/* * Kernel-based Virtual Machine driver for Linux * * This module enables machines with Intel VT-x extensions to run virtual * machines without emulation or binary translation. * * Copyright (C) 2006 Qumranet, Inc. * Copyright 2010 Red Hat, Inc. and/or its affiliates. * * Authors: * Avi Kivity * Yaniv Kamay * * This work is licensed under the terms of the GNU GPL, version 2. See * the COPYING file in the top-level directory. * */ #include "irq.h" #include "mmu.h" #include "cpuid.h" #include "lapic.h" #include #include #include #include #include #include #include #include #include #include #include #include #include "kvm_cache_regs.h" #include "x86.h" #include #include #include #include #include #include #include #include #include #include #include #include #include "trace.h" #include "pmu.h" #define __ex(x) __kvm_handle_fault_on_reboot(x) #define __ex_clear(x, reg) \ ____kvm_handle_fault_on_reboot(x, "xor " reg " , " reg) MODULE_AUTHOR("Qumranet"); MODULE_LICENSE("GPL"); static const struct x86_cpu_id vmx_cpu_id[] = { X86_FEATURE_MATCH(X86_FEATURE_VMX), {} }; MODULE_DEVICE_TABLE(x86cpu, vmx_cpu_id); static bool __read_mostly enable_vpid = 1; module_param_named(vpid, enable_vpid, bool, 0444); static bool __read_mostly flexpriority_enabled = 1; module_param_named(flexpriority, flexpriority_enabled, bool, S_IRUGO); static bool __read_mostly enable_ept = 1; module_param_named(ept, enable_ept, bool, S_IRUGO); static bool __read_mostly enable_unrestricted_guest = 1; module_param_named(unrestricted_guest, enable_unrestricted_guest, bool, S_IRUGO); static bool __read_mostly enable_ept_ad_bits = 1; module_param_named(eptad, enable_ept_ad_bits, bool, S_IRUGO); static bool __read_mostly emulate_invalid_guest_state = true; module_param(emulate_invalid_guest_state, bool, S_IRUGO); static bool __read_mostly vmm_exclusive = 1; module_param(vmm_exclusive, bool, S_IRUGO); static bool __read_mostly fasteoi = 1; module_param(fasteoi, bool, S_IRUGO); static bool __read_mostly enable_apicv = 1; module_param(enable_apicv, bool, S_IRUGO); static bool __read_mostly enable_shadow_vmcs = 1; module_param_named(enable_shadow_vmcs, enable_shadow_vmcs, bool, S_IRUGO); /* * If nested=1, nested virtualization is supported, i.e., guests may use * VMX and be a hypervisor for its own guests. If nested=0, guests may not * use VMX instructions. */ static bool __read_mostly nested = 0; module_param(nested, bool, S_IRUGO); static u64 __read_mostly host_xss; static bool __read_mostly enable_pml = 1; module_param_named(pml, enable_pml, bool, S_IRUGO); #define KVM_VMX_TSC_MULTIPLIER_MAX 0xffffffffffffffffULL /* Guest_tsc -> host_tsc conversion requires 64-bit division. */ static int __read_mostly cpu_preemption_timer_multi; static bool __read_mostly enable_preemption_timer = 1; #ifdef CONFIG_X86_64 module_param_named(preemption_timer, enable_preemption_timer, bool, S_IRUGO); #endif #define KVM_GUEST_CR0_MASK (X86_CR0_NW | X86_CR0_CD) #define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST (X86_CR0_WP | X86_CR0_NE) #define KVM_VM_CR0_ALWAYS_ON \ (KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST | X86_CR0_PG | X86_CR0_PE) #define KVM_CR4_GUEST_OWNED_BITS \ (X86_CR4_PVI | X86_CR4_DE | X86_CR4_PCE | X86_CR4_OSFXSR \ | X86_CR4_OSXMMEXCPT | X86_CR4_TSD) #define KVM_PMODE_VM_CR4_ALWAYS_ON (X86_CR4_PAE | X86_CR4_VMXE) #define KVM_RMODE_VM_CR4_ALWAYS_ON (X86_CR4_VME | X86_CR4_PAE | X86_CR4_VMXE) #define RMODE_GUEST_OWNED_EFLAGS_BITS (~(X86_EFLAGS_IOPL | X86_EFLAGS_VM)) #define VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE 5 /* * These 2 parameters are used to config the controls for Pause-Loop Exiting: * ple_gap: upper bound on the amount of time between two successive * executions of PAUSE in a loop. Also indicate if ple enabled. * According to test, this time is usually smaller than 128 cycles. * ple_window: upper bound on the amount of time a guest is allowed to execute * in a PAUSE loop. Tests indicate that most spinlocks are held for * less than 2^12 cycles * Time is measured based on a counter that runs at the same rate as the TSC, * refer SDM volume 3b section 21.6.13 & 22.1.3. */ #define KVM_VMX_DEFAULT_PLE_GAP 128 #define KVM_VMX_DEFAULT_PLE_WINDOW 4096 #define KVM_VMX_DEFAULT_PLE_WINDOW_GROW 2 #define KVM_VMX_DEFAULT_PLE_WINDOW_SHRINK 0 #define KVM_VMX_DEFAULT_PLE_WINDOW_MAX \ INT_MAX / KVM_VMX_DEFAULT_PLE_WINDOW_GROW static int ple_gap = KVM_VMX_DEFAULT_PLE_GAP; module_param(ple_gap, int, S_IRUGO); static int ple_window = KVM_VMX_DEFAULT_PLE_WINDOW; module_param(ple_window, int, S_IRUGO); /* Default doubles per-vcpu window every exit. */ static int ple_window_grow = KVM_VMX_DEFAULT_PLE_WINDOW_GROW; module_param(ple_window_grow, int, S_IRUGO); /* Default resets per-vcpu window every exit to ple_window. */ static int ple_window_shrink = KVM_VMX_DEFAULT_PLE_WINDOW_SHRINK; module_param(ple_window_shrink, int, S_IRUGO); /* Default is to compute the maximum so we can never overflow. */ static int ple_window_actual_max = KVM_VMX_DEFAULT_PLE_WINDOW_MAX; static int ple_window_max = KVM_VMX_DEFAULT_PLE_WINDOW_MAX; module_param(ple_window_max, int, S_IRUGO); extern const ulong vmx_return; #define NR_AUTOLOAD_MSRS 8 #define VMCS02_POOL_SIZE 1 struct vmcs { u32 revision_id; u32 abort; char data[0]; }; /* * Track a VMCS that may be loaded on a certain CPU. If it is (cpu!=-1), also * remember whether it was VMLAUNCHed, and maintain a linked list of all VMCSs * loaded on this CPU (so we can clear them if the CPU goes down). */ struct loaded_vmcs { struct vmcs *vmcs; int cpu; int launched; struct list_head loaded_vmcss_on_cpu_link; }; struct shared_msr_entry { unsigned index; u64 data; u64 mask; }; /* * struct vmcs12 describes the state that our guest hypervisor (L1) keeps for a * single nested guest (L2), hence the name vmcs12. Any VMX implementation has * a VMCS structure, and vmcs12 is our emulated VMX's VMCS. This structure is * stored in guest memory specified by VMPTRLD, but is opaque to the guest, * which must access it using VMREAD/VMWRITE/VMCLEAR instructions. * More than one of these structures may exist, if L1 runs multiple L2 guests. * nested_vmx_run() will use the data here to build a vmcs02: a VMCS for the * underlying hardware which will be used to run L2. * This structure is packed to ensure that its layout is identical across * machines (necessary for live migration). * If there are changes in this struct, VMCS12_REVISION must be changed. */ typedef u64 natural_width; struct __packed vmcs12 { /* According to the Intel spec, a VMCS region must start with the * following two fields. Then follow implementation-specific data. */ u32 revision_id; u32 abort; u32 launch_state; /* set to 0 by VMCLEAR, to 1 by VMLAUNCH */ u32 padding[7]; /* room for future expansion */ u64 io_bitmap_a; u64 io_bitmap_b; u64 msr_bitmap; u64 vm_exit_msr_store_addr; u64 vm_exit_msr_load_addr; u64 vm_entry_msr_load_addr; u64 tsc_offset; u64 virtual_apic_page_addr; u64 apic_access_addr; u64 posted_intr_desc_addr; u64 ept_pointer; u64 eoi_exit_bitmap0; u64 eoi_exit_bitmap1; u64 eoi_exit_bitmap2; u64 eoi_exit_bitmap3; u64 xss_exit_bitmap; u64 guest_physical_address; u64 vmcs_link_pointer; u64 guest_ia32_debugctl; u64 guest_ia32_pat; u64 guest_ia32_efer; u64 guest_ia32_perf_global_ctrl; u64 guest_pdptr0; u64 guest_pdptr1; u64 guest_pdptr2; u64 guest_pdptr3; u64 guest_bndcfgs; u64 host_ia32_pat; u64 host_ia32_efer; u64 host_ia32_perf_global_ctrl; u64 padding64[8]; /* room for future expansion */ /* * To allow migration of L1 (complete with its L2 guests) between * machines of different natural widths (32 or 64 bit), we cannot have * unsigned long fields with no explict size. We use u64 (aliased * natural_width) instead. Luckily, x86 is little-endian. */ natural_width cr0_guest_host_mask; natural_width cr4_guest_host_mask; natural_width cr0_read_shadow; natural_width cr4_read_shadow; natural_width cr3_target_value0; natural_width cr3_target_value1; natural_width cr3_target_value2; natural_width cr3_target_value3; natural_width exit_qualification; natural_width guest_linear_address; natural_width guest_cr0; natural_width guest_cr3; natural_width guest_cr4; natural_width guest_es_base; natural_width guest_cs_base; natural_width guest_ss_base; natural_width guest_ds_base; natural_width guest_fs_base; natural_width guest_gs_base; natural_width guest_ldtr_base; natural_width guest_tr_base; natural_width guest_gdtr_base; natural_width guest_idtr_base; natural_width guest_dr7; natural_width guest_rsp; natural_width guest_rip; natural_width guest_rflags; natural_width guest_pending_dbg_exceptions; natural_width guest_sysenter_esp; natural_width guest_sysenter_eip; natural_width host_cr0; natural_width host_cr3; natural_width host_cr4; natural_width host_fs_base; natural_width host_gs_base; natural_width host_tr_base; natural_width host_gdtr_base; natural_width host_idtr_base; natural_width host_ia32_sysenter_esp; natural_width host_ia32_sysenter_eip; natural_width host_rsp; natural_width host_rip; natural_width paddingl[8]; /* room for future expansion */ u32 pin_based_vm_exec_control; u32 cpu_based_vm_exec_control; u32 exception_bitmap; u32 page_fault_error_code_mask; u32 page_fault_error_code_match; u32 cr3_target_count; u32 vm_exit_controls; u32 vm_exit_msr_store_count; u32 vm_exit_msr_load_count; u32 vm_entry_controls; u32 vm_entry_msr_load_count; u32 vm_entry_intr_info_field; u32 vm_entry_exception_error_code; u32 vm_entry_instruction_len; u32 tpr_threshold; u32 secondary_vm_exec_control; u32 vm_instruction_error; u32 vm_exit_reason; u32 vm_exit_intr_info; u32 vm_exit_intr_error_code; u32 idt_vectoring_info_field; u32 idt_vectoring_error_code; u32 vm_exit_instruction_len; u32 vmx_instruction_info; u32 guest_es_limit; u32 guest_cs_limit; u32 guest_ss_limit; u32 guest_ds_limit; u32 guest_fs_limit; u32 guest_gs_limit; u32 guest_ldtr_limit; u32 guest_tr_limit; u32 guest_gdtr_limit; u32 guest_idtr_limit; u32 guest_es_ar_bytes; u32 guest_cs_ar_bytes; u32 guest_ss_ar_bytes; u32 guest_ds_ar_bytes; u32 guest_fs_ar_bytes; u32 guest_gs_ar_bytes; u32 guest_ldtr_ar_bytes; u32 guest_tr_ar_bytes; u32 guest_interruptibility_info; u32 guest_activity_state; u32 guest_sysenter_cs; u32 host_ia32_sysenter_cs; u32 vmx_preemption_timer_value; u32 padding32[7]; /* room for future expansion */ u16 virtual_processor_id; u16 posted_intr_nv; u16 guest_es_selector; u16 guest_cs_selector; u16 guest_ss_selector; u16 guest_ds_selector; u16 guest_fs_selector; u16 guest_gs_selector; u16 guest_ldtr_selector; u16 guest_tr_selector; u16 guest_intr_status; u16 host_es_selector; u16 host_cs_selector; u16 host_ss_selector; u16 host_ds_selector; u16 host_fs_selector; u16 host_gs_selector; u16 host_tr_selector; }; /* * VMCS12_REVISION is an arbitrary id that should be changed if the content or * layout of struct vmcs12 is changed. MSR_IA32_VMX_BASIC returns this id, and * VMPTRLD verifies that the VMCS region that L1 is loading contains this id. */ #define VMCS12_REVISION 0x11e57ed0 /* * VMCS12_SIZE is the number of bytes L1 should allocate for the VMXON region * and any VMCS region. Although only sizeof(struct vmcs12) are used by the * current implementation, 4K are reserved to avoid future complications. */ #define VMCS12_SIZE 0x1000 /* Used to remember the last vmcs02 used for some recently used vmcs12s */ struct vmcs02_list { struct list_head list; gpa_t vmptr; struct loaded_vmcs vmcs02; }; /* * The nested_vmx structure is part of vcpu_vmx, and holds information we need * for correct emulation of VMX (i.e., nested VMX) on this vcpu. */ struct nested_vmx { /* Has the level1 guest done vmxon? */ bool vmxon; gpa_t vmxon_ptr; /* The guest-physical address of the current VMCS L1 keeps for L2 */ gpa_t current_vmptr; /* The host-usable pointer to the above */ struct page *current_vmcs12_page; struct vmcs12 *current_vmcs12; struct vmcs *current_shadow_vmcs; /* * Indicates if the shadow vmcs must be updated with the * data hold by vmcs12 */ bool sync_shadow_vmcs; /* vmcs02_list cache of VMCSs recently used to run L2 guests */ struct list_head vmcs02_pool; int vmcs02_num; u64 vmcs01_tsc_offset; /* L2 must run next, and mustn't decide to exit to L1. */ bool nested_run_pending; /* * Guest pages referred to in vmcs02 with host-physical pointers, so * we must keep them pinned while L2 runs. */ struct page *apic_access_page; struct page *virtual_apic_page; struct page *pi_desc_page; struct pi_desc *pi_desc; bool pi_pending; u16 posted_intr_nv; struct hrtimer preemption_timer; bool preemption_timer_expired; /* to migrate it to L2 if VM_ENTRY_LOAD_DEBUG_CONTROLS is off */ u64 vmcs01_debugctl; u16 vpid02; u16 last_vpid; u32 nested_vmx_procbased_ctls_low; u32 nested_vmx_procbased_ctls_high; u32 nested_vmx_true_procbased_ctls_low; u32 nested_vmx_secondary_ctls_low; u32 nested_vmx_secondary_ctls_high; u32 nested_vmx_pinbased_ctls_low; u32 nested_vmx_pinbased_ctls_high; u32 nested_vmx_exit_ctls_low; u32 nested_vmx_exit_ctls_high; u32 nested_vmx_true_exit_ctls_low; u32 nested_vmx_entry_ctls_low; u32 nested_vmx_entry_ctls_high; u32 nested_vmx_true_entry_ctls_low; u32 nested_vmx_misc_low; u32 nested_vmx_misc_high; u32 nested_vmx_ept_caps; u32 nested_vmx_vpid_caps; }; #define POSTED_INTR_ON 0 #define POSTED_INTR_SN 1 /* Posted-Interrupt Descriptor */ struct pi_desc { u32 pir[8]; /* Posted interrupt requested */ union { struct { /* bit 256 - Outstanding Notification */ u16 on : 1, /* bit 257 - Suppress Notification */ sn : 1, /* bit 271:258 - Reserved */ rsvd_1 : 14; /* bit 279:272 - Notification Vector */ u8 nv; /* bit 287:280 - Reserved */ u8 rsvd_2; /* bit 319:288 - Notification Destination */ u32 ndst; }; u64 control; }; u32 rsvd[6]; } __aligned(64); static bool pi_test_and_set_on(struct pi_desc *pi_desc) { return test_and_set_bit(POSTED_INTR_ON, (unsigned long *)&pi_desc->control); } static bool pi_test_and_clear_on(struct pi_desc *pi_desc) { return test_and_clear_bit(POSTED_INTR_ON, (unsigned long *)&pi_desc->control); } static int pi_test_and_set_pir(int vector, struct pi_desc *pi_desc) { return test_and_set_bit(vector, (unsigned long *)pi_desc->pir); } static inline void pi_clear_sn(struct pi_desc *pi_desc) { return clear_bit(POSTED_INTR_SN, (unsigned long *)&pi_desc->control); } static inline void pi_set_sn(struct pi_desc *pi_desc) { return set_bit(POSTED_INTR_SN, (unsigned long *)&pi_desc->control); } static inline int pi_test_on(struct pi_desc *pi_desc) { return test_bit(POSTED_INTR_ON, (unsigned long *)&pi_desc->control); } static inline int pi_test_sn(struct pi_desc *pi_desc) { return test_bit(POSTED_INTR_SN, (unsigned long *)&pi_desc->control); } struct vcpu_vmx { struct kvm_vcpu vcpu; unsigned long host_rsp; u8 fail; bool nmi_known_unmasked; u32 exit_intr_info; u32 idt_vectoring_info; ulong rflags; struct shared_msr_entry *guest_msrs; int nmsrs; int save_nmsrs; unsigned long host_idt_base; #ifdef CONFIG_X86_64 u64 msr_host_kernel_gs_base; u64 msr_guest_kernel_gs_base; #endif u32 vm_entry_controls_shadow; u32 vm_exit_controls_shadow; /* * loaded_vmcs points to the VMCS currently used in this vcpu. For a * non-nested (L1) guest, it always points to vmcs01. For a nested * guest (L2), it points to a different VMCS. */ struct loaded_vmcs vmcs01; struct loaded_vmcs *loaded_vmcs; bool __launched; /* temporary, used in vmx_vcpu_run */ struct msr_autoload { unsigned nr; struct vmx_msr_entry guest[NR_AUTOLOAD_MSRS]; struct vmx_msr_entry host[NR_AUTOLOAD_MSRS]; } msr_autoload; struct { int loaded; u16 fs_sel, gs_sel, ldt_sel; #ifdef CONFIG_X86_64 u16 ds_sel, es_sel; #endif int gs_ldt_reload_needed; int fs_reload_needed; u64 msr_host_bndcfgs; unsigned long vmcs_host_cr4; /* May not match real cr4 */ } host_state; struct { int vm86_active; ulong save_rflags; struct kvm_segment segs[8]; } rmode; struct { u32 bitmask; /* 4 bits per segment (1 bit per field) */ struct kvm_save_segment { u16 selector; unsigned long base; u32 limit; u32 ar; } seg[8]; } segment_cache; int vpid; bool emulation_required; /* Support for vnmi-less CPUs */ int soft_vnmi_blocked; ktime_t entry_time; s64 vnmi_blocked_time; u32 exit_reason; /* Posted interrupt descriptor */ struct pi_desc pi_desc; /* Support for a guest hypervisor (nested VMX) */ struct nested_vmx nested; /* Dynamic PLE window. */ int ple_window; bool ple_window_dirty; /* Support for PML */ #define PML_ENTITY_NUM 512 struct page *pml_pg; /* apic deadline value in host tsc */ u64 hv_deadline_tsc; u64 current_tsc_ratio; bool guest_pkru_valid; u32 guest_pkru; u32 host_pkru; /* * Only bits masked by msr_ia32_feature_control_valid_bits can be set in * msr_ia32_feature_control. FEATURE_CONTROL_LOCKED is always included * in msr_ia32_feature_control_valid_bits. */ u64 msr_ia32_feature_control; u64 msr_ia32_feature_control_valid_bits; }; enum segment_cache_field { SEG_FIELD_SEL = 0, SEG_FIELD_BASE = 1, SEG_FIELD_LIMIT = 2, SEG_FIELD_AR = 3, SEG_FIELD_NR = 4 }; static inline struct vcpu_vmx *to_vmx(struct kvm_vcpu *vcpu) { return container_of(vcpu, struct vcpu_vmx, vcpu); } static struct pi_desc *vcpu_to_pi_desc(struct kvm_vcpu *vcpu) { return &(to_vmx(vcpu)->pi_desc); } #define VMCS12_OFFSET(x) offsetof(struct vmcs12, x) #define FIELD(number, name) [number] = VMCS12_OFFSET(name) #define FIELD64(number, name) [number] = VMCS12_OFFSET(name), \ [number##_HIGH] = VMCS12_OFFSET(name)+4 static unsigned long shadow_read_only_fields[] = { /* * We do NOT shadow fields that are modified when L0 * traps and emulates any vmx instruction (e.g. VMPTRLD, * VMXON...) executed by L1. * For example, VM_INSTRUCTION_ERROR is read * by L1 if a vmx instruction fails (part of the error path). * Note the code assumes this logic. If for some reason * we start shadowing these fields then we need to * force a shadow sync when L0 emulates vmx instructions * (e.g. force a sync if VM_INSTRUCTION_ERROR is modified * by nested_vmx_failValid) */ VM_EXIT_REASON, VM_EXIT_INTR_INFO, VM_EXIT_INSTRUCTION_LEN, IDT_VECTORING_INFO_FIELD, IDT_VECTORING_ERROR_CODE, VM_EXIT_INTR_ERROR_CODE, EXIT_QUALIFICATION, GUEST_LINEAR_ADDRESS, GUEST_PHYSICAL_ADDRESS }; static int max_shadow_read_only_fields = ARRAY_SIZE(shadow_read_only_fields); static unsigned long shadow_read_write_fields[] = { TPR_THRESHOLD, GUEST_RIP, GUEST_RSP, GUEST_CR0, GUEST_CR3, GUEST_CR4, GUEST_INTERRUPTIBILITY_INFO, GUEST_RFLAGS, GUEST_CS_SELECTOR, GUEST_CS_AR_BYTES, GUEST_CS_LIMIT, GUEST_CS_BASE, GUEST_ES_BASE, GUEST_BNDCFGS, CR0_GUEST_HOST_MASK, CR0_READ_SHADOW, CR4_READ_SHADOW, TSC_OFFSET, EXCEPTION_BITMAP, CPU_BASED_VM_EXEC_CONTROL, VM_ENTRY_EXCEPTION_ERROR_CODE, VM_ENTRY_INTR_INFO_FIELD, VM_ENTRY_INSTRUCTION_LEN, VM_ENTRY_EXCEPTION_ERROR_CODE, HOST_FS_BASE, HOST_GS_BASE, HOST_FS_SELECTOR, HOST_GS_SELECTOR }; static int max_shadow_read_write_fields = ARRAY_SIZE(shadow_read_write_fields); static const unsigned short vmcs_field_to_offset_table[] = { FIELD(VIRTUAL_PROCESSOR_ID, virtual_processor_id), FIELD(POSTED_INTR_NV, posted_intr_nv), FIELD(GUEST_ES_SELECTOR, guest_es_selector), FIELD(GUEST_CS_SELECTOR, guest_cs_selector), FIELD(GUEST_SS_SELECTOR, guest_ss_selector), FIELD(GUEST_DS_SELECTOR, guest_ds_selector), FIELD(GUEST_FS_SELECTOR, guest_fs_selector), FIELD(GUEST_GS_SELECTOR, guest_gs_selector), FIELD(GUEST_LDTR_SELECTOR, guest_ldtr_selector), FIELD(GUEST_TR_SELECTOR, guest_tr_selector), FIELD(GUEST_INTR_STATUS, guest_intr_status), FIELD(HOST_ES_SELECTOR, host_es_selector), FIELD(HOST_CS_SELECTOR, host_cs_selector), FIELD(HOST_SS_SELECTOR, host_ss_selector), FIELD(HOST_DS_SELECTOR, host_ds_selector), FIELD(HOST_FS_SELECTOR, host_fs_selector), FIELD(HOST_GS_SELECTOR, host_gs_selector), FIELD(HOST_TR_SELECTOR, host_tr_selector), FIELD64(IO_BITMAP_A, io_bitmap_a), FIELD64(IO_BITMAP_B, io_bitmap_b), FIELD64(MSR_BITMAP, msr_bitmap), FIELD64(VM_EXIT_MSR_STORE_ADDR, vm_exit_msr_store_addr), FIELD64(VM_EXIT_MSR_LOAD_ADDR, vm_exit_msr_load_addr), FIELD64(VM_ENTRY_MSR_LOAD_ADDR, vm_entry_msr_load_addr), FIELD64(TSC_OFFSET, tsc_offset), FIELD64(VIRTUAL_APIC_PAGE_ADDR, virtual_apic_page_addr), FIELD64(APIC_ACCESS_ADDR, apic_access_addr), FIELD64(POSTED_INTR_DESC_ADDR, posted_intr_desc_addr), FIELD64(EPT_POINTER, ept_pointer), FIELD64(EOI_EXIT_BITMAP0, eoi_exit_bitmap0), FIELD64(EOI_EXIT_BITMAP1, eoi_exit_bitmap1), FIELD64(EOI_EXIT_BITMAP2, eoi_exit_bitmap2), FIELD64(EOI_EXIT_BITMAP3, eoi_exit_bitmap3), FIELD64(XSS_EXIT_BITMAP, xss_exit_bitmap), FIELD64(GUEST_PHYSICAL_ADDRESS, guest_physical_address), FIELD64(VMCS_LINK_POINTER, vmcs_link_pointer), FIELD64(GUEST_IA32_DEBUGCTL, guest_ia32_debugctl), FIELD64(GUEST_IA32_PAT, guest_ia32_pat), FIELD64(GUEST_IA32_EFER, guest_ia32_efer), FIELD64(GUEST_IA32_PERF_GLOBAL_CTRL, guest_ia32_perf_global_ctrl), FIELD64(GUEST_PDPTR0, guest_pdptr0), FIELD64(GUEST_PDPTR1, guest_pdptr1), FIELD64(GUEST_PDPTR2, guest_pdptr2), FIELD64(GUEST_PDPTR3, guest_pdptr3), FIELD64(GUEST_BNDCFGS, guest_bndcfgs), FIELD64(HOST_IA32_PAT, host_ia32_pat), FIELD64(HOST_IA32_EFER, host_ia32_efer), FIELD64(HOST_IA32_PERF_GLOBAL_CTRL, host_ia32_perf_global_ctrl), FIELD(PIN_BASED_VM_EXEC_CONTROL, pin_based_vm_exec_control), FIELD(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control), FIELD(EXCEPTION_BITMAP, exception_bitmap), FIELD(PAGE_FAULT_ERROR_CODE_MASK, page_fault_error_code_mask), FIELD(PAGE_FAULT_ERROR_CODE_MATCH, page_fault_error_code_match), FIELD(CR3_TARGET_COUNT, cr3_target_count), FIELD(VM_EXIT_CONTROLS, vm_exit_controls), FIELD(VM_EXIT_MSR_STORE_COUNT, vm_exit_msr_store_count), FIELD(VM_EXIT_MSR_LOAD_COUNT, vm_exit_msr_load_count), FIELD(VM_ENTRY_CONTROLS, vm_entry_controls), FIELD(VM_ENTRY_MSR_LOAD_COUNT, vm_entry_msr_load_count), FIELD(VM_ENTRY_INTR_INFO_FIELD, vm_entry_intr_info_field), FIELD(VM_ENTRY_EXCEPTION_ERROR_CODE, vm_entry_exception_error_code), FIELD(VM_ENTRY_INSTRUCTION_LEN, vm_entry_instruction_len), FIELD(TPR_THRESHOLD, tpr_threshold), FIELD(SECONDARY_VM_EXEC_CONTROL, secondary_vm_exec_control), FIELD(VM_INSTRUCTION_ERROR, vm_instruction_error), FIELD(VM_EXIT_REASON, vm_exit_reason), FIELD(VM_EXIT_INTR_INFO, vm_exit_intr_info), FIELD(VM_EXIT_INTR_ERROR_CODE, vm_exit_intr_error_code), FIELD(IDT_VECTORING_INFO_FIELD, idt_vectoring_info_field), FIELD(IDT_VECTORING_ERROR_CODE, idt_vectoring_error_code), FIELD(VM_EXIT_INSTRUCTION_LEN, vm_exit_instruction_len), FIELD(VMX_INSTRUCTION_INFO, vmx_instruction_info), FIELD(GUEST_ES_LIMIT, guest_es_limit), FIELD(GUEST_CS_LIMIT, guest_cs_limit), FIELD(GUEST_SS_LIMIT, guest_ss_limit), FIELD(GUEST_DS_LIMIT, guest_ds_limit), FIELD(GUEST_FS_LIMIT, guest_fs_limit), FIELD(GUEST_GS_LIMIT, guest_gs_limit), FIELD(GUEST_LDTR_LIMIT, guest_ldtr_limit), FIELD(GUEST_TR_LIMIT, guest_tr_limit), FIELD(GUEST_GDTR_LIMIT, guest_gdtr_limit), FIELD(GUEST_IDTR_LIMIT, guest_idtr_limit), FIELD(GUEST_ES_AR_BYTES, guest_es_ar_bytes), FIELD(GUEST_CS_AR_BYTES, guest_cs_ar_bytes), FIELD(GUEST_SS_AR_BYTES, guest_ss_ar_bytes), FIELD(GUEST_DS_AR_BYTES, guest_ds_ar_bytes), FIELD(GUEST_FS_AR_BYTES, guest_fs_ar_bytes), FIELD(GUEST_GS_AR_BYTES, guest_gs_ar_bytes), FIELD(GUEST_LDTR_AR_BYTES, guest_ldtr_ar_bytes), FIELD(GUEST_TR_AR_BYTES, guest_tr_ar_bytes), FIELD(GUEST_INTERRUPTIBILITY_INFO, guest_interruptibility_info), FIELD(GUEST_ACTIVITY_STATE, guest_activity_state), FIELD(GUEST_SYSENTER_CS, guest_sysenter_cs), FIELD(HOST_IA32_SYSENTER_CS, host_ia32_sysenter_cs), FIELD(VMX_PREEMPTION_TIMER_VALUE, vmx_preemption_timer_value), FIELD(CR0_GUEST_HOST_MASK, cr0_guest_host_mask), FIELD(CR4_GUEST_HOST_MASK, cr4_guest_host_mask), FIELD(CR0_READ_SHADOW, cr0_read_shadow), FIELD(CR4_READ_SHADOW, cr4_read_shadow), FIELD(CR3_TARGET_VALUE0, cr3_target_value0), FIELD(CR3_TARGET_VALUE1, cr3_target_value1), FIELD(CR3_TARGET_VALUE2, cr3_target_value2), FIELD(CR3_TARGET_VALUE3, cr3_target_value3), FIELD(EXIT_QUALIFICATION, exit_qualification), FIELD(GUEST_LINEAR_ADDRESS, guest_linear_address), FIELD(GUEST_CR0, guest_cr0), FIELD(GUEST_CR3, guest_cr3), FIELD(GUEST_CR4, guest_cr4), FIELD(GUEST_ES_BASE, guest_es_base), FIELD(GUEST_CS_BASE, guest_cs_base), FIELD(GUEST_SS_BASE, guest_ss_base), FIELD(GUEST_DS_BASE, guest_ds_base), FIELD(GUEST_FS_BASE, guest_fs_base), FIELD(GUEST_GS_BASE, guest_gs_base), FIELD(GUEST_LDTR_BASE, guest_ldtr_base), FIELD(GUEST_TR_BASE, guest_tr_base), FIELD(GUEST_GDTR_BASE, guest_gdtr_base), FIELD(GUEST_IDTR_BASE, guest_idtr_base), FIELD(GUEST_DR7, guest_dr7), FIELD(GUEST_RSP, guest_rsp), FIELD(GUEST_RIP, guest_rip), FIELD(GUEST_RFLAGS, guest_rflags), FIELD(GUEST_PENDING_DBG_EXCEPTIONS, guest_pending_dbg_exceptions), FIELD(GUEST_SYSENTER_ESP, guest_sysenter_esp), FIELD(GUEST_SYSENTER_EIP, guest_sysenter_eip), FIELD(HOST_CR0, host_cr0), FIELD(HOST_CR3, host_cr3), FIELD(HOST_CR4, host_cr4), FIELD(HOST_FS_BASE, host_fs_base), FIELD(HOST_GS_BASE, host_gs_base), FIELD(HOST_TR_BASE, host_tr_base), FIELD(HOST_GDTR_BASE, host_gdtr_base), FIELD(HOST_IDTR_BASE, host_idtr_base), FIELD(HOST_IA32_SYSENTER_ESP, host_ia32_sysenter_esp), FIELD(HOST_IA32_SYSENTER_EIP, host_ia32_sysenter_eip), FIELD(HOST_RSP, host_rsp), FIELD(HOST_RIP, host_rip), }; static inline short vmcs_field_to_offset(unsigned long field) { BUILD_BUG_ON(ARRAY_SIZE(vmcs_field_to_offset_table) > SHRT_MAX); if (field >= ARRAY_SIZE(vmcs_field_to_offset_table) || vmcs_field_to_offset_table[field] == 0) return -ENOENT; return vmcs_field_to_offset_table[field]; } static inline struct vmcs12 *get_vmcs12(struct kvm_vcpu *vcpu) { return to_vmx(vcpu)->nested.current_vmcs12; } static struct page *nested_get_page(struct kvm_vcpu *vcpu, gpa_t addr) { struct page *page = kvm_vcpu_gfn_to_page(vcpu, addr >> PAGE_SHIFT); if (is_error_page(page)) return NULL; return page; } static void nested_release_page(struct page *page) { kvm_release_page_dirty(page); } static void nested_release_page_clean(struct page *page) { kvm_release_page_clean(page); } static unsigned long nested_ept_get_cr3(struct kvm_vcpu *vcpu); static u64 construct_eptp(unsigned long root_hpa); static void kvm_cpu_vmxon(u64 addr); static void kvm_cpu_vmxoff(void); static bool vmx_xsaves_supported(void); static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr); static void vmx_set_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg); static void vmx_get_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg); static bool guest_state_valid(struct kvm_vcpu *vcpu); static u32 vmx_segment_access_rights(struct kvm_segment *var); static void copy_vmcs12_to_shadow(struct vcpu_vmx *vmx); static void copy_shadow_to_vmcs12(struct vcpu_vmx *vmx); static int alloc_identity_pagetable(struct kvm *kvm); static DEFINE_PER_CPU(struct vmcs *, vmxarea); static DEFINE_PER_CPU(struct vmcs *, current_vmcs); /* * We maintain a per-CPU linked-list of VMCS loaded on that CPU. This is needed * when a CPU is brought down, and we need to VMCLEAR all VMCSs loaded on it. */ static DEFINE_PER_CPU(struct list_head, loaded_vmcss_on_cpu); static DEFINE_PER_CPU(struct desc_ptr, host_gdt); /* * We maintian a per-CPU linked-list of vCPU, so in wakeup_handler() we * can find which vCPU should be waken up. */ static DEFINE_PER_CPU(struct list_head, blocked_vcpu_on_cpu); static DEFINE_PER_CPU(spinlock_t, blocked_vcpu_on_cpu_lock); static unsigned long *vmx_io_bitmap_a; static unsigned long *vmx_io_bitmap_b; static unsigned long *vmx_msr_bitmap_legacy; static unsigned long *vmx_msr_bitmap_longmode; static unsigned long *vmx_msr_bitmap_legacy_x2apic; static unsigned long *vmx_msr_bitmap_longmode_x2apic; static unsigned long *vmx_msr_bitmap_nested; static unsigned long *vmx_vmread_bitmap; static unsigned long *vmx_vmwrite_bitmap; static bool cpu_has_load_ia32_efer; static bool cpu_has_load_perf_global_ctrl; static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS); static DEFINE_SPINLOCK(vmx_vpid_lock); static struct vmcs_config { int size; int order; u32 revision_id; u32 pin_based_exec_ctrl; u32 cpu_based_exec_ctrl; u32 cpu_based_2nd_exec_ctrl; u32 vmexit_ctrl; u32 vmentry_ctrl; } vmcs_config; static struct vmx_capability { u32 ept; u32 vpid; } vmx_capability; #define VMX_SEGMENT_FIELD(seg) \ [VCPU_SREG_##seg] = { \ .selector = GUEST_##seg##_SELECTOR, \ .base = GUEST_##seg##_BASE, \ .limit = GUEST_##seg##_LIMIT, \ .ar_bytes = GUEST_##seg##_AR_BYTES, \ } static const struct kvm_vmx_segment_field { unsigned selector; unsigned base; unsigned limit; unsigned ar_bytes; } kvm_vmx_segment_fields[] = { VMX_SEGMENT_FIELD(CS), VMX_SEGMENT_FIELD(DS), VMX_SEGMENT_FIELD(ES), VMX_SEGMENT_FIELD(FS), VMX_SEGMENT_FIELD(GS), VMX_SEGMENT_FIELD(SS), VMX_SEGMENT_FIELD(TR), VMX_SEGMENT_FIELD(LDTR), }; static u64 host_efer; static void ept_save_pdptrs(struct kvm_vcpu *vcpu); /* * Keep MSR_STAR at the end, as setup_msrs() will try to optimize it * away by decrementing the array size. */ static const u32 vmx_msr_index[] = { #ifdef CONFIG_X86_64 MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR, #endif MSR_EFER, MSR_TSC_AUX, MSR_STAR, }; static inline bool is_exception_n(u32 intr_info, u8 vector) { return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK | INTR_INFO_VALID_MASK)) == (INTR_TYPE_HARD_EXCEPTION | vector | INTR_INFO_VALID_MASK); } static inline bool is_debug(u32 intr_info) { return is_exception_n(intr_info, DB_VECTOR); } static inline bool is_breakpoint(u32 intr_info) { return is_exception_n(intr_info, BP_VECTOR); } static inline bool is_page_fault(u32 intr_info) { return is_exception_n(intr_info, PF_VECTOR); } static inline bool is_no_device(u32 intr_info) { return is_exception_n(intr_info, NM_VECTOR); } static inline bool is_invalid_opcode(u32 intr_info) { return is_exception_n(intr_info, UD_VECTOR); } static inline bool is_external_interrupt(u32 intr_info) { return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK)) == (INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK); } static inline bool is_machine_check(u32 intr_info) { return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK | INTR_INFO_VALID_MASK)) == (INTR_TYPE_HARD_EXCEPTION | MC_VECTOR | INTR_INFO_VALID_MASK); } static inline bool cpu_has_vmx_msr_bitmap(void) { return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_USE_MSR_BITMAPS; } static inline bool cpu_has_vmx_tpr_shadow(void) { return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW; } static inline bool cpu_need_tpr_shadow(struct kvm_vcpu *vcpu) { return cpu_has_vmx_tpr_shadow() && lapic_in_kernel(vcpu); } static inline bool cpu_has_secondary_exec_ctrls(void) { return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS; } static inline bool cpu_has_vmx_virtualize_apic_accesses(void) { return vmcs_config.cpu_based_2nd_exec_ctrl & SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES; } static inline bool cpu_has_vmx_virtualize_x2apic_mode(void) { return vmcs_config.cpu_based_2nd_exec_ctrl & SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE; } static inline bool cpu_has_vmx_apic_register_virt(void) { return vmcs_config.cpu_based_2nd_exec_ctrl & SECONDARY_EXEC_APIC_REGISTER_VIRT; } static inline bool cpu_has_vmx_virtual_intr_delivery(void) { return vmcs_config.cpu_based_2nd_exec_ctrl & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY; } /* * Comment's format: document - errata name - stepping - processor name. * Refer from * https://www.virtualbox.org/svn/vbox/trunk/src/VBox/VMM/VMMR0/HMR0.cpp */ static u32 vmx_preemption_cpu_tfms[] = { /* 323344.pdf - BA86 - D0 - Xeon 7500 Series */ 0x000206E6, /* 323056.pdf - AAX65 - C2 - Xeon L3406 */ /* 322814.pdf - AAT59 - C2 - i7-600, i5-500, i5-400 and i3-300 Mobile */ /* 322911.pdf - AAU65 - C2 - i5-600, i3-500 Desktop and Pentium G6950 */ 0x00020652, /* 322911.pdf - AAU65 - K0 - i5-600, i3-500 Desktop and Pentium G6950 */ 0x00020655, /* 322373.pdf - AAO95 - B1 - Xeon 3400 Series */ /* 322166.pdf - AAN92 - B1 - i7-800 and i5-700 Desktop */ /* * 320767.pdf - AAP86 - B1 - * i7-900 Mobile Extreme, i7-800 and i7-700 Mobile */ 0x000106E5, /* 321333.pdf - AAM126 - C0 - Xeon 3500 */ 0x000106A0, /* 321333.pdf - AAM126 - C1 - Xeon 3500 */ 0x000106A1, /* 320836.pdf - AAJ124 - C0 - i7-900 Desktop Extreme and i7-900 Desktop */ 0x000106A4, /* 321333.pdf - AAM126 - D0 - Xeon 3500 */ /* 321324.pdf - AAK139 - D0 - Xeon 5500 */ /* 320836.pdf - AAJ124 - D0 - i7-900 Extreme and i7-900 Desktop */ 0x000106A5, }; static inline bool cpu_has_broken_vmx_preemption_timer(void) { u32 eax = cpuid_eax(0x00000001), i; /* Clear the reserved bits */ eax &= ~(0x3U << 14 | 0xfU << 28); for (i = 0; i < ARRAY_SIZE(vmx_preemption_cpu_tfms); i++) if (eax == vmx_preemption_cpu_tfms[i]) return true; return false; } static inline bool cpu_has_vmx_preemption_timer(void) { return vmcs_config.pin_based_exec_ctrl & PIN_BASED_VMX_PREEMPTION_TIMER; } static inline bool cpu_has_vmx_posted_intr(void) { return IS_ENABLED(CONFIG_X86_LOCAL_APIC) && vmcs_config.pin_based_exec_ctrl & PIN_BASED_POSTED_INTR; } static inline bool cpu_has_vmx_apicv(void) { return cpu_has_vmx_apic_register_virt() && cpu_has_vmx_virtual_intr_delivery() && cpu_has_vmx_posted_intr(); } static inline bool cpu_has_vmx_flexpriority(void) { return cpu_has_vmx_tpr_shadow() && cpu_has_vmx_virtualize_apic_accesses(); } static inline bool cpu_has_vmx_ept_execute_only(void) { return vmx_capability.ept & VMX_EPT_EXECUTE_ONLY_BIT; } static inline bool cpu_has_vmx_ept_2m_page(void) { return vmx_capability.ept & VMX_EPT_2MB_PAGE_BIT; } static inline bool cpu_has_vmx_ept_1g_page(void) { return vmx_capability.ept & VMX_EPT_1GB_PAGE_BIT; } static inline bool cpu_has_vmx_ept_4levels(void) { return vmx_capability.ept & VMX_EPT_PAGE_WALK_4_BIT; } static inline bool cpu_has_vmx_ept_ad_bits(void) { return vmx_capability.ept & VMX_EPT_AD_BIT; } static inline bool cpu_has_vmx_invept_context(void) { return vmx_capability.ept & VMX_EPT_EXTENT_CONTEXT_BIT; } static inline bool cpu_has_vmx_invept_global(void) { return vmx_capability.ept & VMX_EPT_EXTENT_GLOBAL_BIT; } static inline bool cpu_has_vmx_invvpid_single(void) { return vmx_capability.vpid & VMX_VPID_EXTENT_SINGLE_CONTEXT_BIT; } static inline bool cpu_has_vmx_invvpid_global(void) { return vmx_capability.vpid & VMX_VPID_EXTENT_GLOBAL_CONTEXT_BIT; } static inline bool cpu_has_vmx_ept(void) { return vmcs_config.cpu_based_2nd_exec_ctrl & SECONDARY_EXEC_ENABLE_EPT; } static inline bool cpu_has_vmx_unrestricted_guest(void) { return vmcs_config.cpu_based_2nd_exec_ctrl & SECONDARY_EXEC_UNRESTRICTED_GUEST; } static inline bool cpu_has_vmx_ple(void) { return vmcs_config.cpu_based_2nd_exec_ctrl & SECONDARY_EXEC_PAUSE_LOOP_EXITING; } static inline bool cpu_need_virtualize_apic_accesses(struct kvm_vcpu *vcpu) { return flexpriority_enabled && lapic_in_kernel(vcpu); } static inline bool cpu_has_vmx_vpid(void) { return vmcs_config.cpu_based_2nd_exec_ctrl & SECONDARY_EXEC_ENABLE_VPID; } static inline bool cpu_has_vmx_rdtscp(void) { return vmcs_config.cpu_based_2nd_exec_ctrl & SECONDARY_EXEC_RDTSCP; } static inline bool cpu_has_vmx_invpcid(void) { return vmcs_config.cpu_based_2nd_exec_ctrl & SECONDARY_EXEC_ENABLE_INVPCID; } static inline bool cpu_has_virtual_nmis(void) { return vmcs_config.pin_based_exec_ctrl & PIN_BASED_VIRTUAL_NMIS; } static inline bool cpu_has_vmx_wbinvd_exit(void) { return vmcs_config.cpu_based_2nd_exec_ctrl & SECONDARY_EXEC_WBINVD_EXITING; } static inline bool cpu_has_vmx_shadow_vmcs(void) { u64 vmx_msr; rdmsrl(MSR_IA32_VMX_MISC, vmx_msr); /* check if the cpu supports writing r/o exit information fields */ if (!(vmx_msr & MSR_IA32_VMX_MISC_VMWRITE_SHADOW_RO_FIELDS)) return false; return vmcs_config.cpu_based_2nd_exec_ctrl & SECONDARY_EXEC_SHADOW_VMCS; } static inline bool cpu_has_vmx_pml(void) { return vmcs_config.cpu_based_2nd_exec_ctrl & SECONDARY_EXEC_ENABLE_PML; } static inline bool cpu_has_vmx_tsc_scaling(void) { return vmcs_config.cpu_based_2nd_exec_ctrl & SECONDARY_EXEC_TSC_SCALING; } static inline bool report_flexpriority(void) { return flexpriority_enabled; } static inline bool nested_cpu_has(struct vmcs12 *vmcs12, u32 bit) { return vmcs12->cpu_based_vm_exec_control & bit; } static inline bool nested_cpu_has2(struct vmcs12 *vmcs12, u32 bit) { return (vmcs12->cpu_based_vm_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) && (vmcs12->secondary_vm_exec_control & bit); } static inline bool nested_cpu_has_virtual_nmis(struct vmcs12 *vmcs12) { return vmcs12->pin_based_vm_exec_control & PIN_BASED_VIRTUAL_NMIS; } static inline bool nested_cpu_has_preemption_timer(struct vmcs12 *vmcs12) { return vmcs12->pin_based_vm_exec_control & PIN_BASED_VMX_PREEMPTION_TIMER; } static inline int nested_cpu_has_ept(struct vmcs12 *vmcs12) { return nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_EPT); } static inline bool nested_cpu_has_xsaves(struct vmcs12 *vmcs12) { return nested_cpu_has2(vmcs12, SECONDARY_EXEC_XSAVES) && vmx_xsaves_supported(); } static inline bool nested_cpu_has_virt_x2apic_mode(struct vmcs12 *vmcs12) { return nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE); } static inline bool nested_cpu_has_vpid(struct vmcs12 *vmcs12) { return nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_VPID); } static inline bool nested_cpu_has_apic_reg_virt(struct vmcs12 *vmcs12) { return nested_cpu_has2(vmcs12, SECONDARY_EXEC_APIC_REGISTER_VIRT); } static inline bool nested_cpu_has_vid(struct vmcs12 *vmcs12) { return nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY); } static inline bool nested_cpu_has_posted_intr(struct vmcs12 *vmcs12) { return vmcs12->pin_based_vm_exec_control & PIN_BASED_POSTED_INTR; } static inline bool is_exception(u32 intr_info) { return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK)) == (INTR_TYPE_HARD_EXCEPTION | INTR_INFO_VALID_MASK); } static void nested_vmx_vmexit(struct kvm_vcpu *vcpu, u32 exit_reason, u32 exit_intr_info, unsigned long exit_qualification); static void nested_vmx_entry_failure(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12, u32 reason, unsigned long qualification); static int __find_msr_index(struct vcpu_vmx *vmx, u32 msr) { int i; for (i = 0; i < vmx->nmsrs; ++i) if (vmx_msr_index[vmx->guest_msrs[i].index] == msr) return i; return -1; } static inline void __invvpid(int ext, u16 vpid, gva_t gva) { struct { u64 vpid : 16; u64 rsvd : 48; u64 gva; } operand = { vpid, 0, gva }; asm volatile (__ex(ASM_VMX_INVVPID) /* CF==1 or ZF==1 --> rc = -1 */ "; ja 1f ; ud2 ; 1:" : : "a"(&operand), "c"(ext) : "cc", "memory"); } static inline void __invept(int ext, u64 eptp, gpa_t gpa) { struct { u64 eptp, gpa; } operand = {eptp, gpa}; asm volatile (__ex(ASM_VMX_INVEPT) /* CF==1 or ZF==1 --> rc = -1 */ "; ja 1f ; ud2 ; 1:\n" : : "a" (&operand), "c" (ext) : "cc", "memory"); } static struct shared_msr_entry *find_msr_entry(struct vcpu_vmx *vmx, u32 msr) { int i; i = __find_msr_index(vmx, msr); if (i >= 0) return &vmx->guest_msrs[i]; return NULL; } static void vmcs_clear(struct vmcs *vmcs) { u64 phys_addr = __pa(vmcs); u8 error; asm volatile (__ex(ASM_VMX_VMCLEAR_RAX) "; setna %0" : "=qm"(error) : "a"(&phys_addr), "m"(phys_addr) : "cc", "memory"); if (error) printk(KERN_ERR "kvm: vmclear fail: %p/%llx\n", vmcs, phys_addr); } static inline void loaded_vmcs_init(struct loaded_vmcs *loaded_vmcs) { vmcs_clear(loaded_vmcs->vmcs); loaded_vmcs->cpu = -1; loaded_vmcs->launched = 0; } static void vmcs_load(struct vmcs *vmcs) { u64 phys_addr = __pa(vmcs); u8 error; asm volatile (__ex(ASM_VMX_VMPTRLD_RAX) "; setna %0" : "=qm"(error) : "a"(&phys_addr), "m"(phys_addr) : "cc", "memory"); if (error) printk(KERN_ERR "kvm: vmptrld %p/%llx failed\n", vmcs, phys_addr); } #ifdef CONFIG_KEXEC_CORE /* * This bitmap is used to indicate whether the vmclear * operation is enabled on all cpus. All disabled by * default. */ static cpumask_t crash_vmclear_enabled_bitmap = CPU_MASK_NONE; static inline void crash_enable_local_vmclear(int cpu) { cpumask_set_cpu(cpu, &crash_vmclear_enabled_bitmap); } static inline void crash_disable_local_vmclear(int cpu) { cpumask_clear_cpu(cpu, &crash_vmclear_enabled_bitmap); } static inline int crash_local_vmclear_enabled(int cpu) { return cpumask_test_cpu(cpu, &crash_vmclear_enabled_bitmap); } static void crash_vmclear_local_loaded_vmcss(void) { int cpu = raw_smp_processor_id(); struct loaded_vmcs *v; if (!crash_local_vmclear_enabled(cpu)) return; list_for_each_entry(v, &per_cpu(loaded_vmcss_on_cpu, cpu), loaded_vmcss_on_cpu_link) vmcs_clear(v->vmcs); } #else static inline void crash_enable_local_vmclear(int cpu) { } static inline void crash_disable_local_vmclear(int cpu) { } #endif /* CONFIG_KEXEC_CORE */ static void __loaded_vmcs_clear(void *arg) { struct loaded_vmcs *loaded_vmcs = arg; int cpu = raw_smp_processor_id(); if (loaded_vmcs->cpu != cpu) return; /* vcpu migration can race with cpu offline */ if (per_cpu(current_vmcs, cpu) == loaded_vmcs->vmcs) per_cpu(current_vmcs, cpu) = NULL; crash_disable_local_vmclear(cpu); list_del(&loaded_vmcs->loaded_vmcss_on_cpu_link); /* * we should ensure updating loaded_vmcs->loaded_vmcss_on_cpu_link * is before setting loaded_vmcs->vcpu to -1 which is done in * loaded_vmcs_init. Otherwise, other cpu can see vcpu = -1 fist * then adds the vmcs into percpu list before it is deleted. */ smp_wmb(); loaded_vmcs_init(loaded_vmcs); crash_enable_local_vmclear(cpu); } static void loaded_vmcs_clear(struct loaded_vmcs *loaded_vmcs) { int cpu = loaded_vmcs->cpu; if (cpu != -1) smp_call_function_single(cpu, __loaded_vmcs_clear, loaded_vmcs, 1); } static inline void vpid_sync_vcpu_single(int vpid) { if (vpid == 0) return; if (cpu_has_vmx_invvpid_single()) __invvpid(VMX_VPID_EXTENT_SINGLE_CONTEXT, vpid, 0); } static inline void vpid_sync_vcpu_global(void) { if (cpu_has_vmx_invvpid_global()) __invvpid(VMX_VPID_EXTENT_ALL_CONTEXT, 0, 0); } static inline void vpid_sync_context(int vpid) { if (cpu_has_vmx_invvpid_single()) vpid_sync_vcpu_single(vpid); else vpid_sync_vcpu_global(); } static inline void ept_sync_global(void) { if (cpu_has_vmx_invept_global()) __invept(VMX_EPT_EXTENT_GLOBAL, 0, 0); } static inline void ept_sync_context(u64 eptp) { if (enable_ept) { if (cpu_has_vmx_invept_context()) __invept(VMX_EPT_EXTENT_CONTEXT, eptp, 0); else ept_sync_global(); } } static __always_inline void vmcs_check16(unsigned long field) { BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6001) == 0x2000, "16-bit accessor invalid for 64-bit field"); BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6001) == 0x2001, "16-bit accessor invalid for 64-bit high field"); BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x4000, "16-bit accessor invalid for 32-bit high field"); BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x6000, "16-bit accessor invalid for natural width field"); } static __always_inline void vmcs_check32(unsigned long field) { BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0, "32-bit accessor invalid for 16-bit field"); BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x6000, "32-bit accessor invalid for natural width field"); } static __always_inline void vmcs_check64(unsigned long field) { BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0, "64-bit accessor invalid for 16-bit field"); BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6001) == 0x2001, "64-bit accessor invalid for 64-bit high field"); BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x4000, "64-bit accessor invalid for 32-bit field"); BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x6000, "64-bit accessor invalid for natural width field"); } static __always_inline void vmcs_checkl(unsigned long field) { BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0, "Natural width accessor invalid for 16-bit field"); BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6001) == 0x2000, "Natural width accessor invalid for 64-bit field"); BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6001) == 0x2001, "Natural width accessor invalid for 64-bit high field"); BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x4000, "Natural width accessor invalid for 32-bit field"); } static __always_inline unsigned long __vmcs_readl(unsigned long field) { unsigned long value; asm volatile (__ex_clear(ASM_VMX_VMREAD_RDX_RAX, "%0") : "=a"(value) : "d"(field) : "cc"); return value; } static __always_inline u16 vmcs_read16(unsigned long field) { vmcs_check16(field); return __vmcs_readl(field); } static __always_inline u32 vmcs_read32(unsigned long field) { vmcs_check32(field); return __vmcs_readl(field); } static __always_inline u64 vmcs_read64(unsigned long field) { vmcs_check64(field); #ifdef CONFIG_X86_64 return __vmcs_readl(field); #else return __vmcs_readl(field) | ((u64)__vmcs_readl(field+1) << 32); #endif } static __always_inline unsigned long vmcs_readl(unsigned long field) { vmcs_checkl(field); return __vmcs_readl(field); } static noinline void vmwrite_error(unsigned long field, unsigned long value) { printk(KERN_ERR "vmwrite error: reg %lx value %lx (err %d)\n", field, value, vmcs_read32(VM_INSTRUCTION_ERROR)); dump_stack(); } static __always_inline void __vmcs_writel(unsigned long field, unsigned long value) { u8 error; asm volatile (__ex(ASM_VMX_VMWRITE_RAX_RDX) "; setna %0" : "=q"(error) : "a"(value), "d"(field) : "cc"); if (unlikely(error)) vmwrite_error(field, value); } static __always_inline void vmcs_write16(unsigned long field, u16 value) { vmcs_check16(field); __vmcs_writel(field, value); } static __always_inline void vmcs_write32(unsigned long field, u32 value) { vmcs_check32(field); __vmcs_writel(field, value); } static __always_inline void vmcs_write64(unsigned long field, u64 value) { vmcs_check64(field); __vmcs_writel(field, value); #ifndef CONFIG_X86_64 asm volatile (""); __vmcs_writel(field+1, value >> 32); #endif } static __always_inline void vmcs_writel(unsigned long field, unsigned long value) { vmcs_checkl(field); __vmcs_writel(field, value); } static __always_inline void vmcs_clear_bits(unsigned long field, u32 mask) { BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x2000, "vmcs_clear_bits does not support 64-bit fields"); __vmcs_writel(field, __vmcs_readl(field) & ~mask); } static __always_inline void vmcs_set_bits(unsigned long field, u32 mask) { BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x2000, "vmcs_set_bits does not support 64-bit fields"); __vmcs_writel(field, __vmcs_readl(field) | mask); } static inline void vm_entry_controls_reset_shadow(struct vcpu_vmx *vmx) { vmx->vm_entry_controls_shadow = vmcs_read32(VM_ENTRY_CONTROLS); } static inline void vm_entry_controls_init(struct vcpu_vmx *vmx, u32 val) { vmcs_write32(VM_ENTRY_CONTROLS, val); vmx->vm_entry_controls_shadow = val; } static inline void vm_entry_controls_set(struct vcpu_vmx *vmx, u32 val) { if (vmx->vm_entry_controls_shadow != val) vm_entry_controls_init(vmx, val); } static inline u32 vm_entry_controls_get(struct vcpu_vmx *vmx) { return vmx->vm_entry_controls_shadow; } static inline void vm_entry_controls_setbit(struct vcpu_vmx *vmx, u32 val) { vm_entry_controls_set(vmx, vm_entry_controls_get(vmx) | val); } static inline void vm_entry_controls_clearbit(struct vcpu_vmx *vmx, u32 val) { vm_entry_controls_set(vmx, vm_entry_controls_get(vmx) & ~val); } static inline void vm_exit_controls_reset_shadow(struct vcpu_vmx *vmx) { vmx->vm_exit_controls_shadow = vmcs_read32(VM_EXIT_CONTROLS); } static inline void vm_exit_controls_init(struct vcpu_vmx *vmx, u32 val) { vmcs_write32(VM_EXIT_CONTROLS, val); vmx->vm_exit_controls_shadow = val; } static inline void vm_exit_controls_set(struct vcpu_vmx *vmx, u32 val) { if (vmx->vm_exit_controls_shadow != val) vm_exit_controls_init(vmx, val); } static inline u32 vm_exit_controls_get(struct vcpu_vmx *vmx) { return vmx->vm_exit_controls_shadow; } static inline void vm_exit_controls_setbit(struct vcpu_vmx *vmx, u32 val) { vm_exit_controls_set(vmx, vm_exit_controls_get(vmx) | val); } static inline void vm_exit_controls_clearbit(struct vcpu_vmx *vmx, u32 val) { vm_exit_controls_set(vmx, vm_exit_controls_get(vmx) & ~val); } static void vmx_segment_cache_clear(struct vcpu_vmx *vmx) { vmx->segment_cache.bitmask = 0; } static bool vmx_segment_cache_test_set(struct vcpu_vmx *vmx, unsigned seg, unsigned field) { bool ret; u32 mask = 1 << (seg * SEG_FIELD_NR + field); if (!(vmx->vcpu.arch.regs_avail & (1 << VCPU_EXREG_SEGMENTS))) { vmx->vcpu.arch.regs_avail |= (1 << VCPU_EXREG_SEGMENTS); vmx->segment_cache.bitmask = 0; } ret = vmx->segment_cache.bitmask & mask; vmx->segment_cache.bitmask |= mask; return ret; } static u16 vmx_read_guest_seg_selector(struct vcpu_vmx *vmx, unsigned seg) { u16 *p = &vmx->segment_cache.seg[seg].selector; if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_SEL)) *p = vmcs_read16(kvm_vmx_segment_fields[seg].selector); return *p; } static ulong vmx_read_guest_seg_base(struct vcpu_vmx *vmx, unsigned seg) { ulong *p = &vmx->segment_cache.seg[seg].base; if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_BASE)) *p = vmcs_readl(kvm_vmx_segment_fields[seg].base); return *p; } static u32 vmx_read_guest_seg_limit(struct vcpu_vmx *vmx, unsigned seg) { u32 *p = &vmx->segment_cache.seg[seg].limit; if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_LIMIT)) *p = vmcs_read32(kvm_vmx_segment_fields[seg].limit); return *p; } static u32 vmx_read_guest_seg_ar(struct vcpu_vmx *vmx, unsigned seg) { u32 *p = &vmx->segment_cache.seg[seg].ar; if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_AR)) *p = vmcs_read32(kvm_vmx_segment_fields[seg].ar_bytes); return *p; } static void update_exception_bitmap(struct kvm_vcpu *vcpu) { u32 eb; eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR) | (1u << NM_VECTOR) | (1u << DB_VECTOR) | (1u << AC_VECTOR); if ((vcpu->guest_debug & (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) == (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) eb |= 1u << BP_VECTOR; if (to_vmx(vcpu)->rmode.vm86_active) eb = ~0; if (enable_ept) eb &= ~(1u << PF_VECTOR); /* bypass_guest_pf = 0 */ if (vcpu->fpu_active) eb &= ~(1u << NM_VECTOR); /* When we are running a nested L2 guest and L1 specified for it a * certain exception bitmap, we must trap the same exceptions and pass * them to L1. When running L2, we will only handle the exceptions * specified above if L1 did not want them. */ if (is_guest_mode(vcpu)) eb |= get_vmcs12(vcpu)->exception_bitmap; vmcs_write32(EXCEPTION_BITMAP, eb); } static void clear_atomic_switch_msr_special(struct vcpu_vmx *vmx, unsigned long entry, unsigned long exit) { vm_entry_controls_clearbit(vmx, entry); vm_exit_controls_clearbit(vmx, exit); } static void clear_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr) { unsigned i; struct msr_autoload *m = &vmx->msr_autoload; switch (msr) { case MSR_EFER: if (cpu_has_load_ia32_efer) { clear_atomic_switch_msr_special(vmx, VM_ENTRY_LOAD_IA32_EFER, VM_EXIT_LOAD_IA32_EFER); return; } break; case MSR_CORE_PERF_GLOBAL_CTRL: if (cpu_has_load_perf_global_ctrl) { clear_atomic_switch_msr_special(vmx, VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL, VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL); return; } break; } for (i = 0; i < m->nr; ++i) if (m->guest[i].index == msr) break; if (i == m->nr) return; --m->nr; m->guest[i] = m->guest[m->nr]; m->host[i] = m->host[m->nr]; vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->nr); vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->nr); } static void add_atomic_switch_msr_special(struct vcpu_vmx *vmx, unsigned long entry, unsigned long exit, unsigned long guest_val_vmcs, unsigned long host_val_vmcs, u64 guest_val, u64 host_val) { vmcs_write64(guest_val_vmcs, guest_val); vmcs_write64(host_val_vmcs, host_val); vm_entry_controls_setbit(vmx, entry); vm_exit_controls_setbit(vmx, exit); } static void add_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr, u64 guest_val, u64 host_val) { unsigned i; struct msr_autoload *m = &vmx->msr_autoload; switch (msr) { case MSR_EFER: if (cpu_has_load_ia32_efer) { add_atomic_switch_msr_special(vmx, VM_ENTRY_LOAD_IA32_EFER, VM_EXIT_LOAD_IA32_EFER, GUEST_IA32_EFER, HOST_IA32_EFER, guest_val, host_val); return; } break; case MSR_CORE_PERF_GLOBAL_CTRL: if (cpu_has_load_perf_global_ctrl) { add_atomic_switch_msr_special(vmx, VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL, VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL, GUEST_IA32_PERF_GLOBAL_CTRL, HOST_IA32_PERF_GLOBAL_CTRL, guest_val, host_val); return; } break; case MSR_IA32_PEBS_ENABLE: /* PEBS needs a quiescent period after being disabled (to write * a record). Disabling PEBS through VMX MSR swapping doesn't * provide that period, so a CPU could write host's record into * guest's memory. */ wrmsrl(MSR_IA32_PEBS_ENABLE, 0); } for (i = 0; i < m->nr; ++i) if (m->guest[i].index == msr) break; if (i == NR_AUTOLOAD_MSRS) { printk_once(KERN_WARNING "Not enough msr switch entries. " "Can't add msr %x\n", msr); return; } else if (i == m->nr) { ++m->nr; vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->nr); vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->nr); } m->guest[i].index = msr; m->guest[i].value = guest_val; m->host[i].index = msr; m->host[i].value = host_val; } static void reload_tss(void) { /* * VT restores TR but not its size. Useless. */ struct desc_ptr *gdt = this_cpu_ptr(&host_gdt); struct desc_struct *descs; descs = (void *)gdt->address; descs[GDT_ENTRY_TSS].type = 9; /* available TSS */ load_TR_desc(); } static bool update_transition_efer(struct vcpu_vmx *vmx, int efer_offset) { u64 guest_efer = vmx->vcpu.arch.efer; u64 ignore_bits = 0; if (!enable_ept) { /* * NX is needed to handle CR0.WP=1, CR4.SMEP=1. Testing * host CPUID is more efficient than testing guest CPUID * or CR4. Host SMEP is anyway a requirement for guest SMEP. */ if (boot_cpu_has(X86_FEATURE_SMEP)) guest_efer |= EFER_NX; else if (!(guest_efer & EFER_NX)) ignore_bits |= EFER_NX; } /* * LMA and LME handled by hardware; SCE meaningless outside long mode. */ ignore_bits |= EFER_SCE; #ifdef CONFIG_X86_64 ignore_bits |= EFER_LMA | EFER_LME; /* SCE is meaningful only in long mode on Intel */ if (guest_efer & EFER_LMA) ignore_bits &= ~(u64)EFER_SCE; #endif clear_atomic_switch_msr(vmx, MSR_EFER); /* * On EPT, we can't emulate NX, so we must switch EFER atomically. * On CPUs that support "load IA32_EFER", always switch EFER * atomically, since it's faster than switching it manually. */ if (cpu_has_load_ia32_efer || (enable_ept && ((vmx->vcpu.arch.efer ^ host_efer) & EFER_NX))) { if (!(guest_efer & EFER_LMA)) guest_efer &= ~EFER_LME; if (guest_efer != host_efer) add_atomic_switch_msr(vmx, MSR_EFER, guest_efer, host_efer); return false; } else { guest_efer &= ~ignore_bits; guest_efer |= host_efer & ignore_bits; vmx->guest_msrs[efer_offset].data = guest_efer; vmx->guest_msrs[efer_offset].mask = ~ignore_bits; return true; } } static unsigned long segment_base(u16 selector) { struct desc_ptr *gdt = this_cpu_ptr(&host_gdt); struct desc_struct *d; unsigned long table_base; unsigned long v; if (!(selector & ~3)) return 0; table_base = gdt->address; if (selector & 4) { /* from ldt */ u16 ldt_selector = kvm_read_ldt(); if (!(ldt_selector & ~3)) return 0; table_base = segment_base(ldt_selector); } d = (struct desc_struct *)(table_base + (selector & ~7)); v = get_desc_base(d); #ifdef CONFIG_X86_64 if (d->s == 0 && (d->type == 2 || d->type == 9 || d->type == 11)) v |= ((unsigned long)((struct ldttss_desc64 *)d)->base3) << 32; #endif return v; } static inline unsigned long kvm_read_tr_base(void) { u16 tr; asm("str %0" : "=g"(tr)); return segment_base(tr); } static void vmx_save_host_state(struct kvm_vcpu *vcpu) { struct vcpu_vmx *vmx = to_vmx(vcpu); int i; if (vmx->host_state.loaded) return; vmx->host_state.loaded = 1; /* * Set host fs and gs selectors. Unfortunately, 22.2.3 does not * allow segment selectors with cpl > 0 or ti == 1. */ vmx->host_state.ldt_sel = kvm_read_ldt(); vmx->host_state.gs_ldt_reload_needed = vmx->host_state.ldt_sel; savesegment(fs, vmx->host_state.fs_sel); if (!(vmx->host_state.fs_sel & 7)) { vmcs_write16(HOST_FS_SELECTOR, vmx->host_state.fs_sel); vmx->host_state.fs_reload_needed = 0; } else { vmcs_write16(HOST_FS_SELECTOR, 0); vmx->host_state.fs_reload_needed = 1; } savesegment(gs, vmx->host_state.gs_sel); if (!