// SPDX-License-Identifier: GPL-2.0 /* * SuperH MSIOF SPI Controller Interface * * Copyright (c) 2009 Magnus Damm * Copyright (C) 2014 Renesas Electronics Corporation * Copyright (C) 2014-2017 Glider bvba */ #include <linux/bitmap.h> #include <linux/clk.h> #include <linux/completion.h> #include <linux/delay.h> #include <linux/dma-mapping.h> #include <linux/dmaengine.h> #include <linux/err.h> #include <linux/interrupt.h> #include <linux/io.h> #include <linux/iopoll.h> #include <linux/kernel.h> #include <linux/module.h> #include <linux/of.h> #include <linux/of_device.h> #include <linux/platform_device.h> #include <linux/pm_runtime.h> #include <linux/sh_dma.h> #include <linux/spi/sh_msiof.h> #include <linux/spi/spi.h> #include <asm/unaligned.h> struct sh_msiof_chipdata { u32 bits_per_word_mask; u16 tx_fifo_size; u16 rx_fifo_size; u16 ctlr_flags; u16 min_div_pow; }; struct sh_msiof_spi_priv { struct spi_controller *ctlr; void __iomem *mapbase; struct clk *clk; struct platform_device *pdev; struct sh_msiof_spi_info *info; struct completion done; struct completion done_txdma; unsigned int tx_fifo_size; unsigned int rx_fifo_size; unsigned int min_div_pow; void *tx_dma_page; void *rx_dma_page; dma_addr_t tx_dma_addr; dma_addr_t rx_dma_addr; bool native_cs_inited; bool native_cs_high; bool slave_aborted; }; #define MAX_SS 3 /* Maximum number of native chip selects */ #define SITMDR1 0x00 /* Transmit Mode Register 1 */ #define SITMDR2 0x04 /* Transmit Mode Register 2 */ #define SITMDR3 0x08 /* Transmit Mode Register 3 */ #define SIRMDR1 0x10 /* Receive Mode Register 1 */ #define SIRMDR2 0x14 /* Receive Mode Register 2 */ #define SIRMDR3 0x18 /* Receive Mode Register 3 */ #define SITSCR 0x20 /* Transmit Clock Select Register */ #define SIRSCR 0x22 /* Receive Clock Select Register (SH, A1, APE6) */ #define SICTR 0x28 /* Control Register */ #define SIFCTR 0x30 /* FIFO Control Register */ #define SISTR 0x40 /* Status Register */ #define SIIER 0x44 /* Interrupt Enable Register */ #define SITDR1 0x48 /* Transmit Control Data Register 1 (SH, A1) */ #define SITDR2 0x4c /* Transmit Control Data Register 2 (SH, A1) */ #define SITFDR 0x50 /* Transmit FIFO Data Register */ #define SIRDR1 0x58 /* Receive Control Data Register 1 (SH, A1) */ #define SIRDR2 0x5c /* Receive Control Data Register 2 (SH, A1) */ #define SIRFDR 0x60 /* Receive FIFO Data Register */ /* SITMDR1 and SIRMDR1 */ #define SIMDR1_TRMD BIT(31) /* Transfer Mode (1 = Master mode) */ #define SIMDR1_SYNCMD_MASK GENMASK(29, 28) /* SYNC Mode */ #define SIMDR1_SYNCMD_SPI (2 << 28) /* Level mode/SPI */ #define SIMDR1_SYNCMD_LR (3 << 28) /* L/R mode */ #define SIMDR1_SYNCAC_SHIFT 25 /* Sync Polarity (1 = Active-low) */ #define SIMDR1_BITLSB_SHIFT 24 /* MSB/LSB First (1 = LSB first) */ #define SIMDR1_DTDL_SHIFT 20 /* Data Pin Bit Delay for MSIOF_SYNC */ #define SIMDR1_SYNCDL_SHIFT 16 /* Frame Sync Signal Timing Delay */ #define SIMDR1_FLD_MASK GENMASK(3, 2) /* Frame Sync Signal Interval (0-3) */ #define SIMDR1_FLD_SHIFT 2 #define SIMDR1_XXSTP BIT(0) /* Transmission/Reception Stop on FIFO */ /* SITMDR1 */ #define SITMDR1_PCON BIT(30) /* Transfer Signal Connection */ #define SITMDR1_SYNCCH_MASK GENMASK(27, 26) /* Sync Signal Channel Select */ #define SITMDR1_SYNCCH_SHIFT 26 /* 0=MSIOF_SYNC, 1=MSIOF_SS1, 2=MSIOF_SS2 */ /* SITMDR2 and SIRMDR2 */ #define SIMDR2_BITLEN1(i) (((i) - 1) << 24) /* Data Size (8-32 bits) */ #define SIMDR2_WDLEN1(i) (((i) - 1) << 16) /* Word Count (1-64/256 (SH, A1))) */ #define SIMDR2_GRPMASK1 BIT(0) /* Group Output Mask 1 (SH, A1) */ /* SITSCR and SIRSCR */ #define SISCR_BRPS_MASK GENMASK(12, 8) /* Prescaler Setting (1-32) */ #define SISCR_BRPS(i) (((i) - 1) << 8) #define SISCR_BRDV_MASK GENMASK(2, 0) /* Baud Rate Generator's Division Ratio */ #define SISCR_BRDV_DIV_2 0 #define SISCR_BRDV_DIV_4 1 #define SISCR_BRDV_DIV_8 2 #define SISCR_BRDV_DIV_16 3 #define SISCR_BRDV_DIV_32 4 #define SISCR_BRDV_DIV_1 7 /* SICTR */ #define SICTR_TSCKIZ_MASK GENMASK(31, 30) /* Transmit Clock I/O Polarity Select */ #define SICTR_TSCKIZ_SCK BIT(31) /* Disable SCK when TX disabled */ #define SICTR_TSCKIZ_POL_SHIFT 30 /* Transmit Clock Polarity */ #define SICTR_RSCKIZ_MASK GENMASK(29, 28) /* Receive Clock Polarity Select */ #define SICTR_RSCKIZ_SCK BIT(29) /* Must match CTR_TSCKIZ_SCK */ #define SICTR_RSCKIZ_POL_SHIFT 28 /* Receive Clock Polarity */ #define SICTR_TEDG_SHIFT 27 /* Transmit Timing (1 = falling edge) */ #define SICTR_REDG_SHIFT 26 /* Receive Timing (1 = falling edge) */ #define SICTR_TXDIZ_MASK GENMASK(23, 22) /* Pin Output When TX is Disabled */ #define SICTR_TXDIZ_LOW (0 << 22) /* 0 */ #define SICTR_TXDIZ_HIGH (1 << 22) /* 1 */ #define SICTR_TXDIZ_HIZ (2 << 22) /* High-impedance */ #define SICTR_TSCKE BIT(15) /* Transmit Serial Clock Output Enable */ #define SICTR_TFSE BIT(14) /* Transmit Frame Sync Signal Output Enable */ #define SICTR_TXE BIT(9) /* Transmit Enable */ #define SICTR_RXE BIT(8) /* Receive Enable */ #define SICTR_TXRST BIT(1) /* Transmit Reset */ #define SICTR_RXRST BIT(0) /* Receive Reset */ /* SIFCTR */ #define SIFCTR_TFWM_MASK GENMASK(31, 29) /* Transmit FIFO Watermark */ #define SIFCTR_TFWM_64 (0 << 29) /* Transfer Request when 64 empty stages */ #define SIFCTR_TFWM_32 (1 << 29) /* Transfer Request when 32 empty stages */ #define SIFCTR_TFWM_24 (2 << 29) /* Transfer Request when 24 empty stages */ #define SIFCTR_TFWM_16 (3 << 29) /* Transfer Request when 16 empty stages */ #define SIFCTR_TFWM_12 (4 << 29) /* Transfer Request when 12 empty stages */ #define SIFCTR_TFWM_8 (5 << 29) /* Transfer Request when 8 empty stages */ #define SIFCTR_TFWM_4 (6 << 29) /* Transfer Request when 4 empty stages */ #define SIFCTR_TFWM_1 (7 << 29) /* Transfer Request when 1 empty stage */ #define SIFCTR_TFUA_MASK GENMASK(26, 20) /* Transmit FIFO Usable Area */ #define SIFCTR_TFUA_SHIFT 20 #define SIFCTR_TFUA(i) ((i) << SIFCTR_TFUA_SHIFT) #define SIFCTR_RFWM_MASK GENMASK(15, 13) /* Receive FIFO Watermark */ #define SIFCTR_RFWM_1 (0 << 13) /* Transfer Request when 1 valid stages */ #define SIFCTR_RFWM_4 (1 << 13) /* Transfer Request when 4 valid stages */ #define SIFCTR_RFWM_8 (2 << 13) /* Transfer Request when 8 valid stages */ #define SIFCTR_RFWM_16 (3 << 13) /* Transfer Request when 16 valid stages */ #define SIFCTR_RFWM_32 (4 << 13) /* Transfer Request when 32 valid stages */ #define SIFCTR_RFWM_64 (5 << 13) /* Transfer Request when 64 valid stages */ #define SIFCTR_RFWM_128 (6 << 13) /* Transfer Request when 128 valid stages */ #define SIFCTR_RFWM_256 (7 << 13) /* Transfer Request when 256 valid stages */ #define SIFCTR_RFUA_MASK GENMASK(12, 4) /* Receive FIFO Usable Area (0x40 = full) */ #define SIFCTR_RFUA_SHIFT 4 #define SIFCTR_RFUA(i) ((i) << SIFCTR_RFUA_SHIFT) /* SISTR */ #define SISTR_TFEMP BIT(29) /* Transmit FIFO Empty */ #define SISTR_TDREQ BIT(28) /* Transmit Data Transfer Request */ #define SISTR_TEOF BIT(23) /* Frame Transmission End */ #define SISTR_TFSERR BIT(21) /* Transmit Frame Synchronization Error */ #define SISTR_TFOVF BIT(20) /* Transmit FIFO Overflow */ #define SISTR_TFUDF BIT(19) /* Transmit FIFO Underflow */ #define SISTR_RFFUL BIT(13) /* Receive FIFO Full */ #define SISTR_RDREQ BIT(12) /* Receive Data Transfer Request */ #define SISTR_REOF BIT(7) /* Frame Reception End */ #define SISTR_RFSERR BIT(5) /* Receive Frame Synchronization Error */ #define SISTR_RFUDF BIT(4) /* Receive FIFO Underflow */ #define SISTR_RFOVF BIT(3) /* Receive FIFO Overflow */ /* SIIER */ #define SIIER_TDMAE BIT(31) /* Transmit Data DMA Transfer Req. Enable */ #define SIIER_TFEMPE BIT(29) /* Transmit FIFO Empty Enable */ #define SIIER_TDREQE BIT(28) /* Transmit Data Transfer Request Enable */ #define SIIER_TEOFE BIT(23) /* Frame Transmission End Enable */ #define SIIER_TFSERRE BIT(21) /* Transmit Frame Sync Error Enable */ #define SIIER_TFOVFE BIT(20) /* Transmit FIFO Overflow Enable */ #define SIIER_TFUDFE BIT(19) /* Transmit FIFO Underflow Enable */ #define SIIER_RDMAE BIT(15) /* Receive Data DMA Transfer Req. Enable */ #define SIIER_RFFULE BIT(13) /* Receive FIFO Full Enable */ #define SIIER_RDREQE BIT(12) /* Receive Data Transfer Request Enable */ #define SIIER_REOFE BIT(7) /* Frame Reception End Enable */ #define SIIER_RFSERRE BIT(5) /* Receive Frame Sync Error Enable */ #define SIIER_RFUDFE BIT(4) /* Receive FIFO Underflow Enable */ #define SIIER_RFOVFE BIT(3) /* Receive FIFO Overflow Enable */ static u32 sh_msiof_read(struct sh_msiof_spi_priv *p, int reg_offs) { switch (reg_offs) { case SITSCR: case SIRSCR: return ioread16(p->mapbase + reg_offs); default: return ioread32(p->mapbase + reg_offs); } } static void sh_msiof_write(struct sh_msiof_spi_priv *p, int reg_offs, u32 value) { switch (reg_offs) { case SITSCR: case SIRSCR: iowrite16(value, p->mapbase + reg_offs); break; default: iowrite32(value, p->mapbase + reg_offs); break; } } static int sh_msiof_modify_ctr_wait(struct sh_msiof_spi_priv *p, u32 clr, u32 set) { u32 mask = clr | set; u32 data; data = sh_msiof_read(p, SICTR); data &= ~clr; data |= set; sh_msiof_write(p, SICTR, data); return readl_poll_timeout_atomic(p->mapbase + SICTR, data, (data & mask) == set, 1, 100); } static irqreturn_t sh_msiof_spi_irq(int irq, void *data) { struct sh_msiof_spi_priv *p = data; /* just disable the interrupt and wake up */ sh_msiof_write(p, SIIER, 0); complete(&p->done); return IRQ_HANDLED; } static void sh_msiof_spi_reset_regs(struct sh_msiof_spi_priv *p) { u32 mask = SICTR_TXRST | SICTR_RXRST; u32 data; data = sh_msiof_read(p, SICTR); data |= mask; sh_msiof_write(p, SICTR, data); readl_poll_timeout_atomic(p->mapbase + SICTR, data, !