provided value in the Eeprom, at the offset * given by the user. * Return value: * 0 on success, -EFAULT on failure. */ static int s2io_ethtool_seeprom(struct net_device *dev, struct ethtool_eeprom *eeprom, u8 * data_buf) { int len = eeprom->len, cnt = 0; u32 valid = 0, data; nic_t *sp = dev->priv; if (eeprom->magic != (sp->pdev->vendor | (sp->pdev->device << 16))) { DBG_PRINT(ERR_DBG, "ETHTOOL_WRITE_EEPROM Err: Magic value "); DBG_PRINT(ERR_DBG, "is wrong, Its not 0x%x\n", eeprom->magic); return -EFAULT; } while (len) { data = (u32) data_buf[cnt] & 0x000000FF; if (data) { valid = (u32) (data << 24); } else valid = data; if (write_eeprom(sp, (eeprom->offset + cnt), valid, 0)) { DBG_PRINT(ERR_DBG, "ETHTOOL_WRITE_EEPROM Err: Cannot "); DBG_PRINT(ERR_DBG, "write into the specified offset\n"); return -EFAULT; } cnt++; len--; } return 0; } /** * s2io_register_test - reads and writes into all clock domains. * @sp : private member of the device structure, which is a pointer to the * s2io_nic structure. * @data : variable that returns the result of each of the test conducted b * by the driver. * Description: * Read and write into all clock domains. The NIC has 3 clock domains, * see that registers in all the three regions are accessible. * Return value: * 0 on success. */ static int s2io_register_test(nic_t * sp, uint64_t * data) { XENA_dev_config_t __iomem *bar0 = sp->bar0; u64 val64 = 0; int fail = 0; val64 = readq(&bar0->pif_rd_swapper_fb); if (val64 != 0x123456789abcdefULL) { fail = 1; DBG_PRINT(INFO_DBG, "Read Test level 1 fails\n"); } val64 = readq(&bar0->rmac_pause_cfg); if (val64 != 0xc000ffff00000000ULL) { fail = 1; DBG_PRINT(INFO_DBG, "Read Test level 2 fails\n"); } val64 = readq(&bar0->rx_queue_cfg); if (val64 != 0x0808080808080808ULL) { fail = 1; DBG_PRINT(INFO_DBG, "Read Test level 3 fails\n"); } val64 = readq(&bar0->xgxs_efifo_cfg); if (val64 != 0x000000001923141EULL) { fail = 1; DBG_PRINT(INFO_DBG, "Read Test level 4 fails\n"); } val64 = 0x5A5A5A5A5A5A5A5AULL; writeq(val64, &bar0->xmsi_data); val64 = readq(&bar0->xmsi_data); if (val64 != 0x5A5A5A5A5A5A5A5AULL) { fail = 1; DBG_PRINT(ERR_DBG, "Write Test level 1 fails\n"); } val64 = 0xA5A5A5A5A5A5A5A5ULL; writeq(val64, &bar0->xmsi_data); val64 = readq(&bar0->xmsi_data); if (val64 != 0xA5A5A5A5A5A5A5A5ULL) { fail = 1; DBG_PRINT(ERR_DBG, "Write Test level 2 fails\n"); } *data = fail; return 0; } /** * s2io_eeprom_test - to verify that EEprom in the xena can be programmed. * @sp : private member of the device structure, which is a pointer to the * s2io_nic structure. * @data:variable that returns the result of each of the test conducted by * the driver. * Description: * Verify that EEPROM in the xena can be programmed using I2C_CONTROL * register. * Return value: * 0 on success. */ static int s2io_eeprom_test(nic_t * sp, uint64_t * data) { int fail = 0; u32 ret_data; /* Test Write Error at offset 0 */ if (!write_eeprom(sp, 0, 0, 3)) fail = 1; /* Test Write at offset 4f0 */ if (write_eeprom(sp, 0x4F0, 0x01234567, 3)) fail = 1; if (read_eeprom(sp, 0x4F0, &ret_data)) fail = 1; if (ret_data != 0x01234567) fail = 1; /* Reset the EEPROM data go FFFF */ write_eeprom(sp, 0x4F0, 0xFFFFFFFF, 3); /* Test Write Request Error at offset 0x7c */ if (!write_eeprom(sp, 0x07C, 0, 3)) fail = 1; /* Test Write Request at offset 0x7fc */ if (write_eeprom(sp, 0x7FC, 0x01234567, 3)) fail = 1; if (read_eeprom(sp, 0x7FC, &ret_data)) fail = 1; if (ret_data != 0x01234567) fail = 1; /* Reset the EEPROM data go FFFF */ write_eeprom(sp, 0x7FC, 0xFFFFFFFF, 3); /* Test Write Error at offset 0x80 */ if (!write_eeprom(sp, 0x080, 0, 3)) fail = 1; /* Test Write Error at offset 0xfc */ if (!write_eeprom(sp, 0x0FC, 0, 3)) fail = 1; /* Test Write Error at offset 0x100 */ if (!write_eeprom(sp, 0x100, 0, 3)) fail = 1; /* Test Write Error at offset 4ec */ if (!write_eeprom(sp, 0x4EC, 0, 3)) fail = 1; *data = fail; return 0; } /** * s2io_bist_test - invokes the MemBist test of the card . * @sp : private member of the device structure, which is a pointer to the * s2io_nic structure. * @data:variable that returns the result of each of the test conducted by * the driver. * Description: * This invokes the MemBist test of the card. We give around * 2 secs time for the Test to complete. If it's still not complete * within this peiod, we consider that the test failed. * Return value: * 0 on success and -1 on failure. */ static int s2io_bist_test(nic_t * sp, uint64_t * data) { u8 bist = 0; int cnt = 0, ret = -1; pci_read_config_byte(sp->pdev, PCI_BIST, &bist); bist |= PCI_BIST_START; pci_write_config_word(sp->pdev, PCI_BIST, bist); while (cnt < 20) { pci_read_config_byte(sp->pdev, PCI_BIST, &bist); if (!