(vmx->host_state.gs_sel & 7)) vmcs_write16(HOST_GS_SELECTOR, vmx->host_state.gs_sel); else { vmcs_write16(HOST_GS_SELECTOR, 0); vmx->host_state.gs_ldt_reload_needed = 1; } #ifdef CONFIG_X86_64 savesegment(ds, vmx->host_state.ds_sel); savesegment(es, vmx->host_state.es_sel); #endif #ifdef CONFIG_X86_64 vmcs_writel(HOST_FS_BASE, read_msr(MSR_FS_BASE)); vmcs_writel(HOST_GS_BASE, read_msr(MSR_GS_BASE)); #else vmcs_writel(HOST_FS_BASE, segment_base(vmx->host_state.fs_sel)); vmcs_writel(HOST_GS_BASE, segment_base(vmx->host_state.gs_sel)); #endif #ifdef CONFIG_X86_64 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base); if (is_long_mode(&vmx->vcpu)) wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base); #endif if (boot_cpu_has(X86_FEATURE_MPX)) rdmsrl(MSR_IA32_BNDCFGS, vmx->host_state.msr_host_bndcfgs); for (i = 0; i < vmx->save_nmsrs; ++i) kvm_set_shared_msr(vmx->guest_msrs[i].index, vmx->guest_msrs[i].data, vmx->guest_msrs[i].mask); } static void __vmx_load_host_state(struct vcpu_vmx *vmx) { if (!vmx->host_state.loaded) return; ++vmx->vcpu.stat.host_state_reload; vmx->host_state.loaded = 0; #ifdef CONFIG_X86_64 if (is_long_mode(&vmx->vcpu)) rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base); #endif if (vmx->host_state.gs_ldt_reload_needed) { kvm_load_ldt(vmx->host_state.ldt_sel); #ifdef CONFIG_X86_64 load_gs_index(vmx->host_state.gs_sel); #else loadsegment(gs, vmx->host_state.gs_sel); #endif } if (vmx->host_state.fs_reload_needed) loadsegment(fs, vmx->host_state.fs_sel); #ifdef CONFIG_X86_64 if (unlikely(vmx->host_state.ds_sel | vmx->host_state.es_sel)) { loadsegment(ds, vmx->host_state.ds_sel); loadsegment(es, vmx->host_state.es_sel); } #endif reload_tss(); #ifdef CONFIG_X86_64 wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base); #endif if (vmx->host_state.msr_host_bndcfgs) wrmsrl(MSR_IA32_BNDCFGS, vmx->host_state.msr_host_bndcfgs); /* * If the FPU is not active (through the host task or * the guest vcpu), then restore the cr0.TS bit. */ if (!fpregs_active() && !vmx->vcpu.guest_fpu_loaded) stts(); load_gdt(this_cpu_ptr(&host_gdt)); } static void vmx_load_host_state(struct vcpu_vmx *vmx) { preempt_disable(); __vmx_load_host_state(vmx); preempt_enable(); } static void vmx_vcpu_pi_load(struct kvm_vcpu *vcpu, int cpu) { struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu); struct pi_desc old, new; unsigned int dest; if (!kvm_arch_has_assigned_device(vcpu->kvm) || !irq_remapping_cap(IRQ_POSTING_CAP)) return; do { old.control = new.control = pi_desc->control; /* * If 'nv' field is POSTED_INTR_WAKEUP_VECTOR, there * are two possible cases: * 1. After running 'pre_block', context switch * happened. For this case, 'sn' was set in * vmx_vcpu_put(), so we need to clear it here. * 2. After running 'pre_block', we were blocked, * and woken up by some other guy. For this case, * we don't need to do anything, 'pi_post_block' * will do everything for us. However, we cannot * check whether it is case #1 or case #2 here * (maybe, not needed), so we also clear sn here, * I think it is not a big deal. */ if (pi_desc->nv != POSTED_INTR_WAKEUP_VECTOR) { if (vcpu->cpu != cpu) { dest = cpu_physical_id(cpu); if (x2apic_enabled()) new.ndst = dest; else new.ndst = (dest << 8) & 0xFF00; } /* set 'NV' to 'notification vector' */ new.nv = POSTED_INTR_VECTOR; } /* Allow posting non-urgent interrupts */ new.sn = 0; } while (cmpxchg(&pi_desc->control, old.control, new.control) != old.control); } /* * Switches to specified vcpu, until a matching vcpu_put(), but assumes * vcpu mutex is already taken. */ static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu) { struct vcpu_vmx *vmx = to_vmx(vcpu); u64 phys_addr = __pa(per_cpu(vmxarea, cpu)); if (!vmm_exclusive) kvm_cpu_vmxon(phys_addr); else if (vmx->loaded_vmcs->cpu != cpu) loaded_vmcs_clear(vmx->loaded_vmcs); if (per_cpu(current_vmcs, cpu) != vmx->loaded_vmcs->vmcs) { per_cpu(current_vmcs, cpu) = vmx->loaded_vmcs->vmcs; vmcs_load(vmx->loaded_vmcs->vmcs); } if (vmx->loaded_vmcs->cpu != cpu) { struct desc_ptr *gdt = this_cpu_ptr(&host_gdt); unsigned long sysenter_esp; kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu); local_irq_disable(); crash_disable_local_vmclear(cpu); /* * Read loaded_vmcs->cpu should be before fetching * loaded_vmcs->loaded_vmcss_on_cpu_link. * See the comments in __loaded_vmcs_clear(). */ smp_rmb(); list_add(&vmx->loaded_vmcs->loaded_vmcss_on_cpu_link, &per_cpu(loaded_vmcss_on_cpu, cpu)); crash_enable_local_vmclear(cpu); local_irq_enable(); /* * Linux uses per-cpu TSS and GDT, so set these when switching * processors. */ vmcs_writel(HOST_TR_BASE, kvm_read_tr_base()); /* 22.2.4 */ vmcs_writel(HOST_GDTR_BASE, gdt->address); /* 22.2.4 */ rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp); vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */ vmx->loaded_vmcs->cpu = cpu; } /* Setup TSC multiplier */ if (kvm_has_tsc_control && vmx->current_tsc_ratio != vcpu->arch.tsc_scaling_ratio) { vmx->current_tsc_ratio = vcpu->arch.tsc_scaling_ratio; vmcs_write64(TSC_MULTIPLIER, vmx->current_tsc_ratio); } vmx_vcpu_pi_load(vcpu, cpu); vmx->host_pkru = read_pkru(); } static void vmx_vcpu_pi_put(struct kvm_vcpu *vcpu) { struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu); if (!kvm_arch_has_assigned_device(vcpu->kvm) || !irq_remapping_cap(IRQ_POSTING_CAP)) return; /* Set SN when the vCPU is preempted */ if (vcpu->preempted) pi_set_sn(pi_desc); } static void vmx_vcpu_put(struct kvm_vcpu *vcpu) { vmx_vcpu_pi_put(vcpu); __vmx_load_host_state(to_vmx(vcpu)); if (!vmm_exclusive) { __loaded_vmcs_clear(to_vmx(vcpu)->loaded_vmcs); vcpu->cpu = -1; kvm_cpu_vmxoff(); } } static void vmx_fpu_activate(struct kvm_vcpu *vcpu) { ulong cr0; if (vcpu->fpu_active) return; vcpu->fpu_active = 1; cr0 = vmcs_readl(GUEST_CR0); cr0 &= ~(X86_CR0_TS | X86_CR0_MP); cr0 |= kvm_read_cr0_bits(vcpu, X86_CR0_TS | X86_CR0_MP); vmcs_writel(GUEST_CR0, cr0); update_exception_bitmap(vcpu); vcpu->arch.cr0_guest_owned_bits = X86_CR0_TS; if (is_guest_mode(vcpu)) vcpu->arch.cr0_guest_owned_bits &= ~get_vmcs12(vcpu)->cr0_guest_host_mask; vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits); } static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu); /* * Return the cr0 value that a nested guest would read. This is a combination * of the real cr0 used to run the guest (guest_cr0), and the bits shadowed by * its hypervisor (cr0_read_shadow). */ static inline unsigned long nested_read_cr0(struct vmcs12 *fields) { return (fields->guest_cr0 & ~fields->cr0_guest_host_mask) | (fields->cr0_read_shadow & fields->cr0_guest_host_mask); } static inline unsigned long nested_read_cr4(struct vmcs12 *fields) { return (fields->guest_cr4 & ~fields->cr4_guest_host_mask) | (fields->cr4_read_shadow & fields->cr4_guest_host_mask); } static void vmx_fpu_deactivate(struct kvm_vcpu *vcpu) { /* Note that there is no vcpu->fpu_active = 0 here. The caller must * set this *before* calling this function. */ vmx_decache_cr0_guest_bits(vcpu); vmcs_set_bits(GUEST_CR0, X86_CR0_TS | X86_CR0_MP); update_exception_bitmap(vcpu); vcpu->arch.cr0_guest_owned_bits = 0; vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits); if (is_guest_mode(vcpu)) { /* * L1's specified read shadow might not contain the TS bit, * so now that we turned on shadowing of this bit, we need to * set this bit of the shadow. Like in nested_vmx_run we need * nested_read_cr0(vmcs12), but vmcs12->guest_cr0 is not yet * up-to-date here because we just decached cr0.TS (and we'll * only update vmcs12->guest_cr0 on nested exit). */ struct vmcs12 *vmcs12 = get_vmcs12(vcpu); vmcs12->guest_cr0 = (vmcs12->guest_cr0 & ~X86_CR0_TS) | (vcpu->arch.cr0 & X86_CR0_TS); vmcs_writel(CR0_READ_SHADOW, nested_read_cr0(vmcs12)); } else vmcs_writel(CR0_READ_SHADOW, vcpu->arch.cr0); } static unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu) { unsigned long rflags, save_rflags; if (!test_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail)) { __set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail); rflags = vmcs_readl(GUEST_RFLAGS); if (to_vmx(vcpu)->rmode.vm86_active) { rflags &= RMODE_GUEST_OWNED_EFLAGS_BITS; save_rflags = to_vmx(vcpu)->rmode.save_rflags; rflags |= save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS; } to_vmx(vcpu)->rflags = rflags; } return to_vmx(vcpu)->rflags; } static void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags) { __set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail); to_vmx(vcpu)->rflags = rflags; if (to_vmx(vcpu)->rmode.vm86_active) { to_vmx(vcpu)->rmode.save_rflags = rflags; rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM; } vmcs_writel(GUEST_RFLAGS, rflags); } static u32 vmx_get_pkru(struct kvm_vcpu *vcpu) { return to_vmx(vcpu)->guest_pkru; } static u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu) { u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO); int ret = 0; if (interruptibility & GUEST_INTR_STATE_STI) ret |= KVM_X86_SHADOW_INT_STI; if (interruptibility & GUEST_INTR_STATE_MOV_SS) ret |= KVM_X86_SHADOW_INT_MOV_SS; return ret; } static void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask) { u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO); u32 interruptibility = interruptibility_old; interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS); if (mask & KVM_X86_SHADOW_INT_MOV_SS) interruptibility |= GUEST_INTR_STATE_MOV_SS; else if (mask & KVM_X86_SHADOW_INT_STI) interruptibility |= GUEST_INTR_STATE_STI; if ((interruptibility != interruptibility_old)) vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility); } static void skip_emulated_instruction(struct kvm_vcpu *vcpu) { unsigned long rip; rip = kvm_rip_read(vcpu); rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN); kvm_rip_write(vcpu, rip); /* skipping an emulated instruction also counts */ vmx_set_interrupt_shadow(vcpu, 0); } /* * KVM wants to inject page-faults which it got to the guest. This function * checks whether in a nested guest, we need to inject them to L1 or L2. */ static int nested_vmx_check_exception(struct kvm_vcpu *vcpu, unsigned nr) { struct vmcs12 *vmcs12 = get_vmcs12(vcpu); if (!(vmcs12->exception_bitmap & (1u << nr))) return 0; nested_vmx_vmexit(vcpu, to_vmx(vcpu)->exit_reason, vmcs_read32(VM_EXIT_INTR_INFO), vmcs_readl(EXIT_QUALIFICATION)); return 1; } static void vmx_queue_exception(struct kvm_vcpu *vcpu, unsigned nr, bool has_error_code, u32 error_code, bool reinject) { struct vcpu_vmx *vmx = to_vmx(vcpu); u32 intr_info = nr | INTR_INFO_VALID_MASK; if (!reinject && is_guest_mode(vcpu) && nested_vmx_check_exception(vcpu, nr)) return; if (has_error_code) { vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code); intr_info |= INTR_INFO_DELIVER_CODE_MASK; } if (vmx->rmode.vm86_active) { int inc_eip = 0; if (kvm_exception_is_soft(nr)) inc_eip = vcpu->arch.event_exit_inst_len; if (kvm_inject_realmode_interrupt(vcpu, nr, inc_eip) != EMULATE_DONE) kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); return; } if (kvm_exception_is_soft(nr)) { vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, vmx->vcpu.arch.event_exit_inst_len); intr_info |= INTR_TYPE_SOFT_EXCEPTION; } else intr_info |= INTR_TYPE_HARD_EXCEPTION; vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info); } static bool vmx_rdtscp_supported(void) { return cpu_has_vmx_rdtscp(); } static bool vmx_invpcid_supported(void) { return cpu_has_vmx_invpcid() && enable_ept; } /* * Swap MSR entry in host/guest MSR entry array. */ static void move_msr_up(struct vcpu_vmx *vmx, int from, int to) { struct shared_msr_entry tmp; tmp = vmx->guest_msrs[to]; vmx->guest_msrs[to] = vmx->guest_msrs[from]; vmx->guest_msrs[from] = tmp; } static void vmx_set_msr_bitmap(struct kvm_vcpu *vcpu) { unsigned long *msr_bitmap; if (is_guest_mode(vcpu)) msr_bitmap = vmx_msr_bitmap_nested; else if (cpu_has_secondary_exec_ctrls() && (vmcs_read32(SECONDARY_VM_EXEC_CONTROL) & SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE)) { if (is_long_mode(vcpu)) msr_bitmap = vmx_msr_bitmap_longmode_x2apic; else msr_bitmap = vmx_msr_bitmap_legacy_x2apic; } else { if (is_long_mode(vcpu)) msr_bitmap = vmx_msr_bitmap_longmode; else msr_bitmap = vmx_msr_bitmap_legacy; } vmcs_write64(MSR_BITMAP, __pa(msr_bitmap)); } /* * Set up the vmcs to automatically save and restore system * msrs. Don't touch the 64-bit msrs if the guest is in legacy * mode, as fiddling with msrs is very expensive. */ static void setup_msrs(struct vcpu_vmx *vmx) { int save_nmsrs, index; save_nmsrs = 0; #ifdef CONFIG_X86_64 if (is_long_mode(&vmx->vcpu)) { index = __find_msr_index(vmx, MSR_SYSCALL_MASK); if (index >= 0) move_msr_up(vmx, index, save_nmsrs++); index = __find_msr_index(vmx, MSR_LSTAR); if (index >= 0) move_msr_up(vmx, index, save_nmsrs++); index = __find_msr_index(vmx, MSR_CSTAR); if (index >= 0) move_msr_up(vmx, index, save_nmsrs++); index = __find_msr_index(vmx, MSR_TSC_AUX); if (index >= 0 && guest_cpuid_has_rdtscp(&vmx->vcpu)) move_msr_up(vmx, index, save_nmsrs++); /* * MSR_STAR is only needed on long mode guests, and only * if efer.sce is enabled. */ index = __find_msr_index(vmx, MSR_STAR); if ((index >= 0) && (vmx->vcpu.arch.efer & EFER_SCE)) move_msr_up(vmx, index, save_nmsrs++); } #endif index = __find_msr_index(vmx, MSR_EFER); if (index >= 0 && update_transition_efer(vmx, index)) move_msr_up(vmx, index, save_nmsrs++); vmx->save_nmsrs = save_nmsrs; if (cpu_has_vmx_msr_bitmap()) vmx_set_msr_bitmap(&vmx->vcpu); } /* * reads and returns guest's timestamp counter "register" * guest_tsc = (host_tsc * tsc multiplier) >> 48 + tsc_offset * -- Intel TSC Scaling for Virtualization White Paper, sec 1.3 */ static u64 guest_read_tsc(struct kvm_vcpu *vcpu) { u64 host_tsc, tsc_offset; host_tsc = rdtsc(); tsc_offset = vmcs_read64(TSC_OFFSET); return kvm_scale_tsc(vcpu, host_tsc) + tsc_offset; } /* * Like guest_read_tsc, but always returns L1's notion of the timestamp * counter, even if a nested guest (L2) is currently running. */ static u64 vmx_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc) { u64 tsc_offset; tsc_offset = is_guest_mode(vcpu) ? to_vmx(vcpu)->nested.vmcs01_tsc_offset : vmcs_read64(TSC_OFFSET); return host_tsc + tsc_offset; } static u64 vmx_read_tsc_offset(struct kvm_vcpu *vcpu) { return vmcs_read64(TSC_OFFSET); } /* * writes 'offset' into guest's timestamp counter offset register */ static void vmx_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset) { if (is_guest_mode(vcpu)) { /* * We're here if L1 chose not to trap WRMSR to TSC. According * to the spec, this should set L1's TSC; The offset that L1 * set for L2 remains unchanged, and still needs to be added * to the newly set TSC to get L2's TSC. */ struct vmcs12 *vmcs12; to_vmx(vcpu)->nested.vmcs01_tsc_offset = offset; /* recalculate vmcs02.TSC_OFFSET: */ vmcs12 = get_vmcs12(vcpu); vmcs_write64(TSC_OFFSET, offset + (nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETING) ? vmcs12->tsc_offset : 0)); } else { trace_kvm_write_tsc_offset(vcpu->vcpu_id, vmcs_read64(TSC_OFFSET), offset); vmcs_write64(TSC_OFFSET, offset); } } static void vmx_adjust_tsc_offset_guest(struct kvm_vcpu *vcpu, s64 adjustment) { u64 offset = vmcs_read64(TSC_OFFSET); vmcs_write64(TSC_OFFSET, offset + adjustment); if (is_guest_mode(vcpu)) { /* Even when running L2, the adjustment needs to apply to L1 */ to_vmx(vcpu)->nested.vmcs01_tsc_offset += adjustment; } else trace_kvm_write_tsc_offset(vcpu->vcpu_id, offset, offset + adjustment); } static bool guest_cpuid_has_vmx(struct kvm_vcpu *vcpu) { struct kvm_cpuid_entry2 *best = kvm_find_cpuid_entry(vcpu, 1, 0); return best && (best->ecx & (1 << (X86_FEATURE_VMX & 31))); } /* * nested_vmx_allowed() checks whether a guest should be allowed to use VMX * instructions and MSRs (i.e., nested VMX). Nested VMX is disabled for * all guests if the "nested" module option is off, and can also be disabled * for a single guest by disabling its VMX cpuid bit. */ static inline bool nested_vmx_allowed(struct kvm_vcpu *vcpu) { return nested && guest_cpuid_has_vmx(vcpu); } /* * nested_vmx_setup_ctls_msrs() sets up variables containing the values to be * returned for the various VMX controls MSRs when nested VMX is enabled. * The same values should also be used to verify that vmcs12 control fields are * valid during nested entry from L1 to L2. * Each of these control msrs has a low and high 32-bit half: A low bit is on * if the corresponding bit in the (32-bit) control field *must* be on, and a * bit in the high half is on if the corresponding bit in the control field * may be on. See also vmx_control_verify(). */ static void nested_vmx_setup_ctls_msrs(struct vcpu_vmx *vmx) { /* * Note that as a general rule, the high half of the MSRs (bits in * the control fields which may be 1) should be initialized by the * intersection of the underlying hardware's MSR (i.e., features which * can be supported) and the list of features we want to expose - * because they are known to be properly supported in our code. * Also, usually, the low half of the MSRs (bits which must be 1) can * be set to 0, meaning that L1 may turn off any of these bits. The * reason is that if one of these bits is necessary, it will appear * in vmcs01 and prepare_vmcs02, when it bitwise-or's the control * fields of vmcs01 and vmcs02, will turn these bits off - and * nested_vmx_exit_handled() will not pass related exits to L1. * These rules have exceptions below. */ /* pin-based controls */ rdmsr(MSR_IA32_VMX_PINBASED_CTLS, vmx->nested.nested_vmx_pinbased_ctls_low, vmx->nested.nested_vmx_pinbased_ctls_high); vmx->nested.nested_vmx_pinbased_ctls_low |= PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR; vmx->nested.nested_vmx_pinbased_ctls_high &= PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING | PIN_BASED_VIRTUAL_NMIS; vmx->nested.nested_vmx_pinbased_ctls_high |= PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR | PIN_BASED_VMX_PREEMPTION_TIMER; if (kvm_vcpu_apicv_active(&vmx->vcpu)) vmx->nested.nested_vmx_pinbased_ctls_high |= PIN_BASED_POSTED_INTR; /* exit controls */ rdmsr(MSR_IA32_VMX_EXIT_CTLS, vmx->nested.nested_vmx_exit_ctls_low, vmx->nested.nested_vmx_exit_ctls_high); vmx->nested.nested_vmx_exit_ctls_low = VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR; vmx->nested.nested_vmx_exit_ctls_high &= #ifdef CONFIG_X86_64 VM_EXIT_HOST_ADDR_SPACE_SIZE | #endif VM_EXIT_LOAD_IA32_PAT | VM_EXIT_SAVE_IA32_PAT; vmx->nested.nested_vmx_exit_ctls_high |= VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR | VM_EXIT_LOAD_IA32_EFER | VM_EXIT_SAVE_IA32_EFER | VM_EXIT_SAVE_VMX_PREEMPTION_TIMER | VM_EXIT_ACK_INTR_ON_EXIT; if (kvm_mpx_supported()) vmx->nested.nested_vmx_exit_ctls_high |= VM_EXIT_CLEAR_BNDCFGS; /* We support free control of debug control saving. */ vmx->nested.nested_vmx_true_exit_ctls_low = vmx->nested.nested_vmx_exit_ctls_low & ~VM_EXIT_SAVE_DEBUG_CONTROLS; /* entry controls */ rdmsr(MSR_IA32_VMX_ENTRY_CTLS, vmx->nested.nested_vmx_entry_ctls_low, vmx->nested.nested_vmx_entry_ctls_high); vmx->nested.nested_vmx_entry_ctls_low = VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR; vmx->nested.nested_vmx_entry_ctls_high &= #ifdef CONFIG_X86_64 VM_ENTRY_IA32E_MODE | #endif VM_ENTRY_LOAD_IA32_PAT; vmx->nested.nested_vmx_entry_ctls_high |= (VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR | VM_ENTRY_LOAD_IA32_EFER); if (kvm_mpx_supported()) vmx->nested.nested_vmx_entry_ctls_high |= VM_ENTRY_LOAD_BNDCFGS; /* We support free control of debug control loading. */ vmx->nested.nested_vmx_true_entry_ctls_low = vmx->nested.nested_vmx_entry_ctls_low & ~VM_ENTRY_LOAD_DEBUG_CONTROLS; /* cpu-based controls */ rdmsr(MSR_IA32_VMX_PROCBASED_CTLS, vmx->nested.nested_vmx_procbased_ctls_low, vmx->nested.nested_vmx_procbased_ctls_high); vmx->nested.nested_vmx_procbased_ctls_low = CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR; vmx->nested.nested_vmx_procbased_ctls_high &= CPU_BASED_VIRTUAL_INTR_PENDING | CPU_BASED_VIRTUAL_NMI_PENDING | CPU_BASED_USE_TSC_OFFSETING | CPU_BASED_HLT_EXITING | CPU_BASED_INVLPG_EXITING | CPU_BASED_MWAIT_EXITING | CPU_BASED_CR3_LOAD_EXITING | CPU_BASED_CR3_STORE_EXITING | #ifdef CONFIG_X86_64 CPU_BASED_CR8_LOAD_EXITING | CPU_BASED_CR8_STORE_EXITING | #endif CPU_BASED_MOV_DR_EXITING | CPU_BASED_UNCOND_IO_EXITING | CPU_BASED_USE_IO_BITMAPS | CPU_BASED_MONITOR_TRAP_FLAG | CPU_BASED_MONITOR_EXITING | CPU_BASED_RDPMC_EXITING | CPU_BASED_RDTSC_EXITING | CPU_BASED_PAUSE_EXITING | CPU_BASED_TPR_SHADOW | CPU_BASED_ACTIVATE_SECONDARY_CONTROLS; /* * We can allow some features even when not supported by the * hardware. For example, L1 can specify an MSR bitmap - and we * can use it to avoid exits to L1 - even when L0 runs L2 * without MSR bitmaps. */ vmx->nested.nested_vmx_procbased_ctls_high |= CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR | CPU_BASED_USE_MSR_BITMAPS; /* We support free control of CR3 access interception. */ vmx->nested.nested_vmx_true_procbased_ctls_low = vmx->nested.nested_vmx_procbased_ctls_low & ~(CPU_BASED_CR3_LOAD_EXITING | CPU_BASED_CR3_STORE_EXITING); /* secondary cpu-based controls */ rdmsr(MSR_IA32_VMX_PROCBASED_CTLS2, vmx->nested.nested_vmx_secondary_ctls_low, vmx->nested.nested_vmx_secondary_ctls_high); vmx->nested.nested_vmx_secondary_ctls_low = 0; vmx->nested.nested_vmx_secondary_ctls_high &= SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES | SECONDARY_EXEC_RDTSCP | SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE | SECONDARY_EXEC_ENABLE_VPID | SECONDARY_EXEC_APIC_REGISTER_VIRT | SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY | SECONDARY_EXEC_WBINVD_EXITING | SECONDARY_EXEC_XSAVES | SECONDARY_EXEC_PCOMMIT; if (enable_ept) { /* nested EPT: emulate EPT also to L1 */ vmx->nested.nested_vmx_secondary_ctls_high |= SECONDARY_EXEC_ENABLE_EPT; vmx->nested.nested_vmx_ept_caps = VMX_EPT_PAGE_WALK_4_BIT | VMX_EPTP_WB_BIT | VMX_EPT_2MB_PAGE_BIT | VMX_EPT_INVEPT_BIT; if (cpu_has_vmx_ept_execute_only()) vmx->nested.nested_vmx_ept_caps |= VMX_EPT_EXECUTE_ONLY_BIT; vmx->nested.nested_vmx_ept_caps &= vmx_capability.ept; /* * For nested guests, we don't do anything specific * for single context invalidation. Hence, only advertise * support for global context invalidation. */ vmx->nested.nested_vmx_ept_caps |= VMX_EPT_EXTENT_GLOBAL_BIT; } else vmx->nested.nested_vmx_ept_caps = 0; /* * Old versions of KVM use the single-context version without * checking for support, so declare that it is supported even * though it is treated as global context. The alternative is * not failing the single-context invvpid, and it is worse. */ if (enable_vpid) vmx->nested.nested_vmx_vpid_caps = VMX_VPID_INVVPID_BIT | VMX_VPID_EXTENT_SINGLE_CONTEXT_BIT | VMX_VPID_EXTENT_GLOBAL_CONTEXT_BIT; else vmx->nested.nested_vmx_vpid_caps = 0; if (enable_unrestricted_guest) vmx->nested.nested_vmx_secondary_ctls_high |= SECONDARY_EXEC_UNRESTRICTED_GUEST; /* miscellaneous data */ rdmsr(MSR_IA32_VMX_MISC, vmx->nested.nested_vmx_misc_low, vmx->nested.nested_vmx_misc_high); vmx->nested.nested_vmx_misc_low &= VMX_MISC_SAVE_EFER_LMA; vmx->nested.nested_vmx_misc_low |= VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE | VMX_MISC_ACTIVITY_HLT; vmx->nested.nested_vmx_misc_high = 0; } static inline bool vmx_control_verify(u32 control, u32 low, u32 high) { /* * Bits 0 in high must be 0, and bits 1 in low must be 1. */ return ((control & high) | low) == control; } static inline u64 vmx_control_msr(u32 low, u32 high) { return low | ((u64)high << 32); } /* Returns 0 on success, non-0 otherwise. */ static int vmx_get_vmx_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata) { struct vcpu_vmx *vmx = to_vmx(vcpu); switch (msr_index) { case MSR_IA32_VMX_BASIC: /* * This MSR reports some information about VMX support. We * should return information about the VMX we emulate for the * guest, and the VMCS structure we give it - not about the * VMX support of the underlying hardware. */ *pdata = VMCS12_REVISION | VMX_BASIC_TRUE_CTLS | ((u64)VMCS12_SIZE << VMX_BASIC_VMCS_SIZE_SHIFT) | (VMX_BASIC_MEM_TYPE_WB << VMX_BASIC_MEM_TYPE_SHIFT); break; case MSR_IA32_VMX_TRUE_PINBASED_CTLS: case MSR_IA32_VMX_PINBASED_CTLS: *pdata = vmx_control_msr( vmx->nested.nested_vmx_pinbased_ctls_low, vmx->nested.nested_vmx_pinbased_ctls_high); break; case MSR_IA32_VMX_TRUE_PROCBASED_CTLS: *pdata = vmx_control_msr( vmx->nested.nested_vmx_true_procbased_ctls_low, vmx->nested.nested_vmx_procbased_ctls_high); break; case MSR_IA32_VMX_PROCBASED_CTLS: *pdata = vmx_control_msr( vmx->nested.nested_vmx_procbased_ctls_low, vmx->nested.nested_vmx_procbased_ctls_high); break; case MSR_IA32_VMX_TRUE_EXIT_CTLS: *pdata = vmx_control_msr( vmx->nested.nested_vmx_true_exit_ctls_low, vmx->nested.nested_vmx_exit_ctls_high); break; case MSR_IA32_VMX_EXIT_CTLS: *pdata = vmx_control_msr( vmx->nested.nested_vmx_exit_ctls_low, vmx->nested.nested_vmx_exit_ctls_high); break; case MSR_IA32_VMX_TRUE_ENTRY_CTLS: *pdata = vmx_control_msr( vmx->nested.nested_vmx_true_entry_ctls_low, vmx->nested.nested_vmx_entry_ctls_high); break; case MSR_IA32_VMX_ENTRY_CTLS: *pdata = vmx_control_msr( vmx->nested.nested_vmx_entry_ctls_low, vmx->nested.nested_vmx_entry_ctls_high); break; case MSR_IA32_VMX_MISC: *pdata = vmx_control_msr( vmx->nested.nested_vmx_misc_low, vmx->nested.nested_vmx_misc_high); break; /* * These MSRs specify bits which the guest must keep fixed (on or off) * while L1 is in VMXON mode (in L1's root mode, or running an L2). * We picked the standard core2 setting. */ #define VMXON_CR0_ALWAYSON (X86_CR0_PE | X86_CR0_PG | X86_CR0_NE) #define VMXON_CR4_ALWAYSON X86_CR4_VMXE case MSR_IA32_VMX_CR0_FIXED0: *pdata = VMXON_CR0_ALWAYSON; break; case MSR_IA32_VMX_CR0_FIXED1: *pdata = -1ULL; break; case MSR_IA32_VMX_CR4_FIXED0: *pdata = VMXON_CR4_ALWAYSON; break; case MSR_IA32_VMX_CR4_FIXED1: *pdata = -1ULL; break; case MSR_IA32_VMX_VMCS_ENUM: *pdata = 0x2e; /* highest index: VMX_PREEMPTION_TIMER_VALUE */ break; case MSR_IA32_VMX_PROCBASED_CTLS2: *pdata = vmx_control_msr( vmx->nested.nested_vmx_secondary_ctls_low, vmx->nested.nested_vmx_secondary_ctls_high); break; case MSR_IA32_VMX_EPT_VPID_CAP: /* Currently, no nested vpid support */ *pdata = vmx->nested.nested_vmx_ept_caps | ((u64)vmx->nested.nested_vmx_vpid_caps << 32); break; default: return 1; } return 0; } static inline bool vmx_feature_control_msr_valid(struct kvm_vcpu *vcpu, uint64_t val) { uint64_t valid_bits = to_vmx(vcpu)->msr_ia32_feature_control_valid_bits; return !(val & ~valid_bits); } /* * Reads an msr value (of 'msr_index') into 'pdata'. * Returns 0 on success, non-0 otherwise. * Assumes vcpu_load() was already called. */ static int vmx_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info) { struct shared_msr_entry *msr; switch (msr_info->index) { #ifdef CONFIG_X86_64 case MSR_FS_BASE: msr_info->data = vmcs_readl(GUEST_FS_BASE); break; case MSR_GS_BASE: msr_info->data = vmcs_readl(GUEST_GS_BASE); break; case MSR_KERNEL_GS_BASE: vmx_load_host_state(to_vmx(vcpu)); msr_info->data = to_vmx(vcpu)->msr_guest_kernel_gs_base; break; #endif case MSR_EFER: return kvm_get_msr_common(vcpu, msr_info); case MSR_IA32_TSC: msr_info->data = guest_read_tsc(vcpu); break; case MSR_IA32_SYSENTER_CS: msr_info->data = vmcs_read32(GUEST_SYSENTER_CS); break; case MSR_IA32_SYSENTER_EIP: msr_info->data = vmcs_readl(GUEST_SYSENTER_EIP); break; case MSR_IA32_SYSENTER_ESP: msr_info->data = vmcs_readl(GUEST_SYSENTER_ESP); break; case MSR_IA32_BNDCFGS: if (!kvm_mpx_supported()) return 1; msr_info->data = vmcs_read64(GUEST_BNDCFGS); break; case MSR_IA32_MCG_EXT_CTL: if (!msr_info->host_initiated && !(to_vmx(vcpu)->msr_ia32_feature_control & FEATURE_CONTROL_LMCE)) return 1; msr_info->data = vcpu->arch.mcg_ext_ctl; break; case MSR_IA32_FEATURE_CONTROL: msr_info->data = to_vmx(vcpu)->msr_ia32_feature_control; break; case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC: if (!nested_vmx_allowed(vcpu)) return 1; return vmx_get_vmx_msr(vcpu, msr_info->index, &msr_info->data); case MSR_IA32_XSS: if (!vmx_xsaves_supported()) return 1; msr_info->data = vcpu->arch.ia32_xss; break; case MSR_TSC_AUX: if (!guest_cpuid_has_rdtscp(vcpu) && !msr_info->host_initiated) return 1; /* Otherwise falls through */ default: msr = find_msr_entry(to_vmx(vcpu), msr_info->index); if (msr) { msr_info->data = msr->data; break; } return kvm_get_msr_common(vcpu, msr_info); } return 0; } static void vmx_leave_nested(struct kvm_vcpu *vcpu); /* * Writes msr value into into the appropriate "register". * Returns 0 on success, non-0 otherwise. * Assumes vcpu_load() was already called. */ static int vmx_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info) { struct vcpu_vmx *vmx = to_vmx(vcpu); struct shared_msr_entry *msr; int ret = 0; u32 msr_index = msr_info->index; u64 data = msr_info->data; switch (msr_index) { case MSR_EFER: ret = kvm_set_msr_common(vcpu, msr_info); break; #ifdef CONFIG_X86_64 case MSR_FS_BASE: vmx_segment_cache_clear(vmx); vmcs_writel(GUEST_FS_BASE, data); break; case MSR_GS_BASE: vmx_segment_cache_clear(vmx); vmcs_writel(GUEST_GS_BASE, data); break; case MSR_KERNEL_GS_BASE: vmx_load_host_state(vmx); vmx->msr_guest_kernel_gs_base = data; break; #endif case MSR_IA32_SYSENTER_CS: vmcs_write32(GUEST_SYSENTER_CS, data); break; case MSR_IA32_SYSENTER_EIP: vmcs_writel(GUEST_SYSENTER_EIP, data); break; case MSR_IA32_SYSENTER_ESP: vmcs_writel(GUEST_SYSENTER_ESP, data); break; case MSR_IA32_BNDCFGS: if (!kvm_mpx_supported()) return 1; vmcs_write64(GUEST_BNDCFGS, data); break; case MSR_IA32_TSC: kvm_write_tsc(vcpu, msr_info); break; case MSR_IA32_CR_PAT: if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) { if (!kvm_mtrr_valid(vcpu, MSR_IA32_CR_PAT, data)) return 1; vmcs_write64(GUEST_IA32_PAT, data); vcpu->arch.pat = data; break; } ret = kvm_set_msr_common(vcpu, msr_info); break; case MSR_IA32_TSC_ADJUST: ret = kvm_set_msr_common(vcpu, msr_info); break; case MSR_IA32_MCG_EXT_CTL: if ((!msr_info->host_initiated && !(to_vmx(vcpu)->msr_ia32_feature_control & FEATURE_CONTROL_LMCE)) || (data & ~MCG_EXT_CTL_LMCE_EN)) return 1; vcpu->arch.mcg_ext_ctl = data; break; case MSR_IA32_FEATURE_CONTROL: if (!vmx_feature_control_msr_valid(vcpu, data) || (to_vmx(vcpu)->msr_ia32_feature_control & FEATURE_CONTROL_LOCKED && !msr_info->host_initiated)) return 1; vmx->msr_ia32_feature_control = data; if (msr_info->host_initiated && data == 0) vmx_leave_nested(vcpu); break; case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC: return 1; /* they are read-only */ case MSR_IA32_XSS: if (!vmx_xsaves_supported()) return 1; /* * The only supported bit as of Skylake is bit 8, but * it is not supported on KVM. */ if (data != 0) return 1; vcpu->arch.ia32_xss = data; if (vcpu->arch.ia32_xss != host_xss) add_atomic_switch_msr(vmx, MSR_IA32_XSS, vcpu->arch.ia32_xss, host_xss); else clear_atomic_switch_msr(vmx, MSR_IA32_XSS); break; case MSR_TSC_AUX: if (!guest_cpuid_has_rdtscp(vcpu) && !msr_info->host_initiated) return 1; /* Check reserved bit, higher 32 bits should be zero */ if ((data >> 32) != 0) return 1; /* Otherwise falls through */ default: msr = find_msr_entry(vmx, msr_index); if (msr) { u64 old_msr_data = msr->data; msr->data = data; if (msr - vmx->guest_msrs < vmx->save_nmsrs) { preempt_disable(); ret = kvm_set_shared_msr(msr->index, msr->data, msr->mask); preempt_enable(); if (ret) msr->data = old_msr_data; } break; } ret = kvm_set_msr_common(vcpu, msr_info); } return ret; } static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg) { __set_bit(reg, (unsigned long *)&vcpu->arch.regs_avail); switch (reg) { case VCPU_REGS_RSP: vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP); break; case VCPU_REGS_RIP: vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP); break; case VCPU_EXREG_PDPTR: if (enable_ept) ept_save_pdptrs(vcpu); break; default: break; } } static __init int cpu_has_kvm_support(void) { return cpu_has_vmx(); } static __init int vmx_disabled_by_bios(void) { u64 msr; rdmsrl(MSR_IA32_FEATURE_CONTROL, msr); if (msr & FEATURE_CONTROL_LOCKED) { /* launched w/ TXT and VMX disabled */ if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX) && tboot_enabled()) return 1; /* launched w/o TXT and VMX only enabled w/ TXT */ if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX) && (msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX) && !tboot_enabled()) { printk(KERN_WARNING "kvm: disable TXT in the BIOS or " "activate TXT before enabling KVM\n"); return 1; } /* launched w/o TXT and VMX disabled */ if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX) && !tboot_enabled()) return 1; } return 0; } static void kvm_cpu_vmxon(u64 addr) { intel_pt_handle_vmx(1); asm volatile (ASM_VMX_VMXON_RAX : : "a"(&addr), "m"(addr) : "memory", "cc"); } static int hardware_enable(void) { int cpu = raw_smp_processor_id(); u64 phys_addr = __pa(per_cpu(vmxarea, cpu)); u64 old, test_bits; if (cr4_read_shadow() & X86_CR4_VMXE) return -EBUSY; INIT_LIST_HEAD(&per_cpu(loaded_vmcss_on_cpu, cpu)); INIT_LIST_HEAD(&per_cpu(blocked_vcpu_on_cpu, cpu)); spin_lock_init(&per_cpu(blocked_vcpu_on_cpu_lock, cpu)); /* * Now we can enable the vmclear operation in kdump * since the loaded_vmcss_on_cpu list on this cpu * has been initialized. * * Though the cpu is not in VMX operation now, there * is no problem to enable the vmclear operation * for the loaded_vmcss_on_cpu list is empty! */ crash_enable_local_vmclear(cpu); rdmsrl(MSR_IA32_FEATURE_CONTROL, old); test_bits = FEATURE_CONTROL_LOCKED; test_bits |= FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX; if (tboot_enabled()) test_bits |= FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX; if ((old & test_bits) != test_bits) { /* enable and lock */ wrmsrl(MSR_IA32_FEATURE_CONTROL, old | test_bits); } cr4_set_bits(X86_CR4_VMXE); if (vmm_exclusive) { kvm_cpu_vmxon(phys_addr); ept_sync_global(); } native_store_gdt(this_cpu_ptr(&host_gdt)); return 0; } static void vmclear_local_loaded_vmcss(void) { int cpu = raw_smp_processor_id(); struct loaded_vmcs *v, *n; list_for_each_entry_safe(v, n, &per_cpu(loaded_vmcss_on_cpu, cpu), loaded_vmcss_on_cpu_link) __loaded_vmcs_clear(v); } /* Just like cpu_vmxoff(), but with the __kvm_handle_fault_on_reboot() * tricks. */ static void kvm_cpu_vmxoff(void) { asm volatile (__ex(ASM_VMX_VMXOFF) : : : "cc"); intel_pt_handle_vmx(0); } static void hardware_disable(void) { if (vmm_exclusive) { vmclear_local_loaded_vmcss(); kvm_cpu_vmxoff(); } cr4_clear_bits(X86_CR4_VMXE); } static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt, u32 msr, u32 *result) { u32 vmx_msr_low, vmx_msr_high; u32 ctl = ctl_min | ctl_opt; rdmsr(msr, vmx_msr_low, vmx_msr_high); ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */ ctl |= vmx_msr_low; /* bit == 1 in low word ==> must be one */ /* Ensure minimum (required) set of control bits are supported. */ if (ctl_min & ~ctl) return -EIO; *result = ctl; return 0; } static __init bool allow_1_setting(u32 msr, u32 ctl) { u32 vmx_msr_low, vmx_msr_high; rdmsr(msr, vmx_msr_low, vmx_msr_high); return vmx_msr_high & ctl; } static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf) { u32 vmx_msr_low, vmx_msr_high; u32 min, opt, min2, opt2; u32 _pin_based_exec_control = 0; u32 _cpu_based_exec_control = 0; u32 _cpu_based_2nd_exec_control = 0; u32 _vmexit_control = 0; u32 _vmentry_control = 0; min = CPU_BASED_HLT_EXITING | #ifdef CONFIG_X86_64 CPU_BASED_CR8_LOAD_EXITING | CPU_BASED_CR8_STORE_EXITING | #endif CPU_BASED_CR3_LOAD_EXITING | CPU_BASED_CR3_STORE_EXITING | CPU_BASED_USE_IO_BITMAPS | CPU_BASED_MOV_DR_EXITING | CPU_BASED_USE_TSC_OFFSETING | CPU_BASED_MWAIT_EXITING | CPU_BASED_MONITOR_EXITING | CPU_BASED_INVLPG_EXITING | CPU_BASED_RDPMC_EXITING; opt = CPU_BASED_TPR_SHADOW | CPU_BASED_USE_MSR_BITMAPS | CPU_BASED_ACTIVATE_SECONDARY_CONTROLS; if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS, &_cpu_based_exec_control) < 0) return -EIO; #ifdef CONFIG_X86_64 if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW)) _cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING & ~CPU_BASED_CR8_STORE_EXITING; #endif if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) { min2 = 0; opt2 = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES | SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE | SECONDARY_EXEC_WBINVD_EXITING | SECONDARY_EXEC_ENABLE_VPID | SECONDARY_EXEC_ENABLE_EPT | SECONDARY_EXEC_UNRESTRICTED_GUEST | SECONDARY_EXEC_PAUSE_LOOP_EXITING | SECONDARY_EXEC_RDTSCP | SECONDARY_EXEC_ENABLE_INVPCID | SECONDARY_EXEC_APIC_REGISTER_VIRT | SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY | SECONDARY_EXEC_SHADOW_VMCS | SECONDARY_EXEC_XSAVES | SECONDARY_EXEC_ENABLE_PML | SECONDARY_EXEC_PCOMMIT | SECONDARY_EXEC_TSC_SCALING; if (adjust_vmx_controls(min2, opt2, MSR_IA32_VMX_PROCBASED_CTLS2, &_cpu_based_2nd_exec_control) < 0) return -EIO; } #ifndef CONFIG_X86_64 if (!