/* * arch/sh/kernel/process_64.c * * This file handles the architecture-dependent parts of process handling.. * * Copyright (C) 2000, 2001 Paolo Alberelli * Copyright (C) 2003 - 2007 Paul Mundt * Copyright (C) 2003, 2004 Richard Curnow * * Started from SH3/4 version: * Copyright (C) 1999, 2000 Niibe Yutaka & Kaz Kojima * * In turn started from i386 version: * Copyright (C) 1995 Linus Torvalds * * This file is subject to the terms and conditions of the GNU General Public * License. See the file "COPYING" in the main directory of this archive * for more details. */ #include #include #include #include #include #include #include #include #include #include #include #include struct task_struct *last_task_used_math = NULL; void machine_restart(char * __unused) { extern void phys_stext(void); phys_stext(); } void machine_halt(void) { for (;;); } void machine_power_off(void) { __asm__ __volatile__ ( "sleep\n\t" "synci\n\t" "nop;nop;nop;nop\n\t" ); panic("Unexpected wakeup!\n"); } void show_regs(struct pt_regs * regs) { unsigned long long ah, al, bh, bl, ch, cl; printk("\n"); ah = (regs->pc) >> 32; al = (regs->pc) & 0xffffffff; bh = (regs->regs[18]) >> 32; bl = (regs->regs[18]) & 0xffffffff; ch = (regs->regs[15]) >> 32; cl = (regs->regs[15]) & 0xffffffff; printk("PC : %08Lx%08Lx LINK: %08Lx%08Lx SP : %08Lx%08Lx\n", ah, al, bh, bl, ch, cl); ah = (regs->sr) >> 32; al = (regs->sr) & 0xffffffff; asm volatile ("getcon " __TEA ", %0" : "=r" (bh)); asm volatile ("getcon " __TEA ", %0" : "=r" (bl)); bh = (bh) >> 32; bl = (bl) & 0xffffffff; asm volatile ("getcon " __KCR0 ", %0" : "=r" (ch)); asm volatile ("getcon " __KCR0 ", %0" : "=r" (cl)); ch = (ch) >> 32; cl = (cl) & 0xffffffff; printk("SR : %08Lx%08Lx TEA : %08Lx%08Lx KCR0: %08Lx%08Lx\n", ah, al, bh, bl, ch, cl); ah = (regs->regs[0]) >> 32; al = (regs->regs[0]) & 0xffffffff; bh = (regs->regs[1]) >> 32; bl = (regs->regs[1]) & 0xffffffff; ch = (regs->regs[2]) >> 32; cl = (regs->regs[2]) & 0xffffffff; printk("R0 : %08Lx%08Lx R1 : %08Lx%08Lx R2 : %08Lx%08Lx\n", ah, al, bh, bl, ch, cl); ah = (regs->regs[3]) >> 32; al = (regs->regs[3]) & 0xffffffff; bh = (regs->regs[4]) >> 32; bl = (regs->regs[4]) & 0xffffffff; ch = (regs->regs[5]) >> 32; cl = (regs->regs[5]) & 0xffffffff; printk("R3 : %08Lx%08Lx R4 : %08Lx%08Lx R5 : %08Lx%08Lx\n", ah, al, bh, bl, ch, cl); ah = (regs->regs[6]) >> 32; al = (regs->regs[6]) & 0xffffffff; bh = (regs->regs[7]) >> 32; bl = (regs->regs[7]) & 0xffffffff; ch = (regs->regs[8]) >> 32; cl = (regs->regs[8]) & 0xffffffff; printk("R6 : %08Lx%08Lx R7 : %08Lx%08Lx R8 : %08Lx%08Lx\n", ah, al, bh, bl, ch, cl); ah = (regs->regs[9]) >> 32; al = (regs->regs[9]) & 0xffffffff; bh = (regs->regs[10]) >> 32; bl = (regs->regs[10]) & 0xffffffff; ch = (regs->regs[11]) >> 32; cl = (regs->regs[11]) & 0xffffffff; printk("R9 : %08Lx%08Lx R10 : %08Lx%08Lx R11 : %08Lx%08Lx\n", ah, al, bh, bl, ch, cl); ah = (regs->regs[12]) >> 32; al = (regs->regs[12]) & 0xffffffff; bh = (regs->regs[13]) >> 32; bl = (regs->regs[13]) & 0xffffffff; ch = (regs->regs[14]) >> 32; cl = (regs->regs[14]) & 