(data & mask), 1, 100); } static const u32 sh_msiof_spi_div_array[] = { SISCR_BRDV_DIV_1, SISCR_BRDV_DIV_2, SISCR_BRDV_DIV_4, SISCR_BRDV_DIV_8, SISCR_BRDV_DIV_16, SISCR_BRDV_DIV_32, }; static void sh_msiof_spi_set_clk_regs(struct sh_msiof_spi_priv *p, struct spi_transfer *t) { unsigned long parent_rate = clk_get_rate(p->clk); unsigned int div_pow = p->min_div_pow; u32 spi_hz = t->speed_hz; unsigned long div; u32 brps, scr; if (!spi_hz || !parent_rate) { WARN(1, "Invalid clock rate parameters %lu and %u\n", parent_rate, spi_hz); return; } div = DIV_ROUND_UP(parent_rate, spi_hz); if (div <= 1024) { /* SISCR_BRDV_DIV_1 is valid only if BRPS is x 1/1 or x 1/2 */ if (!div_pow && div <= 32 && div > 2) div_pow = 1; if (div_pow) brps = (div + 1) >> div_pow; else brps = div; for (; brps > 32; div_pow++) brps = (brps + 1) >> 1; } else { /* Set transfer rate composite divisor to 2^5 * 32 = 1024 */ dev_err(&p->pdev->dev, "Requested SPI transfer rate %d is too low\n", spi_hz); div_pow = 5; brps = 32; } t->effective_speed_hz = parent_rate / (brps << div_pow); scr = sh_msiof_spi_div_array[div_pow] | SISCR_BRPS(brps); sh_msiof_write(p, SITSCR, scr); if (!(p->ctlr->flags & SPI_CONTROLLER_MUST_TX)) sh_msiof_write(p, SIRSCR, scr); } static u32 sh_msiof_get_delay_bit(u32 dtdl_or_syncdl) { /* * DTDL/SYNCDL bit : p->info->dtdl or p->info->syncdl * b'000 : 0 * b'001 : 100 * b'010 : 200 * b'011 (SYNCDL only) : 300 * b'101 : 50 * b'110 : 150 */ if (dtdl_or_syncdl % 100) return dtdl_or_syncdl / 100 + 5; else return dtdl_or_syncdl / 100; } static u32 sh_msiof_spi_get_dtdl_and_syncdl(struct sh_msiof_spi_priv *p) { u32 val; if (!p->info) return 0; /* check if DTDL and SYNCDL is allowed value */ if (p->info->dtdl > 200 || p->info->syncdl > 300) { dev_warn(&p->pdev->dev, "DTDL or SYNCDL is too large\n"); return 0; } /* check if the sum of DTDL and SYNCDL becomes an integer value */ if ((p->info->dtdl + p->info->syncdl) % 100) { dev_warn(&p->pdev->dev, "the sum of DTDL/SYNCDL is not good\n"); return 0; } val = sh_msiof_get_delay_bit(p->info->dtdl) << SIMDR1_DTDL_SHIFT; val |= sh_msiof_get_delay_bit(p->info->syncdl) << SIMDR1_SYNCDL_SHIFT; return val; } static void sh_msiof_spi_set_pin_regs(struct sh_msiof_spi_priv *p, u32 ss, u32 cpol, u32 cpha, u32 tx_hi_z, u32 lsb_first, u32 cs_high) { u32 tmp; int edge; /* * CPOL CPHA TSCKIZ RSCKIZ TEDG REDG * 0 0 10 10 1 1 * 0 1 10 10 0 0 * 1 0 11 11 0 0 * 1 1 11 11 1 1 */ tmp = SIMDR1_SYNCMD_SPI | 1 << SIMDR1_FLD_SHIFT | SIMDR1_XXSTP; tmp |= !cs_high << SIMDR1_SYNCAC_SHIFT; tmp |= lsb_first << SIMDR1_BITLSB_SHIFT; tmp |= sh_msiof_spi_get_dtdl_and_syncdl(p); if (spi_controller_is_slave(p->ctlr)) { sh_msiof_write(p, SITMDR1, tmp | SITMDR1_PCON); } else { sh_msiof_write(p, SITMDR1, tmp | SIMDR1_TRMD | SITMDR1_PCON | (ss < MAX_SS ? ss : 0) << SITMDR1_SYNCCH_SHIFT); } if (p->ctlr->flags & SPI_CONTROLLER_MUST_TX) { /* These bits are reserved if RX needs TX */ tmp &= ~0x0000ffff; } sh_msiof_write(p, SIRMDR1, tmp); tmp = 0; tmp |= SICTR_TSCKIZ_SCK | cpol << SICTR_TSCKIZ_POL_SHIFT; tmp |= SICTR_RSCKIZ_SCK | cpol << SICTR_RSCKIZ_POL_SHIFT; edge = cpol ^ !cpha; tmp |= edge << SICTR_TEDG_SHIFT; tmp |= edge << SICTR_REDG_SHIFT; tmp |= tx_hi_z ? SICTR_TXDIZ_HIZ : SICTR_TXDIZ_LOW; sh_msiof_write(p, SICTR, tmp); } static void sh_msiof_spi_set_mode_regs(struct sh_msiof_spi_priv *p, const void *tx_buf, void *rx_buf, u32 bits, u32 words) { u32 dr2 = SIMDR2_BITLEN1(bits) | SIMDR2_WDLEN1(words); if (tx_buf || (p->ctlr->flags & SPI_CONTROLLER_MUST_TX)) sh_msiof_write(p, SITMDR2, dr2); else sh_msiof_write(p, SITMDR2, dr2 | SIMDR2_GRPMASK1); if (rx_buf) sh_msiof_write(p, SIRMDR2, dr2); } static void sh_msiof_reset_str(struct sh_msiof_spi_priv *p) { sh_msiof_write(p, SISTR, sh_msiof_read(p, SISTR) & ~(SISTR_TDREQ | SISTR_RDREQ)); } static void sh_msiof_spi_write_fifo_8(struct sh_msiof_spi_priv *p, const void *tx_buf, int words, int fs) { const u8 *buf_8 = tx_buf; int k; for (k = 0; k < words; k++) sh_msiof_write(p, SITFDR, buf_8[k] << fs); } static void sh_msiof_spi_write_fifo_16(struct sh_msiof_spi_priv *p, const void *tx_buf, int words, int fs) { const u16 *buf_16 = tx_buf; int k; for (k = 0; k < words; k++) sh_msiof_write(p, SITFDR, buf_16[k] << fs); } static void sh_msiof_spi_write_fifo_16u(struct sh_msiof_spi_priv *p, const void *tx_buf, int words, int fs) { const u16 *buf_16 = tx_buf; int k; for (k = 0; k < words; k++) sh_msiof_write(p, SITFDR, get_unaligned(&buf_16[k]) << fs); } static void