(_cpu_based_2nd_exec_control & SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) _cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW; #endif if (!(_cpu_based_exec_control & CPU_BASED_TPR_SHADOW)) _cpu_based_2nd_exec_control &= ~( SECONDARY_EXEC_APIC_REGISTER_VIRT | SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE | SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY); if (_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) { /* CR3 accesses and invlpg don't need to cause VM Exits when EPT enabled */ _cpu_based_exec_control &= ~(CPU_BASED_CR3_LOAD_EXITING | CPU_BASED_CR3_STORE_EXITING | CPU_BASED_INVLPG_EXITING); rdmsr(MSR_IA32_VMX_EPT_VPID_CAP, vmx_capability.ept, vmx_capability.vpid); } min = VM_EXIT_SAVE_DEBUG_CONTROLS | VM_EXIT_ACK_INTR_ON_EXIT; #ifdef CONFIG_X86_64 min |= VM_EXIT_HOST_ADDR_SPACE_SIZE; #endif opt = VM_EXIT_SAVE_IA32_PAT | VM_EXIT_LOAD_IA32_PAT | VM_EXIT_CLEAR_BNDCFGS; if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS, &_vmexit_control) < 0) return -EIO; min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING; opt = PIN_BASED_VIRTUAL_NMIS | PIN_BASED_POSTED_INTR | PIN_BASED_VMX_PREEMPTION_TIMER; if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS, &_pin_based_exec_control) < 0) return -EIO; if (cpu_has_broken_vmx_preemption_timer()) _pin_based_exec_control &= ~PIN_BASED_VMX_PREEMPTION_TIMER; if (!(_cpu_based_2nd_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY)) _pin_based_exec_control &= ~PIN_BASED_POSTED_INTR; min = VM_ENTRY_LOAD_DEBUG_CONTROLS; opt = VM_ENTRY_LOAD_IA32_PAT | VM_ENTRY_LOAD_BNDCFGS; if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS, &_vmentry_control) < 0) return -EIO; rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high); /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */ if ((vmx_msr_high & 0x1fff) > PAGE_SIZE) return -EIO; #ifdef CONFIG_X86_64 /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */ if (vmx_msr_high & (1u<<16)) return -EIO; #endif /* Require Write-Back (WB) memory type for VMCS accesses. */ if (((vmx_msr_high >> 18) & 15) != 6) return -EIO; vmcs_conf->size = vmx_msr_high & 0x1fff; vmcs_conf->order = get_order(vmcs_config.size); vmcs_conf->revision_id = vmx_msr_low; vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control; vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control; vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control; vmcs_conf->vmexit_ctrl = _vmexit_control; vmcs_conf->vmentry_ctrl = _vmentry_control; cpu_has_load_ia32_efer = allow_1_setting(MSR_IA32_VMX_ENTRY_CTLS, VM_ENTRY_LOAD_IA32_EFER) && allow_1_setting(MSR_IA32_VMX_EXIT_CTLS, VM_EXIT_LOAD_IA32_EFER); cpu_has_load_perf_global_ctrl = allow_1_setting(MSR_IA32_VMX_ENTRY_CTLS, VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL) && allow_1_setting(MSR_IA32_VMX_EXIT_CTLS, VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL); /* * Some cpus support VM_ENTRY_(LOAD|SAVE)_IA32_PERF_GLOBAL_CTRL * but due to errata below it can't be used. Workaround is to use * msr load mechanism to switch IA32_PERF_GLOBAL_CTRL. * * VM Exit May Incorrectly Clear IA32_PERF_GLOBAL_CTRL [34:32] * * AAK155 (model 26) * AAP115 (model 30) * AAT100 (model 37) * BC86,AAY89,BD102 (model 44) * BA97 (model 46) * */ if (cpu_has_load_perf_global_ctrl && boot_cpu_data.x86 == 0x6) { switch (boot_cpu_data.x86_model) { case 26: case 30: case 37: case 44: case 46: cpu_has_load_perf_global_ctrl = false; printk_once(KERN_WARNING"kvm: VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL " "does not work properly. Using workaround\n"); break; default: break; } } if (boot_cpu_has(X86_FEATURE_XSAVES)) rdmsrl(MSR_IA32_XSS, host_xss); return 0; } static struct vmcs *alloc_vmcs_cpu(int cpu) { int node = cpu_to_node(cpu); struct page *pages; struct vmcs *vmcs; pages = __alloc_pages_node(node, GFP_KERNEL, vmcs_config.order); if (!pages) return NULL; vmcs = page_address(pages); memset(vmcs, 0, vmcs_config.size); vmcs->revision_id = vmcs_config.revision_id; /* vmcs revision id */ return vmcs; } static struct vmcs *alloc_vmcs(void) { return alloc_vmcs_cpu(raw_smp_processor_id()); } static void free_vmcs(struct vmcs *vmcs) { free_pages((unsigned long)vmcs, vmcs_config.order); } /* * Free a VMCS, but before that VMCLEAR it on the CPU where it was last loaded */ static void free_loaded_vmcs(struct loaded_vmcs *loaded_vmcs) { if (!loaded_vmcs->vmcs) return; loaded_vmcs_clear(loaded_vmcs); free_vmcs(loaded_vmcs->vmcs); loaded_vmcs->vmcs = NULL; } static void free_kvm_area(void) { int cpu; for_each_possible_cpu(cpu) { free_vmcs(per_cpu(vmxarea, cpu)); per_cpu(vmxarea, cpu) = NULL; } } static void init_vmcs_shadow_fields(void) { int i, j; /* No checks for read only fields yet */ for (i = j = 0; i < max_shadow_read_write_fields; i++) { switch (shadow_read_write_fields[i]) { case GUEST_BNDCFGS: if (!kvm_mpx_supported()) continue; break; default: break; } if (j < i) shadow_read_write_fields[j] = shadow_read_write_fields[i]; j++; } max_shadow_read_write_fields = j; /* shadowed fields guest access without vmexit */ for (i = 0; i < max_shadow_read_write_fields; i++) { clear_bit(shadow_read_write_fields[i], vmx_vmwrite_bitmap); clear_bit(shadow_read_write_fields[i], vmx_vmread_bitmap); } for (i = 0; i < max_shadow_read_only_fields; i++) clear_bit(shadow_read_only_fields[i], vmx_vmread_bitmap); } static __init int alloc_kvm_area(void) { int cpu; for_each_possible_cpu(cpu) { struct vmcs *vmcs; vmcs = alloc_vmcs_cpu(cpu); if (!vmcs) { free_kvm_area(); return -ENOMEM; } per_cpu(vmxarea, cpu) = vmcs; } return 0; } static bool emulation_required(struct kvm_vcpu *vcpu) { return emulate_invalid_guest_state && !guest_state_valid(vcpu); } static void fix_pmode_seg(struct kvm_vcpu *vcpu, int seg, struct kvm_segment *save) { if (!emulate_invalid_guest_state) { /* * CS and SS RPL should be equal during guest entry according * to VMX spec, but in reality it is not always so. Since vcpu * is in the middle of the transition from real mode to * protected mode it is safe to assume that RPL 0 is a good * default value. */ if (seg == VCPU_SREG_CS || seg == VCPU_SREG_SS) save->selector &= ~SEGMENT_RPL_MASK; save->dpl = save->selector & SEGMENT_RPL_MASK; save->s = 1; } vmx_set_segment(vcpu, save, seg); } static void enter_pmode(struct kvm_vcpu *vcpu) { unsigned long flags; struct vcpu_vmx *vmx = to_vmx(vcpu); /* * Update real mode segment cache. It may be not up-to-date if sement * register was written while vcpu was in a guest mode. */ vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES); vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS); vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS); vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS); vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS); vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS); vmx->rmode.vm86_active = 0; vmx_segment_cache_clear(vmx); vmx_set_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR); flags = vmcs_readl(GUEST_RFLAGS); flags &= RMODE_GUEST_OWNED_EFLAGS_BITS; flags |= vmx->rmode.save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS; vmcs_writel(GUEST_RFLAGS, flags); vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) | (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME)); update_exception_bitmap(vcpu); fix_pmode_seg(vcpu, VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]); fix_pmode_seg(vcpu, VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]); fix_pmode_seg(vcpu, VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]); fix_pmode_seg(vcpu, VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]); fix_pmode_seg(vcpu, VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]); fix_pmode_seg(vcpu, VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]); } static void fix_rmode_seg(int seg, struct kvm_segment *save) { const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg]; struct kvm_segment var = *save; var.dpl = 0x3; if (seg == VCPU_SREG_CS) var.type = 0x3; if (!emulate_invalid_guest_state) { var.selector = var.base >> 4; var.base = var.base & 0xffff0; var.limit = 0xffff; var.g = 0; var.db = 0; var.present = 1; var.s = 1; var.l = 0; var.unusable = 0; var.type = 0x3; var.avl = 0; if (save->base & 0xf) printk_once(KERN_WARNING "kvm: segment base is not " "paragraph aligned when entering " "protected mode (seg=%d)", seg); } vmcs_write16(sf->selector, var.selector); vmcs_write32(sf->base, var.base); vmcs_write32(sf->limit, var.limit); vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(&var)); } static void enter_rmode(struct kvm_vcpu *vcpu) { unsigned long flags; struct vcpu_vmx *vmx = to_vmx(vcpu); vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR); vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES); vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS); vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS); vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS); vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS); vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS); vmx->rmode.vm86_active = 1; /* * Very old userspace does not call KVM_SET_TSS_ADDR before entering * vcpu. Warn the user that an update is overdue. */ if (!vcpu->kvm->arch.tss_addr) printk_once(KERN_WARNING "kvm: KVM_SET_TSS_ADDR need to be " "called before entering vcpu\n"); vmx_segment_cache_clear(vmx); vmcs_writel(GUEST_TR_BASE, vcpu->kvm->arch.tss_addr); vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1); vmcs_write32(GUEST_TR_AR_BYTES, 0x008b); flags = vmcs_readl(GUEST_RFLAGS); vmx->rmode.save_rflags = flags; flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM; vmcs_writel(GUEST_RFLAGS, flags); vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME); update_exception_bitmap(vcpu); fix_rmode_seg(VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]); fix_rmode_seg(VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]); fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]); fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]); fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]); fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]); kvm_mmu_reset_context(vcpu); } static void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer) { struct vcpu_vmx *vmx = to_vmx(vcpu); struct shared_msr_entry *msr = find_msr_entry(vmx, MSR_EFER); if (!msr) return; /* * Force kernel_gs_base reloading before EFER changes, as control * of this msr depends on is_long_mode(). */ vmx_load_host_state(to_vmx(vcpu)); vcpu->arch.efer = efer; if (efer & EFER_LMA) { vm_entry_controls_setbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE); msr->data = efer; } else { vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE); msr->data = efer & ~EFER_LME; } setup_msrs(vmx); } #ifdef CONFIG_X86_64 static void enter_lmode(struct kvm_vcpu *vcpu) { u32 guest_tr_ar; vmx_segment_cache_clear(to_vmx(vcpu)); guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES); if ((guest_tr_ar & VMX_AR_TYPE_MASK) != VMX_AR_TYPE_BUSY_64_TSS) { pr_debug_ratelimited("%s: tss fixup for long mode. \n", __func__); vmcs_write32(GUEST_TR_AR_BYTES, (guest_tr_ar & ~VMX_AR_TYPE_MASK) | VMX_AR_TYPE_BUSY_64_TSS); } vmx_set_efer(vcpu, vcpu->arch.efer | EFER_LMA); } static void exit_lmode(struct kvm_vcpu *vcpu) { vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE); vmx_set_efer(vcpu, vcpu->arch.efer & ~EFER_LMA); } #endif static inline void __vmx_flush_tlb(struct kvm_vcpu *vcpu, int vpid) { vpid_sync_context(vpid); if (enable_ept) { if (!VALID_PAGE(vcpu->arch.mmu.root_hpa)) return; ept_sync_context(construct_eptp(vcpu->arch.mmu.root_hpa)); } } static void vmx_flush_tlb(struct kvm_vcpu *vcpu) { __vmx_flush_tlb(vcpu, to_vmx(vcpu)->vpid); } static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu) { ulong cr0_guest_owned_bits = vcpu->arch.cr0_guest_owned_bits; vcpu->arch.cr0 &= ~cr0_guest_owned_bits; vcpu->arch.cr0 |= vmcs_readl(GUEST_CR0) & cr0_guest_owned_bits; } static void vmx_decache_cr3(struct kvm_vcpu *vcpu) { if (enable_ept && is_paging(vcpu)) vcpu->arch.cr3 = vmcs_readl(GUEST_CR3); __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail); } static void vmx_decache_cr4_guest_bits(struct kvm_vcpu *vcpu) { ulong cr4_guest_owned_bits = vcpu->arch.cr4_guest_owned_bits; vcpu->arch.cr4 &= ~cr4_guest_owned_bits; vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & cr4_guest_owned_bits; } static void ept_load_pdptrs(struct kvm_vcpu *vcpu) { struct kvm_mmu *mmu = vcpu->arch.walk_mmu; if (!test_bit(VCPU_EXREG_PDPTR, (unsigned long *)&vcpu->arch.regs_dirty)) return; if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) { vmcs_write64(GUEST_PDPTR0, mmu->pdptrs[0]); vmcs_write64(GUEST_PDPTR1, mmu->pdptrs[1]); vmcs_write64(GUEST_PDPTR2, mmu->pdptrs[2]); vmcs_write64(GUEST_PDPTR3, mmu->pdptrs[3]); } } static void ept_save_pdptrs(struct kvm_vcpu *vcpu) { struct kvm_mmu *mmu = vcpu->arch.walk_mmu; if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) { mmu->pdptrs[0] = vmcs_read64(GUEST_PDPTR0); mmu->pdptrs[1] = vmcs_read64(GUEST_PDPTR1); mmu->pdptrs[2] = vmcs_read64(GUEST_PDPTR2); mmu->pdptrs[3] = vmcs_read64(GUEST_PDPTR3); } __set_bit(VCPU_EXREG_PDPTR, (unsigned long *)&vcpu->arch.regs_avail); __set_bit(VCPU_EXREG_PDPTR, (unsigned long *)&vcpu->arch.regs_dirty); } static int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4); static void ept_update_paging_mode_cr0(unsigned long *hw_cr0, unsigned long cr0, struct kvm_vcpu *vcpu) { if (!test_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail)) vmx_decache_cr3(vcpu); if (!(cr0 & X86_CR0_PG)) { /* From paging/starting to nonpaging */ vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) | (CPU_BASED_CR3_LOAD_EXITING | CPU_BASED_CR3_STORE_EXITING)); vcpu->arch.cr0 = cr0; vmx_set_cr4(vcpu, kvm_read_cr4(vcpu)); } else if (!is_paging(vcpu)) { /* From nonpaging to paging */ vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) & ~(CPU_BASED_CR3_LOAD_EXITING | CPU_BASED_CR3_STORE_EXITING)); vcpu->arch.cr0 = cr0; vmx_set_cr4(vcpu, kvm_read_cr4(vcpu)); } if (!(cr0 & X86_CR0_WP)) *hw_cr0 &= ~X86_CR0_WP; } static void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0) { struct vcpu_vmx *vmx = to_vmx(vcpu); unsigned long hw_cr0; hw_cr0 = (cr0 & ~KVM_GUEST_CR0_MASK); if (enable_unrestricted_guest) hw_cr0 |= KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST; else { hw_cr0 |= KVM_VM_CR0_ALWAYS_ON; if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE)) enter_pmode(vcpu); if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE)) enter_rmode(vcpu); } #ifdef CONFIG_X86_64 if (vcpu->arch.efer & EFER_LME) { if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) enter_lmode(vcpu); if (is_paging(vcpu) && !(cr0 & X86_CR0_PG)) exit_lmode(vcpu); } #endif if (enable_ept) ept_update_paging_mode_cr0(&hw_cr0, cr0, vcpu); if (!vcpu->fpu_active) hw_cr0 |= X86_CR0_TS | X86_CR0_MP; vmcs_writel(CR0_READ_SHADOW, cr0); vmcs_writel(GUEST_CR0, hw_cr0); vcpu->arch.cr0 = cr0; /* depends on vcpu->arch.cr0 to be set to a new value */ vmx->emulation_required = emulation_required(vcpu); } static u64 construct_eptp(unsigned long root_hpa) { u64 eptp; /* TODO write the value reading from MSR */ eptp = VMX_EPT_DEFAULT_MT | VMX_EPT_DEFAULT_GAW << VMX_EPT_GAW_EPTP_SHIFT; if (enable_ept_ad_bits) eptp |= VMX_EPT_AD_ENABLE_BIT; eptp |= (root_hpa & PAGE_MASK); return eptp; } static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3) { unsigned long guest_cr3; u64 eptp; guest_cr3 = cr3; if (enable_ept) { eptp = construct_eptp(cr3); vmcs_write64(EPT_POINTER, eptp); if (is_paging(vcpu) || is_guest_mode(vcpu)) guest_cr3 = kvm_read_cr3(vcpu); else guest_cr3 = vcpu->kvm->arch.ept_identity_map_addr; ept_load_pdptrs(vcpu); } vmx_flush_tlb(vcpu); vmcs_writel(GUEST_CR3, guest_cr3); } static int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) { /* * Pass through host's Machine Check Enable value to hw_cr4, which * is in force while we are in guest mode. Do not let guests control * this bit, even if host CR4.MCE == 0. */ unsigned long hw_cr4 = (cr4_read_shadow() & X86_CR4_MCE) | (cr4 & ~X86_CR4_MCE) | (to_vmx(vcpu)->rmode.vm86_active ? KVM_RMODE_VM_CR4_ALWAYS_ON : KVM_PMODE_VM_CR4_ALWAYS_ON); if (cr4 & X86_CR4_VMXE) { /* * To use VMXON (and later other VMX instructions), a guest * must first be able to turn on cr4.VMXE (see handle_vmon()). * So basically the check on whether to allow nested VMX * is here. */ if (!nested_vmx_allowed(vcpu)) return 1; } if (to_vmx(vcpu)->nested.vmxon && ((cr4 & VMXON_CR4_ALWAYSON) != VMXON_CR4_ALWAYSON)) return 1; vcpu->arch.cr4 = cr4; if (enable_ept) { if (!is_paging(vcpu)) { hw_cr4 &= ~X86_CR4_PAE; hw_cr4 |= X86_CR4_PSE; } else if (!(cr4 & X86_CR4_PAE)) { hw_cr4 &= ~X86_CR4_PAE; } } if (!enable_unrestricted_guest && !is_paging(vcpu)) /* * SMEP/SMAP/PKU is disabled if CPU is in non-paging mode in * hardware. To emulate this behavior, SMEP/SMAP/PKU needs * to be manually disabled when guest switches to non-paging * mode. * * If !enable_unrestricted_guest, the CPU is always running * with CR0.PG=1 and CR4 needs to be modified. * If enable_unrestricted_guest, the CPU automatically * disables SMEP/SMAP/PKU when the guest sets CR0.PG=0. */ hw_cr4 &= ~(X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE); vmcs_writel(CR4_READ_SHADOW, cr4); vmcs_writel(GUEST_CR4, hw_cr4); return 0; } static void vmx_get_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg) { struct vcpu_vmx *vmx = to_vmx(vcpu); u32 ar; if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) { *var = vmx->rmode.segs[seg]; if (seg == VCPU_SREG_TR || var->selector == vmx_read_guest_seg_selector(vmx, seg)) return; var->base = vmx_read_guest_seg_base(vmx, seg); var->selector = vmx_read_guest_seg_selector(vmx, seg); return; } var->base = vmx_read_guest_seg_base(vmx, seg); var->limit = vmx_read_guest_seg_limit(vmx, seg); var->selector = vmx_read_guest_seg_selector(vmx, seg); ar = vmx_read_guest_seg_ar(vmx, seg); var->unusable = (ar >> 16) & 1; var->type = ar & 15; var->s = (ar >> 4) & 1; var->dpl = (ar >> 5) & 3; /* * Some userspaces do not preserve unusable property. Since usable * segment has to be present according to VMX spec we can use present * property to amend userspace bug by making unusable segment always * nonpresent. vmx_segment_access_rights() already marks nonpresent * segment as unusable. */ var->present = !var->unusable; var->avl = (ar >> 12) & 1; var->l = (ar >> 13) & 1; var->db = (ar >> 14) & 1; var->g = (ar >> 15) & 1; } static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg) { struct kvm_segment s; if (to_vmx(vcpu)->rmode.vm86_active) { vmx_get_segment(vcpu, &s, seg); return s.base; } return vmx_read_guest_seg_base(to_vmx(vcpu), seg); } static int vmx_get_cpl(struct kvm_vcpu *vcpu) { struct vcpu_vmx *vmx = to_vmx(vcpu); if (unlikely(vmx->rmode.vm86_active)) return 0; else { int ar = vmx_read_guest_seg_ar(vmx, VCPU_SREG_SS); return VMX_AR_DPL(ar); } } static u32 vmx_segment_access_rights(struct kvm_segment *var) { u32 ar; if (var->unusable || !var->present) ar = 1 << 16; else { ar = var->type & 15; ar |= (var->s & 1) << 4; ar |= (var->dpl & 3) << 5; ar |= (var->present & 1) << 7; ar |= (var->avl & 1) << 12; ar |= (var->l & 1) << 13; ar |= (var->db & 1) << 14; ar |= (var->g & 1) << 15; } return ar; } static void vmx_set_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg) { struct vcpu_vmx *vmx = to_vmx(vcpu); const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg]; vmx_segment_cache_clear(vmx); if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) { vmx->rmode.segs[seg] = *var; if (seg == VCPU_SREG_TR) vmcs_write16(sf->selector, var->selector); else if (var->s) fix_rmode_seg(seg, &vmx->rmode.segs[seg]); goto out; } vmcs_writel(sf->base, var->base); vmcs_write32(sf->limit, var->limit); vmcs_write16(sf->selector, var->selector); /* * Fix the "Accessed" bit in AR field of segment registers for older * qemu binaries. * IA32 arch specifies that at the time of processor reset the * "Accessed" bit in the AR field of segment registers is 1. And qemu * is setting it to 0 in the userland code. This causes invalid guest * state vmexit when "unrestricted guest" mode is turned on. * Fix for this setup issue in cpu_reset is being pushed in the qemu * tree. Newer qemu binaries with that qemu fix would not need this * kvm hack. */ if (enable_unrestricted_guest && (seg != VCPU_SREG_LDTR)) var->type |= 0x1; /* Accessed */ vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(var)); out: vmx->emulation_required = emulation_required(vcpu); } static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l) { u32 ar = vmx_read_guest_seg_ar(to_vmx(vcpu), VCPU_SREG_CS); *db = (ar >> 14) & 1; *l = (ar >> 13) & 1; } static void vmx_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt) { dt->size = vmcs_read32(GUEST_IDTR_LIMIT); dt->address = vmcs_readl(GUEST_IDTR_BASE); } static void vmx_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt) { vmcs_write32(GUEST_IDTR_LIMIT, dt->size); vmcs_writel(GUEST_IDTR_BASE, dt->address); } static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt) { dt->size = vmcs_read32(GUEST_GDTR_LIMIT); dt->address = vmcs_readl(GUEST_GDTR_BASE); } static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt) { vmcs_write32(GUEST_GDTR_LIMIT, dt->size); vmcs_writel(GUEST_GDTR_BASE, dt->address); } static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg) { struct kvm_segment var; u32 ar; vmx_get_segment(vcpu, &var, seg); var.dpl = 0x3; if (seg == VCPU_SREG_CS) var.type = 0x3; ar = vmx_segment_access_rights(&var); if (var.base != (var.selector << 4)) return false; if (var.limit != 0xffff) return false; if (ar != 0xf3) return false; return true; } static bool code_segment_valid(struct kvm_vcpu *vcpu) { struct kvm_segment cs; unsigned int cs_rpl; vmx_get_segment(vcpu, &cs, VCPU_SREG_CS); cs_rpl = cs.selector & SEGMENT_RPL_MASK; if (cs.unusable) return false; if (~cs.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_ACCESSES_MASK)) return false; if (!cs.s) return false; if (cs.type & VMX_AR_TYPE_WRITEABLE_MASK) { if (cs.dpl > cs_rpl) return false; } else { if (cs.dpl != cs_rpl) return false; } if (!cs.present) return false; /* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */ return true; } static bool stack_segment_valid(struct kvm_vcpu *vcpu) { struct kvm_segment ss; unsigned int ss_rpl; vmx_get_segment(vcpu, &ss, VCPU_SREG_SS); ss_rpl = ss.selector & SEGMENT_RPL_MASK; if (ss.unusable) return true; if (ss.type != 3 && ss.type != 7) return false; if (!ss.s) return false; if (ss.dpl != ss_rpl) /* DPL != RPL */ return false; if (!ss.present) return false; return true; } static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg) { struct kvm_segment var; unsigned int rpl; vmx_get_segment(vcpu, &var, seg); rpl = var.selector & SEGMENT_RPL_MASK; if (var.unusable) return true; if (!var.s) return false; if (!var.present) return false; if (~var.