(bist & PCI_BIST_START)) { *data = (bist & PCI_BIST_CODE_MASK); ret = 0; break; } msleep(100); cnt++; } return ret; } /** * s2io-link_test - verifies the link state of the nic * @sp ; private member of the device structure, which is a pointer to the * s2io_nic structure. * @data: variable that returns the result of each of the test conducted by * the driver. * Description: * The function verifies the link state of the NIC and updates the input * argument 'data' appropriately. * Return value: * 0 on success. */ static int s2io_link_test(nic_t * sp, uint64_t * data) { XENA_dev_config_t __iomem *bar0 = sp->bar0; u64 val64; val64 = readq(&bar0->adapter_status); if (val64 & ADAPTER_STATUS_RMAC_LOCAL_FAULT) *data = 1; return 0; } /** * s2io_rldram_test - offline test for access to the RldRam chip on the NIC * @sp - private member of the device structure, which is a pointer to the * s2io_nic structure. * @data - variable that returns the result of each of the test * conducted by the driver. * Description: * This is one of the offline test that tests the read and write * access to the RldRam chip on the NIC. * Return value: * 0 on success. */ static int s2io_rldram_test(nic_t * sp, uint64_t * data) { XENA_dev_config_t __iomem *bar0 = sp->bar0; u64 val64; int cnt, iteration = 0, test_pass = 0; val64 = readq(&bar0->adapter_control); val64 &= ~ADAPTER_ECC_EN; writeq(val64, &bar0->adapter_control); val64 = readq(&bar0->mc_rldram_test_ctrl); val64 |= MC_RLDRAM_TEST_MODE; writeq(val64, &bar0->mc_rldram_test_ctrl); val64 = readq(&bar0->mc_rldram_mrs); val64 |= MC_RLDRAM_QUEUE_SIZE_ENABLE; SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF); val64 |= MC_RLDRAM_MRS_ENABLE; SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF); while (iteration < 2) { val64 = 0x55555555aaaa0000ULL; if (iteration == 1) { val64 ^= 0xFFFFFFFFFFFF0000ULL; } writeq(val64, &bar0->mc_rldram_test_d0); val64 = 0xaaaa5a5555550000ULL; if (iteration == 1) { val64 ^= 0xFFFFFFFFFFFF0000ULL; } writeq(val64, &bar0->mc_rldram_test_d1); val64 = 0x55aaaaaaaa5a0000ULL; if (iteration == 1) { val64 ^= 0xFFFFFFFFFFFF0000ULL; } writeq(val64, &bar0->mc_rldram_test_d2); val64 = (u64) (0x0000003fffff0000ULL); writeq(val64, &bar0->mc_rldram_test_add); val64 = MC_RLDRAM_TEST_MODE; writeq(val64, &bar0->mc_rldram_test_ctrl); val64 |= MC_RLDRAM_TEST_MODE | MC_RLDRAM_TEST_WRITE | MC_RLDRAM_TEST_GO; writeq(val64, &bar0->mc_rldram_test_ctrl); for (cnt = 0; cnt < 5; cnt++) { val64 = readq(&bar0->mc_rldram_test_ctrl); if (val64 & MC_RLDRAM_TEST_DONE) break; msleep(200); } if (cnt == 5) break; val64 = MC_RLDRAM_TEST_MODE; writeq(val64, &bar0->mc_rldram_test_ctrl); val64 |= MC_RLDRAM_TEST_MODE | MC_RLDRAM_TEST_GO; writeq(val64, &bar0->mc_rldram_test_ctrl); for (cnt = 0; cnt < 5; cnt++) { val64 = readq(&bar0->mc_rldram_test_ctrl); if (val64 & MC_RLDRAM_TEST_DONE) break; msleep(500); } if (cnt == 5) break; val64 = readq(&bar0->mc_rldram_test_ctrl); if (val64 & MC_RLDRAM_TEST_PASS) test_pass = 1; iteration++; } if (!test_pass) *data = 1; else *data = 0; return 0; } /** * s2io_ethtool_test - conducts 6 tsets to determine the health of card. * @sp : private member of the device structure, which is a pointer to the * s2io_nic structure. * @ethtest : pointer to a ethtool command specific structure that will be * returned to the user. * @data : variable that returns the result of each of the test * conducted by the driver. * Description: * This function conducts 6 tests ( 4 offline and 2 online) to determine * the health of the card. * Return value: * void */ static void s2io_ethtool_test(struct net_device *dev, struct ethtool_test *ethtest, uint64_t * data) { nic_t *sp = dev->priv; int orig_state = netif_running(sp->dev); if (ethtest->flags == ETH_TEST_FL_OFFLINE) { /* Offline Tests. */ if (orig_state) s2io_close(sp->dev); if (s2io_register_test(sp, &data[0])) ethtest->flags |= ETH_TEST_FL_FAILED; s2io_reset(sp); if (s2io_rldram_test(sp, &data[3])) ethtest->flags |= ETH_TEST_FL_FAILED; s2io_reset(sp); if (s2io_eeprom_test(sp, &data[1])) ethtest->flags |= ETH_TEST_FL_FAILED; if (s2io_bist_test(sp, &data[4])) ethtest->flags |= ETH_TEST_FL_FAILED; if (orig_state) s2io_open(sp->dev); data[2] = 0; } else { /* Online Tests. */ if (!orig_state) { DBG_PRINT(ERR_DBG, "%s: is not up, cannot run test\n", dev->name); data[0] = -1; data[1] = -1; data[2] = -1; data[3] = -1; data[4] = -1; } if (s2io_link_test(sp, &data[2])) ethtest->flags |= ETH_TEST_FL_FAILED; data[0] = 0; data[1] = 0; data[3] = 0; data[4] = 0; } } static void s2io_get_ethtool_stats(struct net_device *dev, struct ethtool_stats *estats, u64 * tmp_stats) { int i = 0; nic_t *sp = dev->priv; StatInfo_t *stat_info = sp->mac_control.stats_info; s2io_updt_stats(sp); tmp_stats[i++] = (u64)le32_to_cpu(stat_info->tmac_frms_oflow) << 32 | le32_to_cpu(stat_info->tmac_frms); tmp_stats[i++] = (u64)le32_to_cpu(stat_info->tmac_data_octets_oflow) << 32 | le32_to_cpu(stat_info->tmac_data_octets); tmp_stats[i++] = le64_to_cpu(stat_info->tmac_drop_frms); tmp_stats[i++] = (u64)le32_to_cpu(stat_info->tmac_mcst_frms_oflow) << 32 | le32_to_cpu(stat_info->tmac_mcst_frms); tmp_stats[i++] = (u64)le32_to_cpu(stat_info->tmac_bcst_frms_oflow) << 32 | le32_to_cpu(stat_info->tmac_bcst_frms); tmp_stats[i++] = le64_to_cpu(stat_info->tmac_pause_ctrl_frms); tmp_stats[i++] = (u64)le32_to_cpu(stat_info->tmac_any_err_frms_oflow) << 32 | le32_to_cpu(stat_info->tmac_any_err_frms); tmp_stats[i++] = le64_to_cpu(stat_info->tmac_vld_ip_octets); tmp_stats[i++] = (u64)le32_to_cpu(stat_info->tmac_vld_ip_oflow) << 32 | le32_to_cpu(stat_info->tmac_vld_ip); tmp_stats[i++] = (u64)le32_to_cpu(stat_info->tmac_drop_ip_oflow) << 32 | le32_to_cpu(stat_info->tmac_drop_ip); tmp_stats[i++] = (u64)le32_to_cpu(stat_info->tmac_icmp_oflow) << 32 | le32_to_cpu(stat_info->tmac_icmp); tmp_stats[i++] = (u64)le32_to_cpu(stat_info->tmac_rst_tcp_oflow) << 32 | le32_to_cpu(stat_info->tmac_rst_tcp); tmp_stats[i++] = le64_to_cpu(stat_info->tmac_tcp); tmp_stats[i++] = (u64)le32_to_cpu(stat_info->tmac_udp_oflow) << 32 | le32_to_cpu(stat_info->tmac_udp); tmp_stats[i++] = (u64)le32_to_cpu(stat_info->rmac_vld_frms_oflow) << 32 | le32_to_cpu(stat_info->rmac_vld_frms); tmp_stats[i++] = (u64)le32_to_cpu(stat_info->rmac_data_octets_oflow) << 32 | le32_to_cpu(stat_info->rmac_data_octets); tmp_stats[i++] = le64_to_cpu(stat_info->rmac_fcs_err_frms); tmp_stats[i++] = le64_to_cpu(stat_info->rmac_drop_frms); tmp_stats[i++] = (u64)le32_to_cpu(stat_info->rmac_vld_mcst_frms_oflow) << 32 | le32_to_cpu(stat_info->rmac_vld_mcst_frms); tmp_stats[i++] = (u64)le32_to_cpu(stat_info->rmac_vld_bcst_frms_oflow) << 32 | le32_to_cpu(stat_info->rmac_vld_bcst_frms); tmp_stats[i++] = le32_to_cpu(stat_info->rmac_in_rng_len_err_frms); tmp_stats[i++] = le64_to_cpu(stat_info->rmac_long_frms); tmp_stats[i++] = le64_to_cpu(stat_info->rmac_pause_ctrl_frms); tmp_stats[i++] = (u64)le32_to_cpu(stat_info->rmac_discarded_frms_oflow) << 32 | le32_to_cpu(stat_info->rmac_discarded_frms); tmp_stats[i++] = (u64)le32_to_cpu(stat_info->rmac_usized_frms_oflow) << 32 | le32_to_cpu(stat_info->rmac_usized_frms); tmp_stats[i++] = (u64)le32_to_cpu(stat_info->rmac_osized_frms_oflow) << 32 | le32_to_cpu(stat_info->rmac_osized_frms); tmp_stats[i++] = (u64)le32_to_cpu(stat_info->rmac_frag_frms_oflow) << 32 | le32_to_cpu(stat_info->rmac_frag_frms); tmp_stats[i++] = (u64)le32_to_cpu(stat_info->rmac_jabber_frms_oflow) << 32 | le32_to_cpu(stat_info->rmac_jabber_frms); tmp_stats[i++] = (u64)le32_to_cpu(stat_info->rmac_ip_oflow) << 32 | le32_to_cpu(stat_info->rmac_ip); tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ip_octets); tmp_stats[i++] = le32_to_cpu(stat_info->rmac_hdr_err_ip); tmp_stats[i++] = (u64)le32_to_cpu(stat_info->rmac_drop_ip_oflow) << 32 | le32_to_cpu(stat_info->rmac_drop_ip); tmp_stats[i++] = (u64)le32_to_cpu(stat_info->rmac_icmp_oflow) << 32 | le32_to_cpu(stat_info->rmac_icmp); tmp_stats[i++] = le64_to_cpu(stat_info->rmac_tcp); tmp_stats[i++] = (u64)le32_to_cpu(stat_info->rmac_udp_oflow) << 32 | le32_to_cpu(stat_info->rmac_udp); tmp_stats[i++] = (u64)le32_to_cpu(stat_info->rmac_err_drp_udp_oflow) << 32 | le32_to_cpu(stat_info->rmac_err_drp_udp); tmp_stats[i++] = (u64)le32_to_cpu(stat_info->rmac_pause_cnt_oflow) << 32 | le32_to_cpu(stat_info->rmac_pause_cnt); tmp_stats[i++] = (u64)le32_to_cpu(stat_info->rmac_accepted_ip_oflow) << 32 | le32_to_cpu(stat_info->rmac_accepted_ip); tmp_stats[i++] = le32_to_cpu(stat_info->rmac_err_tcp); tmp_stats[i++] = 0; tmp_stats[i++] = stat_info->sw_stat.single_ecc_errs; tmp_stats[i++] = stat_info->sw_stat.double_ecc_errs; } int s2io_ethtool_get_regs_len(struct net_device *dev) { return (XENA_REG_SPACE); } u32 s2io_ethtool_get_rx_csum(struct net_device * dev) { nic_t *sp = dev->priv; return (sp->rx_csum); } int s2io_ethtool_set_rx_csum(struct net_device *dev, u32 data) { nic_t *sp = dev->priv; if (data) sp->rx_csum = 1; else sp->rx_csum = 0; return 0; } int s2io_get_eeprom_len(struct net_device *dev) { return (XENA_EEPROM_SPACE); } int s2io_ethtool_self_test_count(struct net_device *dev) { return (S2IO_TEST_LEN); } void s2io_ethtool_get_strings(struct net_device *dev, u32 stringset, u8 * data) { switch (stringset) { case ETH_SS_TEST: memcpy(data, s2io_gstrings, S2IO_STRINGS_LEN); break; case ETH_SS_STATS: memcpy(data, ðtool_stats_keys, sizeof(ethtool_stats_keys)); } } static int s2io_ethtool_get_stats_count(struct net_device *dev) { return (S2IO_STAT_LEN); } int s2io_ethtool_op_set_tx_csum(struct net_device *dev, u32 data) { if (data) dev->features |= NETIF_F_IP_CSUM; else dev->features &= ~NETIF_F_IP_CSUM; return 0; } static struct ethtool_ops netdev_ethtool_ops = { .get_settings = s2io_ethtool_gset, .set_settings = s2io_ethtool_sset, .get_drvinfo = s2io_ethtool_gdrvinfo, .get_regs_len = s2io_ethtool_get_regs_len, .get_regs = s2io_ethtool_gregs, .get_link = ethtool_op_get_link, .get_eeprom_len = s2io_get_eeprom_len, .get_eeprom = s2io_ethtool_geeprom, .set_eeprom = s2io_ethtool_seeprom, .get_pauseparam = s2io_ethtool_getpause_data, .set_pauseparam = s2io_ethtool_setpause_data, .get_rx_csum = s2io_ethtool_get_rx_csum, .set_rx_csum = s2io_ethtool_set_rx_csum, .get_tx_csum = ethtool_op_get_tx_csum, .set_tx_csum = s2io_ethtool_op_set_tx_csum, .get_sg = ethtool_op_get_sg, .set_sg = ethtool_op_set_sg, #ifdef NETIF_F_TSO .get_tso = ethtool_op_get_tso, .set_tso = ethtool_op_set_tso, #endif .self_test_count = s2io_ethtool_self_test_count, .self_test = s2io_ethtool_test, .get_strings = s2io_ethtool_get_strings, .phys_id = s2io_ethtool_idnic, .get_stats_count = s2io_ethtool_get_stats_count, .get_ethtool_stats = s2io_get_ethtool_stats }; /** * s2io_ioctl - Entry point for the Ioctl * @dev : Device pointer. * @ifr : An IOCTL specefic structure, that can contain a pointer to * a proprietary structure used to pass information to the driver. * @cmd : This is used to distinguish between the different commands that * can be passed to the IOCTL functions. * Description: * Currently there are no special functionality supported in IOCTL, hence * function always return EOPNOTSUPPORTED */ int s2io_ioctl(struct net_device *dev, struct ifreq *rq, int cmd) { return -EOPNOTSUPP; } /** * s2io_change_mtu - entry point to change MTU size for the device. * @dev : device pointer. * @new_mtu : the new MTU size for the device. * Description: A driver entry point to change MTU size for the device. * Before changing the MTU the device must be stopped. * Return value: * 0 on success and an appropriate (-)ve integer as defined in errno.h * file on failure. */ int s2io_change_mtu(struct net_device *dev, int new_mtu) { nic_t *sp = dev->priv; if ((new_mtu < MIN_MTU) || (new_mtu > S2IO_JUMBO_SIZE)) { DBG_PRINT(ERR_DBG, "%s: MTU size is invalid.