0xffffffff; printk("R12 : %08Lx%08Lx R13 : %08Lx%08Lx R14 : %08Lx%08Lx\n", ah, al, bh, bl, ch, cl); ah = (regs->regs[16]) >> 32; al = (regs->regs[16]) & 0xffffffff; bh = (regs->regs[17]) >> 32; bl = (regs->regs[17]) & 0xffffffff; ch = (regs->regs[19]) >> 32; cl = (regs->regs[19]) & 0xffffffff; printk("R16 : %08Lx%08Lx R17 : %08Lx%08Lx R19 : %08Lx%08Lx\n", ah, al, bh, bl, ch, cl); ah = (regs->regs[20]) >> 32; al = (regs->regs[20]) & 0xffffffff; bh = (regs->regs[21]) >> 32; bl = (regs->regs[21]) & 0xffffffff; ch = (regs->regs[22]) >> 32; cl = (regs->regs[22]) & 0xffffffff; printk("R20 : %08Lx%08Lx R21 : %08Lx%08Lx R22 : %08Lx%08Lx\n", ah, al, bh, bl, ch, cl); ah = (regs->regs[23]) >> 32; al = (regs->regs[23]) & 0xffffffff; bh = (regs->regs[24]) >> 32; bl = (regs->regs[24]) & 0xffffffff; ch = (regs->regs[25]) >> 32; cl = (regs->regs[25]) & 0xffffffff; printk("R23 : %08Lx%08Lx R24 : %08Lx%08Lx R25 : %08Lx%08Lx\n", ah, al, bh, bl, ch, cl); ah = (regs->regs[26]) >> 32; al = (regs->regs[26]) & 0xffffffff; bh = (regs->regs[27]) >> 32; bl = (regs->regs[27]) & 0xffffffff; ch = (regs->regs[28]) >> 32; cl = (regs->regs[28]) & 0xffffffff; printk("R26 : %08Lx%08Lx R27 : %08Lx%08Lx R28 : %08Lx%08Lx\n", ah, al, bh, bl, ch, cl); ah = (regs->regs[29]) >> 32; al = (regs->regs[29]) & 0xffffffff; bh = (regs->regs[30]) >> 32; bl = (regs->regs[30]) & 0xffffffff; ch = (regs->regs[31]) >> 32; cl = (regs->regs[31]) & 0xffffffff; printk("R29 : %08Lx%08Lx R30 : %08Lx%08Lx R31 : %08Lx%08Lx\n", ah, al, bh, bl, ch, cl); ah = (regs->regs[32]) >> 32; al = (regs->regs[32]) & 0xffffffff; bh = (regs->regs[33]) >> 32; bl = (regs->regs[33]) & 0xffffffff; ch = (regs->regs[34]) >> 32; cl = (regs->regs[34]) & 0xffffffff; printk("R32 : %08Lx%08Lx R33 : %08Lx%08Lx R34 : %08Lx%08Lx\n", ah, al, bh, bl, ch, cl); ah = (regs->regs[35]) >> 32; al = (regs->regs[35]) & 0xffffffff; bh = (regs->regs[36]) >> 32; bl = (regs->regs[36]) & 0xffffffff; ch = (regs->regs[37]) >> 32; cl = (regs->regs[37]) & 0xffffffff; printk("R35 : %08Lx%08Lx R36 : %08Lx%08Lx R37 : %08Lx%08Lx\n", ah, al, bh, bl, ch, cl); ah = (regs->regs[38]) >> 32; al = (regs->regs[38]) & 0xffffffff; bh = (regs->regs[39]) >> 32; bl = (regs->regs[39]) & 0xffffffff; ch = (regs->regs[40]) >> 32; cl = (regs->regs[40]) & 0xffffffff; printk("R38 : %08Lx%08Lx R39 : %08Lx%08Lx R40 : %08Lx%08Lx\n", ah, al, bh, bl, ch, cl); ah = (regs->regs[41]) >> 32; al = (regs->regs[41]) & 0xffffffff; bh = (regs->regs[42]) >> 32; bl = (regs->regs[42]) & 0xffffffff; ch = (regs->regs[43]) >> 32; cl = (regs->regs[43]) & 0xffffffff; printk("R41 : %08Lx%08Lx R42 : %08Lx%08Lx R43 : %08Lx%08Lx\n", ah, al, bh, bl, ch, cl); ah = (regs->regs[44]) >> 32; al = (regs->regs[44]) & 0xffffffff; bh = (regs->regs[45]) >> 32; bl = (regs->regs[45]) & 0xffffffff; ch = (regs->regs[46]) >> 32; cl = (regs->regs[46]) & 0xffffffff; printk("R44 : %08Lx%08Lx R45 : %08Lx%08Lx R46 : %08Lx%08Lx\n", ah, al, bh, bl, ch, cl); ah = (regs->regs[47]) >> 32; al = (regs->regs[47]) & 0xffffffff; bh = (regs->regs[48]) >> 32; bl = (regs->regs[48]) & 0xffffffff; ch = (regs->regs[49]) >> 32; cl = (regs->regs[49]) & 0xffffffff; printk("R47 : %08Lx%08Lx R48 : %08Lx%08Lx R49 : %08Lx%08Lx\n", ah, al, bh, bl, ch, cl); ah = (regs->regs[50]) >> 32; al = (regs->regs[50]) & 0xffffffff; bh = (regs->regs[51]) >> 32; bl = (regs->regs[51]) & 0xffffffff; ch = (regs->regs[52]) >> 32; cl = (regs->regs[52]) & 0xffffffff; printk("R50 : %08Lx%08Lx R51 : %08Lx%08Lx R52 : %08Lx%08Lx\n", ah, al, bh, bl, ch, cl); ah = (regs->regs[53]) >> 32; al = (regs->regs[53]) & 0xffffffff; bh = (regs->regs[54]) >> 32; bl = (regs->regs[54]) & 0xffffffff; ch = (regs->regs[55]) >> 32; cl = (regs->regs[55]) & 0xffffffff; printk("R53 : %08Lx%08Lx R54 : %08Lx%08Lx R55 : %08Lx%08Lx\n", ah, al, bh, bl, ch, cl); ah = (regs->regs[56]) >> 32; al = (regs->regs[56]) & 0xffffffff; bh = (regs->regs[57]) >> 32; bl = (regs->regs[57]) & 0xffffffff; ch = (regs->regs[58]) >> 32; cl = (regs->regs[58]) & 0xffffffff; printk("R56 : %08Lx%08Lx R57 : %08Lx%08Lx R58 : %08Lx%08Lx\n", ah, al, bh, bl, ch, cl); ah = (regs->regs[59]) >> 32; al = (regs->regs[59]) & 0xffffffff; bh = (regs->regs[60]) >> 32; bl = (regs->regs[60]) & 0xffffffff; ch = (regs->regs[61]) >> 32; cl = (regs->regs[61]) & 0xffffffff; printk("R59 : %08Lx%08Lx R60 : %08Lx%08Lx R61 : %08Lx%08Lx\n", ah, al, bh, bl, ch, cl); ah = (regs->regs[62]) >> 32; al = (regs->regs[62]) & 0xffffffff; bh = (regs->tregs[0]) >> 32; bl = (regs->tregs[0]) & 0xffffffff; ch = (regs->tregs[1]) >> 32; cl = (regs->tregs[1]) & 0xffffffff; printk("R62 : %08Lx%08Lx T0 : %08Lx%08Lx T1 : %08Lx%08Lx\n", ah, al, bh, bl, ch, cl); ah = (regs->tregs[2]) >> 32; al = (regs->tregs[2]) & 0xffffffff; bh = (regs->tregs[3]) >> 32; bl = (regs->tregs[3]) & 0xffffffff; ch = (regs->tregs[4]) >> 32; cl = (regs->tregs[4]) & 0xffffffff; printk("T2 : %08Lx%08Lx T3 : %08Lx%08Lx T4 : %08Lx%08Lx\n", ah, al, bh, bl, ch, cl); ah = (regs->tregs[5]) >> 32; al = (regs->tregs[5]) & 0xffffffff; bh = (regs->tregs[6]) >> 32; bl = (regs->tregs[6]) & 0xffffffff; ch = (regs->tregs[7]) >> 32; cl = (regs->tregs[7]) & 0xffffffff; printk("T5 : %08Lx%08Lx T6 : %08Lx%08Lx T7 : %08Lx%08Lx\n", ah, al, bh, bl, ch, cl); /* * If we're in kernel mode, dump the stack too.. */ if (!user_mode(regs)) { void show_stack(struct task_struct *tsk, unsigned long *sp); unsigned long sp = regs->regs[15] & 0xffffffff; struct task_struct *tsk = get_current(); tsk->thread.kregs = regs; show_stack(tsk, (unsigned long *)sp); } } /* * Create a kernel thread */ ATTRIB_NORET void kernel_thread_helper(void *arg, int (*fn)(void *)) { do_exit(fn(arg)); } /* * This is the mechanism for creating a new kernel thread. * * NOTE! Only a kernel-only process(ie the swapper or direct descendants * who haven't done an "execve()") should use this: it will work within * a system call from a "real" process, but the process memory space will * not be freed until both the parent and the child have exited. */ int kernel_thread(int (*fn)(void *), void * arg, unsigned long flags) { struct pt_regs regs; memset(®s, 0, sizeof(regs)); regs.regs[2] = (unsigned long)arg; regs.regs[3] = (unsigned