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_WRITEABLE_MASK)) { if (var.dpl < rpl) /* DPL < RPL */ return false; } /* TODO: Add other members to kvm_segment_field to allow checking for other access * rights flags */ return true; } static bool tr_valid(struct kvm_vcpu *vcpu) { struct kvm_segment tr; vmx_get_segment(vcpu, &tr, VCPU_SREG_TR); if (tr.unusable) return false; if (tr.selector & SEGMENT_TI_MASK) /* TI = 1 */ return false; if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */ return false; if (!tr.present) return false; return true; } static bool ldtr_valid(struct kvm_vcpu *vcpu) { struct kvm_segment ldtr; vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR); if (ldtr.unusable) return true; if (ldtr.selector & SEGMENT_TI_MASK) /* TI = 1 */ return false; if (ldtr.type != 2) return false; if (!ldtr.present) return false; return true; } static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu) { struct kvm_segment cs, ss; vmx_get_segment(vcpu, &cs, VCPU_SREG_CS); vmx_get_segment(vcpu, &ss, VCPU_SREG_SS); return ((cs.selector & SEGMENT_RPL_MASK) == (ss.selector & SEGMENT_RPL_MASK)); } /* * Check if guest state is valid. Returns true if valid, false if * not. * We assume that registers are always usable */ static bool guest_state_valid(struct kvm_vcpu *vcpu) { if (enable_unrestricted_guest) return true; /* real mode guest state checks */ if (!is_protmode(vcpu) || (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) { if (!rmode_segment_valid(vcpu, VCPU_SREG_CS)) return false; if (!rmode_segment_valid(vcpu, VCPU_SREG_SS)) return false; if (!rmode_segment_valid(vcpu, VCPU_SREG_DS)) return false; if (!rmode_segment_valid(vcpu, VCPU_SREG_ES)) return false; if (!rmode_segment_valid(vcpu, VCPU_SREG_FS)) return false; if (!rmode_segment_valid(vcpu, VCPU_SREG_GS)) return false; } else { /* protected mode guest state checks */ if (!cs_ss_rpl_check(vcpu)) return false; if (!code_segment_valid(vcpu)) return false; if (!stack_segment_valid(vcpu)) return false; if (!data_segment_valid(vcpu, VCPU_SREG_DS)) return false; if (!data_segment_valid(vcpu, VCPU_SREG_ES)) return false; if (!data_segment_valid(vcpu, VCPU_SREG_FS)) return false; if (!data_segment_valid(vcpu, VCPU_SREG_GS)) return false; if (!tr_valid(vcpu)) return false; if (!ldtr_valid(vcpu)) return false; } /* TODO: * - Add checks on RIP * - Add checks on RFLAGS */ return true; } static int init_rmode_tss(struct kvm *kvm) { gfn_t fn; u16 data = 0; int idx, r; idx = srcu_read_lock(&kvm->srcu); fn = kvm->arch.tss_addr >> PAGE_SHIFT; r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE); if (r < 0) goto out; data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE; r = kvm_write_guest_page(kvm, fn++, &data, TSS_IOPB_BASE_OFFSET, sizeof(u16)); if (r < 0) goto out; r = kvm_clear_guest_page(kvm, fn++, 0, PAGE_SIZE); if (r < 0) goto out; r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE); if (r < 0) goto out; data = ~0; r = kvm_write_guest_page(kvm, fn, &data, RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1, sizeof(u8)); out: srcu_read_unlock(&kvm->srcu, idx); return r; } static int init_rmode_identity_map(struct kvm *kvm) { int i, idx, r = 0; kvm_pfn_t identity_map_pfn; u32 tmp; if (!enable_ept) return 0; /* Protect kvm->arch.ept_identity_pagetable_done. */ mutex_lock(&kvm->slots_lock); if (likely(kvm->arch.ept_identity_pagetable_done)) goto out2; identity_map_pfn = kvm->arch.ept_identity_map_addr >> PAGE_SHIFT; r = alloc_identity_pagetable(kvm); if (r < 0) goto out2; idx = srcu_read_lock(&kvm->srcu); r = kvm_clear_guest_page(kvm, identity_map_pfn, 0, PAGE_SIZE); if (r < 0) goto out; /* Set up identity-mapping pagetable for EPT in real mode */ for (i = 0; i < PT32_ENT_PER_PAGE; i++) { tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER | _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE); r = kvm_write_guest_page(kvm, identity_map_pfn, &tmp, i * sizeof(tmp), sizeof(tmp)); if (r < 0) goto out; } kvm->arch.ept_identity_pagetable_done = true; out: srcu_read_unlock(&kvm->srcu, idx); out2: mutex_unlock(&kvm->slots_lock); return r; } static void seg_setup(int seg) { const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg]; unsigned int ar; vmcs_write16(sf->selector, 0); vmcs_writel(sf->base, 0); vmcs_write32(sf->limit, 0xffff); ar = 0x93; if (seg == VCPU_SREG_CS) ar |= 0x08; /* code segment */ vmcs_write32(sf->ar_bytes, ar); } static int alloc_apic_access_page(struct kvm *kvm) { struct page *page; int r = 0; mutex_lock(&kvm->slots_lock); if (kvm->arch.apic_access_page_done) goto out; r = __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT, APIC_DEFAULT_PHYS_BASE, PAGE_SIZE); if (r) goto out; page = gfn_to_page(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT); if (is_error_page(page)) { r = -EFAULT; goto out; } /* * Do not pin the page in memory, so that memory hot-unplug * is able to migrate it. */ put_page(page); kvm->arch.apic_access_page_done = true; out: mutex_unlock(&kvm->slots_lock); return r; } static int alloc_identity_pagetable(struct kvm *kvm) { /* Called with kvm->slots_lock held. */ int r = 0; BUG_ON(kvm->arch.ept_identity_pagetable_done); r = __x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT, kvm->arch.ept_identity_map_addr, PAGE_SIZE); return r; } static int allocate_vpid(void) { int vpid; if (!enable_vpid) return 0; spin_lock(&vmx_vpid_lock); vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS); if (vpid < VMX_NR_VPIDS) __set_bit(vpid, vmx_vpid_bitmap); else vpid = 0; spin_unlock(&vmx_vpid_lock); return vpid; } static void free_vpid(int vpid) { if (!enable_vpid || vpid == 0) return; spin_lock(&vmx_vpid_lock); __clear_bit(vpid, vmx_vpid_bitmap); spin_unlock(&vmx_vpid_lock); } #define MSR_TYPE_R 1 #define MSR_TYPE_W 2 static void __vmx_disable_intercept_for_msr(unsigned long *msr_bitmap, u32 msr, int type) { int f = sizeof(unsigned long); if (!cpu_has_vmx_msr_bitmap()) return; /* * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals * have the write-low and read-high bitmap offsets the wrong way round. * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff. */ if (msr <= 0x1fff) { if (type & MSR_TYPE_R) /* read-low */ __clear_bit(msr, msr_bitmap + 0x000 / f); if (type & MSR_TYPE_W) /* write-low */ __clear_bit(msr, msr_bitmap + 0x800 / f); } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) { msr &= 0x1fff; if (type & MSR_TYPE_R) /* read-high */ __clear_bit(msr, msr_bitmap + 0x400 / f); if (type & MSR_TYPE_W) /* write-high */ __clear_bit(msr, msr_bitmap + 0xc00 / f); } } static void __vmx_enable_intercept_for_msr(unsigned long *msr_bitmap, u32 msr, int type) { int f = sizeof(unsigned long); if (!cpu_has_vmx_msr_bitmap()) return; /* * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals * have the write-low and read-high bitmap offsets the wrong way round. * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff. */ if (msr <= 0x1fff) { if (type & MSR_TYPE_R) /* read-low */ __set_bit(msr, msr_bitmap + 0x000 / f); if (type & MSR_TYPE_W) /* write-low */ __set_bit(msr, msr_bitmap + 0x800 / f); } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) { msr &= 0x1fff; if (type & MSR_TYPE_R) /* read-high */ __set_bit(msr, msr_bitmap + 0x400 / f); if (type & MSR_TYPE_W) /* write-high */ __set_bit(msr, msr_bitmap + 0xc00 / f); } } /* * If a msr is allowed by L0, we should check whether it is allowed by L1. * The corresponding bit will be cleared unless both of L0 and L1 allow it. */ static void nested_vmx_disable_intercept_for_msr(unsigned long *msr_bitmap_l1, unsigned long *msr_bitmap_nested, u32 msr, int type) { int f = sizeof(unsigned long); if (!cpu_has_vmx_msr_bitmap()) { WARN_ON(1); return; } /* * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals * have the write-low and read-high bitmap offsets the wrong way round. * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff. */ if (msr <= 0x1fff) { if (type & MSR_TYPE_R && !test_bit(msr, msr_bitmap_l1 + 0x000 / f)) /* read-low */ __clear_bit(msr, msr_bitmap_nested + 0x000 / f); if (type & MSR_TYPE_W && !test_bit(msr, msr_bitmap_l1 + 0x800 / f)) /* write-low */ __clear_bit(msr, msr_bitmap_nested + 0x800 / f); } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) { msr &= 0x1fff; if (type & MSR_TYPE_R && !test_bit(msr, msr_bitmap_l1 + 0x400 / f)) /* read-high */ __clear_bit(msr, msr_bitmap_nested + 0x400 / f); if (type & MSR_TYPE_W && !test_bit(msr, msr_bitmap_l1 + 0xc00 / f)) /* write-high */ __clear_bit(msr, msr_bitmap_nested + 0xc00 / f); } } static void vmx_disable_intercept_for_msr(u32 msr, bool longmode_only) { if (!longmode_only) __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy, msr, MSR_TYPE_R | MSR_TYPE_W); __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode, msr, MSR_TYPE_R | MSR_TYPE_W); } static void vmx_enable_intercept_msr_read_x2apic(u32 msr) { __vmx_enable_intercept_for_msr(vmx_msr_bitmap_legacy_x2apic, msr, MSR_TYPE_R); __vmx_enable_intercept_for_msr(vmx_msr_bitmap_longmode_x2apic, msr, MSR_TYPE_R); } static void vmx_disable_intercept_msr_read_x2apic(u32 msr) { __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy_x2apic, msr, MSR_TYPE_R); __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode_x2apic, msr, MSR_TYPE_R); } static void vmx_disable_intercept_msr_write_x2apic(u32 msr) { __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy_x2apic, msr, MSR_TYPE_W); __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode_x2apic, msr, MSR_TYPE_W); } static bool vmx_get_enable_apicv(void) { return enable_apicv; } static int vmx_complete_nested_posted_interrupt(struct kvm_vcpu *vcpu) { struct vcpu_vmx *vmx = to_vmx(vcpu); int max_irr; void *vapic_page; u16 status; if (vmx->nested.pi_desc && vmx->nested.pi_pending) { vmx->nested.pi_pending = false; if (!pi_test_and_clear_on(vmx->nested.pi_desc)) return 0; max_irr = find_last_bit( (unsigned long *)vmx->nested.pi_desc->pir, 256); if (max_irr == 256) return 0; vapic_page = kmap(vmx->nested.virtual_apic_page); if (!vapic_page) { WARN_ON(1); return -ENOMEM; } __kvm_apic_update_irr(vmx->nested.pi_desc->pir, vapic_page); kunmap(vmx->nested.virtual_apic_page); status = vmcs_read16(GUEST_INTR_STATUS); if ((u8)max_irr > ((u8)status & 0xff)) { status &= ~0xff; status |= (u8)max_irr; vmcs_write16(GUEST_INTR_STATUS, status); } } return 0; } static inline bool kvm_vcpu_trigger_posted_interrupt(struct kvm_vcpu *vcpu) { #ifdef CONFIG_SMP if (vcpu->mode == IN_GUEST_MODE) { struct vcpu_vmx *vmx = to_vmx(vcpu); /* * Currently, we don't support urgent interrupt, * all interrupts are recognized as non-urgent * interrupt, so we cannot post interrupts when * 'SN' is set. * * If the vcpu is in guest mode, it means it is * running instead of being scheduled out and * waiting in the run queue, and that's the only * case when 'SN' is set currently, warning if * 'SN' is set. */ WARN_ON_ONCE(pi_test_sn(&vmx->pi_desc)); apic->send_IPI_mask(get_cpu_mask(vcpu->cpu), POSTED_INTR_VECTOR); return true; } #endif return false; } static int vmx_deliver_nested_posted_interrupt(struct kvm_vcpu *vcpu, int vector) { struct vcpu_vmx *vmx = to_vmx(vcpu); if (is_guest_mode(vcpu) && vector == vmx->nested.posted_intr_nv) { /* the PIR and ON have been set by L1. */ kvm_vcpu_trigger_posted_interrupt(vcpu); /* * If a posted intr is not recognized by hardware, * we will accomplish it in the next vmentry. */ vmx->nested.pi_pending = true; kvm_make_request(KVM_REQ_EVENT, vcpu); return 0; } return -1; } /* * Send interrupt to vcpu via posted interrupt way. * 1. If target vcpu is running(non-root mode), send posted interrupt * notification to vcpu and hardware will sync PIR to vIRR atomically. * 2. If target vcpu isn't running(root mode), kick it to pick up the * interrupt from PIR in next vmentry. */ static void vmx_deliver_posted_interrupt(struct kvm_vcpu *vcpu, int vector) { struct vcpu_vmx *vmx = to_vmx(vcpu); int r; r = vmx_deliver_nested_posted_interrupt(vcpu, vector); if (!r) return; if (pi_test_and_set_pir(vector, &vmx->pi_desc)) return; r = pi_test_and_set_on(&vmx->pi_desc); kvm_make_request(KVM_REQ_EVENT, vcpu); if (r || !kvm_vcpu_trigger_posted_interrupt(vcpu)) kvm_vcpu_kick(vcpu); } static void vmx_sync_pir_to_irr(struct kvm_vcpu *vcpu) { struct vcpu_vmx *vmx = to_vmx(vcpu); if (!pi_test_and_clear_on(&vmx->pi_desc)) return; kvm_apic_update_irr(vcpu, vmx->pi_desc.pir); } /* * Set up the vmcs's constant host-state fields, i.e., host-state fields that * will not change in the lifetime of the guest. * Note that host-state that does change is set elsewhere. E.g., host-state * that is set differently for each CPU is set in vmx_vcpu_load(), not here. */ static void vmx_set_constant_host_state(struct vcpu_vmx *vmx) { u32 low32, high32; unsigned long tmpl; struct desc_ptr dt; unsigned long cr4; vmcs_writel(HOST_CR0, read_cr0() & ~X86_CR0_TS); /* 22.2.3 */ vmcs_writel(HOST_CR3, read_cr3()); /* 22.2.3 FIXME: shadow tables */ /* Save the most likely value for this task's CR4 in the VMCS. */ cr4 = cr4_read_shadow(); vmcs_writel(HOST_CR4, cr4); /* 22.2.3, 22.2.5 */ vmx->host_state.vmcs_host_cr4 = cr4; vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS); /* 22.2.4 */ #ifdef CONFIG_X86_64 /* * Load null selectors, so we can avoid reloading them in * __vmx_load_host_state(), in case userspace uses the null selectors * too (the expected case). */ vmcs_write16(HOST_DS_SELECTOR, 0); vmcs_write16(HOST_ES_SELECTOR, 0); #else vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS); /* 22.2.4 */ vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS); /* 22.2.4 */ #endif vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS); /* 22.2.4 */ vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8); /* 22.2.4 */ native_store_idt(&dt); vmcs_writel(HOST_IDTR_BASE, dt.address); /* 22.2.4 */ vmx->host_idt_base = dt.address; vmcs_writel(HOST_RIP, vmx_return); /* 22.2.5 */ rdmsr(MSR_IA32_SYSENTER_CS, low32, high32); vmcs_write32(HOST_IA32_SYSENTER_CS, low32); rdmsrl(MSR_IA32_SYSENTER_EIP, tmpl); vmcs_writel(HOST_IA32_SYSENTER_EIP, tmpl); /* 22.2.3 */ if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) { rdmsr(MSR_IA32_CR_PAT, low32, high32); vmcs_write64(HOST_IA32_PAT, low32 | ((u64) high32 << 32)); } } static void set_cr4_guest_host_mask(struct vcpu_vmx *vmx) { vmx->vcpu.arch.cr4_guest_owned_bits = KVM_CR4_GUEST_OWNED_BITS; if (enable_ept) vmx->vcpu.arch.cr4_guest_owned_bits |= X86_CR4_PGE; if (is_guest_mode(&vmx->vcpu)) vmx->vcpu.arch.cr4_guest_owned_bits &= ~get_vmcs12(&vmx->vcpu)->cr4_guest_host_mask; vmcs_writel(CR4_GUEST_HOST_MASK, ~vmx->vcpu.arch.cr4_guest_owned_bits); } static u32 vmx_pin_based_exec_ctrl(struct vcpu_vmx *vmx) { u32 pin_based_exec_ctrl = vmcs_config.pin_based_exec_ctrl; if (!kvm_vcpu_apicv_active(&vmx->vcpu)) pin_based_exec_ctrl &= ~PIN_BASED_POSTED_INTR; /* Enable the preemption timer dynamically */ pin_based_exec_ctrl &= ~PIN_BASED_VMX_PREEMPTION_TIMER; return pin_based_exec_ctrl; } static void vmx_refresh_apicv_exec_ctrl(struct kvm_vcpu *vcpu) { struct vcpu_vmx *vmx = to_vmx(vcpu); vmcs_write32(PIN_BASED_VM_EXEC_CONTROL, vmx_pin_based_exec_ctrl(vmx)); if (cpu_has_secondary_exec_ctrls()) { if (kvm_vcpu_apicv_active(vcpu)) vmcs_set_bits(SECONDARY_VM_EXEC_CONTROL, SECONDARY_EXEC_APIC_REGISTER_VIRT | SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY); else vmcs_clear_bits(SECONDARY_VM_EXEC_CONTROL, SECONDARY_EXEC_APIC_REGISTER_VIRT | SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY); } if (cpu_has_vmx_msr_bitmap()) vmx_set_msr_bitmap(vcpu); } static u32 vmx_exec_control(struct vcpu_vmx *vmx) { u32 exec_control = vmcs_config.cpu_based_exec_ctrl; if (vmx->vcpu.arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT) exec_control &= ~CPU_BASED_MOV_DR_EXITING; if (!cpu_need_tpr_shadow(&vmx->vcpu)) { exec_control &= ~CPU_BASED_TPR_SHADOW; #ifdef CONFIG_X86_64 exec_control |= CPU_BASED_CR8_STORE_EXITING | CPU_BASED_CR8_LOAD_EXITING; #endif } if (!enable_ept) exec_control |= CPU_BASED_CR3_STORE_EXITING | CPU_BASED_CR3_LOAD_EXITING | CPU_BASED_INVLPG_EXITING; return exec_control; } static u32 vmx_secondary_exec_control(struct vcpu_vmx *vmx) { u32 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl; if (!cpu_need_virtualize_apic_accesses(&vmx->vcpu)) exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES; if (vmx->vpid == 0) exec_control &= ~SECONDARY_EXEC_ENABLE_VPID; if (!enable_ept) { exec_control &= ~SECONDARY_EXEC_ENABLE_EPT; enable_unrestricted_guest = 0; /* Enable INVPCID for non-ept guests may cause performance regression. */ exec_control &= ~SECONDARY_EXEC_ENABLE_INVPCID; } if (!enable_unrestricted_guest) exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST; if (!ple_gap) exec_control &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING; if (!kvm_vcpu_apicv_active(&vmx->vcpu)) exec_control &= ~(SECONDARY_EXEC_APIC_REGISTER_VIRT | SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY); exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE; /* SECONDARY_EXEC_SHADOW_VMCS is enabled when L1 executes VMPTRLD (handle_vmptrld). We can NOT enable shadow_vmcs here because we don't have yet a current VMCS12 */ exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS; if (!enable_pml) exec_control &= ~SECONDARY_EXEC_ENABLE_PML; /* Currently, we allow L1 guest to directly run pcommit instruction. */ exec_control &= ~SECONDARY_EXEC_PCOMMIT; return exec_control; } static void ept_set_mmio_spte_mask(void) { /* * EPT Misconfigurations can be generated if the value of bits 2:0 * of an EPT paging-structure entry is 110b (write/execute). * Also, magic bits (0x3ull << 62) is set to quickly identify mmio * spte. */ kvm_mmu_set_mmio_spte_mask((0x3ull << 62) | 0x6ull); } #define VMX_XSS_EXIT_BITMAP 0 /* * Sets up the vmcs for emulated real mode. */ static int vmx_vcpu_setup(struct vcpu_vmx *vmx) { #ifdef CONFIG_X86_64 unsigned long a; #endif int i; /* I/O */ vmcs_write64(IO_BITMAP_A, __pa(vmx_io_bitmap_a)); vmcs_write64(IO_BITMAP_B, __pa(vmx_io_bitmap_b)); if (enable_shadow_vmcs) { vmcs_write64(VMREAD_BITMAP, __pa(vmx_vmread_bitmap)); vmcs_write64(VMWRITE_BITMAP, __pa(vmx_vmwrite_bitmap)); } if (cpu_has_vmx_msr_bitmap()) vmcs_write64(MSR_BITMAP, __pa(vmx_msr_bitmap_legacy)); vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */ /* Control */ vmcs_write32(PIN_BASED_VM_EXEC_CONTROL, vmx_pin_based_exec_ctrl(vmx)); vmx->hv_deadline_tsc = -1; vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, vmx_exec_control(vmx)); if (cpu_has_secondary_exec_ctrls()) vmcs_write32(SECONDARY_VM_EXEC_CONTROL, vmx_secondary_exec_control(vmx)); if (kvm_vcpu_apicv_active(&vmx->vcpu)) { vmcs_write64(EOI_EXIT_BITMAP0, 0); vmcs_write64(EOI_EXIT_BITMAP1, 0); vmcs_write64(EOI_EXIT_BITMAP2, 0); vmcs_write64(EOI_EXIT_BITMAP3, 0); vmcs_write16(GUEST_INTR_STATUS, 0); vmcs_write16(POSTED_INTR_NV, POSTED_INTR_VECTOR); vmcs_write64(POSTED_INTR_DESC_ADDR, __pa((&vmx->pi_desc))); } if (ple_gap) { vmcs_write32(PLE_GAP, ple_gap); vmx->ple_window = ple_window; vmx->ple_window_dirty = true; } vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0); vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0); vmcs_write32(CR3_TARGET_COUNT, 0); /* 22.2.1 */ vmcs_write16(HOST_FS_SELECTOR, 0); /* 22.2.4 */ vmcs_write16(HOST_GS_SELECTOR, 0); /* 22.2.4 */ vmx_set_constant_host_state(vmx); #ifdef CONFIG_X86_64 rdmsrl(MSR_FS_BASE, a); vmcs_writel(HOST_FS_BASE, a); /* 22.2.4 */ rdmsrl(MSR_GS_BASE, a); vmcs_writel(HOST_GS_BASE, a); /* 22.2.4 */ #else vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */ vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */ #endif vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0); vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0); vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host)); vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0); vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest)); if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat); for (i = 0; i < ARRAY_SIZE(vmx_msr_index); ++i) { u32 index = vmx_msr_index[i]; u32 data_low, data_high; int j = vmx->nmsrs; if (rdmsr_safe(index, &data_low, &data_high) < 0) continue; if (wrmsr_safe(index, data_low, data_high) < 0) continue; vmx->guest_msrs[j].index = i; vmx->guest_msrs[j].data = 0; vmx->guest_msrs[j].mask = -1ull; ++vmx->nmsrs; } vm_exit_controls_init(vmx, vmcs_config.vmexit_ctrl); /* 22.2.1, 20.8.1 */ vm_entry_controls_init(vmx, vmcs_config.vmentry_ctrl); vmcs_writel(CR0_GUEST_HOST_MASK, ~0UL); set_cr4_guest_host_mask(vmx); if (vmx_xsaves_supported()) vmcs_write64(XSS_EXIT_BITMAP, VMX_XSS_EXIT_BITMAP); return 0; } static void vmx_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event) { struct vcpu_vmx *vmx = to_vmx(vcpu); struct msr_data apic_base_msr; u64 cr0; vmx->rmode.vm86_active = 0; vmx->soft_vnmi_blocked = 0; vmx->vcpu.arch.regs[VCPU_REGS_RDX] = get_rdx_init_val(); kvm_set_cr8(vcpu, 0); if (!init_event) { apic_base_msr.data = APIC_DEFAULT_PHYS_BASE | MSR_IA32_APICBASE_ENABLE; if (kvm_vcpu_is_reset_bsp(vcpu)) apic_base_msr.data |= MSR_IA32_APICBASE_BSP; apic_base_msr.host_initiated = true; kvm_set_apic_base(vcpu, &apic_base_msr); } vmx_segment_cache_clear(vmx); seg_setup(VCPU_SREG_CS); vmcs_write16(GUEST_CS_SELECTOR, 0xf000); vmcs_writel(GUEST_CS_BASE, 0xffff0000ul); seg_setup(VCPU_SREG_DS); seg_setup(VCPU_SREG_ES); seg_setup(VCPU_SREG_FS); seg_setup(VCPU_SREG_GS); seg_setup(VCPU_SREG_SS); vmcs_write16(GUEST_TR_SELECTOR, 0); vmcs_writel(GUEST_TR_BASE, 0); vmcs_write32(GUEST_TR_LIMIT, 0xffff); vmcs_write32(GUEST_TR_AR_BYTES, 0x008b); vmcs_write16(GUEST_LDTR_SELECTOR, 0); vmcs_writel(GUEST_LDTR_BASE, 0); vmcs_write32(GUEST_LDTR_LIMIT, 0xffff); vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082); if (!init_event) { vmcs_write32(GUEST_SYSENTER_CS, 0); vmcs_writel(GUEST_SYSENTER_ESP, 0); vmcs_writel(GUEST_SYSENTER_EIP, 0); vmcs_write64(GUEST_IA32_DEBUGCTL, 0); } vmcs_writel(GUEST_RFLAGS, 0x02); kvm_rip_write(vcpu, 0xfff0); vmcs_writel(GUEST_GDTR_BASE, 0); vmcs_write32(GUEST_GDTR_LIMIT, 0xffff); vmcs_writel(GUEST_IDTR_BASE, 0); vmcs_write32(GUEST_IDTR_LIMIT, 0xffff); vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE); vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0); vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS, 0); setup_msrs(vmx); vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); /* 22.2.1 */ if (cpu_has_vmx_tpr_shadow() && !init_event) { vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0); if (cpu_need_tpr_shadow(vcpu)) vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, __pa(vcpu->arch.apic->regs)); vmcs_write32(TPR_THRESHOLD, 0); } kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu); if (kvm_vcpu_apicv_active(vcpu)) memset(&vmx->pi_desc, 0, sizeof(struct pi_desc)); if (vmx->vpid != 0) vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid); cr0 = X86_CR0_NW | X86_CR0_CD | X86_CR0_ET; vmx->vcpu.arch.cr0 = cr0; vmx_set_cr0(vcpu, cr0); /* enter rmode */ vmx_set_cr4(vcpu, 0); vmx_set_efer(vcpu, 0); vmx_fpu_activate(vcpu); update_exception_bitmap(vcpu); vpid_sync_context(vmx->vpid); } /* * In nested virtualization, check if L1 asked to exit on external interrupts. * For most existing hypervisors, this will always return true. */ static bool nested_exit_on_intr(struct kvm_vcpu *vcpu) { return get_vmcs12(vcpu)->pin_based_vm_exec_control & PIN_BASED_EXT_INTR_MASK; } /* * In nested virtualization, check if L1 has set * VM_EXIT_ACK_INTR_ON_EXIT */ static bool nested_exit_intr_ack_set(struct kvm_vcpu *vcpu) { return get_vmcs12(vcpu)->vm_exit_controls & VM_EXIT_ACK_INTR_ON_EXIT; } static bool nested_exit_on_nmi(struct kvm_vcpu *vcpu) { return get_vmcs12(vcpu)->pin_based_vm_exec_control & PIN_BASED_NMI_EXITING; } static void enable_irq_window(struct kvm_vcpu *vcpu) { u32 cpu_based_vm_exec_control; cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL); cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_INTR_PENDING; vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control); } static void enable_nmi_window(struct kvm_vcpu *vcpu) { u32 cpu_based_vm_exec_control; if (!cpu_has_virtual_nmis() || vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_STI) { enable_irq_window(vcpu); return; } cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL); cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_NMI_PENDING; vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control); } static void vmx_inject_irq(struct kvm_vcpu *vcpu) { struct vcpu_vmx *vmx = to_vmx(vcpu); uint32_t intr; int irq = vcpu->arch.interrupt.nr; trace_kvm_inj_virq(irq); ++vcpu->stat.irq_injections; if (vmx->rmode.vm86_active) { int inc_eip = 0; if (vcpu->arch.interrupt.soft) inc_eip = vcpu->arch.event_exit_inst_len; if (kvm_inject_realmode_interrupt(vcpu, irq, inc_eip) != EMULATE_DONE) kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); return; } intr = irq | INTR_INFO_VALID_MASK; if (vcpu->arch.interrupt.soft) { intr |= INTR_TYPE_SOFT_INTR; vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, vmx->vcpu.arch.event_exit_inst_len); } else intr |= INTR_TYPE_EXT_INTR; vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr); } static void vmx_inject_nmi(struct kvm_vcpu *vcpu) { struct vcpu_vmx *vmx = to_vmx(vcpu); if (is_guest_mode(vcpu)) return; if (!cpu_has_virtual_nmis()) { /* * Tracking the NMI-blocked state in software is built upon * finding the next open IRQ window. This, in turn, depends on * well-behaving guests: They have to keep IRQs disabled at * least as long as the NMI handler runs. Otherwise we may * cause NMI nesting, maybe breaking the guest. But as this is * highly unlikely, we can live with the residual risk. */ vmx->soft_vnmi_blocked = 1; vmx->vnmi_blocked_time = 0; } ++vcpu->stat.nmi_injections; vmx->nmi_known_unmasked = false; if (vmx->rmode.vm86_active) { if (kvm_inject_realmode_interrupt(vcpu, NMI_VECTOR, 0) != EMULATE_DONE) kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); return; } vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR); } static bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu) { if (!cpu_has_virtual_nmis()) return to_vmx(vcpu)->soft_vnmi_blocked; if (to_vmx(vcpu)->nmi_known_unmasked) return false; return vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_NMI; } static void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked) { struct vcpu_vmx *vmx = to_vmx(vcpu); if (!cpu_has_virtual_nmis()) { if (vmx->soft_vnmi_blocked != masked) { vmx->soft_vnmi_blocked = masked; vmx->vnmi_blocked_time = 0; } } else { vmx->nmi_known_unmasked = !masked; if (masked) vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, GUEST_INTR_STATE_NMI); else vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO, GUEST_INTR_STATE_NMI); } } static int vmx_nmi_allowed(struct kvm_vcpu *vcpu) { if (to_vmx(vcpu)->nested.nested_run_pending) return 0; if (!cpu_has_virtual_nmis() && to_vmx(vcpu)->soft_vnmi_blocked) return 0; return !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & (GUEST_INTR_STATE_MOV_SS | GUEST_INTR_STATE_STI | GUEST_INTR_STATE_NMI)); } static int vmx_interrupt_allowed(struct kvm_vcpu *vcpu) { return (!to_vmx(vcpu)->nested.nested_run_pending && vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) && !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS)); } static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr) { int ret; ret = x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, addr, PAGE_SIZE * 3); if (ret) return ret; kvm->arch.tss_addr = addr; return init_rmode_tss(kvm); } static bool rmode_exception(struct kvm_vcpu *vcpu, int vec) { switch (vec) { case BP_VECTOR: /* * Update instruction length as we may reinject the exception * from user space while in guest debugging mode. */ to_vmx(vcpu)->vcpu.arch.event_exit_inst_len = vmcs_read32(VM_EXIT_INSTRUCTION_LEN); if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP) return false; /* fall through */ case DB_VECTOR: if (vcpu->guest_debug & (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) return false; /* fall through */ case DE_VECTOR: case OF_VECTOR: case BR_VECTOR: case UD_VECTOR: case DF_VECTOR: case SS_VECTOR: case GP_VECTOR: case MF_VECTOR: return true; break; } return false; } static int handle_rmode_exception(struct kvm_vcpu *vcpu, int vec, u32 err_code) { /* * Instruction with address size override prefix opcode 0x67 * Cause the #SS fault with 0 error code in VM86 mode. */ if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0) { if (emulate_instruction(vcpu, 0) == EMULATE_DONE) { if (vcpu->arch.halt_request) { vcpu->arch.halt_request = 0; return kvm_vcpu_halt(vcpu); } return 1; } return 0; } /* * Forward all other exceptions that are valid in real mode. * FIXME: Breaks guest debugging in real mode, needs to be fixed with * the required debugging infrastructure rework. */ kvm_queue_exception(vcpu, vec); return 1; } /* * Trigger machine check on the host. We assume all the MSRs are already set up * by the CPU and that we still run on the same CPU as the MCE occurred on. * We pass a fake environment to the machine check handler because we want * the guest to be always treated like user space, no matter what context * it used internally. */ static void kvm_machine_check(void) { #if defined(CONFIG_X86_MCE) && defined(CONFIG_X86_64) struct pt_regs regs = { .cs = 3, /* Fake ring 3 no matter what the guest ran on */ .flags = X86_EFLAGS_IF, }; do_machine_check(®s, 0); #endif } static int handle_machine_check(struct kvm_vcpu *vcpu) { /* already handled by vcpu_run */ return 1; } static int handle_exception(struct kvm_vcpu *vcpu) { struct vcpu_vmx *vmx = to_vmx(vcpu); struct kvm_run *kvm_run = vcpu->run; u32 intr_info, ex_no, error_code; unsigned long cr2, rip, dr6; u32 vect_info; enum emulation_result er; vect_info = vmx->idt_vectoring_info; intr_info = vmx->exit_intr_info; if (is_machine_check(intr_info)) return handle_machine_check(vcpu); if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR) return 1; /* already handled by vmx_vcpu_run() */ if (is_no_device(intr_info)) { vmx_fpu_activate(vcpu); return 1; } if (is_invalid_opcode(intr_info)) { if (is_guest_mode(vcpu)) { kvm_queue_exception(vcpu, UD_VECTOR); return 1; } er = emulate_instruction(vcpu, EMULTYPE_TRAP_UD); if (er != EMULATE_DONE) kvm_queue_exception(vcpu, UD_VECTOR); return 1; } error_code = 0; if (intr_info & INTR_INFO_DELIVER_CODE_MASK) error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE); /* * The #PF with PFEC.RSVD = 1 indicates the guest is accessing * MMIO, it is better to report an internal error. * See the comments in vmx_handle_exit. */ if ((vect_info & VECTORING_INFO_VALID_MASK) && !(is_page_fault(intr_info) && !(error_code & PFERR_RSVD_MASK))) { vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_SIMUL_EX; vcpu->run->internal.ndata = 3; vcpu->run->internal.data[0] = vect_info; vcpu->run->internal.data[1] = intr_info; vcpu->run->internal.data[2] = error_code; return 0; } if (is_page_fault(intr_info)) { /* EPT won't cause page fault directly */ BUG_ON(enable_ept); cr2 = vmcs_readl(EXIT_QUALIFICATION); trace_kvm_page_fault(cr2, error_code); if (kvm_event_needs_reinjection(vcpu)) kvm_mmu_unprotect_page_virt(vcpu, cr2); return kvm_mmu_page_fault(vcpu, cr2, error_code, NULL, 0); } ex_no = intr_info & INTR_INFO_VECTOR_MASK; if (vmx->rmode.vm86_active && rmode_exception(vcpu, ex_no)) return handle_rmode_exception(vcpu, ex_no, error_code); switch (ex_no) { case AC_VECTOR: kvm_queue_exception_e(vcpu, AC_VECTOR, error_code); return 1; case DB_VECTOR: dr6 = vmcs_readl(EXIT_QUALIFICATION); if (!(vcpu->guest_debug & (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) { vcpu->arch.dr6 &= ~15; vcpu->arch.dr6 |= dr6 | DR6_RTM; if (!