\n", dev->name); return -EPERM; } dev->mtu = new_mtu; if (netif_running(dev)) { s2io_card_down(sp); netif_stop_queue(dev); if (s2io_card_up(sp)) { DBG_PRINT(ERR_DBG, "%s: Device bring up failed\n", __FUNCTION__); } if (netif_queue_stopped(dev)) netif_wake_queue(dev); } else { /* Device is down */ XENA_dev_config_t __iomem *bar0 = sp->bar0; u64 val64 = new_mtu; writeq(vBIT(val64, 2, 14), &bar0->rmac_max_pyld_len); } return 0; } /** * s2io_tasklet - Bottom half of the ISR. * @dev_adr : address of the device structure in dma_addr_t format. * Description: * This is the tasklet or the bottom half of the ISR. This is * an extension of the ISR which is scheduled by the scheduler to be run * when the load on the CPU is low. All low priority tasks of the ISR can * be pushed into the tasklet. For now the tasklet is used only to * replenish the Rx buffers in the Rx buffer descriptors. * Return value: * void. */ static void s2io_tasklet(unsigned long dev_addr) { struct net_device *dev = (struct net_device *) dev_addr; nic_t *sp = dev->priv; int i, ret; mac_info_t *mac_control; struct config_param *config; mac_control = &sp->mac_control; config = &sp->config; if (!TASKLET_IN_USE) { for (i = 0; i < config->rx_ring_num; i++) { ret = fill_rx_buffers(sp, i); if (ret == -ENOMEM) { DBG_PRINT(ERR_DBG, "%s: Out of ", dev->name); DBG_PRINT(ERR_DBG, "memory in tasklet\n"); break; } else if (ret == -EFILL) { DBG_PRINT(ERR_DBG, "%s: Rx Ring %d is full\n", dev->name, i); break; } } clear_bit(0, (&sp->tasklet_status)); } } /** * s2io_set_link - Set the LInk status * @data: long pointer to device private structue * Description: Sets the link status for the adapter */ static void s2io_set_link(unsigned long data) { nic_t *nic = (nic_t *) data; struct net_device *dev = nic->dev; XENA_dev_config_t __iomem *bar0 = nic->bar0; register u64 val64; u16 subid; if (test_and_set_bit(0, &(nic->link_state))) { /* The card is being reset, no point doing anything */ return; } subid = nic->pdev->subsystem_device; if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) { /* * Allow a small delay for the NICs self initiated * cleanup to complete. */ msleep(100); } val64 = readq(&bar0->adapter_status); if (verify_xena_quiescence(nic, val64, nic->device_enabled_once)) { if (LINK_IS_UP(val64)) { val64 = readq(&bar0->adapter_control); val64 |= ADAPTER_CNTL_EN; writeq(val64, &bar0->adapter_control); if (CARDS_WITH_FAULTY_LINK_INDICATORS(nic->device_type, subid)) { val64 = readq(&bar0->gpio_control); val64 |= GPIO_CTRL_GPIO_0; writeq(val64, &bar0->gpio_control); val64 = readq(&bar0->gpio_control); } else { val64 |= ADAPTER_LED_ON; writeq(val64, &bar0->adapter_control); } if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) { val64 = readq(&bar0->adapter_status); if (!LINK_IS_UP(val64)) { DBG_PRINT(ERR_DBG, "%s:", dev->name); DBG_PRINT(ERR_DBG, " Link down"); DBG_PRINT(ERR_DBG, "after "); DBG_PRINT(ERR_DBG, "enabling "); DBG_PRINT(ERR_DBG, "device \n"); } } if (nic->device_enabled_once == FALSE) { nic->device_enabled_once = TRUE; } s2io_link(nic, LINK_UP); } else { if (CARDS_WITH_FAULTY_LINK_INDICATORS(nic->device_type, subid)) { val64 = readq(&bar0->gpio_control); val64 &= ~GPIO_CTRL_GPIO_0; writeq(val64, &bar0->gpio_control); val64 = readq(&bar0->gpio_control); } s2io_link(nic, LINK_DOWN); } } else { /* NIC is not Quiescent. */ DBG_PRINT(ERR_DBG, "%s: Error: ", dev->name); DBG_PRINT(ERR_DBG, "device is not Quiescent\n"); netif_stop_queue(dev); } clear_bit(0, &(nic->link_state)); } static void s2io_card_down(nic_t * sp) { int cnt = 0; XENA_dev_config_t __iomem *bar0 = sp->bar0; unsigned long flags; register u64 val64 = 0; del_timer_sync(&sp->alarm_timer); /* If s2io_set_link task is executing, wait till it completes. */ while (test_and_set_bit(0, &(sp->link_state))) { msleep(50); } atomic_set(&sp->card_state, CARD_DOWN); /* disable Tx and Rx traffic on the NIC */ stop_nic(sp); /* Kill tasklet. */ tasklet_kill(&sp->task); /* Check if the device is Quiescent and then Reset the NIC */ do { val64 = readq(&bar0->adapter_status); if (verify_xena_quiescence(sp, val64, sp->device_enabled_once)) { break; } msleep(50); cnt++; if (cnt == 10) { DBG_PRINT(ERR_DBG, "s2io_close:Device not Quiescent "); DBG_PRINT(ERR_DBG, "adaper status reads 0x%llx\n", (unsigned long long) val64); break; } } while (1); s2io_reset(sp); /* Waiting till all Interrupt handlers are complete */ cnt = 0; do { msleep(10); if (!atomic_read(&sp->isr_cnt)) break; cnt++; } while(cnt < 5); spin_lock_irqsave(&sp->tx_lock, flags); /* Free all Tx buffers */ free_tx_buffers(sp); spin_unlock_irqrestore(&sp->tx_lock, flags); /* Free all Rx buffers */ spin_lock_irqsave(&sp->rx_lock, flags); free_rx_buffers(sp); spin_unlock_irqrestore(&sp->rx_lock, flags); clear_bit(0, &(sp->link_state)); } static int s2io_card_up(nic_t * sp) { int i, ret; mac_info_t *mac_control; struct config_param *config; struct net_device *dev = (struct net_device *) sp->dev; /* Initialize the H/W I/O registers */ if (init_nic(sp) != 0) { DBG_PRINT(ERR_DBG, "%s: H/W initialization failed\n", dev->name); return -ENODEV; } /* * Initializing the Rx buffers. For now we are considering only 1 * Rx ring and initializing buffers into 30 Rx blocks */ mac_control = &sp->mac_control; config = &sp->config; for (i = 0; i < config->rx_ring_num; i++) { if ((ret = fill_rx_buffers(sp, i))) { DBG_PRINT(ERR_DBG, "%s: Out of memory in Open\n", dev->name); s2io_reset(sp); free_rx_buffers(sp); return -ENOMEM; } DBG_PRINT(INFO_DBG, "Buf in ring:%d is %d:\n", i, atomic_read(&sp->rx_bufs_left[i])); } /* Setting its receive mode */ s2io_set_multicast(dev); /* Enable tasklet for the device */ tasklet_init(&sp->task, s2io_tasklet, (unsigned long) dev); /* Enable Rx Traffic and interrupts on the NIC */ if (start_nic(sp)) { DBG_PRINT(ERR_DBG, "%s: Starting NIC failed\n", dev->name); tasklet_kill(&sp->task); s2io_reset(sp); free_irq(dev->irq, dev); free_rx_buffers(sp); return -ENODEV; } S2IO_TIMER_CONF(sp->alarm_timer, s2io_alarm_handle, sp, (HZ/2)); atomic_set(&sp->card_state, CARD_UP); return 0; } /** * s2io_restart_nic - Resets the NIC. * @data : long pointer to the device private structure * Description: * This function is scheduled to be run by the s2io_tx_watchdog * function after 0.5 secs to reset the NIC. The idea is to reduce * the run time of the watch dog routine which is run holding a * spin lock. */ static void s2io_restart_nic(unsigned long data) { struct net_device *dev = (struct net_device *) data; nic_t *sp = dev->priv; s2io_card_down(sp); if (s2io_card_up(sp)) { DBG_PRINT(ERR_DBG, "%s: Device bring up failed\n", dev->name); } netif_wake_queue(dev); DBG_PRINT(ERR_DBG, "%s: was reset by Tx watchdog timer\n", dev->name); } /** * s2io_tx_watchdog - Watchdog for transmit side. * @dev : Pointer to net device structure * Description: * This function is triggered if the Tx Queue is stopped * for a pre-defined amount of time when the Interface is still up. * If the Interface is jammed in such a situation, the hardware is * reset (by s2io_close) and restarted again (by s2io_open) to * overcome any problem that might have been caused in the hardware. * Return value: * void */ static void s2io_tx_watchdog(struct net_device *dev) { nic_t *sp = dev->priv; if (netif_carrier_ok(dev)) { schedule_work(&sp->rst_timer_task); } } /** * rx_osm_handler - To perform some OS related operations on SKB. * @sp: private member of the device structure,pointer to s2io_nic structure. * @skb : the socket buffer pointer. * @len : length of the packet * @cksum : FCS checksum of the frame. * @ring_no : the ring from which this RxD was extracted. * Description: * This function is called by the Tx interrupt serivce routine to perform * some OS related operations on the SKB before passing it to the upper * layers. It mainly checks if the checksum is OK, if so adds it to the * SKBs cksum variable, increments the Rx packet count and passes the SKB * to the upper layer. If the checksum is wrong, it increments the Rx * packet error count, frees the SKB and returns error. * Return value: * SUCCESS on success and -1 on failure. */ static int rx_osm_handler(ring_info_t *ring_data, RxD_t * rxdp) { nic_t *sp = ring_data->nic; struct net_device *dev = (struct net_device *) sp->dev; struct sk_buff *skb = (struct sk_buff *) ((unsigned long) rxdp->Host_Control); int ring_no = ring_data->ring_no; u16 l3_csum, l4_csum; #ifdef CONFIG_2BUFF_MODE int buf0_len = RXD_GET_BUFFER0_SIZE(rxdp->Control_2); int buf2_len = RXD_GET_BUFFER2_SIZE(rxdp->Control_2); int get_block = ring_data->rx_curr_get_info.block_index; int get_off = ring_data->rx_curr_get_info.offset; buffAdd_t *ba = &ring_data->ba[get_block][get_off]; unsigned char *buff; #else u16 len = (u16) ((RXD_GET_BUFFER0_SIZE(rxdp->Control_2)) >> 48);; #endif skb->dev = dev; if (rxdp->Control_1 & RXD_T_CODE) { unsigned long long err = rxdp->Control_1 & RXD_T_CODE; DBG_PRINT(ERR_DBG, "%s: Rx error Value: 0x%llx\n", dev->name, err); dev_kfree_skb(skb); sp->stats.rx_crc_errors++; atomic_dec(&sp->rx_bufs_left[ring_no]); rxdp->Host_Control = 0; return 0; } /* Updating statistics */ rxdp->Host_Control = 0; sp->rx_pkt_count++; sp->stats.rx_packets++; #ifndef CONFIG_2BUFF_MODE sp->stats.rx_bytes += len; #else sp->stats.rx_bytes += buf0_len + buf2_len; #endif #ifndef CONFIG_2BUFF_MODE skb_put(skb, len); #else buff = skb_push(skb, buf0_len); memcpy(buff, ba->ba_0, buf0_len); skb_put(skb, buf2_len); #endif if ((rxdp->Control_1 & TCP_OR_UDP_FRAME) && (sp->rx_csum)) { l3_csum = RXD_GET_L3_CKSUM(rxdp->Control_1); l4_csum = RXD_GET_L4_CKSUM(rxdp->Control_1); if ((l3_csum == L3_CKSUM_OK) && (l4_csum == L4_CKSUM_OK)) { /* * NIC verifies if the Checksum of the received * frame is Ok or not and accordingly returns * a flag in the RxD. */ skb->ip_summed = CHECKSUM_UNNECESSARY; } else { /* * Packet