long)fn; regs.pc = (unsigned long)kernel_thread_helper; regs.sr = (1 << 30); /* Ok, create the new process.. */ return do_fork(flags | CLONE_VM | CLONE_UNTRACED, 0, ®s, 0, NULL, NULL); } EXPORT_SYMBOL(kernel_thread); /* * Free current thread data structures etc.. */ void exit_thread(void) { /* * See arch/sparc/kernel/process.c for the precedent for doing * this -- RPC. * * The SH-5 FPU save/restore approach relies on * last_task_used_math pointing to a live task_struct. When * another task tries to use the FPU for the 1st time, the FPUDIS * trap handling (see arch/sh/kernel/cpu/sh5/fpu.c) will save the * existing FPU state to the FP regs field within * last_task_used_math before re-loading the new task's FPU state * (or initialising it if the FPU has been used before). So if * last_task_used_math is stale, and its page has already been * re-allocated for another use, the consequences are rather * grim. Unless we null it here, there is no other path through * which it would get safely nulled. */ #ifdef CONFIG_SH_FPU if (last_task_used_math == current) { last_task_used_math = NULL; } #endif } void flush_thread(void) { /* Called by fs/exec.c (flush_old_exec) to remove traces of a * previously running executable. */ #ifdef CONFIG_SH_FPU if (last_task_used_math == current) { last_task_used_math = NULL; } /* Force FPU state to be reinitialised after exec */ clear_used_math(); #endif /* if we are a kernel thread, about to change to user thread, * update kreg */ if(current->thread.kregs==&fake_swapper_regs) { current->thread.kregs = ((struct pt_regs *)(THREAD_SIZE + (unsigned long) current) - 1); current->thread.uregs = current->thread.kregs; } } void release_thread(struct task_struct *dead_task) { /* do nothing */ } /* Fill in the fpu structure for a core dump.. */ int dump_fpu(struct pt_regs *regs, elf_fpregset_t *fpu) { #ifdef CONFIG_SH_FPU int fpvalid; struct task_struct *tsk = current; fpvalid = !!tsk_used_math(tsk); if (fpvalid) { if (current == last_task_used_math) { enable_fpu(); save_fpu(tsk); disable_fpu(); last_task_used_math = 0; regs->sr |= SR_FD; } memcpy(fpu, &tsk->thread.xstate->hardfpu, sizeof(*fpu)); } return fpvalid; #else return 0; /* Task didn't use the fpu at all. */ #endif } EXPORT_SYMBOL(dump_fpu); asmlinkage void ret_from_fork(void); int copy_thread(unsigned long clone_flags, unsigned long usp, unsigned long unused, struct task_struct *p, struct pt_regs *regs) { struct pt_regs *childregs; #ifdef CONFIG_SH_FPU if(last_task_used_math == current) { enable_fpu(); save_fpu(current); disable_fpu(); last_task_used_math = NULL; regs->sr |= SR_FD; } #endif /* Copy from sh version */ childregs = (struct pt_regs *)(THREAD_SIZE + task_stack_page(p)) - 1; *childregs = *regs; /* * Sign extend the edited stack. * Note that thread.pc and thread.pc will stay * 32-bit wide and context switch must take care * of NEFF sign extension. */ if (user_mode(regs)) { childregs->regs[15] = neff_sign_extend(usp); p->thread.uregs = childregs; } else { childregs->regs[15] = neff_sign_extend((unsigned