(dr6 & ~DR6_RESERVED)) /* icebp */ skip_emulated_instruction(vcpu); kvm_queue_exception(vcpu, DB_VECTOR); return 1; } kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1; kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7); /* fall through */ case BP_VECTOR: /* * Update instruction length as we may reinject #BP from * user space while in guest debugging mode. Reading it for * #DB as well causes no harm, it is not used in that case. */ vmx->vcpu.arch.event_exit_inst_len = vmcs_read32(VM_EXIT_INSTRUCTION_LEN); kvm_run->exit_reason = KVM_EXIT_DEBUG; rip = kvm_rip_read(vcpu); kvm_run->debug.arch.pc = vmcs_readl(GUEST_CS_BASE) + rip; kvm_run->debug.arch.exception = ex_no; break; default: kvm_run->exit_reason = KVM_EXIT_EXCEPTION; kvm_run->ex.exception = ex_no; kvm_run->ex.error_code = error_code; break; } return 0; } static int handle_external_interrupt(struct kvm_vcpu *vcpu) { ++vcpu->stat.irq_exits; return 1; } static int handle_triple_fault(struct kvm_vcpu *vcpu) { vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN; return 0; } static int handle_io(struct kvm_vcpu *vcpu) { unsigned long exit_qualification; int size, in, string; unsigned port; exit_qualification = vmcs_readl(EXIT_QUALIFICATION); string = (exit_qualification & 16) != 0; in = (exit_qualification & 8) != 0; ++vcpu->stat.io_exits; if (string || in) return emulate_instruction(vcpu, 0) == EMULATE_DONE; port = exit_qualification >> 16; size = (exit_qualification & 7) + 1; skip_emulated_instruction(vcpu); return kvm_fast_pio_out(vcpu, size, port); } static void vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall) { /* * Patch in the VMCALL instruction: */ hypercall[0] = 0x0f; hypercall[1] = 0x01; hypercall[2] = 0xc1; } static bool nested_cr0_valid(struct kvm_vcpu *vcpu, unsigned long val) { unsigned long always_on = VMXON_CR0_ALWAYSON; struct vmcs12 *vmcs12 = get_vmcs12(vcpu); if (to_vmx(vcpu)->nested.nested_vmx_secondary_ctls_high & SECONDARY_EXEC_UNRESTRICTED_GUEST && nested_cpu_has2(vmcs12, SECONDARY_EXEC_UNRESTRICTED_GUEST)) always_on &= ~(X86_CR0_PE | X86_CR0_PG); return (val & always_on) == always_on; } /* called to set cr0 as appropriate for a mov-to-cr0 exit. */ static int handle_set_cr0(struct kvm_vcpu *vcpu, unsigned long val) { if (is_guest_mode(vcpu)) { struct vmcs12 *vmcs12 = get_vmcs12(vcpu); unsigned long orig_val = val; /* * We get here when L2 changed cr0 in a way that did not change * any of L1's shadowed bits (see nested_vmx_exit_handled_cr), * but did change L0 shadowed bits. So we first calculate the * effective cr0 value that L1 would like to write into the * hardware. It consists of the L2-owned bits from the new * value combined with the L1-owned bits from L1's guest_cr0. */ val = (val & ~vmcs12->cr0_guest_host_mask) | (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask); if (!nested_cr0_valid(vcpu, val)) return 1; if (kvm_set_cr0(vcpu, val)) return 1; vmcs_writel(CR0_READ_SHADOW, orig_val); return 0; } else { if (to_vmx(vcpu)->nested.vmxon && ((val & VMXON_CR0_ALWAYSON) != VMXON_CR0_ALWAYSON)) return 1; return kvm_set_cr0(vcpu, val); } } static int handle_set_cr4(struct kvm_vcpu *vcpu, unsigned long val) { if (is_guest_mode(vcpu)) { struct vmcs12 *vmcs12 = get_vmcs12(vcpu); unsigned long orig_val = val; /* analogously to handle_set_cr0 */ val = (val & ~vmcs12->cr4_guest_host_mask) | (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask); if (kvm_set_cr4(vcpu, val)) return 1; vmcs_writel(CR4_READ_SHADOW, orig_val); return 0; } else return kvm_set_cr4(vcpu, val); } /* called to set cr0 as appropriate for clts instruction exit. */ static void handle_clts(struct kvm_vcpu *vcpu) { if (is_guest_mode(vcpu)) { /* * We get here when L2 did CLTS, and L1 didn't shadow CR0.TS * but we did (!fpu_active). We need to keep GUEST_CR0.TS on, * just pretend it's off (also in arch.cr0 for fpu_activate). */ vmcs_writel(CR0_READ_SHADOW, vmcs_readl(CR0_READ_SHADOW) & ~X86_CR0_TS); vcpu->arch.cr0 &= ~X86_CR0_TS; } else vmx_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~X86_CR0_TS)); } static int handle_cr(struct kvm_vcpu *vcpu) { unsigned long exit_qualification, val; int cr; int reg; int err; exit_qualification = vmcs_readl(EXIT_QUALIFICATION); cr = exit_qualification & 15; reg = (exit_qualification >> 8) & 15; switch ((exit_qualification >> 4) & 3) { case 0: /* mov to cr */ val = kvm_register_readl(vcpu, reg); trace_kvm_cr_write(cr, val); switch (cr) { case 0: err = handle_set_cr0(vcpu, val); kvm_complete_insn_gp(vcpu, err); return 1; case 3: err = kvm_set_cr3(vcpu, val); kvm_complete_insn_gp(vcpu, err); return 1; case 4: err = handle_set_cr4(vcpu, val); kvm_complete_insn_gp(vcpu, err); return 1; case 8: { u8 cr8_prev = kvm_get_cr8(vcpu); u8 cr8 = (u8)val; err = kvm_set_cr8(vcpu, cr8); kvm_complete_insn_gp(vcpu, err); if (lapic_in_kernel(vcpu)) return 1; if (cr8_prev <= cr8) return 1; vcpu->run->exit_reason = KVM_EXIT_SET_TPR; return 0; } } break; case 2: /* clts */ handle_clts(vcpu); trace_kvm_cr_write(0, kvm_read_cr0(vcpu)); skip_emulated_instruction(vcpu); vmx_fpu_activate(vcpu); return 1; case 1: /*mov from cr*/ switch (cr) { case 3: val = kvm_read_cr3(vcpu); kvm_register_write(vcpu, reg, val); trace_kvm_cr_read(cr, val); skip_emulated_instruction(vcpu); return 1; case 8: val = kvm_get_cr8(vcpu); kvm_register_write(vcpu, reg, val); trace_kvm_cr_read(cr, val); skip_emulated_instruction(vcpu); return 1; } break; case 3: /* lmsw */ val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f; trace_kvm_cr_write(0, (kvm_read_cr0(vcpu) & ~0xful) | val); kvm_lmsw(vcpu, val); skip_emulated_instruction(vcpu); return 1; default: break; } vcpu->run->exit_reason = 0; vcpu_unimpl(vcpu, "unhandled control register: op %d cr %d\n", (int)(exit_qualification >> 4) & 3, cr); return 0; } static int handle_dr(struct kvm_vcpu *vcpu) { unsigned long exit_qualification; int dr, dr7, reg; exit_qualification = vmcs_readl(EXIT_QUALIFICATION); dr = exit_qualification & DEBUG_REG_ACCESS_NUM; /* First, if DR does not exist, trigger UD */ if (!kvm_require_dr(vcpu, dr)) return 1; /* Do not handle if the CPL > 0, will trigger GP on re-entry */ if (!kvm_require_cpl(vcpu, 0)) return 1; dr7 = vmcs_readl(GUEST_DR7); if (dr7 & DR7_GD) { /* * As the vm-exit takes precedence over the debug trap, we * need to emulate the latter, either for the host or the * guest debugging itself. */ if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) { vcpu->run->debug.arch.dr6 = vcpu->arch.dr6; vcpu->run->debug.arch.dr7 = dr7; vcpu->run->debug.arch.pc = kvm_get_linear_rip(vcpu); vcpu->run->debug.arch.exception = DB_VECTOR; vcpu->run->exit_reason = KVM_EXIT_DEBUG; return 0; } else { vcpu->arch.dr6 &= ~15; vcpu->arch.dr6 |= DR6_BD | DR6_RTM; kvm_queue_exception(vcpu, DB_VECTOR); return 1; } } if (vcpu->guest_debug == 0) { vmcs_clear_bits(CPU_BASED_VM_EXEC_CONTROL, CPU_BASED_MOV_DR_EXITING); /* * No more DR vmexits; force a reload of the debug registers * and reenter on this instruction. The next vmexit will * retrieve the full state of the debug registers. */ vcpu->arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT; return 1; } reg = DEBUG_REG_ACCESS_REG(exit_qualification); if (exit_qualification & TYPE_MOV_FROM_DR) { unsigned long val; if (kvm_get_dr(vcpu, dr, &val)) return 1; kvm_register_write(vcpu, reg, val); } else if (kvm_set_dr(vcpu, dr, kvm_register_readl(vcpu, reg))) return 1; skip_emulated_instruction(vcpu); return 1; } static u64 vmx_get_dr6(struct kvm_vcpu *vcpu) { return vcpu->arch.dr6; } static void vmx_set_dr6(struct kvm_vcpu *vcpu, unsigned long val) { } static void vmx_sync_dirty_debug_regs(struct kvm_vcpu *vcpu) { get_debugreg(vcpu->arch.db[0], 0); get_debugreg(vcpu->arch.db[1], 1); get_debugreg(vcpu->arch.db[2], 2); get_debugreg(vcpu->arch.db[3], 3); get_debugreg(vcpu->arch.dr6, 6); vcpu->arch.dr7 = vmcs_readl(GUEST_DR7); vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT; vmcs_set_bits(CPU_BASED_VM_EXEC_CONTROL, CPU_BASED_MOV_DR_EXITING); } static void vmx_set_dr7(struct kvm_vcpu *vcpu, unsigned long val) { vmcs_writel(GUEST_DR7, val); } static int handle_cpuid(struct kvm_vcpu *vcpu) { kvm_emulate_cpuid(vcpu); return 1; } static int handle_rdmsr(struct kvm_vcpu *vcpu) { u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX]; struct msr_data msr_info; msr_info.index = ecx; msr_info.host_initiated = false; if (vmx_get_msr(vcpu, &msr_info)) { trace_kvm_msr_read_ex(ecx); kvm_inject_gp(vcpu, 0); return 1; } trace_kvm_msr_read(ecx, msr_info.data); /* FIXME: handling of bits 32:63 of rax, rdx */ vcpu->arch.regs[VCPU_REGS_RAX] = msr_info.data & -1u; vcpu->arch.regs[VCPU_REGS_RDX] = (msr_info.data >> 32) & -1u; skip_emulated_instruction(vcpu); return 1; } static int handle_wrmsr(struct kvm_vcpu *vcpu) { struct msr_data msr; u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX]; u64 data = (vcpu->arch.regs[VCPU_REGS_RAX] & -1u) | ((u64)(vcpu->arch.regs[VCPU_REGS_RDX] & -1u) << 32); msr.data = data; msr.index = ecx; msr.host_initiated = false; if (kvm_set_msr(vcpu, &msr) != 0) { trace_kvm_msr_write_ex(ecx, data); kvm_inject_gp(vcpu, 0); return 1; } trace_kvm_msr_write(ecx, data); skip_emulated_instruction(vcpu); return 1; } static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu) { kvm_make_request(KVM_REQ_EVENT, vcpu); return 1; } static int handle_interrupt_window(struct kvm_vcpu *vcpu) { u32 cpu_based_vm_exec_control; /* clear pending irq */ cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL); cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING; vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control); kvm_make_request(KVM_REQ_EVENT, vcpu); ++vcpu->stat.irq_window_exits; return 1; } static int handle_halt(struct kvm_vcpu *vcpu) { return kvm_emulate_halt(vcpu); } static int handle_vmcall(struct kvm_vcpu *vcpu) { return kvm_emulate_hypercall(vcpu); } static int handle_invd(struct kvm_vcpu *vcpu) { return emulate_instruction(vcpu, 0) == EMULATE_DONE; } static int handle_invlpg(struct kvm_vcpu *vcpu) { unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION); kvm_mmu_invlpg(vcpu, exit_qualification); skip_emulated_instruction(vcpu); return 1; } static int handle_rdpmc(struct kvm_vcpu *vcpu) { int err; err = kvm_rdpmc(vcpu); kvm_complete_insn_gp(vcpu, err); return 1; } static int handle_wbinvd(struct kvm_vcpu *vcpu) { kvm_emulate_wbinvd(vcpu); return 1; } static int handle_xsetbv(struct kvm_vcpu *vcpu) { u64 new_bv = kvm_read_edx_eax(vcpu); u32 index = kvm_register_read(vcpu, VCPU_REGS_RCX); if (kvm_set_xcr(vcpu, index, new_bv) == 0) skip_emulated_instruction(vcpu); return 1; } static int handle_xsaves(struct kvm_vcpu *vcpu) { skip_emulated_instruction(vcpu); WARN(1, "this should never happen\n"); return 1; } static int handle_xrstors(struct kvm_vcpu *vcpu) { skip_emulated_instruction(vcpu); WARN(1, "this should never happen\n"); return 1; } static int handle_apic_access(struct kvm_vcpu *vcpu) { if (likely(fasteoi)) { unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION); int access_type, offset; access_type = exit_qualification & APIC_ACCESS_TYPE; offset = exit_qualification & APIC_ACCESS_OFFSET; /* * Sane guest uses MOV to write EOI, with written value * not cared. So make a short-circuit here by avoiding * heavy instruction emulation. */ if ((access_type == TYPE_LINEAR_APIC_INST_WRITE) && (offset == APIC_EOI)) { kvm_lapic_set_eoi(vcpu); skip_emulated_instruction(vcpu); return 1; } } return emulate_instruction(vcpu, 0) == EMULATE_DONE; } static int handle_apic_eoi_induced(struct kvm_vcpu *vcpu) { unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION); int vector = exit_qualification & 0xff; /* EOI-induced VM exit is trap-like and thus no need to adjust IP */ kvm_apic_set_eoi_accelerated(vcpu, vector); return 1; } static int handle_apic_write(struct kvm_vcpu *vcpu) { unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION); u32 offset = exit_qualification & 0xfff; /* APIC-write VM exit is trap-like and thus no need to adjust IP */ kvm_apic_write_nodecode(vcpu, offset); return 1; } static int handle_task_switch(struct kvm_vcpu *vcpu) { struct vcpu_vmx *vmx = to_vmx(vcpu); unsigned long exit_qualification; bool has_error_code = false; u32 error_code = 0; u16 tss_selector; int reason, type, idt_v, idt_index; idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK); idt_index = (vmx->idt_vectoring_info & VECTORING_INFO_VECTOR_MASK); type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK); exit_qualification = vmcs_readl(EXIT_QUALIFICATION); reason = (u32)exit_qualification >> 30; if (reason == TASK_SWITCH_GATE && idt_v) { switch (type) { case INTR_TYPE_NMI_INTR: vcpu->arch.nmi_injected = false; vmx_set_nmi_mask(vcpu, true); break; case INTR_TYPE_EXT_INTR: case INTR_TYPE_SOFT_INTR: kvm_clear_interrupt_queue(vcpu); break; case INTR_TYPE_HARD_EXCEPTION: if (vmx->idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) { has_error_code = true; error_code = vmcs_read32(IDT_VECTORING_ERROR_CODE); } /* fall through */ case INTR_TYPE_SOFT_EXCEPTION: kvm_clear_exception_queue(vcpu); break; default: break; } } tss_selector = exit_qualification; if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION && type != INTR_TYPE_EXT_INTR && type != INTR_TYPE_NMI_INTR)) skip_emulated_instruction(vcpu); if (kvm_task_switch(vcpu, tss_selector, type == INTR_TYPE_SOFT_INTR ? idt_index : -1, reason, has_error_code, error_code) == EMULATE_FAIL) { vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION; vcpu->run->internal.ndata = 0; return 0; } /* * TODO: What about debug traps on tss switch? * Are we supposed to inject them and update dr6? */ return 1; } static int handle_ept_violation(struct kvm_vcpu *vcpu) { unsigned long exit_qualification; gpa_t gpa; u32 error_code; int gla_validity; exit_qualification = vmcs_readl(EXIT_QUALIFICATION); gla_validity = (exit_qualification >> 7) & 0x3; if (gla_validity != 0x3 && gla_validity != 0x1 && gla_validity != 0) { printk(KERN_ERR "EPT: Handling EPT violation failed!\n"); printk(KERN_ERR "EPT: GPA: 0x%lx, GVA: 0x%lx\n", (long unsigned int)vmcs_read64(GUEST_PHYSICAL_ADDRESS), vmcs_readl(GUEST_LINEAR_ADDRESS)); printk(KERN_ERR "EPT: Exit qualification is 0x%lx\n", (long unsigned int)exit_qualification); vcpu->run->exit_reason = KVM_EXIT_UNKNOWN; vcpu->run->hw.hardware_exit_reason = EXIT_REASON_EPT_VIOLATION; return 0; } /* * EPT violation happened while executing iret from NMI, * "blocked by NMI" bit has to be set before next VM entry. * There are errata that may cause this bit to not be set: * AAK134, BY25. */ if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) && cpu_has_virtual_nmis() && (exit_qualification & INTR_INFO_UNBLOCK_NMI)) vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, GUEST_INTR_STATE_NMI); gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS); trace_kvm_page_fault(gpa, exit_qualification); /* it is a read fault? */ error_code = (exit_qualification << 2) & PFERR_USER_MASK; /* it is a write fault? */ error_code |= exit_qualification & PFERR_WRITE_MASK; /* It is a fetch fault? */ error_code |= (exit_qualification << 2) & PFERR_FETCH_MASK; /* ept page table is present? */ error_code |= (exit_qualification & 0x38) != 0; vcpu->arch.exit_qualification = exit_qualification; return kvm_mmu_page_fault(vcpu, gpa, error_code, NULL, 0); } static int handle_ept_misconfig(struct kvm_vcpu *vcpu) { int ret; gpa_t gpa; gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS); if (!kvm_io_bus_write(vcpu, KVM_FAST_MMIO_BUS, gpa, 0, NULL)) { skip_emulated_instruction(vcpu); trace_kvm_fast_mmio(gpa); return 1; } ret = handle_mmio_page_fault(vcpu, gpa, true); if (likely(ret == RET_MMIO_PF_EMULATE)) return x86_emulate_instruction(vcpu, gpa, 0, NULL, 0) == EMULATE_DONE; if (unlikely(ret == RET_MMIO_PF_INVALID)) return kvm_mmu_page_fault(vcpu, gpa, 0, NULL, 0); if (unlikely(ret == RET_MMIO_PF_RETRY)) return 1; /* It is the real ept misconfig */ WARN_ON(1); vcpu->run->exit_reason = KVM_EXIT_UNKNOWN; vcpu->run->hw.hardware_exit_reason = EXIT_REASON_EPT_MISCONFIG; return 0; } static int handle_nmi_window(struct kvm_vcpu *vcpu) { u32 cpu_based_vm_exec_control; /* clear pending NMI */ cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL); cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING; vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control); ++vcpu->stat.nmi_window_exits; kvm_make_request(KVM_REQ_EVENT, vcpu); return 1; } static int handle_invalid_guest_state(struct kvm_vcpu *vcpu) { struct vcpu_vmx *vmx = to_vmx(vcpu); enum emulation_result err = EMULATE_DONE; int ret = 1; u32 cpu_exec_ctrl; bool intr_window_requested; unsigned count = 130; cpu_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL); intr_window_requested = cpu_exec_ctrl & CPU_BASED_VIRTUAL_INTR_PENDING; while (vmx->emulation_required && count-- != 0) { if (intr_window_requested && vmx_interrupt_allowed(vcpu)) return handle_interrupt_window(&vmx->vcpu); if (test_bit(KVM_REQ_EVENT, &vcpu->requests)) return 1; err = emulate_instruction(vcpu, EMULTYPE_NO_REEXECUTE); if (err == EMULATE_USER_EXIT) { ++vcpu->stat.mmio_exits; ret = 0; goto out; } if (err != EMULATE_DONE) { vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION; vcpu->run->internal.ndata = 0; return 0; } if (vcpu->arch.halt_request) { vcpu->arch.halt_request = 0; ret = kvm_vcpu_halt(vcpu); goto out; } if (signal_pending(current)) goto out; if (need_resched()) schedule(); } out: return ret; } static int __grow_ple_window(int val) { if (ple_window_grow < 1) return ple_window; val = min(val, ple_window_actual_max); if (ple_window_grow < ple_window) val *= ple_window_grow; else val += ple_window_grow; return val; } static int __shrink_ple_window(int val, int modifier, int minimum) { if (modifier < 1) return ple_window; if (modifier < ple_window) val /= modifier; else val -= modifier; return max(val, minimum); } static void grow_ple_window(struct kvm_vcpu *vcpu) { struct vcpu_vmx *vmx = to_vmx(vcpu); int old = vmx->ple_window; vmx->ple_window = __grow_ple_window(old); if (vmx->ple_window != old) vmx->ple_window_dirty = true; trace_kvm_ple_window_grow(vcpu->vcpu_id, vmx->ple_window, old); } static void shrink_ple_window(struct kvm_vcpu *vcpu) { struct vcpu_vmx *vmx = to_vmx(vcpu); int old = vmx->ple_window; vmx->ple_window = __shrink_ple_window(old, ple_window_shrink, ple_window); if (vmx->ple_window != old) vmx->ple_window_dirty = true; trace_kvm_ple_window_shrink(vcpu->vcpu_id, vmx->ple_window, old); } /* * ple_window_actual_max is computed to be one grow_ple_window() below * ple_window_max. (See __grow_ple_window for the reason.) * This prevents overflows, because ple_window_max is int. * ple_window_max effectively rounded down to a multiple of ple_window_grow in * this process. * ple_window_max is also prevented from setting vmx->ple_window < ple_window. */ static void update_ple_window_actual_max(void) { ple_window_actual_max = __shrink_ple_window(max(ple_window_max, ple_window), ple_window_grow, INT_MIN); } /* * Handler for POSTED_INTERRUPT_WAKEUP_VECTOR. */ static void wakeup_handler(void) { struct kvm_vcpu *vcpu; int cpu = smp_processor_id(); spin_lock(&per_cpu(blocked_vcpu_on_cpu_lock, cpu)); list_for_each_entry(vcpu, &per_cpu(blocked_vcpu_on_cpu, cpu), blocked_vcpu_list) { struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu); if (pi_test_on(pi_desc) == 1) kvm_vcpu_kick(vcpu); } spin_unlock(&per_cpu(blocked_vcpu_on_cpu_lock, cpu)); } static __init int hardware_setup(void) { int r = -ENOMEM, i, msr; rdmsrl_safe(MSR_EFER, &host_efer); for (i = 0; i < ARRAY_SIZE(vmx_msr_index); ++i) kvm_define_shared_msr(i, vmx_msr_index[i]); vmx_io_bitmap_a = (unsigned long *)__get_free_page(GFP_KERNEL); if (!vmx_io_bitmap_a) return r; vmx_io_bitmap_b = (unsigned long *)__get_free_page(GFP_KERNEL); if (!vmx_io_bitmap_b) goto out; vmx_msr_bitmap_legacy = (unsigned long *)__get_free_page(GFP_KERNEL); if (!vmx_msr_bitmap_legacy) goto out1; vmx_msr_bitmap_legacy_x2apic = (unsigned long *)__get_free_page(GFP_KERNEL); if (!vmx_msr_bitmap_legacy_x2apic) goto out2; vmx_msr_bitmap_longmode = (unsigned long *)__get_free_page(GFP_KERNEL); if (!vmx_msr_bitmap_longmode) goto out3; vmx_msr_bitmap_longmode_x2apic = (unsigned long *)__get_free_page(GFP_KERNEL); if (!vmx_msr_bitmap_longmode_x2apic) goto out4; if (nested) { vmx_msr_bitmap_nested = (unsigned long *)__get_free_page(GFP_KERNEL); if (!vmx_msr_bitmap_nested) goto out5; } vmx_vmread_bitmap = (unsigned long *)__get_free_page(GFP_KERNEL); if (!vmx_vmread_bitmap) goto out6; vmx_vmwrite_bitmap = (unsigned long *)__get_free_page(GFP_KERNEL); if (!vmx_vmwrite_bitmap) goto out7; memset(vmx_vmread_bitmap, 0xff, PAGE_SIZE); memset(vmx_vmwrite_bitmap, 0xff, PAGE_SIZE); /* * Allow direct access to the PC debug port (it is often used for I/O * delays, but the vmexits simply slow things down). */ memset(vmx_io_bitmap_a, 0xff, PAGE_SIZE); clear_bit(0x80, vmx_io_bitmap_a); memset(vmx_io_bitmap_b, 0xff, PAGE_SIZE); memset(vmx_msr_bitmap_legacy, 0xff, PAGE_SIZE); memset(vmx_msr_bitmap_longmode, 0xff, PAGE_SIZE); if (nested) memset(vmx_msr_bitmap_nested, 0xff, PAGE_SIZE); if (setup_vmcs_config(&vmcs_config) < 0) { r = -EIO; goto out8; } if (boot_cpu_has(X86_FEATURE_NX)) kvm_enable_efer_bits(EFER_NX); if (!cpu_has_vmx_vpid()) enable_vpid = 0; if (!cpu_has_vmx_shadow_vmcs()) enable_shadow_vmcs = 0; if (enable_shadow_vmcs) init_vmcs_shadow_fields(); if (!cpu_has_vmx_ept() || !cpu_has_vmx_ept_4levels()) { enable_ept = 0; enable_unrestricted_guest = 0; enable_ept_ad_bits = 0; } if (!cpu_has_vmx_ept_ad_bits()) enable_ept_ad_bits = 0; if (!cpu_has_vmx_unrestricted_guest()) enable_unrestricted_guest = 0; if (!cpu_has_vmx_flexpriority()) flexpriority_enabled = 0; /* * set_apic_access_page_addr() is used to reload apic access * page upon invalidation. No need to do anything if not * using the APIC_ACCESS_ADDR VMCS field. */ if (!flexpriority_enabled) kvm_x86_ops->set_apic_access_page_addr = NULL; if (!cpu_has_vmx_tpr_shadow()) kvm_x86_ops->update_cr8_intercept = NULL; if (enable_ept && !cpu_has_vmx_ept_2m_page()) kvm_disable_largepages(); if (!cpu_has_vmx_ple()) ple_gap = 0; if (!cpu_has_vmx_apicv()) enable_apicv = 0; if (cpu_has_vmx_tsc_scaling()) { kvm_has_tsc_control = true; kvm_max_tsc_scaling_ratio = KVM_VMX_TSC_MULTIPLIER_MAX; kvm_tsc_scaling_ratio_frac_bits = 48; } vmx_disable_intercept_for_msr(MSR_FS_BASE, false); vmx_disable_intercept_for_msr(MSR_GS_BASE, false); vmx_disable_intercept_for_msr(MSR_KERNEL_GS_BASE, true); vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_CS, false); vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_ESP, false); vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_EIP, false); vmx_disable_intercept_for_msr(MSR_IA32_BNDCFGS, true); memcpy(vmx_msr_bitmap_legacy_x2apic, vmx_msr_bitmap_legacy, PAGE_SIZE); memcpy(vmx_msr_bitmap_longmode_x2apic, vmx_msr_bitmap_longmode, PAGE_SIZE); set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */ for (msr = 0x800; msr <= 0x8ff; msr++) vmx_disable_intercept_msr_read_x2apic(msr); /* According SDM, in x2apic mode, the whole id reg is used. But in * KVM, it only use the highest eight bits. Need to intercept it */ vmx_enable_intercept_msr_read_x2apic(0x802); /* TMCCT */ vmx_enable_intercept_msr_read_x2apic(0x839); /* TPR */ vmx_disable_intercept_msr_write_x2apic(0x808); /* EOI */ vmx_disable_intercept_msr_write_x2apic(0x80b); /* SELF-IPI */ vmx_disable_intercept_msr_write_x2apic(0x83f); if (enable_ept) { kvm_mmu_set_mask_ptes(VMX_EPT_READABLE_MASK, (enable_ept_ad_bits) ? VMX_EPT_ACCESS_BIT : 0ull, (enable_ept_ad_bits) ? VMX_EPT_DIRTY_BIT : 0ull, 0ull, VMX_EPT_EXECUTABLE_MASK, cpu_has_vmx_ept_execute_only() ? 0ull : VMX_EPT_READABLE_MASK); ept_set_mmio_spte_mask(); kvm_enable_tdp(); } else kvm_disable_tdp(); update_ple_window_actual_max(); /* * Only enable PML when hardware supports PML feature, and both EPT * and EPT A/D bit features are enabled -- PML depends on them to work. */ if (!enable_ept || !enable_ept_ad_bits || !cpu_has_vmx_pml()) enable_pml = 0; if (!enable_pml) { kvm_x86_ops->slot_enable_log_dirty = NULL; kvm_x86_ops->slot_disable_log_dirty = NULL; kvm_x86_ops->flush_log_dirty = NULL; kvm_x86_ops->enable_log_dirty_pt_masked = NULL; } if (cpu_has_vmx_preemption_timer() && enable_preemption_timer) { u64 vmx_msr; rdmsrl(MSR_IA32_VMX_MISC, vmx_msr); cpu_preemption_timer_multi = vmx_msr & VMX_MISC_PREEMPTION_TIMER_RATE_MASK; } else { kvm_x86_ops->set_hv_timer = NULL; kvm_x86_ops->cancel_hv_timer = NULL; } kvm_set_posted_intr_wakeup_handler(wakeup_handler); kvm_mce_cap_supported |= MCG_LMCE_P; return alloc_kvm_area(); out8: free_page((unsigned long)vmx_vmwrite_bitmap); out7: free_page((unsigned long)vmx_vmread_bitmap); out6: if (nested) free_page((unsigned long)vmx_msr_bitmap_nested); out5: free_page((unsigned long)vmx_msr_bitmap_longmode_x2apic); out4: free_page((unsigned long)vmx_msr_bitmap_longmode); out3: free_page((unsigned long)vmx_msr_bitmap_legacy_x2apic); out2: free_page((unsigned long)vmx_msr_bitmap_legacy); out1: free_page((unsigned long)vmx_io_bitmap_b); out: free_page((unsigned long)vmx_io_bitmap_a); return r; } static __exit void hardware_unsetup(void) { free_page((unsigned long)vmx_msr_bitmap_legacy_x2apic); free_page((unsigned long)vmx_msr_bitmap_longmode_x2apic); free_page((unsigned long)vmx_msr_bitmap_legacy); free_page((unsigned long)vmx_msr_bitmap_longmode); free_page((unsigned long)vmx_io_bitmap_b); free_page((unsigned long)vmx_io_bitmap_a); free_page((unsigned long)vmx_vmwrite_bitmap); free_page((unsigned long)vmx_vmread_bitmap); if (nested) free_page((unsigned long)vmx_msr_bitmap_nested); free_kvm_area(); } /* * Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE * exiting, so only get here on cpu with PAUSE-Loop-Exiting. */ static int handle_pause(struct kvm_vcpu *vcpu) { if (ple_gap) grow_ple_window(vcpu); skip_emulated_instruction(vcpu); kvm_vcpu_on_spin(vcpu); return 1; } static int handle_nop(struct kvm_vcpu *vcpu) { skip_emulated_instruction(vcpu); return 1; } static int handle_mwait(struct kvm_vcpu *vcpu) { printk_once(KERN_WARNING "kvm: MWAIT instruction emulated as NOP!\n"); return handle_nop(vcpu); } static int handle_monitor_trap(struct kvm_vcpu *vcpu) { return 1; } static int handle_monitor(struct kvm_vcpu *vcpu) { printk_once(KERN_WARNING "kvm: MONITOR instruction emulated as NOP!\n"); return handle_nop(vcpu); } /* * To run an L2 guest, we need a vmcs02 based on the L1-specified vmcs12. * We could reuse a single VMCS for all the L2 guests, but we also want the * option to allocate a separate vmcs02 for each separate loaded vmcs12 - this * allows keeping them loaded on the processor, and in the future will allow * optimizations where prepare_vmcs02 doesn't need to set all the fields on * every entry if they never change. * So we keep, in vmx->nested.vmcs02_pool, a cache of size VMCS02_POOL_SIZE * (>=0) with a vmcs02 for each recently loaded vmcs12s, most recent first. * * The following functions allocate and free a vmcs02 in this pool. */ /* Get a VMCS from the pool to use as vmcs02 for the current vmcs12. */ static struct loaded_vmcs *nested_get_current_vmcs02(struct vcpu_vmx *vmx) { struct vmcs02_list *item; list_for_each_entry(item, &vmx->nested.vmcs02_pool, list) if (item->vmptr == vmx->nested.current_vmptr) { list_move(&item->list, &vmx->nested.vmcs02_pool); return &item->vmcs02; } if (vmx->nested.vmcs02_num >= max(VMCS02_POOL_SIZE, 1)) { /* Recycle the least recently used VMCS. */ item = list_last_entry(&vmx->nested.vmcs02_pool, struct vmcs02_list, list); item->vmptr = vmx->nested.current_vmptr; list_move(&item->list, &vmx->nested.vmcs02_pool); return &item->vmcs02; } /* Create a new VMCS */ item = kmalloc(sizeof(struct vmcs02_list), GFP_KERNEL); if (!item) return NULL; item->vmcs02.vmcs = alloc_vmcs(); if (!item->vmcs02.vmcs) { kfree(item); return NULL; } loaded_vmcs_init(&item->vmcs02); item->vmptr = vmx->nested.current_vmptr; list_add(&(item->list), &(vmx->nested.vmcs02_pool)); vmx->nested.vmcs02_num++; return &item->vmcs02; } /* Free and remove from pool a vmcs02 saved for a vmcs12 (if there is one) */ static void nested_free_vmcs02(struct vcpu_vmx *vmx, gpa_t vmptr) { struct vmcs02_list *item; list_for_each_entry(item, &vmx->nested.vmcs02_pool, list) if (item->vmptr == vmptr) { free_loaded_vmcs(&item->vmcs02); list_del(&item->list); kfree(item); vmx->nested.vmcs02_num--; return; } } /* * Free all VMCSs saved for this vcpu, except the one pointed by * vmx->loaded_vmcs. We must be running L1, so vmx->loaded_vmcs * must be &vmx->vmcs01. */ static void nested_free_all_saved_vmcss(struct vcpu_vmx *vmx) { struct vmcs02_list *item, *n; WARN_ON(vmx->loaded_vmcs != &vmx->vmcs01); list_for_each_entry_safe(item, n, &vmx->nested.vmcs02_pool, list) { /* * Something will leak if the above WARN triggers. Better than * a use-after-free. */ if (vmx->loaded_vmcs == &item->vmcs02) continue; free_loaded_vmcs(&item->vmcs02); list_del(&item->list); kfree(item); vmx->nested.vmcs02_num--; } } /* * The following 3 functions, nested_vmx_succeed()/failValid()/failInvalid(), * set the success or error code of an emulated VMX instruction, as specified * by Vol 2B, VMX Instruction Reference, "Conventions". */ static void nested_vmx_succeed(struct kvm_vcpu *vcpu) { vmx_set_rflags(vcpu, vmx_get_rflags(vcpu) & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF | X86_EFLAGS_ZF | X86_EFLAGS_SF | X86_EFLAGS_OF)); } static void nested_vmx_failInvalid(struct kvm_vcpu *vcpu) { vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu) & ~(X86_EFLAGS_PF | X86_EFLAGS_AF | X86_EFLAGS_ZF | X86_EFLAGS_SF | X86_EFLAGS_OF)) | X86_EFLAGS_CF); } static void nested_vmx_failValid(struct kvm_vcpu *vcpu, u32 vm_instruction_error) { if (to_vmx(vcpu)->nested.current_vmptr == -1ull) { /* * failValid writes the error number to the current VMCS, which * can't be done there isn't a current VMCS. */ nested_vmx_failInvalid(vcpu); return; } vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu) & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF | X86_EFLAGS_SF | X86_EFLAGS_OF)) | X86_EFLAGS_ZF); get_vmcs12(vcpu)->vm_instruction_error = vm_instruction_error; /* * We don't need to force a shadow sync because * VM_INSTRUCTION_ERROR is not shadowed */ } static void nested_vmx_abort(struct kvm_vcpu *vcpu, u32 indicator) { /* TODO: not to reset guest simply here. */ kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); pr_warn("kvm: nested vmx abort, indicator %d\n", indicator); } static enum hrtimer_restart vmx_preemption_timer_fn(struct hrtimer *timer) { struct vcpu_vmx *vmx = container_of(timer, struct vcpu_vmx, nested.preemption_timer); vmx->nested.preemption_timer_expired = true; kvm_make_request(KVM_REQ_EVENT, &vmx->vcpu); kvm_vcpu_kick(&vmx->vcpu); return HRTIMER_NORESTART; } /* * Decode the memory-address operand of a vmx instruction, as recorded on an * exit caused by such an instruction (run by a guest hypervisor). * On success, returns 0. When the operand is invalid, returns 1 and throws * #UD or #GP. */ static int get_vmx_mem_address(struct kvm_vcpu *vcpu, unsigned long exit_qualification, u32 vmx_instruction_info, bool wr, gva_t *ret) { gva_t off; bool exn; struct kvm_segment s; /* * According to Vol. 3B, "Information for VM Exits Due to Instruction * Execution", on an exit, vmx_instruction_info holds most of the * addressing components of the operand. Only the displacement part * is put in exit_qualification (see 3B, "Basic VM-Exit Information"). * For how an actual address is calculated from all these components, * refer to Vol. 1, "Operand Addressing". */ int scaling = vmx_instruction_info & 3; int addr_size = (vmx_instruction_info >> 7) & 7; bool is_reg = vmx_instruction_info & (1u << 10); int seg_reg = (vmx_instruction_info >> 15) & 7; int index_reg = (vmx_instruction_info >> 18) & 0xf; bool index_is_valid = !(vmx_instruction_info & (1u << 22)); int base_reg = (vmx_instruction_info >> 23) & 0xf; bool base_is_valid = !