with erroneous checksum, let the * upper layers deal with it. */ skb->ip_summed = CHECKSUM_NONE; } } else { skb->ip_summed = CHECKSUM_NONE; } skb->protocol = eth_type_trans(skb, dev); #ifdef CONFIG_S2IO_NAPI if (sp->vlgrp && RXD_GET_VLAN_TAG(rxdp->Control_2)) { /* Queueing the vlan frame to the upper layer */ vlan_hwaccel_receive_skb(skb, sp->vlgrp, RXD_GET_VLAN_TAG(rxdp->Control_2)); } else { netif_receive_skb(skb); } #else if (sp->vlgrp && RXD_GET_VLAN_TAG(rxdp->Control_2)) { /* Queueing the vlan frame to the upper layer */ vlan_hwaccel_rx(skb, sp->vlgrp, RXD_GET_VLAN_TAG(rxdp->Control_2)); } else { netif_rx(skb); } #endif dev->last_rx = jiffies; atomic_dec(&sp->rx_bufs_left[ring_no]); return SUCCESS; } /** * s2io_link - stops/starts the Tx queue. * @sp : private member of the device structure, which is a pointer to the * s2io_nic structure. * @link : inidicates whether link is UP/DOWN. * Description: * This function stops/starts the Tx queue depending on whether the link * status of the NIC is is down or up. This is called by the Alarm * interrupt handler whenever a link change interrupt comes up. * Return value: * void. */ void s2io_link(nic_t * sp, int link) { struct net_device *dev = (struct net_device *) sp->dev; if (link != sp->last_link_state) { if (link == LINK_DOWN) { DBG_PRINT(ERR_DBG, "%s: Link down\n", dev->name); netif_carrier_off(dev); } else { DBG_PRINT(ERR_DBG, "%s: Link Up\n", dev->name); netif_carrier_on(dev); } } sp->last_link_state = link; } /** * get_xena_rev_id - to identify revision ID of xena. * @pdev : PCI Dev structure * Description: * Function to identify the Revision ID of xena. * Return value: * returns the revision ID of the device. */ int get_xena_rev_id(struct pci_dev *pdev) { u8 id = 0; int ret; ret = pci_read_config_byte(pdev, PCI_REVISION_ID, (u8 *) & id); return id; } /** * s2io_init_pci -Initialization of PCI and PCI-X configuration registers . * @sp : private member of the device structure, which is a pointer to the * s2io_nic structure. * Description: * This function initializes a few of the PCI and PCI-X configuration registers * with recommended values. * Return value: * void */ static void s2io_init_pci(nic_t * sp) { u16 pci_cmd = 0, pcix_cmd = 0; /* Enable Data Parity Error Recovery in PCI-X command register. */ pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER, &(pcix_cmd)); pci_write_config_word(sp->pdev, PCIX_COMMAND_REGISTER, (pcix_cmd | 1)); pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER, &(pcix_cmd)); /* Set the PErr Response bit in PCI command register. */ pci_read_config_word(sp->pdev, PCI_COMMAND, &pci_cmd); pci_write_config_word(sp->pdev, PCI_COMMAND, (pci_cmd | PCI_COMMAND_PARITY)); pci_read_config_word(sp->pdev, PCI_COMMAND, &pci_cmd); /* Forcibly disabling relaxed ordering capability of the card. */ pcix_cmd &= 0xfffd; pci_write_config_word(sp->pdev, PCIX_COMMAND_REGISTER, pcix_cmd); pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER, &(pcix_cmd)); } MODULE_AUTHOR("Raghavendra Koushik "); MODULE_LICENSE("GPL"); module_param(tx_fifo_num, int, 0); module_param(rx_ring_num, int, 0); module_param_array(tx_fifo_len, uint, NULL, 0); module_param_array(rx_ring_sz, uint, NULL, 0); module_param_array(rts_frm_len, uint, NULL, 0); module_param(use_continuous_tx_intrs, int, 1); module_param(rmac_pause_time, int, 0); module_param(mc_pause_threshold_q0q3, int, 0); module_param(mc_pause_threshold_q4q7, int, 0); module_param(shared_splits, int, 0); module_param(tmac_util_period, int, 0); module_param(rmac_util_period, int, 0); module_param(bimodal, bool, 0); #ifndef CONFIG_S2IO_NAPI module_param(indicate_max_pkts, int, 0); #endif /** * s2io_init_nic - Initialization of the adapter . * @pdev : structure containing the PCI related information of the device. * @pre: List of PCI devices supported by the driver listed in s2io_tbl. * Description: * The function initializes an adapter identified by the pci_dec structure. * All OS related initialization including memory and device structure and * initlaization of the device private variable is done. Also the swapper * control register is initialized to enable read and write into the I/O * registers of the device. * Return value: * returns 0 on success and negative on failure. */ static int __devinit s2io_init_nic(struct pci_dev *pdev, const struct pci_device_id *pre) { nic_t *sp; struct net_device *dev; int i, j, ret; int dma_flag = FALSE; u32 mac_up, mac_down; u64 val64 = 0, tmp64 = 0; XENA_dev_config_t __iomem *bar0 = NULL; u16 subid; mac_info_t *mac_control; struct config_param *config; int mode; #ifdef CONFIG_S2IO_NAPI DBG_PRINT(ERR_DBG, "NAPI support has been enabled\n"); #endif if ((ret = pci_enable_device(pdev))) { DBG_PRINT(ERR_DBG, "s2io_init_nic: pci_enable_device failed\n"); return ret; } if (!pci_set_dma_mask(pdev, DMA_64BIT_MASK)) { DBG_PRINT(INIT_DBG, "s2io_init_nic: Using 64bit DMA\n"); dma_flag = TRUE; if (pci_set_consistent_dma_mask (pdev, DMA_64BIT_MASK)) { DBG_PRINT(ERR_DBG, "Unable to obtain 64bit DMA for \ consistent allocations\n"); pci_disable_device(pdev); return -ENOMEM; } } else if (!pci_set_dma_mask(pdev, DMA_32BIT_MASK)) { DBG_PRINT(INIT_DBG, "s2io_init_nic: Using 32bit DMA\n"); } else { pci_disable_device(pdev); return -ENOMEM; } if (pci_request_regions(pdev, s2io_driver_name)) { DBG_PRINT(ERR_DBG, "Request Regions failed\n"), pci_disable_device(pdev); return -ENODEV; } dev = alloc_etherdev(sizeof(nic_t)); if (dev == NULL) { DBG_PRINT(ERR_DBG, "Device allocation failed\n"); pci_disable_device(pdev); pci_release_regions(pdev); return -ENODEV; } pci_set_master(pdev); pci_set_drvdata(pdev, dev); SET_MODULE_OWNER(dev); SET_NETDEV_DEV(dev, &pdev->dev); /* Private member variable initialized to s2io NIC structure */ sp = dev->priv; memset(sp, 0, sizeof(nic_t)); sp->dev = dev; sp->pdev = pdev; sp->high_dma_flag = dma_flag; sp->device_enabled_once = FALSE; if ((pdev->device == PCI_DEVICE_ID_HERC_WIN) || (pdev->device == PCI_DEVICE_ID_HERC_UNI)) sp->device_type = XFRAME_II_DEVICE; else sp->device_type = XFRAME_I_DEVICE; /* Initialize some PCI/PCI-X fields of the NIC. */ s2io_init_pci(sp); /* * Setting the device configuration parameters. * Most of these parameters can be specified by the user during * module insertion as they are module loadable parameters. If * these parameters are not not specified during load time, they * are initialized with default values. */ mac_control = &sp->mac_control; config = &sp->config; /* Tx side parameters. */ if (tx_fifo_len[0] == 0) tx_fifo_len[0] = DEFAULT_FIFO_LEN; /* Default value. */ config->tx_fifo_num = tx_fifo_num; for (i = 0; i < MAX_TX_FIFOS; i++) { config->tx_cfg[i].fifo_len = tx_fifo_len[i]; config->tx_cfg[i].fifo_priority = i; } /* mapping the QoS priority to the configured fifos */ for (i = 0; i < MAX_TX_FIFOS; i++) config->fifo_mapping[i] = fifo_map[config->tx_fifo_num][i]; config->tx_intr_type = TXD_INT_TYPE_UTILZ; for (i = 0; i < config->tx_fifo_num; i++) { config->tx_cfg[i].f_no_snoop = (NO_SNOOP_TXD | NO_SNOOP_TXD_BUFFER); if (config->tx_cfg[i].fifo_len < 65) { config->tx_intr_type = TXD_INT_TYPE_PER_LIST; break; } } config->max_txds = MAX_SKB_FRAGS; /* Rx side parameters. */ if (rx_ring_sz[0] == 0) rx_ring_sz[0] = SMALL_BLK_CNT; /* Default value. */ config->rx_ring_num = rx_ring_num; for (i = 0; i < MAX_RX_RINGS; i++) { config->rx_cfg[i].num_rxd = rx_ring_sz[i] * (MAX_RXDS_PER_BLOCK + 1); config->rx_cfg[i].ring_priority = i; } for (i = 0; i < rx_ring_num; i++) { config->rx_cfg[i].ring_org = RING_ORG_BUFF1; config->rx_cfg[i].f_no_snoop = (NO_SNOOP_RXD | NO_SNOOP_RXD_BUFFER); } /* Setting Mac Control parameters */ mac_control->rmac_pause_time = rmac_pause_time; mac_control->mc_pause_threshold_q0q3 = mc_pause_threshold_q0q3; mac_control->mc_pause_threshold_q4q7 = mc_pause_threshold_q4q7; /* Initialize Ring buffer parameters. */ for (i = 0; i < config->rx_ring_num; i++) atomic_set(&sp->rx_bufs_left[i], 0); /* Initialize the number of ISRs currently running */ atomic_set(&sp->isr_cnt, 0); /* initialize the shared memory used by the NIC and the host */ if (init_shared_mem(sp)) { DBG_PRINT(ERR_DBG, "%s: Memory allocation failed\n", __FUNCTION__); ret = -ENOMEM; goto mem_alloc_failed; } sp->bar0 = ioremap(pci_resource_start(pdev, 0), pci_resource_len(pdev, 0)); if (!sp->bar0) { DBG_PRINT(ERR_DBG, "%s: S2IO: cannot remap io mem1\n", dev->name); ret = -ENOMEM; goto bar0_remap_failed; } sp->bar1 = ioremap(pci_resource_start(pdev, 2), pci_resource_len(pdev, 2)); if (!sp->bar1) { DBG_PRINT(ERR_DBG, "%s: S2IO: cannot remap io mem2\n", dev->name); ret = -ENOMEM; goto bar1_remap_failed; } dev->irq = pdev->irq; dev->base_addr = (unsigned long) sp->bar0; /* Initializing the BAR1 address as the start of the FIFO pointer. */ for (j = 0; j < MAX_TX_FIFOS; j++) { mac_control->tx_FIFO_start[j] = (TxFIFO_element_t __iomem *) (sp->bar1 + (j * 0x00020000)); } /* Driver entry points */ dev->open = &s2io_open; dev->stop = &s2io_close; dev->hard_start_xmit = &s2io_xmit; dev->get_stats = &s2io_get_stats; dev->set_multicast_list = &s2io_set_multicast; dev->do_ioctl = &s2io_ioctl; dev->change_mtu = &s2io_change_mtu; SET_ETHTOOL_OPS(dev, &netdev_ethtool_ops); dev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX; dev->vlan_rx_register = s2io_vlan_rx_register; dev->vlan_rx_kill_vid = (void *)s2io_vlan_rx_kill_vid; /* * will use eth_mac_addr() for dev->set_mac_address * mac address will be set every time dev->open() is called */ #if defined(CONFIG_S2IO_NAPI) dev->poll = s2io_poll; dev->weight = 32; #endif dev->features |= NETIF_F_SG | NETIF_F_IP_CSUM; if (sp->high_dma_flag == TRUE) dev->features |= NETIF_F_HIGHDMA; #ifdef NETIF_F_TSO dev->features |= NETIF_F_TSO; #endif dev->tx_timeout = &s2io_tx_watchdog; dev->watchdog_timeo = WATCH_DOG_TIMEOUT; INIT_WORK(&sp->rst_timer_task, (void (*)(void *)) s2io_restart_nic, dev); INIT_WORK(&sp->set_link_task, (void (*)(void *)) s2io_set_link, sp); if (!