long)task_stack_page(p) + THREAD_SIZE); } childregs->regs[9] = 0; /* Set return value for child */ childregs->sr |= SR_FD; /* Invalidate FPU flag */ p->thread.sp = (unsigned long) childregs; p->thread.pc = (unsigned long) ret_from_fork; return 0; } asmlinkage int sys_fork(unsigned long r2, unsigned long r3, unsigned long r4, unsigned long r5, unsigned long r6, unsigned long r7, struct pt_regs *pregs) { return do_fork(SIGCHLD, pregs->regs[15], pregs, 0, 0, 0); } asmlinkage int sys_clone(unsigned long clone_flags, unsigned long newsp, unsigned long r4, unsigned long r5, unsigned long r6, unsigned long r7, struct pt_regs *pregs) { if (!newsp) newsp = pregs->regs[15]; return do_fork(clone_flags, newsp, pregs, 0, 0, 0); } /* * This is trivial, and on the face of it looks like it * could equally well be done in user mode. * * Not so, for quite unobvious reasons - register pressure. * In user mode vfork() cannot have a stack frame, and if * done by calling the "clone()" system call directly, you * do not have enough call-clobbered registers to hold all * the information you need. */ asmlinkage int sys_vfork(unsigned long r2, unsigned long r3, unsigned long r4, unsigned long r5, unsigned long r6, unsigned long r7, struct pt_regs *pregs) { return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, pregs->regs[15], pregs, 0, 0, 0); } /* * sys_execve() executes a new program. */ asmlinkage int sys_execve(char *ufilename, char **uargv, char **uenvp, unsigned long r5, unsigned long r6, unsigned long r7, struct pt_regs *pregs) { int error; char *filename; filename = getname((char __user *)ufilename); error = PTR_ERR(filename); if (IS_ERR(filename)) goto out; error = do_execve(filename, (char __user * __user *)uargv, (char __user * __user *)uenvp, pregs); putname(filename); out: return error; } /* * These bracket the sleeping functions.. */ extern void interruptible_sleep_on(wait_queue_head_t *q); #define mid_sched ((unsigned long) interruptible_sleep_on) #ifdef CONFIG_FRAME_POINTER static int in_sh64_switch_to(unsigned long pc) { extern char __sh64_switch_to_end; /* For a sleeping task, the PC is somewhere in the middle of the function, so we don't have to worry about masking the LSB off */ return (pc >= (unsigned long) sh64_switch_to) && (pc < (unsigned long) &__sh64_switch_to_end); } #endif unsigned long get_wchan(struct task_struct *p) { unsigned long pc; if (!p || p == current || p->state == TASK_RUNNING) return 0; /* * The same comment as on the Alpha applies here, too ... */ pc = thread_saved_pc(p); #ifdef CONFIG_FRAME_POINTER if (in_sh64_switch_to(pc)) { unsigned long schedule_fp; unsigned long sh64_switch_to_fp; unsigned long schedule_caller_pc; sh64_switch_to_fp = (long) p->thread.sp; /* r14 is saved at offset 4 in the sh64_switch_to frame */ schedule_fp = *(unsigned long *) (long)(sh64_switch_to_fp + 4); /* and the caller of 'schedule' is (currently!) saved at offset 24 in the frame of schedule (from disasm) */ schedule_caller_pc = *(unsigned long *) (long)(schedule_fp + 24); return schedule_caller_pc; } #endif return pc; }