(vmx_instruction_info & (1u << 27)); if (is_reg) { kvm_queue_exception(vcpu, UD_VECTOR); return 1; } /* Addr = segment_base + offset */ /* offset = base + [index * scale] + displacement */ off = exit_qualification; /* holds the displacement */ if (base_is_valid) off += kvm_register_read(vcpu, base_reg); if (index_is_valid) off += kvm_register_read(vcpu, index_reg)< s.limit); } if (exn) { kvm_queue_exception_e(vcpu, seg_reg == VCPU_SREG_SS ? SS_VECTOR : GP_VECTOR, 0); return 1; } return 0; } /* * This function performs the various checks including * - if it's 4KB aligned * - No bits beyond the physical address width are set * - Returns 0 on success or else 1 * (Intel SDM Section 30.3) */ static int nested_vmx_check_vmptr(struct kvm_vcpu *vcpu, int exit_reason, gpa_t *vmpointer) { gva_t gva; gpa_t vmptr; struct x86_exception e; struct page *page; struct vcpu_vmx *vmx = to_vmx(vcpu); int maxphyaddr = cpuid_maxphyaddr(vcpu); if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION), vmcs_read32(VMX_INSTRUCTION_INFO), false, &gva)) return 1; if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva, &vmptr, sizeof(vmptr), &e)) { kvm_inject_page_fault(vcpu, &e); return 1; } switch (exit_reason) { case EXIT_REASON_VMON: /* * SDM 3: 24.11.5 * The first 4 bytes of VMXON region contain the supported * VMCS revision identifier * * Note - IA32_VMX_BASIC[48] will never be 1 * for the nested case; * which replaces physical address width with 32 * */ if (!PAGE_ALIGNED(vmptr) || (vmptr >> maxphyaddr)) { nested_vmx_failInvalid(vcpu); skip_emulated_instruction(vcpu); return 1; } page = nested_get_page(vcpu, vmptr); if (page == NULL || *(u32 *)kmap(page) != VMCS12_REVISION) { nested_vmx_failInvalid(vcpu); kunmap(page); skip_emulated_instruction(vcpu); return 1; } kunmap(page); vmx->nested.vmxon_ptr = vmptr; break; case EXIT_REASON_VMCLEAR: if (!PAGE_ALIGNED(vmptr) || (vmptr >> maxphyaddr)) { nested_vmx_failValid(vcpu, VMXERR_VMCLEAR_INVALID_ADDRESS); skip_emulated_instruction(vcpu); return 1; } if (vmptr == vmx->nested.vmxon_ptr) { nested_vmx_failValid(vcpu, VMXERR_VMCLEAR_VMXON_POINTER); skip_emulated_instruction(vcpu); return 1; } break; case EXIT_REASON_VMPTRLD: if (!PAGE_ALIGNED(vmptr) || (vmptr >> maxphyaddr)) { nested_vmx_failValid(vcpu, VMXERR_VMPTRLD_INVALID_ADDRESS); skip_emulated_instruction(vcpu); return 1; } if (vmptr == vmx->nested.vmxon_ptr) { nested_vmx_failValid(vcpu, VMXERR_VMCLEAR_VMXON_POINTER); skip_emulated_instruction(vcpu); return 1; } break; default: return 1; /* shouldn't happen */ } if (vmpointer) *vmpointer = vmptr; return 0; } /* * Emulate the VMXON instruction. * Currently, we just remember that VMX is active, and do not save or even * inspect the argument to VMXON (the so-called "VMXON pointer") because we * do not currently need to store anything in that guest-allocated memory * region. Consequently, VMCLEAR and VMPTRLD also do not verify that the their * argument is different from the VMXON pointer (which the spec says they do). */ static int handle_vmon(struct kvm_vcpu *vcpu) { struct kvm_segment cs; struct vcpu_vmx *vmx = to_vmx(vcpu); struct vmcs *shadow_vmcs; const u64 VMXON_NEEDED_FEATURES = FEATURE_CONTROL_LOCKED | FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX; /* The Intel VMX Instruction Reference lists a bunch of bits that * are prerequisite to running VMXON, most notably cr4.VMXE must be * set to 1 (see vmx_set_cr4() for when we allow the guest to set this). * Otherwise, we should fail with #UD. We test these now: */ if (!kvm_read_cr4_bits(vcpu, X86_CR4_VMXE) || !kvm_read_cr0_bits(vcpu, X86_CR0_PE) || (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) { kvm_queue_exception(vcpu, UD_VECTOR); return 1; } vmx_get_segment(vcpu, &cs, VCPU_SREG_CS); if (is_long_mode(vcpu) && !cs.l) { kvm_queue_exception(vcpu, UD_VECTOR); return 1; } if (vmx_get_cpl(vcpu)) { kvm_inject_gp(vcpu, 0); return 1; } if (nested_vmx_check_vmptr(vcpu, EXIT_REASON_VMON, NULL)) return 1; if (vmx->nested.vmxon) { nested_vmx_failValid(vcpu, VMXERR_VMXON_IN_VMX_ROOT_OPERATION); skip_emulated_instruction(vcpu); return 1; } if ((vmx->msr_ia32_feature_control & VMXON_NEEDED_FEATURES) != VMXON_NEEDED_FEATURES) { kvm_inject_gp(vcpu, 0); return 1; } if (enable_shadow_vmcs) { shadow_vmcs = alloc_vmcs(); if (!shadow_vmcs) return -ENOMEM; /* mark vmcs as shadow */ shadow_vmcs->revision_id |= (1u << 31); /* init shadow vmcs */ vmcs_clear(shadow_vmcs); vmx->nested.current_shadow_vmcs = shadow_vmcs; } INIT_LIST_HEAD(&(vmx->nested.vmcs02_pool)); vmx->nested.vmcs02_num = 0; hrtimer_init(&vmx->nested.preemption_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); vmx->nested.preemption_timer.function = vmx_preemption_timer_fn; vmx->nested.vmxon = true; skip_emulated_instruction(vcpu); nested_vmx_succeed(vcpu); return 1; } /* * Intel's VMX Instruction Reference specifies a common set of prerequisites * for running VMX instructions (except VMXON, whose prerequisites are * slightly different). It also specifies what exception to inject otherwise. */ static int nested_vmx_check_permission(struct kvm_vcpu *vcpu) { struct kvm_segment cs; struct vcpu_vmx *vmx = to_vmx(vcpu); if (!vmx->nested.vmxon) { kvm_queue_exception(vcpu, UD_VECTOR); return 0; } vmx_get_segment(vcpu, &cs, VCPU_SREG_CS); if ((vmx_get_rflags(vcpu) & X86_EFLAGS_VM) || (is_long_mode(vcpu) && !cs.l)) { kvm_queue_exception(vcpu, UD_VECTOR); return 0; } if (vmx_get_cpl(vcpu)) { kvm_inject_gp(vcpu, 0); return 0; } return 1; } static inline void nested_release_vmcs12(struct vcpu_vmx *vmx) { if (vmx->nested.current_vmptr == -1ull) return; /* current_vmptr and current_vmcs12 are always set/reset together */ if (WARN_ON(vmx->nested.current_vmcs12 == NULL)) return; if (enable_shadow_vmcs) { /* copy to memory all shadowed fields in case they were modified */ copy_shadow_to_vmcs12(vmx); vmx->nested.sync_shadow_vmcs = false; vmcs_clear_bits(SECONDARY_VM_EXEC_CONTROL, SECONDARY_EXEC_SHADOW_VMCS); vmcs_write64(VMCS_LINK_POINTER, -1ull); } vmx->nested.posted_intr_nv = -1; kunmap(vmx->nested.current_vmcs12_page); nested_release_page(vmx->nested.current_vmcs12_page); vmx->nested.current_vmptr = -1ull; vmx->nested.current_vmcs12 = NULL; } /* * Free whatever needs to be freed from vmx->nested when L1 goes down, or * just stops using VMX. */ static void free_nested(struct vcpu_vmx *vmx) { if (!vmx->nested.vmxon) return; vmx->nested.vmxon = false; free_vpid(vmx->nested.vpid02); nested_release_vmcs12(vmx); if (enable_shadow_vmcs) free_vmcs(vmx->nested.current_shadow_vmcs); /* Unpin physical memory we referred to in current vmcs02 */ if (vmx->nested.apic_access_page) { nested_release_page(vmx->nested.apic_access_page); vmx->nested.apic_access_page = NULL; } if (vmx->nested.virtual_apic_page) { nested_release_page(vmx->nested.virtual_apic_page); vmx->nested.virtual_apic_page = NULL; } if (vmx->nested.pi_desc_page) { kunmap(vmx->nested.pi_desc_page); nested_release_page(vmx->nested.pi_desc_page); vmx->nested.pi_desc_page = NULL; vmx->nested.pi_desc = NULL; } nested_free_all_saved_vmcss(vmx); } /* Emulate the VMXOFF instruction */ static int handle_vmoff(struct kvm_vcpu *vcpu) { if (!nested_vmx_check_permission(vcpu)) return 1; free_nested(to_vmx(vcpu)); skip_emulated_instruction(vcpu); nested_vmx_succeed(vcpu); return 1; } /* Emulate the VMCLEAR instruction */ static int handle_vmclear(struct kvm_vcpu *vcpu) { struct vcpu_vmx *vmx = to_vmx(vcpu); gpa_t vmptr; struct vmcs12 *vmcs12; struct page *page; if (!nested_vmx_check_permission(vcpu)) return 1; if (nested_vmx_check_vmptr(vcpu, EXIT_REASON_VMCLEAR, &vmptr)) return 1; if (vmptr == vmx->nested.current_vmptr) nested_release_vmcs12(vmx); page = nested_get_page(vcpu, vmptr); if (page == NULL) { /* * For accurate processor emulation, VMCLEAR beyond available * physical memory should do nothing at all. However, it is * possible that a nested vmx bug, not a guest hypervisor bug, * resulted in this case, so let's shut down before doing any * more damage: */ kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); return 1; } vmcs12 = kmap(page); vmcs12->launch_state = 0; kunmap(page); nested_release_page(page); nested_free_vmcs02(vmx, vmptr); skip_emulated_instruction(vcpu); nested_vmx_succeed(vcpu); return 1; } static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch); /* Emulate the VMLAUNCH instruction */ static int handle_vmlaunch(struct kvm_vcpu *vcpu) { return nested_vmx_run(vcpu, true); } /* Emulate the VMRESUME instruction */ static int handle_vmresume(struct kvm_vcpu *vcpu) { return nested_vmx_run(vcpu, false); } enum vmcs_field_type { VMCS_FIELD_TYPE_U16 = 0, VMCS_FIELD_TYPE_U64 = 1, VMCS_FIELD_TYPE_U32 = 2, VMCS_FIELD_TYPE_NATURAL_WIDTH = 3 }; static inline int vmcs_field_type(unsigned long field) { if (0x1 & field) /* the *_HIGH fields are all 32 bit */ return VMCS_FIELD_TYPE_U32; return (field >> 13) & 0x3 ; } static inline int vmcs_field_readonly(unsigned long field) { return (((field >> 10) & 0x3) == 1); } /* * Read a vmcs12 field. Since these can have varying lengths and we return * one type, we chose the biggest type (u64) and zero-extend the return value * to that size. Note that the caller, handle_vmread, might need to use only * some of the bits we return here (e.g., on 32-bit guests, only 32 bits of * 64-bit fields are to be returned). */ static inline int vmcs12_read_any(struct kvm_vcpu *vcpu, unsigned long field, u64 *ret) { short offset = vmcs_field_to_offset(field); char *p; if (offset < 0) return offset; p = ((char *)(get_vmcs12(vcpu))) + offset; switch (vmcs_field_type(field)) { case VMCS_FIELD_TYPE_NATURAL_WIDTH: *ret = *((natural_width *)p); return 0; case VMCS_FIELD_TYPE_U16: *ret = *((u16 *)p); return 0; case VMCS_FIELD_TYPE_U32: *ret = *((u32 *)p); return 0; case VMCS_FIELD_TYPE_U64: *ret = *((u64 *)p); return 0; default: WARN_ON(1); return -ENOENT; } } static inline int vmcs12_write_any(struct kvm_vcpu *vcpu, unsigned long field, u64 field_value){ short offset = vmcs_field_to_offset(field); char *p = ((char *) get_vmcs12(vcpu)) + offset; if (offset < 0) return offset; switch (vmcs_field_type(field)) { case VMCS_FIELD_TYPE_U16: *(u16 *)p = field_value; return 0; case VMCS_FIELD_TYPE_U32: *(u32 *)p = field_value; return 0; case VMCS_FIELD_TYPE_U64: *(u64 *)p = field_value; return 0; case VMCS_FIELD_TYPE_NATURAL_WIDTH: *(natural_width *)p = field_value; return 0; default: WARN_ON(1); return -ENOENT; } } static void copy_shadow_to_vmcs12(struct vcpu_vmx *vmx) { int i; unsigned long field; u64 field_value; struct vmcs *shadow_vmcs = vmx->nested.current_shadow_vmcs; const unsigned long *fields = shadow_read_write_fields; const int num_fields = max_shadow_read_write_fields; preempt_disable(); vmcs_load(shadow_vmcs); for (i = 0; i < num_fields; i++) { field = fields[i]; switch (vmcs_field_type(field)) { case VMCS_FIELD_TYPE_U16: field_value = vmcs_read16(field); break; case VMCS_FIELD_TYPE_U32: field_value = vmcs_read32(field); break; case VMCS_FIELD_TYPE_U64: field_value = vmcs_read64(field); break; case VMCS_FIELD_TYPE_NATURAL_WIDTH: field_value = vmcs_readl(field); break; default: WARN_ON(1); continue; } vmcs12_write_any(&vmx->vcpu, field, field_value); } vmcs_clear(shadow_vmcs); vmcs_load(vmx->loaded_vmcs->vmcs); preempt_enable(); } static void copy_vmcs12_to_shadow(struct vcpu_vmx *vmx) { const unsigned long *fields[] = { shadow_read_write_fields, shadow_read_only_fields }; const int max_fields[] = { max_shadow_read_write_fields, max_shadow_read_only_fields }; int i, q; unsigned long field; u64 field_value = 0; struct vmcs *shadow_vmcs = vmx->nested.current_shadow_vmcs; vmcs_load(shadow_vmcs); for (q = 0; q < ARRAY_SIZE(fields); q++) { for (i = 0; i < max_fields[q]; i++) { field = fields[q][i]; vmcs12_read_any(&vmx->vcpu, field, &field_value); switch (vmcs_field_type(field)) { case VMCS_FIELD_TYPE_U16: vmcs_write16(field, (u16)field_value); break; case VMCS_FIELD_TYPE_U32: vmcs_write32(field, (u32)field_value); break; case VMCS_FIELD_TYPE_U64: vmcs_write64(field, (u64)field_value); break; case VMCS_FIELD_TYPE_NATURAL_WIDTH: vmcs_writel(field, (long)field_value); break; default: WARN_ON(1); break; } } } vmcs_clear(shadow_vmcs); vmcs_load(vmx->loaded_vmcs->vmcs); } /* * VMX instructions which assume a current vmcs12 (i.e., that VMPTRLD was * used before) all generate the same failure when it is missing. */ static int nested_vmx_check_vmcs12(struct kvm_vcpu *vcpu) { struct vcpu_vmx *vmx = to_vmx(vcpu); if (vmx->nested.current_vmptr == -1ull) { nested_vmx_failInvalid(vcpu); skip_emulated_instruction(vcpu); return 0; } return 1; } static int handle_vmread(struct kvm_vcpu *vcpu) { unsigned long field; u64 field_value; unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION); u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO); gva_t gva = 0; if (!nested_vmx_check_permission(vcpu) || !nested_vmx_check_vmcs12(vcpu)) return 1; /* Decode instruction info and find the field to read */ field = kvm_register_readl(vcpu, (((vmx_instruction_info) >> 28) & 0xf)); /* Read the field, zero-extended to a u64 field_value */ if (vmcs12_read_any(vcpu, field, &field_value) < 0) { nested_vmx_failValid(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT); skip_emulated_instruction(vcpu); return 1; } /* * Now copy part of this value to register or memory, as requested. * Note that the number of bits actually copied is 32 or 64 depending * on the guest's mode (32 or 64 bit), not on the given field's length. */ if (vmx_instruction_info & (1u << 10)) { kvm_register_writel(vcpu, (((vmx_instruction_info) >> 3) & 0xf), field_value); } else { if (get_vmx_mem_address(vcpu, exit_qualification, vmx_instruction_info, true, &gva)) return 1; /* _system ok, as nested_vmx_check_permission verified cpl=0 */ kvm_write_guest_virt_system(&vcpu->arch.emulate_ctxt, gva, &field_value, (is_long_mode(vcpu) ? 8 : 4), NULL); } nested_vmx_succeed(vcpu); skip_emulated_instruction(vcpu); return 1; } static int handle_vmwrite(struct kvm_vcpu *vcpu) { unsigned long field; gva_t gva; unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION); u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO); /* The value to write might be 32 or 64 bits, depending on L1's long * mode, and eventually we need to write that into a field of several * possible lengths. The code below first zero-extends the value to 64 * bit (field_value), and then copies only the appropriate number of * bits into the vmcs12 field. */ u64 field_value = 0; struct x86_exception e; if (!nested_vmx_check_permission(vcpu) || !nested_vmx_check_vmcs12(vcpu)) return 1; if (vmx_instruction_info & (1u << 10)) field_value = kvm_register_readl(vcpu, (((vmx_instruction_info) >> 3) & 0xf)); else { if (get_vmx_mem_address(vcpu, exit_qualification, vmx_instruction_info, false, &gva)) return 1; if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva, &field_value, (is_64_bit_mode(vcpu) ? 8 : 4), &e)) { kvm_inject_page_fault(vcpu, &e); return 1; } } field = kvm_register_readl(vcpu, (((vmx_instruction_info) >> 28) & 0xf)); if (vmcs_field_readonly(field)) { nested_vmx_failValid(vcpu, VMXERR_VMWRITE_READ_ONLY_VMCS_COMPONENT); skip_emulated_instruction(vcpu); return 1; } if (vmcs12_write_any(vcpu, field, field_value) < 0) { nested_vmx_failValid(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT); skip_emulated_instruction(vcpu); return 1; } nested_vmx_succeed(vcpu); skip_emulated_instruction(vcpu); return 1; } /* Emulate the VMPTRLD instruction */ static int handle_vmptrld(struct kvm_vcpu *vcpu) { struct vcpu_vmx *vmx = to_vmx(vcpu); gpa_t vmptr; if (!nested_vmx_check_permission(vcpu)) return 1; if (nested_vmx_check_vmptr(vcpu, EXIT_REASON_VMPTRLD, &vmptr)) return 1; if (vmx->nested.current_vmptr != vmptr) { struct vmcs12 *new_vmcs12; struct page *page; page = nested_get_page(vcpu, vmptr); if (page == NULL) { nested_vmx_failInvalid(vcpu); skip_emulated_instruction(vcpu); return 1; } new_vmcs12 = kmap(page); if (new_vmcs12->revision_id != VMCS12_REVISION) { kunmap(page); nested_release_page_clean(page); nested_vmx_failValid(vcpu, VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID); skip_emulated_instruction(vcpu); return 1; } nested_release_vmcs12(vmx); vmx->nested.current_vmptr = vmptr; vmx->nested.current_vmcs12 = new_vmcs12; vmx->nested.current_vmcs12_page = page; if (enable_shadow_vmcs) { vmcs_set_bits(SECONDARY_VM_EXEC_CONTROL, SECONDARY_EXEC_SHADOW_VMCS); vmcs_write64(VMCS_LINK_POINTER, __pa(vmx->nested.current_shadow_vmcs)); vmx->nested.sync_shadow_vmcs = true; } } nested_vmx_succeed(vcpu); skip_emulated_instruction(vcpu); return 1; } /* Emulate the VMPTRST instruction */ static int handle_vmptrst(struct kvm_vcpu *vcpu) { unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION); u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO); gva_t vmcs_gva; struct x86_exception e; if (!nested_vmx_check_permission(vcpu)) return 1; if (get_vmx_mem_address(vcpu, exit_qualification, vmx_instruction_info, true, &vmcs_gva)) return 1; /* ok to use *_system, as nested_vmx_check_permission verified cpl=0 */ if (kvm_write_guest_virt_system(&vcpu->arch.emulate_ctxt, vmcs_gva, (void *)&to_vmx(vcpu)->nested.current_vmptr, sizeof(u64), &e)) { kvm_inject_page_fault(vcpu, &e); return 1; } nested_vmx_succeed(vcpu); skip_emulated_instruction(vcpu); return 1; } /* Emulate the INVEPT instruction */ static int handle_invept(struct kvm_vcpu *vcpu) { struct vcpu_vmx *vmx = to_vmx(vcpu); u32 vmx_instruction_info, types; unsigned long type; gva_t gva; struct x86_exception e; struct { u64 eptp, gpa; } operand; if (!(vmx->nested.nested_vmx_secondary_ctls_high & SECONDARY_EXEC_ENABLE_EPT) || !(vmx->nested.nested_vmx_ept_caps & VMX_EPT_INVEPT_BIT)) { kvm_queue_exception(vcpu, UD_VECTOR); return 1; } if (!nested_vmx_check_permission(vcpu)) return 1; if (!kvm_read_cr0_bits(vcpu, X86_CR0_PE)) { kvm_queue_exception(vcpu, UD_VECTOR); return 1; } vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO); type = kvm_register_readl(vcpu, (vmx_instruction_info >> 28) & 0xf); types = (vmx->nested.nested_vmx_ept_caps >> VMX_EPT_EXTENT_SHIFT) & 6; if (!(types & (1UL << type))) { nested_vmx_failValid(vcpu, VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID); skip_emulated_instruction(vcpu); return 1; } /* According to the Intel VMX instruction reference, the memory * operand is read even if it isn't needed (e.g., for type==global) */ if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION), vmx_instruction_info, false, &gva)) return 1; if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva, &operand, sizeof(operand), &e)) { kvm_inject_page_fault(vcpu, &e); return 1; } switch (type) { case VMX_EPT_EXTENT_GLOBAL: kvm_mmu_sync_roots(vcpu); kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu); nested_vmx_succeed(vcpu); break; default: /* Trap single context invalidation invept calls */ BUG_ON(1); break; } skip_emulated_instruction(vcpu); return 1; } static int handle_invvpid(struct kvm_vcpu *vcpu) { struct vcpu_vmx *vmx = to_vmx(vcpu); u32 vmx_instruction_info; unsigned long type, types; gva_t gva; struct x86_exception e; int vpid; if (!(vmx->nested.nested_vmx_secondary_ctls_high & SECONDARY_EXEC_ENABLE_VPID) || !(vmx->nested.nested_vmx_vpid_caps & VMX_VPID_INVVPID_BIT)) { kvm_queue_exception(vcpu, UD_VECTOR); return 1; } if (!nested_vmx_check_permission(vcpu)) return 1; vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO); type = kvm_register_readl(vcpu, (vmx_instruction_info >> 28) & 0xf); types = (vmx->nested.nested_vmx_vpid_caps >> 8) & 0x7; if (!(types & (1UL << type))) { nested_vmx_failValid(vcpu, VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID); skip_emulated_instruction(vcpu); return 1; } /* according to the intel vmx instruction reference, the memory * operand is read even if it isn't needed (e.g., for type==global) */ if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION), vmx_instruction_info, false, &gva)) return 1; if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva, &vpid, sizeof(u32), &e)) { kvm_inject_page_fault(vcpu, &e); return 1; } switch (type) { case VMX_VPID_EXTENT_SINGLE_CONTEXT: /* * Old versions of KVM use the single-context version so we * have to support it; just treat it the same as all-context. */ case VMX_VPID_EXTENT_ALL_CONTEXT: __vmx_flush_tlb(vcpu, to_vmx(vcpu)->nested.vpid02); nested_vmx_succeed(vcpu); break; default: /* Trap individual address invalidation invvpid calls */ BUG_ON(1); break; } skip_emulated_instruction(vcpu); return 1; } static int handle_pml_full(struct kvm_vcpu *vcpu) { unsigned long exit_qualification; trace_kvm_pml_full(vcpu->vcpu_id); exit_qualification = vmcs_readl(EXIT_QUALIFICATION); /* * PML buffer FULL happened while executing iret from NMI, * "blocked by NMI" bit has to be set before next VM entry. */ if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) && cpu_has_virtual_nmis() && (exit_qualification & INTR_INFO_UNBLOCK_NMI)) vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, GUEST_INTR_STATE_NMI); /* * PML buffer already flushed at beginning of VMEXIT. Nothing to do * here.., and there's no userspace involvement needed for PML. */ return 1; } static int handle_pcommit(struct kvm_vcpu *vcpu) { /* we never catch pcommit instruct for L1 guest. */ WARN_ON(1); return 1; } static int handle_preemption_timer(struct kvm_vcpu *vcpu) { kvm_lapic_expired_hv_timer(vcpu); return 1; } /* * The exit handlers return 1 if the exit was handled fully and guest execution * may resume. Otherwise they set the kvm_run parameter to indicate what needs * to be done to userspace and return 0. */ static int (*const kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu) = { [EXIT_REASON_EXCEPTION_NMI] = handle_exception, [EXIT_REASON_EXTERNAL_INTERRUPT] = handle_external_interrupt, [EXIT_REASON_TRIPLE_FAULT] = handle_triple_fault, [EXIT_REASON_NMI_WINDOW] = handle_nmi_window, [EXIT_REASON_IO_INSTRUCTION] = handle_io, [EXIT_REASON_CR_ACCESS] = handle_cr, [EXIT_REASON_DR_ACCESS] = handle_dr, [EXIT_REASON_CPUID] = handle_cpuid, [EXIT_REASON_MSR_READ] = handle_rdmsr, [EXIT_REASON_MSR_WRITE] = handle_wrmsr, [EXIT_REASON_PENDING_INTERRUPT] = handle_interrupt_window, [EXIT_REASON_HLT] = handle_halt, [EXIT_REASON_INVD] = handle_invd, [EXIT_REASON_INVLPG] = handle_invlpg, [EXIT_REASON_RDPMC] = handle_rdpmc, [EXIT_REASON_VMCALL] = handle_vmcall, [EXIT_REASON_VMCLEAR] = handle_vmclear, [EXIT_REASON_VMLAUNCH] = handle_vmlaunch, [EXIT_REASON_VMPTRLD] = handle_vmptrld, [EXIT_REASON_VMPTRST] = handle_vmptrst, [EXIT_REASON_VMREAD] = handle_vmread, [EXIT_REASON_VMRESUME] = handle_vmresume, [EXIT_REASON_VMWRITE] = handle_vmwrite, [EXIT_REASON_VMOFF] = handle_vmoff, [EXIT_REASON_VMON] = handle_vmon, [EXIT_REASON_TPR_BELOW_THRESHOLD] = handle_tpr_below_threshold, [EXIT_REASON_APIC_ACCESS] = handle_apic_access, [EXIT_REASON_APIC_WRITE] = handle_apic_write, [EXIT_REASON_EOI_INDUCED] = handle_apic_eoi_induced, [EXIT_REASON_WBINVD] = handle_wbinvd, [EXIT_REASON_XSETBV] = handle_xsetbv, [EXIT_REASON_TASK_SWITCH] = handle_task_switch, [EXIT_REASON_MCE_DURING_VMENTRY] = handle_machine_check, [EXIT_REASON_EPT_VIOLATION] = handle_ept_violation, [EXIT_REASON_EPT_MISCONFIG] = handle_ept_misconfig, [EXIT_REASON_PAUSE_INSTRUCTION] = handle_pause, [EXIT_REASON_MWAIT_INSTRUCTION] = handle_mwait, [EXIT_REASON_MONITOR_TRAP_FLAG] = handle_monitor_trap, [EXIT_REASON_MONITOR_INSTRUCTION] = handle_monitor, [EXIT_REASON_INVEPT] = handle_invept, [EXIT_REASON_INVVPID] = handle_invvpid, [EXIT_REASON_XSAVES] = handle_xsaves, [EXIT_REASON_XRSTORS] = handle_xrstors, [EXIT_REASON_PML_FULL] = handle_pml_full, [EXIT_REASON_PCOMMIT] = handle_pcommit, [EXIT_REASON_PREEMPTION_TIMER] = handle_preemption_timer, }; static const int kvm_vmx_max_exit_handlers = ARRAY_SIZE(kvm_vmx_exit_handlers); static bool nested_vmx_exit_handled_io(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12) { unsigned long exit_qualification; gpa_t bitmap, last_bitmap; unsigned int port; int size; u8 b; if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS)) return nested_cpu_has(vmcs12, CPU_BASED_UNCOND_IO_EXITING); exit_qualification = vmcs_readl(EXIT_QUALIFICATION); port = exit_qualification >> 16; size = (exit_qualification & 7) + 1; last_bitmap = (gpa_t)-1; b = -1; while (size > 0) { if (port < 0x8000) bitmap = vmcs12->io_bitmap_a; else if (port < 0x10000) bitmap = vmcs12->io_bitmap_b; else return true; bitmap += (port & 0x7fff) / 8; if (last_bitmap != bitmap) if (kvm_vcpu_read_guest(vcpu, bitmap, &b, 1)) return true; if (b & (1 << (port & 7))) return true; port++; size--; last_bitmap = bitmap; } return false; } /* * Return 1 if we should exit from L2 to L1 to handle an MSR access access, * rather than handle it ourselves in L0. I.e., check whether L1 expressed * disinterest in the current event (read or write a specific MSR) by using an * MSR bitmap. This may be the case even when L0 doesn't use MSR bitmaps. */ static bool nested_vmx_exit_handled_msr(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12, u32 exit_reason) { u32 msr_index = vcpu->arch.regs[VCPU_REGS_RCX]; gpa_t bitmap; if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS)) return true; /* * The MSR_BITMAP page is divided into four 1024-byte bitmaps, * for the four combinations of read/write and low/high MSR numbers. * First we need to figure out which of the four to use: */ bitmap = vmcs12->msr_bitmap; if (exit_reason == EXIT_REASON_MSR_WRITE) bitmap += 2048; if (msr_index >= 0xc0000000) { msr_index -= 0xc0000000; bitmap += 1024; } /* Then read the msr_index'th bit from this bitmap: */ if (msr_index < 1024*8) { unsigned char b; if (kvm_vcpu_read_guest(vcpu, bitmap + msr_index/8, &b, 1)) return true; return 1 & (b >> (msr_index & 7)); } else return true; /* let L1 handle the wrong parameter */ } /* * Return 1 if we should exit from L2 to L1 to handle a CR access exit, * rather than handle it ourselves in L0. I.e., check if L1 wanted to * intercept (via guest_host_mask etc.) the current event. */ static bool nested_vmx_exit_handled_cr(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12) { unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION); int cr = exit_qualification & 15; int reg = (exit_qualification >> 8) & 15; unsigned long val = kvm_register_readl(vcpu, reg); switch ((exit_qualification >> 4) & 3) { case 0: /* mov to cr */ switch (cr) { case 0: if (vmcs12->cr0_guest_host_mask & (val ^ vmcs12->cr0_read_shadow)) return true; break; case 3: if ((vmcs12->cr3_target_count >= 1 && vmcs12->cr3_target_value0 == val) || (vmcs12->cr3_target_count >= 2 && vmcs12->cr3_target_value1 == val) || (vmcs12->cr3_target_count >= 3 && vmcs12->cr3_target_value2 == val) || (vmcs12->cr3_target_count >= 4 && vmcs12->cr3_target_value3 == val)) return false; if (nested_cpu_has(vmcs12, CPU_BASED_CR3_LOAD_EXITING)) return true; break; case 4: if (vmcs12->cr4_guest_host_mask & (vmcs12->cr4_read_shadow ^ val)) return true; break; case 8: if (nested_cpu_has(vmcs12, CPU_BASED_CR8_LOAD_EXITING)) return true; break; } break; case 2: /* clts */ if ((vmcs12->cr0_guest_host_mask & X86_CR0_TS) && (vmcs12->cr0_read_shadow & X86_CR0_TS)) return true; break; case 1: /* mov from cr */ switch (cr) { case 3: if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_CR3_STORE_EXITING) return true; break; case 8: if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_CR8_STORE_EXITING) return true; break; } break; case 3: /* lmsw */ /* * lmsw can change bits 1..3 of cr0, and only set bit 0 of * cr0. Other attempted changes are ignored, with no exit. */ if (vmcs12->cr0_guest_host_mask & 0xe & (val ^ vmcs12->cr0_read_shadow)) return true; if ((vmcs12->cr0_guest_host_mask & 0x1) && !(vmcs12->cr0_read_shadow & 0x1) && (val & 0x1)) return true; break; } return false; } /* * Return 1 if we should exit from L2 to L1 to handle an exit, or 0 if we * should handle it ourselves in L0 (and then continue L2). Only call this * when in is_guest_mode (L2). */ static bool nested_vmx_exit_handled(struct kvm_vcpu *vcpu) { u32 intr_info = vmcs_read32(VM_EXIT_INTR_INFO); struct vcpu_vmx *vmx = to_vmx(vcpu); struct vmcs12 *vmcs12 = get_vmcs12(vcpu); u32 exit_reason = vmx->exit_reason; trace_kvm_nested_vmexit(kvm_rip_read(vcpu), exit_reason, vmcs_readl(EXIT_QUALIFICATION), vmx->idt_vectoring_info, intr_info, vmcs_read32(VM_EXIT_INTR_ERROR_CODE), KVM_ISA_VMX); if (vmx->nested.nested_run_pending) return false; if (unlikely(vmx->fail)) { pr_info_ratelimited("%s failed vm entry %x\n", __func__, vmcs_read32(VM_INSTRUCTION_ERROR)); return true; } switch (exit_reason) { case EXIT_REASON_EXCEPTION_NMI: if (!is_exception(intr_info)) return false; else if (is_page_fault(intr_info)) return enable_ept; else if (is_no_device(intr_info) && !