(sp->device_type & XFRAME_II_DEVICE)) { pci_save_state(sp->pdev); } /* Setting swapper control on the NIC, for proper reset operation */ if (s2io_set_swapper(sp)) { DBG_PRINT(ERR_DBG, "%s:swapper settings are wrong\n", dev->name); ret = -EAGAIN; goto set_swap_failed; } /* Verify if the Herc works on the slot its placed into */ if (sp->device_type & XFRAME_II_DEVICE) { mode = s2io_verify_pci_mode(sp); if (mode < 0) { DBG_PRINT(ERR_DBG, "%s: ", __FUNCTION__); DBG_PRINT(ERR_DBG, " Unsupported PCI bus mode\n"); ret = -EBADSLT; goto set_swap_failed; } } /* Not needed for Herc */ if (sp->device_type & XFRAME_I_DEVICE) { /* * Fix for all "FFs" MAC address problems observed on * Alpha platforms */ fix_mac_address(sp); s2io_reset(sp); } /* * MAC address initialization. * For now only one mac address will be read and used. */ bar0 = sp->bar0; val64 = RMAC_ADDR_CMD_MEM_RD | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD | RMAC_ADDR_CMD_MEM_OFFSET(0 + MAC_MAC_ADDR_START_OFFSET); writeq(val64, &bar0->rmac_addr_cmd_mem); wait_for_cmd_complete(sp); tmp64 = readq(&bar0->rmac_addr_data0_mem); mac_down = (u32) tmp64; mac_up = (u32) (tmp64 >> 32); memset(sp->def_mac_addr[0].mac_addr, 0, sizeof(ETH_ALEN)); sp->def_mac_addr[0].mac_addr[3] = (u8) (mac_up); sp->def_mac_addr[0].mac_addr[2] = (u8) (mac_up >> 8); sp->def_mac_addr[0].mac_addr[1] = (u8) (mac_up >> 16); sp->def_mac_addr[0].mac_addr[0] = (u8) (mac_up >> 24); sp->def_mac_addr[0].mac_addr[5] = (u8) (mac_down >> 16); sp->def_mac_addr[0].mac_addr[4] = (u8) (mac_down >> 24); /* Set the factory defined MAC address initially */ dev->addr_len = ETH_ALEN; memcpy(dev->dev_addr, sp->def_mac_addr, ETH_ALEN); /* * Initialize the tasklet status and link state flags * and the card state parameter */ atomic_set(&(sp->card_state), 0); sp->tasklet_status = 0; sp->link_state = 0; /* Initialize spinlocks */ spin_lock_init(&sp->tx_lock); #ifndef CONFIG_S2IO_NAPI spin_lock_init(&sp->put_lock); #endif spin_lock_init(&sp->rx_lock); /* * SXE-002: Configure link and activity LED to init state * on driver load. */ subid = sp->pdev->subsystem_device; if ((subid & 0xFF) >= 0x07) { val64 = readq(&bar0->gpio_control); val64 |= 0x0000800000000000ULL; writeq(val64, &bar0->gpio_control); val64 = 0x0411040400000000ULL; writeq(val64, (void __iomem *) bar0 + 0x2700); val64 = readq(&bar0->gpio_control); } sp->rx_csum = 1; /* Rx chksum verify enabled by default */ if (register_netdev(dev)) { DBG_PRINT(ERR_DBG, "Device registration failed\n"); ret = -ENODEV; goto register_failed; } if (sp->device_type & XFRAME_II_DEVICE) { DBG_PRINT(ERR_DBG, "%s: Neterion Xframe II 10GbE adapter ", dev->name); DBG_PRINT(ERR_DBG, "(rev %d), Driver %s\n", get_xena_rev_id(sp->pdev), s2io_driver_version); DBG_PRINT(ERR_DBG, "MAC ADDR: %02x:%02x:%02x:%02x:%02x:%02x\n", sp->def_mac_addr[0].mac_addr[0], sp->def_mac_addr[0].mac_addr[1], sp->def_mac_addr[0].mac_addr[2], sp->def_mac_addr[0].mac_addr[3], sp->def_mac_addr[0].mac_addr[4], sp->def_mac_addr[0].mac_addr[5]); mode = s2io_print_pci_mode(sp); if (mode < 0) { DBG_PRINT(ERR_DBG, " Unsupported PCI bus mode "); ret = -EBADSLT; goto set_swap_failed; } } else { DBG_PRINT(ERR_DBG, "%s: Neterion Xframe I 10GbE adapter ", dev->name); DBG_PRINT(ERR_DBG, "(rev %d), Driver %s\n", get_xena_rev_id(sp->pdev), s2io_driver_version); DBG_PRINT(ERR_DBG, "MAC ADDR: %02x:%02x:%02x:%02x:%02x:%02x\n", sp->def_mac_addr[0].mac_addr[0], sp->def_mac_addr[0].mac_addr[1], sp->def_mac_addr[0].mac_addr[2], sp->def_mac_addr[0].mac_addr[3], sp->def_mac_addr[0].mac_addr[4], sp->def_mac_addr[0].mac_addr[5]); } /* Initialize device name */ strcpy(sp->name, dev->name); if (sp->device_type & XFRAME_II_DEVICE) strcat(sp->name, ": Neterion Xframe II 10GbE adapter"); else strcat(sp->name, ": Neterion Xframe I 10GbE adapter"); /* Initialize bimodal Interrupts */ sp->config.bimodal = bimodal; if (!(sp->device_type & XFRAME_II_DEVICE) && bimodal) { sp->config.bimodal = 0; DBG_PRINT(ERR_DBG,"%s:Bimodal intr not supported by Xframe I\n", dev->name); } /* * Make Link state as off at this point, when the Link change * interrupt comes the state will be automatically changed to * the right state. */ netif_carrier_off(dev); return 0; register_failed: set_swap_failed: iounmap(sp->bar1); bar1_remap_failed: iounmap(sp->bar0); bar0_remap_failed: mem_alloc_failed: free_shared_mem(sp); pci_disable_device(pdev); pci_release_regions(pdev); pci_set_drvdata(pdev, NULL); free_netdev(dev); return ret; } /** * s2io_rem_nic - Free the PCI device * @pdev: structure containing the PCI related information of the device. * Description: This function is called by the Pci subsystem to release a * PCI device and free up all resource held up by the device. This could * be in response to a Hot plug event or when the driver is to be removed * from memory. */ static void __devexit s2io_rem_nic(struct pci_dev *pdev) { struct net_device *dev = (struct net_device *) pci_get_drvdata(pdev); nic_t *sp; if (dev == NULL) { DBG_PRINT(ERR_DBG, "Driver Data is NULL!!\n"); return; } sp = dev->priv; unregister_netdev(dev); free_shared_mem(sp); iounmap(sp->bar0); iounmap(sp->bar1); pci_disable_device(pdev); pci_release_regions(pdev); pci_set_drvdata(pdev, NULL); free_netdev(dev); } /** * s2io_starter - Entry point for the driver * Description: This function is the entry point for the driver. It verifies * the module loadable parameters and initializes PCI configuration space. */ int __init s2io_starter(void) { return pci_module_init(&s2io_driver); } /** * s2io_closer - Cleanup routine for the driver * Description: This function is the cleanup routine for the driver. It unregist * ers the driver. */ void s2io_closer(void) { pci_unregister_driver(&s2io_driver); DBG_PRINT(INIT_DBG, "cleanup done\n"); } module_init(s2io_starter); module_exit(s2io_closer);