sh_msiof_spi_write_fifo_32(struct sh_msiof_spi_priv *p, const void *tx_buf, int words, int fs) { const u32 *buf_32 = tx_buf; int k; for (k = 0; k < words; k++) sh_msiof_write(p, SITFDR, buf_32[k] << fs); } static void sh_msiof_spi_write_fifo_32u(struct sh_msiof_spi_priv *p, const void *tx_buf, int words, int fs) { const u32 *buf_32 = tx_buf; int k; for (k = 0; k < words; k++) sh_msiof_write(p, SITFDR, get_unaligned(&buf_32[k]) << fs); } static void sh_msiof_spi_write_fifo_s32(struct sh_msiof_spi_priv *p, const void *tx_buf, int words, int fs) { const u32 *buf_32 = tx_buf; int k; for (k = 0; k < words; k++) sh_msiof_write(p, SITFDR, swab32(buf_32[k] << fs)); } static void sh_msiof_spi_write_fifo_s32u(struct sh_msiof_spi_priv *p, const void *tx_buf, int words, int fs) { const u32 *buf_32 = tx_buf; int k; for (k = 0; k < words; k++) sh_msiof_write(p, SITFDR, swab32(get_unaligned(&buf_32[k]) << fs)); } static void sh_msiof_spi_read_fifo_8(struct sh_msiof_spi_priv *p, void *rx_buf, int words, int fs) { u8 *buf_8 = rx_buf; int k; for (k = 0; k < words; k++) buf_8[k] = sh_msiof_read(p, SIRFDR) >> fs; } static void sh_msiof_spi_read_fifo_16(struct sh_msiof_spi_priv *p, void *rx_buf, int words, int fs) { u16 *buf_16 = rx_buf; int k; for (k = 0; k < words; k++) buf_16[k] = sh_msiof_read(p, SIRFDR) >> fs; } static void sh_msiof_spi_read_fifo_16u(struct sh_msiof_spi_priv *p, void *rx_buf, int words, int fs) { u16 *buf_16 = rx_buf; int k; for (k = 0; k < words; k++) put_unaligned(sh_msiof_read(p, SIRFDR) >> fs, &buf_16[k]); } static void sh_msiof_spi_read_fifo_32(struct sh_msiof_spi_priv *p, void *rx_buf, int words, int fs) { u32 *buf_32 = rx_buf; int k; for (k = 0; k < words; k++) buf_32[k] = sh_msiof_read(p, SIRFDR) >> fs; } static void sh_msiof_spi_read_fifo_32u(struct sh_msiof_spi_priv *p, void *rx_buf, int words, int fs) { u32 *buf_32 = rx_buf; int k; for (k = 0; k < words; k++) put_unaligned(sh_msiof_read(p, SIRFDR) >> fs, &buf_32[k]); } static void sh_msiof_spi_read_fifo_s32(struct sh_msiof_spi_priv *p, void *rx_buf, int words, int fs) { u32 *buf_32 = rx_buf; int k; for (k = 0; k < words; k++) buf_32[k] = swab32(sh_msiof_read(p, SIRFDR) >> fs); } static void sh_msiof_spi_read_fifo_s32u(struct sh_msiof_spi_priv *p, void *rx_buf, int words, int fs) { u32 *buf_32 = rx_buf; int k; for (k = 0; k < words; k++) put_unaligned(swab32(sh_msiof_read(p, SIRFDR) >> fs), &buf_32[k]); } static int sh_msiof_spi_setup(struct spi_device *spi) { struct sh_msiof_spi_priv *p = spi_controller_get_devdata(spi->controller); u32 clr, set, tmp; if (spi->cs_gpiod || spi_controller_is_slave(p->ctlr)) return 0; if (p->native_cs_inited && (p->native_cs_high == !!(spi->mode & SPI_CS_HIGH))) return 0; /* Configure native chip select mode/polarity early */ clr = SIMDR1_SYNCMD_MASK; set = SIMDR1_SYNCMD_SPI; if (spi->mode & SPI_CS_HIGH) clr |= BIT(SIMDR1_SYNCAC_SHIFT); else set |= BIT(SIMDR1_SYNCAC_SHIFT); pm_runtime_get_sync(&p->pdev->dev); tmp = sh_msiof_read(p, SITMDR1) & ~clr; sh_msiof_write(p, SITMDR1, tmp | set | SIMDR1_TRMD | SITMDR1_PCON); tmp = sh_msiof_read(p, SIRMDR1) & ~clr; sh_msiof_write(p, SIRMDR1, tmp | set); pm_runtime_put(&p->pdev->dev); p->native_cs_high = spi->mode & SPI_CS_HIGH; p->native_cs_inited = true; return 0; } static int sh_msiof_prepare_message(struct spi_controller *ctlr, struct spi_message *msg) { struct sh_msiof_spi_priv *p = spi_controller_get_devdata(ctlr); const struct spi_device *spi = msg->spi; u32 ss, cs_high; /* Configure pins before asserting CS */ if (spi->cs_gpiod) { ss = ctlr->unused_native_cs; cs_high = p->native_cs_high; } else { ss = spi->chip_select; cs_high = !!(spi->mode & SPI_CS_HIGH); } sh_msiof_spi_set_pin_regs(p, ss, !!(spi->mode & SPI_CPOL), !!(spi->mode & SPI_CPHA), !!(spi->mode & SPI_3WIRE), !!(spi->mode & SPI_LSB_FIRST), cs_high); return 0; } static int sh_msiof_spi_start(struct sh_msiof_spi_priv *p, void *rx_buf) { bool slave = spi_controller_is_slave(p->ctlr); int ret = 0; /* setup clock and rx/tx signals */ if (!slave) ret = sh_msiof_modify_ctr_wait(p, 0, SICTR_TSCKE); if (rx_buf && !ret) ret = sh_msiof_modify_ctr_wait(p, 0, SICTR_RXE); if (!ret) ret = sh_msiof_modify_ctr_wait(p, 0, SICTR_TXE); /* start by setting frame bit */ if (!ret && !slave) ret = sh_msiof_modify_ctr_wait(p, 0, SICTR_TFSE); return ret; } static int sh_msiof_spi_stop(struct sh_msiof_spi_priv *p, void *rx_buf) { bool slave = spi_controller_is_slave(p->ctlr); int ret = 0; /* shut down frame, rx/tx and clock signals */ if (!slave) ret = sh_msiof_modify_ctr_wait(p, SICTR_TFSE, 0); if (!ret) ret = sh_msiof_modify_ctr_wait(p, SICTR_TXE, 0); if (rx_buf && !ret) ret = sh_msiof_modify_ctr_wait(p, SICTR_RXE, 0); if (!ret && !slave) ret = sh_msiof_modify_ctr_wait(p, SICTR_TSCKE, 0); return ret; } static int sh_msiof_slave_abort(struct spi_controller *ctlr) { struct sh_msiof_spi_priv *p = spi_controller_get_devdata(ctlr); p->slave_aborted = true; complete(&p->done); complete(&p->done_txdma); return 0; } static int sh_msiof_wait_for_completion(struct sh_msiof_spi_priv *p, struct completion *x) { if (spi_controller_is_slave(p->ctlr)) { if (wait_for_completion_interruptible(x) || p->slave_aborted) { dev_dbg(&p->pdev->dev, "interrupted\n"); return -EINTR; } } else { if (!wait_for_completion_timeout(x, HZ)) { dev_err(&p->pdev->dev, "timeout\n"); return -ETIMEDOUT; } } return 0; } static int sh_msiof_spi_txrx_once(struct sh_msiof_spi_priv *p, void (*tx_fifo)(struct sh_msiof_spi_priv *, const void *, int, int), void (*rx_fifo)(struct sh_msiof_spi_priv *, void *, int, int), const void *tx_buf, void *rx_buf, int words, int bits) { int fifo_shift; int ret; /* limit maximum word transfer to rx/tx fifo size */ if (tx_buf) words = min_t(int, words, p->tx_fifo_size); if (rx_buf) words = min_t(int, words, p->rx_fifo_size); /* the fifo contents need shifting */ fifo_shift = 32 - bits; /* default FIFO watermarks for PIO */ sh_msiof_write(p, SIFCTR, 0); /* setup msiof transfer mode registers */ sh_msiof_spi_set_mode_regs(p, tx_buf, rx_buf, bits, words); sh_msiof_write(p, SIIER, SIIER_TEOFE | SIIER_REOFE); /* write tx fifo */ if (tx_buf) tx_fifo(p, tx_buf, words, fifo_shift); reinit_completion(&p->done); p->slave_aborted = false; ret = sh_msiof_spi_start(p, rx_buf); if (ret) { dev_err(&p->pdev->dev, "failed to start hardware\n"); goto stop_ier; } /* wait for tx fifo to be emptied / rx fifo to be filled */ ret = sh_msiof_wait_for_completion(p, &p->done); if (ret) goto stop_reset; /* read rx fifo */ if (rx_buf) rx_fifo(p, rx_buf, words, fifo_shift); /* clear status bits */ sh_msiof_reset_str(p); ret = sh_msiof_spi_stop(p, rx_buf); if (ret) { dev_err(&p->pdev->dev, "failed to shut down hardware\n"); return ret; } return words; stop_reset: sh_msiof_reset_str(p); sh_msiof_spi_stop(p, rx_buf); stop_ier: sh_msiof_write(p, SIIER, 0); return ret; } static void sh_msiof_dma_complete(void *arg) { complete(arg); } static int sh_msiof_dma_once(struct sh_msiof_spi_priv *p, const void *tx, void *rx, unsigned int len) { u32 ier_bits = 0; struct dma_async_tx_descriptor *desc_tx = NULL, *desc_rx = NULL; dma_cookie_t cookie; int ret; /* First prepare and submit the DMA request(s), as this may fail */ if (rx) { ier_bits |= SIIER_RDREQE | SIIER_RDMAE; desc_rx = dmaengine_prep_slave_single(p->ctlr->dma_rx, p->rx_dma_addr, len, DMA_DEV_TO_MEM, DMA_PREP_INTERRUPT | DMA_CTRL_ACK); if (!desc_rx) return -EAGAIN; desc_rx->callback = sh_msiof_dma_complete; desc_rx->callback_param = &p->done; cookie = dmaengine_submit(desc_rx); if (dma_submit_error(cookie)) return cookie; } if (tx) { ier_bits |= SIIER_TDREQE | SIIER_TDMAE; dma_sync_single_for_device(p->ctlr->dma_tx->device->dev, p->tx_dma_addr, len, DMA_TO_DEVICE); desc_tx = dmaengine_prep_slave_single(p->ctlr->dma_tx, p->tx_dma_addr, len, DMA_MEM_TO_DEV, DMA_PREP_INTERRUPT | DMA_CTRL_ACK); if (!desc_tx) { ret = -EAGAIN; goto no_dma_tx; } desc_tx->callback = sh_msiof_dma_complete; desc_tx->callback_param = &p->done_txdma; cookie = dmaengine_submit(desc_tx); if (dma_submit_error(cookie)) { ret = cookie; goto no_dma_tx; } } /* 1 stage FIFO watermarks for DMA */ sh_msiof_write(p, SIFCTR, SIFCTR_TFWM_1 | SIFCTR_RFWM_1); /* setup msiof transfer mode registers (32-bit words) */ sh_msiof_spi_set_mode_regs(p, tx, rx, 32, len / 4); sh_msiof_write(p, SIIER, ier_bits); reinit_completion(&p->done); if (tx) reinit_completion(&p->done_txdma); p->slave_aborted = false; /* Now start DMA */ if (rx) dma_async_issue_pending(p->ctlr->dma_rx); if (tx) dma_async_issue_pending(p->ctlr->dma_tx); ret = sh_msiof_spi_start(p, rx); if (ret) { dev_err(&p->pdev->dev, "failed to start hardware\n"); goto stop_dma; } if (tx) { /* wait for tx DMA completion */ ret = sh_msiof_wait_for_completion(p, &p->done_txdma); if (ret) goto stop_reset; } if (rx) { /* wait for rx DMA completion */ ret = sh_msiof_wait_for_completion(p, &p->done); if (ret) goto stop_reset; sh_msiof_write(p, SIIER, 0); } else { /* wait for tx fifo to be emptied */ sh_msiof_write(p, SIIER, SIIER_TEOFE); ret = sh_msiof_wait_for_completion(p, &p->done); if (ret) goto stop_reset; } /* clear status bits */ sh_msiof_reset_str(p); ret = sh_msiof_spi_stop(p, rx); if (ret) { dev_err(&p->pdev->dev, "failed to shut down hardware\n"); return ret; } if (rx) dma_sync_single_for_cpu(p->ctlr->dma_rx->device->dev, p->rx_dma_addr, len, DMA_FROM_DEVICE); return 0; stop_reset: sh_msiof_reset_str(p); sh_msiof_spi_stop(p, rx); stop_dma: if (tx) dmaengine_terminate_sync(p->ctlr->dma_tx); no_dma_tx: if (rx) dmaengine_terminate_sync(p->ctlr->dma_rx); sh_msiof_write(p, SIIER, 0); return ret; } static void copy_bswap32(u32 *dst, const u32 *src, unsigned int words) { /* src or dst can be unaligned, but not both */ if ((unsigned long)src & 3) { while (words--) { *dst++ = swab32(get_unaligned(src)); src++; } } else if ((unsigned long)dst & 3) { while (words--) { put_unaligned(swab32(*src++), dst); dst++; } } else { while (words--) *dst++ = swab32(*src++); } } static void copy_wswap32(u32 *dst, const u32 *src, unsigned int words) { /* src or dst can be unaligned, but not both */ if ((unsigned long)src & 3) { while (words--) { *dst++ = swahw32(get_unaligned(src)); src++; } } else if ((unsigned long)dst & 3) { while (words--) { put_unaligned(swahw32(*src++), dst); dst++; } } else { while (words--) *dst++ = swahw32(*src++); } } static void copy_plain32(u32 *dst, const u32 *src, unsigned int words) { memcpy(dst, src, words * 4); } static int sh_msiof_transfer_one(struct spi_controller *ctlr, struct spi_device *spi, struct spi_transfer *t) { struct sh_msiof_spi_priv *p = spi_controller_get_devdata(ctlr); void (*copy32)(u32 *, const u32 *, unsigned int); void (*tx_fifo)(struct sh_msiof_spi_priv *, const void *, int, int); void (*rx_fifo)(struct sh_msiof_spi_priv *, void *, int, int); const void *tx_buf = t->tx_buf; void *rx_buf = t->rx_buf; unsigned int len = t->len; unsigned int bits = t->bits_per_word; unsigned int bytes_per_word; unsigned int words; int n; bool swab; int ret; /* reset registers */ sh_msiof_spi_reset_regs(p); /* setup clocks (clock already enabled in chipselect()) */ if (!spi_controller_is_slave(p->ctlr)) sh_msiof_spi_set_clk_regs(p, t); while (ctlr->dma_tx && len > 15) { /* * DMA supports 32-bit words only, hence pack 8-bit and 16-bit * words, with byte resp. word swapping. */ unsigned int l = 0; if (tx_buf) l = min(round_down(len, 4), p->tx_fifo_size * 4); if (rx_buf) l = min(round_down(len, 4), p->rx_fifo_size * 4); if (bits <= 8) { copy32 = copy_bswap32; } else if (bits <= 16) { copy32 = copy_wswap32; } else { copy32 = copy_plain32; } if (tx_buf) copy32(p->tx_dma_page, tx_buf, l / 4); ret = sh_msiof_dma_once(p, tx_buf, rx_buf, l); if (ret == -EAGAIN) { dev_warn_once(&p->pdev->dev, "DMA not available, falling back to PIO\n"); break; } if (ret) return ret; if (rx_buf) { copy32(rx_buf, p->rx_dma_page, l / 4); rx_buf += l; } if (tx_buf) tx_buf += l; len -= l; if (!len) return 0; } if (bits <= 8 && len > 15) { bits = 32; swab = true; } else { swab = false; } /* setup bytes per word and fifo read/write functions */ if (bits <= 8) { bytes_per_word = 1; tx_fifo = sh_msiof_spi_write_fifo_8; rx_fifo = sh_msiof_spi_read_fifo_8; } else if (bits <= 16) { bytes_per_word = 2; if ((unsigned long)tx_buf & 0x01) tx_fifo = sh_msiof_spi_write_fifo_16u; else tx_fifo = sh_msiof_spi_write_fifo_16; if ((unsigned long)rx_buf & 0x01) rx_fifo = sh_msiof_spi_read_fifo_16u; else rx_fifo = sh_msiof_spi_read_fifo_16; } else if (swab) { bytes_per_word = 4; if ((unsigned long)tx_buf & 0x03) tx_fifo = sh_msiof_spi_write_fifo_s32u; else tx_fifo = sh_msiof_spi_write_fifo_s32; if ((unsigned long)rx_buf & 0x03) rx_fifo = sh_msiof_spi_read_fifo_s32u; else rx_fifo = sh_msiof_spi_read_fifo_s32; } else { bytes_per_word = 4; if ((unsigned long)tx_buf & 0x03) tx_fifo = sh_msiof_spi_write_fifo_32u; else tx_fifo = sh_msiof_spi_write_fifo_32; if ((unsigned long)rx_buf & 0x03) rx_fifo = sh_msiof_spi_read_fifo_32u; else rx_fifo = sh_msiof_spi_read_fifo_32; } /* transfer in fifo sized chunks */ words = len / bytes_per_word; while (words > 0) { n = sh_msiof_spi_txrx_once(p, tx_fifo, rx_fifo, tx_buf, rx_buf, words, bits); if (n < 0) return n; if (tx_buf) tx_buf += n * bytes_per_word; if (rx_buf) rx_buf += n * bytes_per_word; words -= n; if (words == 0 && (len % bytes_per_word)) { words = len % bytes_per_word; bits = t->bits_per_word; bytes_per_word = 1; tx_fifo = sh_msiof_spi_write_fifo_8; rx_fifo = sh_msiof_spi_read_fifo_8; } } return 0; } static const struct sh_msiof_chipdata sh_data = { .bits_per_word_mask = SPI_BPW_RANGE_MASK(8, 32), .tx_fifo_size = 64, .rx_fifo_size = 64, .ctlr_flags = 0, .min_div_pow = 0, }; static const struct sh_msiof_chipdata rcar_gen2_data = { .bits_per_word_mask = SPI_BPW_MASK(8) | SPI_BPW_MASK(16) | SPI_BPW_MASK(24) | SPI_BPW_MASK(32), .tx_fifo_size = 64, .rx_fifo_size = 64, .ctlr_flags = SPI_CONTROLLER_MUST_TX, .min_div_pow = 0, }; static const struct sh_msiof_chipdata rcar_gen3_data = { .bits_per_word_mask = SPI_BPW_MASK(8) | SPI_BPW_MASK(16) | SPI_BPW_MASK(24) | SPI_BPW_MASK(32), .tx_fifo_size = 64, .rx_fifo_size = 64, .ctlr_flags = SPI_CONTROLLER_MUST_TX, .min_div_pow = 1, }; static const struct of_device_id sh_msiof_match[] = { { .compatible = "renesas,sh-mobile-msiof", .data = &sh_data }, { .compatible = "renesas,msiof-r8a7743", .data = &rcar_gen2_data }, { .compatible = "renesas,msiof-r8a7745", .data = &rcar_gen2_data }, { .compatible = "renesas,msiof-r8a7790", .data = &rcar_gen2_data }, { .compatible = "renesas,msiof-r8a7791", .data = &rcar_gen2_data }, { .compatible = "renesas,msiof-r8a7792", .data = &rcar_gen2_data }, { .compatible = "renesas,msiof-r8a7793", .data = &rcar_gen2_data }, { .compatible = "renesas,msiof-r8a7794", .data = &rcar_gen2_data }, { .compatible = "renesas,rcar-gen2-msiof", .data = &rcar_gen2_data }, { .compatible = "renesas,msiof-r8a7796", .data = &rcar_gen3_data }, { .compatible = "renesas,rcar-gen3-msiof", .data = &rcar_gen3_data }, { .compatible = "renesas,sh-msiof", .data = &sh_data }, /* Deprecated */ {}, }; MODULE_DEVICE_TABLE(of, sh_msiof_match); #ifdef CONFIG_OF static struct sh_msiof_spi_info *sh_msiof_spi_parse_dt(struct device *dev) { struct sh_msiof_spi_info *info; struct device_node *np = dev->of_node; u32 num_cs = 1; info = devm_kzalloc(dev, sizeof(struct sh_msiof_spi_info), GFP_KERNEL); if (!info) return NULL; info->mode = of_property_read_bool(np, "spi-slave") ? MSIOF_SPI_SLAVE : MSIOF_SPI_MASTER; /* Parse the MSIOF properties */ if (info->mode == MSIOF_SPI_MASTER) of_property_read_u32(np, "num-cs", &num_cs); of_property_read_u32(np, "renesas,tx-fifo-size", &info->tx_fifo_override); of_property_read_u32(np, "renesas,rx-fifo-size", &info->rx_fifo_override); of_property_read_u32(np, "renesas,dtdl", &info->dtdl); of_property_read_u32(np, "renesas,syncdl", &info->syncdl); info->num_chipselect = num_cs; return info; } #else static struct sh_msiof_spi_info *sh_msiof_spi_parse_dt(struct device *dev) { return NULL; } #endif static struct dma_chan *sh_msiof_request_dma_chan(struct device *dev, enum dma_transfer_direction dir, unsigned int id, dma_addr_t port_addr) { dma_cap_mask_t mask; struct dma_chan *chan; struct dma_slave_config cfg; int ret; dma_cap_zero(mask); dma_cap_set(DMA_SLAVE, mask); chan = dma_request_slave_channel_compat(mask, shdma_chan_filter, (void *)(unsigned long)id, dev, dir == DMA_MEM_TO_DEV ? "tx" : "rx"); if (!chan) { dev_warn(dev, "dma_request_slave_channel_compat failed\n"); return NULL; } memset(&cfg, 0, sizeof(cfg)); cfg.direction = dir; if (dir == DMA_MEM_TO_DEV) { cfg.dst_addr = port_addr; cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES; } else { cfg.src_addr = port_addr; cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES; } ret = dmaengine_slave_config(chan, &cfg); if (ret) { dev_warn(dev, "dmaengine_slave_config failed %d\n", ret); dma_release_channel(chan); return NULL; } return chan; } static int sh_msiof_request_dma(struct sh_msiof_spi_priv *p) { struct platform_device *pdev = p->pdev; struct device *dev = &pdev->dev; const struct sh_msiof_spi_info *info = p->info; unsigned int dma_tx_id, dma_rx_id; const struct resource *res; struct spi_controller *ctlr; struct device *tx_dev, *rx_dev; if (dev->of_node) { /* In the OF case we will get the slave IDs from the DT */ dma_tx_id = 0; dma_rx_id = 0; } else if (info && info->dma_tx_id && info->dma_rx_id) { dma_tx_id = info->dma_tx_id; dma_rx_id = info->dma_rx_id; } else { /* The driver assumes no error */ return 0; } /* The DMA engine uses the second register set, if present */ res = platform_get_resource(pdev, IORESOURCE_MEM, 1); if (!res) res = platform_get_resource(pdev, IORESOURCE_MEM, 0); ctlr = p->ctlr; ctlr->dma_tx = sh_msiof_request_dma_chan(dev, DMA_MEM_TO_DEV, dma_tx_id, res->start + SITFDR); if (!ctlr->dma_tx) return -ENODEV; ctlr->dma_rx = sh_msiof_request_dma_chan(dev, DMA_DEV_TO_MEM, dma_rx_id, res->start + SIRFDR); if (!ctlr->dma_rx) goto free_tx_chan; p->tx_dma_page = (void *)__get_free_page(GFP_KERNEL | GFP_DMA); if (!p->tx_dma_page) goto free_rx_chan; p->rx_dma_page = (void *)__get_free_page(GFP_KERNEL | GFP_DMA); if (!p->rx_dma_page) goto free_tx_page; tx_dev = ctlr->dma_tx->device->dev; p->tx_dma_addr = dma_map_single(tx_dev, p->tx_dma_page, PAGE_SIZE, DMA_TO_DEVICE); if (dma_mapping_error(tx_dev, p->tx_dma_addr)) goto free_rx_page; rx_dev = ctlr->dma_rx->device->dev; p->rx_dma_addr = dma_map_single(rx_dev, p->rx_dma_page, PAGE_SIZE, DMA_FROM_DEVICE); if (dma_mapping_error(rx_dev, p->rx_dma_addr)) goto unmap_tx_page; dev_info(dev, "DMA available"); return 0; unmap_tx_page: dma_unmap_single(tx_dev, p->tx_dma_addr, PAGE_SIZE, DMA_TO_DEVICE); free_rx_page: free_page((unsigned long)p->rx_dma_page); free_tx_page: free_page((unsigned long)p->tx_dma_page); free_rx_chan: dma_release_channel(ctlr->dma_rx); free_tx_chan: dma_release_channel(ctlr->dma_tx); ctlr->dma_tx = NULL; return -ENODEV; } static void sh_msiof_release_dma(struct sh_msiof_spi_priv *p) { struct spi_controller *ctlr = p->ctlr; if (!ctlr->dma_tx) return; dma_unmap_single(ctlr->dma_rx->device->dev, p->rx_dma_addr, PAGE_SIZE, DMA_FROM_DEVICE); dma_unmap_single(ctlr->dma_tx->device->dev, p->tx_dma_addr, PAGE_SIZE, DMA_TO_DEVICE); free_page((unsigned long)p->rx_dma_page); free_page((unsigned long)p->tx_dma_page); dma_release_channel(ctlr->dma_rx); dma_release_channel(ctlr->dma_tx); } static int sh_msiof_spi_probe(struct platform_device *pdev) { struct spi_controller *ctlr; const struct sh_msiof_chipdata *chipdata; struct sh_msiof_spi_info *info; struct sh_msiof_spi_priv *p; unsigned long clksrc; int i; int ret; chipdata = of_device_get_match_data(&pdev->dev); if (chipdata) { info = sh_msiof_spi_parse_dt(&pdev->dev); } else { chipdata = (const void *)pdev->id_entry->driver_data; info = dev_get_platdata(&pdev->dev); } if (!info) { dev_err(&pdev->dev, "failed to obtain device info\n"); return -ENXIO; } if (info->mode == MSIOF_SPI_SLAVE) ctlr = spi_alloc_slave(&pdev->dev, sizeof(struct sh_msiof_spi_priv)); else ctlr = spi_alloc_master(&pdev->dev, sizeof(struct sh_msiof_spi_priv)); if (ctlr == NULL) return -ENOMEM; p = spi_controller_get_devdata(ctlr); platform_set_drvdata(pdev, p); p->ctlr = ctlr; p->info = info; p->min_div_pow = chipdata->min_div_pow; init_completion(&p->done); init_completion(&p->done_txdma); p->clk = devm_clk_get(&pdev->dev, NULL); if (IS_ERR(p->clk)) { dev_err(&pdev->dev, "cannot get clock\n"); ret = PTR_ERR(p->clk); goto err1; } i = platform_get_irq(pdev, 0); if (i < 0) { ret = i; goto err1; } p->mapbase = devm_platform_ioremap_resource(pdev, 0); if (IS_ERR(p->mapbase)) { ret = PTR_ERR(p->mapbase); goto err1; } ret = devm_request_irq(&pdev->dev, i, sh_msiof_spi_irq, 0, dev_name(&pdev->dev), p); if (ret) { dev_err(&pdev->dev, "unable to request irq\n"); goto err1; } p->pdev = pdev; pm_runtime_enable(&pdev->dev); /* Platform data may override FIFO sizes */ p->tx_fifo_size = chipdata->tx_fifo_size; p->rx_fifo_size = chipdata->rx_fifo_size; if (p->info->tx_fifo_override) p->tx_fifo_size = p->info->tx_fifo_override; if (p->info->rx_fifo_override) p->rx_fifo_size = p->info->rx_fifo_override; /* init controller code */ ctlr->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH; ctlr->mode_bits |= SPI_LSB_FIRST | SPI_3WIRE; clksrc = clk_get_rate(p->clk); ctlr->min_speed_hz = DIV_ROUND_UP(clksrc, 1024); ctlr->max_speed_hz = DIV_ROUND_UP(clksrc, 1 << p->min_div_pow); ctlr->flags = chipdata->ctlr_flags; ctlr->bus_num = pdev->id; ctlr->num_chipselect = p->info->num_chipselect; ctlr->dev.of_node = pdev->dev.of_node; ctlr->setup = sh_msiof_spi_setup; ctlr->prepare_message = sh_msiof_prepare_message; ctlr->slave_abort = sh_msiof_slave_abort; ctlr->bits_per_word_mask = chipdata->bits_per_word_mask; ctlr->auto_runtime_pm = true; ctlr->transfer_one = sh_msiof_transfer_one; ctlr->use_gpio_descriptors = true; ctlr->max_native_cs = MAX_SS; ret = sh_msiof_request_dma(p); if (ret < 0) dev_warn(&pdev->dev, "DMA not available, using PIO\n"); ret = devm_spi_register_controller(&pdev->dev, ctlr); if (ret < 0) { dev_err(&pdev->dev, "devm_spi_register_controller error.\n"); goto err2; } return 0; err2: sh_msiof_release_dma(p); pm_runtime_disable(&pdev->dev); err1: spi_controller_put(ctlr); return ret; } static int sh_msiof_spi_remove(struct platform_device *pdev) { struct sh_msiof_spi_priv *p = platform_get_drvdata(pdev); sh_msiof_release_dma(p); pm_runtime_disable(&pdev->dev); return 0; } static const struct platform_device_id spi_driver_ids[] = { { "spi_sh_msiof", (kernel_ulong_t)&sh_data }, {}, }; MODULE_DEVICE_TABLE(platform, spi_driver_ids); #ifdef CONFIG_PM_SLEEP static int sh_msiof_spi_suspend(struct device *dev) { struct sh_msiof_spi_priv *p = dev_get_drvdata(dev); return spi_controller_suspend(p->ctlr); } static int sh_msiof_spi_resume(struct device *dev) { struct sh_msiof_spi_priv *p = dev_get_drvdata(dev); return spi_controller_resume(p->ctlr); } static SIMPLE_DEV_PM_OPS(sh_msiof_spi_pm_ops, sh_msiof_spi_suspend, sh_msiof_spi_resume); #define DEV_PM_OPS (&sh_msiof_spi_pm_ops) #else #define DEV_PM_OPS NULL #endif /* CONFIG_PM_SLEEP */ static struct platform_driver sh_msiof_spi_drv = { .probe = sh_msiof_spi_probe, .remove = sh_msiof_spi_remove, .id_table = spi_driver_ids, .driver = { .name = "spi_sh_msiof", .pm = DEV_PM_OPS, .of_match_table = of_match_ptr(sh_msiof_match), }, }; module_platform_driver(sh_msiof_spi_drv); MODULE_DESCRIPTION("SuperH MSIOF SPI Controller Interface Driver"); MODULE_AUTHOR("Magnus Damm"); MODULE_LICENSE("GPL v2");