(vmcs12->guest_cr0 & X86_CR0_TS)) return false; else if (is_debug(intr_info) && vcpu->guest_debug & (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) return false; else if (is_breakpoint(intr_info) && vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP) return false; return vmcs12->exception_bitmap & (1u << (intr_info & INTR_INFO_VECTOR_MASK)); case EXIT_REASON_EXTERNAL_INTERRUPT: return false; case EXIT_REASON_TRIPLE_FAULT: return true; case EXIT_REASON_PENDING_INTERRUPT: return nested_cpu_has(vmcs12, CPU_BASED_VIRTUAL_INTR_PENDING); case EXIT_REASON_NMI_WINDOW: return nested_cpu_has(vmcs12, CPU_BASED_VIRTUAL_NMI_PENDING); case EXIT_REASON_TASK_SWITCH: return true; case EXIT_REASON_CPUID: if (kvm_register_read(vcpu, VCPU_REGS_RAX) == 0xa) return false; return true; case EXIT_REASON_HLT: return nested_cpu_has(vmcs12, CPU_BASED_HLT_EXITING); case EXIT_REASON_INVD: return true; case EXIT_REASON_INVLPG: return nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING); case EXIT_REASON_RDPMC: return nested_cpu_has(vmcs12, CPU_BASED_RDPMC_EXITING); case EXIT_REASON_RDTSC: case EXIT_REASON_RDTSCP: return nested_cpu_has(vmcs12, CPU_BASED_RDTSC_EXITING); case EXIT_REASON_VMCALL: case EXIT_REASON_VMCLEAR: case EXIT_REASON_VMLAUNCH: case EXIT_REASON_VMPTRLD: case EXIT_REASON_VMPTRST: case EXIT_REASON_VMREAD: case EXIT_REASON_VMRESUME: case EXIT_REASON_VMWRITE: case EXIT_REASON_VMOFF: case EXIT_REASON_VMON: case EXIT_REASON_INVEPT: case EXIT_REASON_INVVPID: /* * VMX instructions trap unconditionally. This allows L1 to * emulate them for its L2 guest, i.e., allows 3-level nesting! */ return true; case EXIT_REASON_CR_ACCESS: return nested_vmx_exit_handled_cr(vcpu, vmcs12); case EXIT_REASON_DR_ACCESS: return nested_cpu_has(vmcs12, CPU_BASED_MOV_DR_EXITING); case EXIT_REASON_IO_INSTRUCTION: return nested_vmx_exit_handled_io(vcpu, vmcs12); case EXIT_REASON_MSR_READ: case EXIT_REASON_MSR_WRITE: return nested_vmx_exit_handled_msr(vcpu, vmcs12, exit_reason); case EXIT_REASON_INVALID_STATE: return true; case EXIT_REASON_MWAIT_INSTRUCTION: return nested_cpu_has(vmcs12, CPU_BASED_MWAIT_EXITING); case EXIT_REASON_MONITOR_TRAP_FLAG: return nested_cpu_has(vmcs12, CPU_BASED_MONITOR_TRAP_FLAG); case EXIT_REASON_MONITOR_INSTRUCTION: return nested_cpu_has(vmcs12, CPU_BASED_MONITOR_EXITING); case EXIT_REASON_PAUSE_INSTRUCTION: return nested_cpu_has(vmcs12, CPU_BASED_PAUSE_EXITING) || nested_cpu_has2(vmcs12, SECONDARY_EXEC_PAUSE_LOOP_EXITING); case EXIT_REASON_MCE_DURING_VMENTRY: return false; case EXIT_REASON_TPR_BELOW_THRESHOLD: return nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW); case EXIT_REASON_APIC_ACCESS: return nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES); case EXIT_REASON_APIC_WRITE: case EXIT_REASON_EOI_INDUCED: /* apic_write and eoi_induced should exit unconditionally. */ return true; case EXIT_REASON_EPT_VIOLATION: /* * L0 always deals with the EPT violation. If nested EPT is * used, and the nested mmu code discovers that the address is * missing in the guest EPT table (EPT12), the EPT violation * will be injected with nested_ept_inject_page_fault() */ return false; case EXIT_REASON_EPT_MISCONFIG: /* * L2 never uses directly L1's EPT, but rather L0's own EPT * table (shadow on EPT) or a merged EPT table that L0 built * (EPT on EPT). So any problems with the structure of the * table is L0's fault. */ return false; case EXIT_REASON_WBINVD: return nested_cpu_has2(vmcs12, SECONDARY_EXEC_WBINVD_EXITING); case EXIT_REASON_XSETBV: return true; case EXIT_REASON_XSAVES: case EXIT_REASON_XRSTORS: /* * This should never happen, since it is not possible to * set XSS to a non-zero value---neither in L1 nor in L2. * If if it were, XSS would have to be checked against * the XSS exit bitmap in vmcs12. */ return nested_cpu_has2(vmcs12, SECONDARY_EXEC_XSAVES); case EXIT_REASON_PCOMMIT: return nested_cpu_has2(vmcs12, SECONDARY_EXEC_PCOMMIT); case EXIT_REASON_PREEMPTION_TIMER: return false; default: return true; } } static void vmx_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2) { *info1 = vmcs_readl(EXIT_QUALIFICATION); *info2 = vmcs_read32(VM_EXIT_INTR_INFO); } static int vmx_create_pml_buffer(struct vcpu_vmx *vmx) { struct page *pml_pg; pml_pg = alloc_page(GFP_KERNEL | __GFP_ZERO); if (!pml_pg) return -ENOMEM; vmx->pml_pg = pml_pg; vmcs_write64(PML_ADDRESS, page_to_phys(vmx->pml_pg)); vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1); return 0; } static void vmx_destroy_pml_buffer(struct vcpu_vmx *vmx) { if (vmx->pml_pg) { __free_page(vmx->pml_pg); vmx->pml_pg = NULL; } } static void vmx_flush_pml_buffer(struct kvm_vcpu *vcpu) { struct vcpu_vmx *vmx = to_vmx(vcpu); u64 *pml_buf; u16 pml_idx; pml_idx = vmcs_read16(GUEST_PML_INDEX); /* Do nothing if PML buffer is empty */ if (pml_idx == (PML_ENTITY_NUM - 1)) return; /* PML index always points to next available PML buffer entity */ if (pml_idx >= PML_ENTITY_NUM) pml_idx = 0; else pml_idx++; pml_buf = page_address(vmx->pml_pg); for (; pml_idx < PML_ENTITY_NUM; pml_idx++) { u64 gpa; gpa = pml_buf[pml_idx]; WARN_ON(gpa & (PAGE_SIZE - 1)); kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT); } /* reset PML index */ vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1); } /* * Flush all vcpus' PML buffer and update logged GPAs to dirty_bitmap. * Called before reporting dirty_bitmap to userspace. */ static void kvm_flush_pml_buffers(struct kvm *kvm) { int i; struct kvm_vcpu *vcpu; /* * We only need to kick vcpu out of guest mode here, as PML buffer * is flushed at beginning of all VMEXITs, and it's obvious that only * vcpus running in guest are possible to have unflushed GPAs in PML * buffer. */ kvm_for_each_vcpu(i, vcpu, kvm) kvm_vcpu_kick(vcpu); } static void vmx_dump_sel(char *name, uint32_t sel) { pr_err("%s sel=0x%04x, attr=0x%05x, limit=0x%08x, base=0x%016lx\n", name, vmcs_read32(sel), vmcs_read32(sel + GUEST_ES_AR_BYTES - GUEST_ES_SELECTOR), vmcs_read32(sel + GUEST_ES_LIMIT - GUEST_ES_SELECTOR), vmcs_readl(sel + GUEST_ES_BASE - GUEST_ES_SELECTOR)); } static void vmx_dump_dtsel(char *name, uint32_t limit) { pr_err("%s limit=0x%08x, base=0x%016lx\n", name, vmcs_read32(limit), vmcs_readl(limit + GUEST_GDTR_BASE - GUEST_GDTR_LIMIT)); } static void dump_vmcs(void) { u32 vmentry_ctl = vmcs_read32(VM_ENTRY_CONTROLS); u32 vmexit_ctl = vmcs_read32(VM_EXIT_CONTROLS); u32 cpu_based_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL); u32 pin_based_exec_ctrl = vmcs_read32(PIN_BASED_VM_EXEC_CONTROL); u32 secondary_exec_control = 0; unsigned long cr4 = vmcs_readl(GUEST_CR4); u64 efer = vmcs_read64(GUEST_IA32_EFER); int i, n; if (cpu_has_secondary_exec_ctrls()) secondary_exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL); pr_err("*** Guest State ***\n"); pr_err("CR0: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n", vmcs_readl(GUEST_CR0), vmcs_readl(CR0_READ_SHADOW), vmcs_readl(CR0_GUEST_HOST_MASK)); pr_err("CR4: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n", cr4, vmcs_readl(CR4_READ_SHADOW), vmcs_readl(CR4_GUEST_HOST_MASK)); pr_err("CR3 = 0x%016lx\n", vmcs_readl(GUEST_CR3)); if ((secondary_exec_control & SECONDARY_EXEC_ENABLE_EPT) && (cr4 & X86_CR4_PAE) && !(efer & EFER_LMA)) { pr_err("PDPTR0 = 0x%016llx PDPTR1 = 0x%016llx\n", vmcs_read64(GUEST_PDPTR0), vmcs_read64(GUEST_PDPTR1)); pr_err("PDPTR2 = 0x%016llx PDPTR3 = 0x%016llx\n", vmcs_read64(GUEST_PDPTR2), vmcs_read64(GUEST_PDPTR3)); } pr_err("RSP = 0x%016lx RIP = 0x%016lx\n", vmcs_readl(GUEST_RSP), vmcs_readl(GUEST_RIP)); pr_err("RFLAGS=0x%08lx DR7 = 0x%016lx\n", vmcs_readl(GUEST_RFLAGS), vmcs_readl(GUEST_DR7)); pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n", vmcs_readl(GUEST_SYSENTER_ESP), vmcs_read32(GUEST_SYSENTER_CS), vmcs_readl(GUEST_SYSENTER_EIP)); vmx_dump_sel("CS: ", GUEST_CS_SELECTOR); vmx_dump_sel("DS: ", GUEST_DS_SELECTOR); vmx_dump_sel("SS: ", GUEST_SS_SELECTOR); vmx_dump_sel("ES: ", GUEST_ES_SELECTOR); vmx_dump_sel("FS: ", GUEST_FS_SELECTOR); vmx_dump_sel("GS: ", GUEST_GS_SELECTOR); vmx_dump_dtsel("GDTR:", GUEST_GDTR_LIMIT); vmx_dump_sel("LDTR:", GUEST_LDTR_SELECTOR); vmx_dump_dtsel("IDTR:", GUEST_IDTR_LIMIT); vmx_dump_sel("TR: ", GUEST_TR_SELECTOR); if ((vmexit_ctl & (VM_EXIT_SAVE_IA32_PAT | VM_EXIT_SAVE_IA32_EFER)) || (vmentry_ctl & (VM_ENTRY_LOAD_IA32_PAT | VM_ENTRY_LOAD_IA32_EFER))) pr_err("EFER = 0x%016llx PAT = 0x%016llx\n", efer, vmcs_read64(GUEST_IA32_PAT)); pr_err("DebugCtl = 0x%016llx DebugExceptions = 0x%016lx\n", vmcs_read64(GUEST_IA32_DEBUGCTL), vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS)); if (vmentry_ctl & VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL) pr_err("PerfGlobCtl = 0x%016llx\n", vmcs_read64(GUEST_IA32_PERF_GLOBAL_CTRL)); if (vmentry_ctl & VM_ENTRY_LOAD_BNDCFGS) pr_err("BndCfgS = 0x%016llx\n", vmcs_read64(GUEST_BNDCFGS)); pr_err("Interruptibility = %08x ActivityState = %08x\n", vmcs_read32(GUEST_INTERRUPTIBILITY_INFO), vmcs_read32(GUEST_ACTIVITY_STATE)); if (secondary_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY) pr_err("InterruptStatus = %04x\n", vmcs_read16(GUEST_INTR_STATUS)); pr_err("*** Host State ***\n"); pr_err("RIP = 0x%016lx RSP = 0x%016lx\n", vmcs_readl(HOST_RIP), vmcs_readl(HOST_RSP)); pr_err("CS=%04x SS=%04x DS=%04x ES=%04x FS=%04x GS=%04x TR=%04x\n", vmcs_read16(HOST_CS_SELECTOR), vmcs_read16(HOST_SS_SELECTOR), vmcs_read16(HOST_DS_SELECTOR), vmcs_read16(HOST_ES_SELECTOR), vmcs_read16(HOST_FS_SELECTOR), vmcs_read16(HOST_GS_SELECTOR), vmcs_read16(HOST_TR_SELECTOR)); pr_err("FSBase=%016lx GSBase=%016lx TRBase=%016lx\n", vmcs_readl(HOST_FS_BASE), vmcs_readl(HOST_GS_BASE), vmcs_readl(HOST_TR_BASE)); pr_err("GDTBase=%016lx IDTBase=%016lx\n", vmcs_readl(HOST_GDTR_BASE), vmcs_readl(HOST_IDTR_BASE)); pr_err("CR0=%016lx CR3=%016lx CR4=%016lx\n", vmcs_readl(HOST_CR0), vmcs_readl(HOST_CR3), vmcs_readl(HOST_CR4)); pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n", vmcs_readl(HOST_IA32_SYSENTER_ESP), vmcs_read32(HOST_IA32_SYSENTER_CS), vmcs_readl(HOST_IA32_SYSENTER_EIP)); if (vmexit_ctl & (VM_EXIT_LOAD_IA32_PAT | VM_EXIT_LOAD_IA32_EFER)) pr_err("EFER = 0x%016llx PAT = 0x%016llx\n", vmcs_read64(HOST_IA32_EFER), vmcs_read64(HOST_IA32_PAT)); if (vmexit_ctl & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL) pr_err("PerfGlobCtl = 0x%016llx\n", vmcs_read64(HOST_IA32_PERF_GLOBAL_CTRL)); pr_err("*** Control State ***\n"); pr_err("PinBased=%08x CPUBased=%08x SecondaryExec=%08x\n", pin_based_exec_ctrl, cpu_based_exec_ctrl, secondary_exec_control); pr_err("EntryControls=%08x ExitControls=%08x\n", vmentry_ctl, vmexit_ctl); pr_err("ExceptionBitmap=%08x PFECmask=%08x PFECmatch=%08x\n", vmcs_read32(EXCEPTION_BITMAP), vmcs_read32(PAGE_FAULT_ERROR_CODE_MASK), vmcs_read32(PAGE_FAULT_ERROR_CODE_MATCH)); pr_err("VMEntry: intr_info=%08x errcode=%08x ilen=%08x\n", vmcs_read32(VM_ENTRY_INTR_INFO_FIELD), vmcs_read32(VM_ENTRY_EXCEPTION_ERROR_CODE), vmcs_read32(VM_ENTRY_INSTRUCTION_LEN)); pr_err("VMExit: intr_info=%08x errcode=%08x ilen=%08x\n", vmcs_read32(VM_EXIT_INTR_INFO), vmcs_read32(VM_EXIT_INTR_ERROR_CODE), vmcs_read32(VM_EXIT_INSTRUCTION_LEN)); pr_err(" reason=%08x qualification=%016lx\n", vmcs_read32(VM_EXIT_REASON), vmcs_readl(EXIT_QUALIFICATION)); pr_err("IDTVectoring: info=%08x errcode=%08x\n", vmcs_read32(IDT_VECTORING_INFO_FIELD), vmcs_read32(IDT_VECTORING_ERROR_CODE)); pr_err("TSC Offset = 0x%016llx\n", vmcs_read64(TSC_OFFSET)); if (secondary_exec_control & SECONDARY_EXEC_TSC_SCALING) pr_err("TSC Multiplier = 0x%016llx\n", vmcs_read64(TSC_MULTIPLIER)); if (cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW) pr_err("TPR Threshold = 0x%02x\n", vmcs_read32(TPR_THRESHOLD)); if (pin_based_exec_ctrl & PIN_BASED_POSTED_INTR) pr_err("PostedIntrVec = 0x%02x\n", vmcs_read16(POSTED_INTR_NV)); if ((secondary_exec_control & SECONDARY_EXEC_ENABLE_EPT)) pr_err("EPT pointer = 0x%016llx\n", vmcs_read64(EPT_POINTER)); n = vmcs_read32(CR3_TARGET_COUNT); for (i = 0; i + 1 < n; i += 4) pr_err("CR3 target%u=%016lx target%u=%016lx\n", i, vmcs_readl(CR3_TARGET_VALUE0 + i * 2), i + 1, vmcs_readl(CR3_TARGET_VALUE0 + i * 2 + 2)); if (i < n) pr_err("CR3 target%u=%016lx\n", i, vmcs_readl(CR3_TARGET_VALUE0 + i * 2)); if (secondary_exec_control & SECONDARY_EXEC_PAUSE_LOOP_EXITING) pr_err("PLE Gap=%08x Window=%08x\n", vmcs_read32(PLE_GAP), vmcs_read32(PLE_WINDOW)); if (secondary_exec_control & SECONDARY_EXEC_ENABLE_VPID) pr_err("Virtual processor ID = 0x%04x\n", vmcs_read16(VIRTUAL_PROCESSOR_ID)); } /* * The guest has exited. See if we can fix it or if we need userspace * assistance. */ static int vmx_handle_exit(struct kvm_vcpu *vcpu) { struct vcpu_vmx *vmx = to_vmx(vcpu); u32 exit_reason = vmx->exit_reason; u32 vectoring_info = vmx->idt_vectoring_info; trace_kvm_exit(exit_reason, vcpu, KVM_ISA_VMX); /* * Flush logged GPAs PML buffer, this will make dirty_bitmap more * updated. Another good is, in kvm_vm_ioctl_get_dirty_log, before * querying dirty_bitmap, we only need to kick all vcpus out of guest * mode as if vcpus is in root mode, the PML buffer must has been * flushed already. */ if (enable_pml) vmx_flush_pml_buffer(vcpu); /* If guest state is invalid, start emulating */ if (vmx->emulation_required) return handle_invalid_guest_state(vcpu); if (is_guest_mode(vcpu) && nested_vmx_exit_handled(vcpu)) { nested_vmx_vmexit(vcpu, exit_reason, vmcs_read32(VM_EXIT_INTR_INFO), vmcs_readl(EXIT_QUALIFICATION)); return 1; } if (exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY) { dump_vmcs(); vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY; vcpu->run->fail_entry.hardware_entry_failure_reason = exit_reason; return 0; } if (unlikely(vmx->fail)) { vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY; vcpu->run->fail_entry.hardware_entry_failure_reason = vmcs_read32(VM_INSTRUCTION_ERROR); return 0; } /* * Note: * Do not try to fix EXIT_REASON_EPT_MISCONFIG if it caused by * delivery event since it indicates guest is accessing MMIO. * The vm-exit can be triggered again after return to guest that * will cause infinite loop. */ if ((vectoring_info & VECTORING_INFO_VALID_MASK) && (exit_reason != EXIT_REASON_EXCEPTION_NMI && exit_reason != EXIT_REASON_EPT_VIOLATION && exit_reason != EXIT_REASON_TASK_SWITCH)) { vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_DELIVERY_EV; vcpu->run->internal.ndata = 2; vcpu->run->internal.data[0] = vectoring_info; vcpu->run->internal.data[1] = exit_reason; return 0; } if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked && !(is_guest_mode(vcpu) && nested_cpu_has_virtual_nmis( get_vmcs12(vcpu))))) { if (vmx_interrupt_allowed(vcpu)) { vmx->soft_vnmi_blocked = 0; } else if (vmx->vnmi_blocked_time > 1000000000LL && vcpu->arch.nmi_pending) { /* * This CPU don't support us in finding the end of an * NMI-blocked window if the guest runs with IRQs * disabled. So we pull the trigger after 1 s of * futile waiting, but inform the user about this. */ printk(KERN_WARNING "%s: Breaking out of NMI-blocked " "state on VCPU %d after 1 s timeout\n", __func__, vcpu->vcpu_id); vmx->soft_vnmi_blocked = 0; } } if (exit_reason < kvm_vmx_max_exit_handlers && kvm_vmx_exit_handlers[exit_reason]) return kvm_vmx_exit_handlers[exit_reason](vcpu); else { WARN_ONCE(1, "vmx: unexpected exit reason 0x%x\n", exit_reason); kvm_queue_exception(vcpu, UD_VECTOR); return 1; } } static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr) { struct vmcs12 *vmcs12 = get_vmcs12(vcpu); if (is_guest_mode(vcpu) && nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) return; if (irr == -1 || tpr < irr) { vmcs_write32(TPR_THRESHOLD, 0); return; } vmcs_write32(TPR_THRESHOLD, irr); } static void vmx_set_virtual_x2apic_mode(struct kvm_vcpu *vcpu, bool set) { u32 sec_exec_control; /* * There is not point to enable virtualize x2apic without enable * apicv */ if (!cpu_has_vmx_virtualize_x2apic_mode() || !kvm_vcpu_apicv_active(vcpu)) return; if (!cpu_need_tpr_shadow(vcpu)) return; sec_exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL); if (set) { sec_exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES; sec_exec_control |= SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE; } else { sec_exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE; sec_exec_control |= SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES; } vmcs_write32(SECONDARY_VM_EXEC_CONTROL, sec_exec_control); vmx_set_msr_bitmap(vcpu); } static void vmx_set_apic_access_page_addr(struct kvm_vcpu *vcpu, hpa_t hpa) { struct vcpu_vmx *vmx = to_vmx(vcpu); /* * Currently we do not handle the nested case where L2 has an * APIC access page of its own; that page is still pinned. * Hence, we skip the case where the VCPU is in guest mode _and_ * L1 prepared an APIC access page for L2. * * For the case where L1 and L2 share the same APIC access page * (flexpriority=Y but SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES clear * in the vmcs12), this function will only update either the vmcs01 * or the vmcs02. If the former, the vmcs02 will be updated by * prepare_vmcs02. If the latter, the vmcs01 will be updated in * the next L2->L1 exit. */ if (!is_guest_mode(vcpu) || !nested_cpu_has2(vmx->nested.current_vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) vmcs_write64(APIC_ACCESS_ADDR, hpa); } static void vmx_hwapic_isr_update(struct kvm_vcpu *vcpu, int max_isr) { u16 status; u8 old; if (max_isr == -1) max_isr = 0; status = vmcs_read16(GUEST_INTR_STATUS); old = status >> 8; if (max_isr != old) { status &= 0xff; status |= max_isr << 8; vmcs_write16(GUEST_INTR_STATUS, status); } } static void vmx_set_rvi(int vector) { u16 status; u8 old; if (vector == -1) vector = 0; status = vmcs_read16(GUEST_INTR_STATUS); old = (u8)status & 0xff; if ((u8)vector != old) { status &= ~0xff; status |= (u8)vector; vmcs_write16(GUEST_INTR_STATUS, status); } } static void vmx_hwapic_irr_update(struct kvm_vcpu *vcpu, int max_irr) { if (!is_guest_mode(vcpu)) { vmx_set_rvi(max_irr); return; } if (max_irr == -1) return; /* * In guest mode. If a vmexit is needed, vmx_check_nested_events * handles it. */ if (nested_exit_on_intr(vcpu)) return; /* * Else, fall back to pre-APICv interrupt injection since L2 * is run without virtual interrupt delivery. */ if (!kvm_event_needs_reinjection(vcpu) && vmx_interrupt_allowed(vcpu)) { kvm_queue_interrupt(vcpu, max_irr, false); vmx_inject_irq(vcpu); } } static void vmx_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap) { if (!kvm_vcpu_apicv_active(vcpu)) return; vmcs_write64(EOI_EXIT_BITMAP0, eoi_exit_bitmap[0]); vmcs_write64(EOI_EXIT_BITMAP1, eoi_exit_bitmap[1]); vmcs_write64(EOI_EXIT_BITMAP2, eoi_exit_bitmap[2]); vmcs_write64(EOI_EXIT_BITMAP3, eoi_exit_bitmap[3]); } static void vmx_complete_atomic_exit(struct vcpu_vmx *vmx) { u32 exit_intr_info; if (!(vmx->exit_reason == EXIT_REASON_MCE_DURING_VMENTRY || vmx->exit_reason == EXIT_REASON_EXCEPTION_NMI)) return; vmx->exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO); exit_intr_info = vmx->exit_intr_info; /* Handle machine checks before interrupts are enabled */ if (is_machine_check(exit_intr_info)) kvm_machine_check(); /* We need to handle NMIs before interrupts are enabled */ if ((exit_intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR && (exit_intr_info & INTR_INFO_VALID_MASK)) { kvm_before_handle_nmi(&vmx->vcpu); asm("int $2"); kvm_after_handle_nmi(&vmx->vcpu); } } static void vmx_handle_external_intr(struct kvm_vcpu *vcpu) { u32 exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO); register void *__sp asm(_ASM_SP); /* * If external interrupt exists, IF bit is set in rflags/eflags on the * interrupt stack frame, and interrupt will be enabled on a return * from interrupt handler. */ if ((exit_intr_info & (INTR_INFO_VALID_MASK | INTR_INFO_INTR_TYPE_MASK)) == (INTR_INFO_VALID_MASK | INTR_TYPE_EXT_INTR)) { unsigned int vector; unsigned long entry; gate_desc *desc; struct vcpu_vmx *vmx = to_vmx(vcpu); #ifdef CONFIG_X86_64 unsigned long tmp; #endif vector = exit_intr_info & INTR_INFO_VECTOR_MASK; desc = (gate_desc *)vmx->host_idt_base + vector; entry = gate_offset(*desc); asm volatile( #ifdef CONFIG_X86_64 "mov %%" _ASM_SP ", %[sp]\n\t" "and $0xfffffffffffffff0, %%" _ASM_SP "\n\t" "push $%c[ss]\n\t" "push %[sp]\n\t" #endif "pushf\n\t" __ASM_SIZE(push) " $%c[cs]\n\t" "call *%[entry]\n\t" : #ifdef CONFIG_X86_64 [sp]"=&r"(tmp), #endif "+r"(__sp) : [entry]"r"(entry), [ss]"i"(__KERNEL_DS), [cs]"i"(__KERNEL_CS) ); } } static bool vmx_has_high_real_mode_segbase(void) { return enable_unrestricted_guest || emulate_invalid_guest_state; } static bool vmx_mpx_supported(void) { return (vmcs_config.vmexit_ctrl & VM_EXIT_CLEAR_BNDCFGS) && (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_BNDCFGS); } static bool vmx_xsaves_supported(void) { return vmcs_config.cpu_based_2nd_exec_ctrl & SECONDARY_EXEC_XSAVES; } static void vmx_recover_nmi_blocking(struct vcpu_vmx *vmx) { u32 exit_intr_info; bool unblock_nmi; u8 vector; bool idtv_info_valid; idtv_info_valid = vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK; if (cpu_has_virtual_nmis()) { if (vmx->nmi_known_unmasked) return; /* * Can't use vmx->exit_intr_info since we're not sure what * the exit reason is. */ exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO); unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0; vector = exit_intr_info & INTR_INFO_VECTOR_MASK; /* * SDM 3: 27.7.1.2 (September 2008) * Re-set bit "block by NMI" before VM entry if vmexit caused by * a guest IRET fault. * SDM 3: 23.2.2 (September 2008) * Bit 12 is undefined in any of the following cases: * If the VM exit sets the valid bit in the IDT-vectoring * information field. * If the VM exit is due to a double fault. */ if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi && vector != DF_VECTOR && !idtv_info_valid) vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, GUEST_INTR_STATE_NMI); else vmx->nmi_known_unmasked = !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_NMI); } else if (unlikely(vmx->soft_vnmi_blocked)) vmx->vnmi_blocked_time += ktime_to_ns(ktime_sub(ktime_get(), vmx->entry_time)); } static void __vmx_complete_interrupts(struct kvm_vcpu *vcpu, u32 idt_vectoring_info, int instr_len_field, int error_code_field) { u8 vector; int type; bool idtv_info_valid; idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK; vcpu->arch.nmi_injected = false; kvm_clear_exception_queue(vcpu); kvm_clear_interrupt_queue(vcpu); if (!idtv_info_valid) return; kvm_make_request(KVM_REQ_EVENT, vcpu); vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK; type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK; switch (type) { case INTR_TYPE_NMI_INTR: vcpu->arch.nmi_injected = true; /* * SDM 3: 27.7.1.2 (September 2008) * Clear bit "block by NMI" before VM entry if a NMI * delivery faulted. */ vmx_set_nmi_mask(vcpu, false); break; case INTR_TYPE_SOFT_EXCEPTION: vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field); /* fall through */ case INTR_TYPE_HARD_EXCEPTION: if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) { u32 err = vmcs_read32(error_code_field); kvm_requeue_exception_e(vcpu, vector, err); } else kvm_requeue_exception(vcpu, vector); break; case INTR_TYPE_SOFT_INTR: vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field); /* fall through */ case INTR_TYPE_EXT_INTR: kvm_queue_interrupt(vcpu, vector, type == INTR_TYPE_SOFT_INTR); break; default: break; } } static void vmx_complete_interrupts(struct vcpu_vmx *vmx) { __vmx_complete_interrupts(&vmx->vcpu, vmx->idt_vectoring_info, VM_EXIT_INSTRUCTION_LEN, IDT_VECTORING_ERROR_CODE); } static void vmx_cancel_injection(struct kvm_vcpu *vcpu) { __vmx_complete_interrupts(vcpu, vmcs_read32(VM_ENTRY_INTR_INFO_FIELD), VM_ENTRY_INSTRUCTION_LEN, VM_ENTRY_EXCEPTION_ERROR_CODE); vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); } static void atomic_switch_perf_msrs(struct vcpu_vmx *vmx) { int i, nr_msrs; struct perf_guest_switch_msr *msrs; msrs = perf_guest_get_msrs(&nr_msrs); if (!msrs) return; for (i = 0; i < nr_msrs; i++) if (msrs[i].host == msrs[i].guest) clear_atomic_switch_msr(vmx, msrs[i].msr); else add_atomic_switch_msr(vmx, msrs[i].msr, msrs[i].guest, msrs[i].host); } void vmx_arm_hv_timer(struct kvm_vcpu *vcpu) { struct vcpu_vmx *vmx = to_vmx(vcpu); u64 tscl; u32 delta_tsc; if (vmx->hv_deadline_tsc == -1) return; tscl = rdtsc(); if (vmx->hv_deadline_tsc > tscl) /* sure to be 32 bit only because checked on set_hv_timer */ delta_tsc = (u32)((vmx->hv_deadline_tsc - tscl) >> cpu_preemption_timer_multi); else delta_tsc = 0; vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, delta_tsc); } static void __noclone vmx_vcpu_run(struct kvm_vcpu *vcpu) { struct vcpu_vmx *vmx = to_vmx(vcpu); unsigned long debugctlmsr, cr4; /* Record the guest's net vcpu time for enforced NMI injections. */ if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked)) vmx->entry_time = ktime_get(); /* Don't enter VMX if guest state is invalid, let the exit handler start emulation until we arrive back to a valid state */ if (vmx->emulation_required) return; if (vmx->ple_window_dirty) { vmx->ple_window_dirty = false; vmcs_write32(PLE_WINDOW, vmx->ple_window); } if (vmx->nested.sync_shadow_vmcs) { copy_vmcs12_to_shadow(vmx); vmx->nested.sync_shadow_vmcs = false; } if (test_bit(VCPU_REGS_RSP, (unsigned long *)&vcpu->arch.regs_dirty)) vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]); if (test_bit(VCPU_REGS_RIP, (unsigned long *)&vcpu->arch.regs_dirty)) vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]); cr4 = cr4_read_shadow(); if (unlikely(cr4 != vmx->host_state.vmcs_host_cr4)) { vmcs_writel(HOST_CR4, cr4); vmx->host_state.vmcs_host_cr4 = cr4; } /* When single-stepping over STI and MOV SS, we must clear the * corresponding interruptibility bits in the guest state. Otherwise * vmentry fails as it then expects bit 14 (BS) in pending debug * exceptions being set, but that's not correct for the guest debugging * case. */ if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) vmx_set_interrupt_shadow(vcpu, 0); if (vmx->guest_pkru_valid) __write_pkru(vmx->guest_pkru); atomic_switch_perf_msrs(vmx); debugctlmsr = get_debugctlmsr(); vmx_arm_hv_timer(vcpu); vmx->__launched = vmx->loaded_vmcs->launched; asm( /* Store host registers */ "push %%" _ASM_DX "; push %%" _ASM_BP ";" "push %%" _ASM_CX " \n\t" /* placeholder for guest rcx */ "push %%" _ASM_CX " \n\t" "cmp %%" _ASM_SP ", %c[host_rsp](%0) \n\t" "je 1f \n\t" "mov %%" _ASM_SP ", %c[host_rsp](%0) \n\t" __ex(ASM_VMX_VMWRITE_RSP_RDX) "\n\t" "1: \n\t" /* Reload cr2 if changed */ "mov %c[cr2](%0), %%" _ASM_AX " \n\t" "mov %%cr2, %%" _ASM_DX " \n\t" "cmp %%" _ASM_AX ", %%" _ASM_DX " \n\t" "je 2f \n\t" "mov %%" _ASM_AX", %%cr2 \n\t" "2: \n\t" /* Check if vmlaunch of vmresume is needed */ "cmpl $0, %c[launched](%0) \n\t" /* Load guest registers. Don't clobber flags. */ "mov %c[rax](%0), %%" _ASM_AX " \n\t" "mov %c[rbx](%0), %%" _ASM_BX " \n\t" "mov %c[rdx](%0), %%" _ASM_DX " \n\t" "mov %c[rsi](%0), %%" _ASM_SI " \n\t" "mov %c[rdi](%0), %%" _ASM_DI " \n\t" "mov %c[rbp](%0), %%" _ASM_BP " \n\t" #ifdef CONFIG_X86_64 "mov %c[r8](%0), %%r8 \n\t" "mov %c[r9](%0), %%r9 \n\t" "mov %c[r10](%0), %%r10 \n\t" "mov %c[r11](%0), %%r11 \n\t" "mov %c[r12](%0), %%r12 \n\t" "mov %c[r13](%0), %%r13 \n\t" "mov %c[r14](%0), %%r14 \n\t" "mov %c[r15](%0), %%r15 \n\t" #endif "mov %c[rcx](%0), %%" _ASM_CX " \n\t" /* kills %0 (ecx) */ /* Enter guest mode */ "jne 1f \n\t" __ex(ASM_VMX_VMLAUNCH) "\n\t" "jmp 2f \n\t" "1: " __ex(ASM_VMX_VMRESUME) "\n\t" "2: " /* Save guest registers, load host registers, keep flags */ "mov %0, %c[wordsize](%%" _ASM_SP ") \n\t" "pop %0 \n\t" "mov %%" _ASM_AX ", %c[rax](%0) \n\t" "mov %%" _ASM_BX ", %c[rbx](%0) \n\t" __ASM_SIZE(pop) " %c[rcx](%0) \n\t" "mov %%" _ASM_DX ", %c[rdx](%0) \n\t" "mov %%" _ASM_SI ", %c[rsi](%0) \n\t" "mov %%" _ASM_DI ", %c[rdi](%0) \n\t" "mov %%" _ASM_BP ", %c[rbp](%0) \n\t" #ifdef CONFIG_X86_64 "mov %%r8, %c[r8](%0) \n\t" "mov %%r9, %c[r9](%0) \n\t" "mov %%r10, %c[r10](%0) \n\t" "mov %%r11, %c[r11](%0) \n\t" "mov %%r12, %c[r12](%0) \n\t" "mov %%r13, %c[r13](%0) \n\t" "mov %%r14, %c[r14](%0) \n\t" "mov %%r15, %c[r15](%0) \n\t" #endif "mov %%cr2, %%" _ASM_AX " \n\t" "mov %%" _ASM_AX ", %c[cr2](%0) \n\t" "pop %%" _ASM_BP "; pop %%" _ASM_DX " \n\t" "setbe %c[fail](%0) \n\t" ".pushsection .rodata \n\t" ".global vmx_return \n\t" "vmx_return: " _ASM_PTR " 2b \n\t" ".popsection" : : "c"(vmx), "d"((unsigned long)HOST_RSP), [launched]"i"(offsetof(struct vcpu_vmx, __launched)), [fail]"i"(offsetof(struct vcpu_vmx, fail)), [host_rsp]"i"(offsetof(struct vcpu_vmx, host_rsp)), [rax]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RAX])), [rbx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBX])), [rcx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RCX])), [rdx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDX])), [rsi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RSI])), [rdi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDI])), [rbp]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBP])), #ifdef CONFIG_X86_64 [r8]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R8])), [r9]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R9])), [r10]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R10])), [r11]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R11])), [r12]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R12])), [r13]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R13])), [r14]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R14])), [r15]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R15])), #endif [cr2]"i"(offsetof(struct vcpu_vmx, vcpu.arch.cr2)), [wordsize]"i"(sizeof(ulong)) : "cc", "memory" #ifdef CONFIG_X86_64 , "rax", "rbx", "rdi", "rsi" , "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15" #else , "eax", "ebx", "edi", "esi" #endif ); /* MSR_IA32_DEBUGCTLMSR is zeroed on vmexit. Restore it if needed */ if (debugctlmsr) update_debugctlmsr(debugctlmsr); #ifndef CONFIG_X86_64 /* * The sysexit path does not restore ds/es, so we must set them to * a reasonable value ourselves. * * We can't defer this to vmx_load_host_state() since that function * may be executed in interrupt context, which saves and restore segments * around it, nullifying its effect. */ loadsegment(ds, __USER_DS); loadsegment(es, __USER_DS); #endif vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP) | (1 << VCPU_EXREG_RFLAGS) | (1 << VCPU_EXREG_PDPTR) | (1 << VCPU_EXREG_SEGMENTS) | (1 << VCPU_EXREG_CR3)); vcpu->arch.regs_dirty = 0; vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD); vmx->loaded_vmcs->launched = 1; vmx->exit_reason = vmcs_read32(VM_EXIT_REASON); /* * eager fpu is enabled if PKEY is supported and CR4 is switched * back on host, so it is safe to read guest PKRU from current * XSAVE. */ if (boot_cpu_has(X86_FEATURE_OSPKE)) { vmx->guest_pkru = __read_pkru(); if (vmx->guest_pkru != vmx->host_pkru) { vmx->guest_pkru_valid = true; __write_pkru(vmx->host_pkru); } else vmx->guest_pkru_valid = false; } /* * the KVM_REQ_EVENT optimization bit is only on for one entry, and if * we did not inject a still-pending event to L1 now because of * nested_run_pending, we need to re-enable this bit. */ if (vmx->nested.nested_run_pending) kvm_make_request(KVM_REQ_EVENT, vcpu); vmx->nested.nested_run_pending = 0; vmx_complete_atomic_exit(vmx); vmx_recover_nmi_blocking(vmx); vmx_complete_interrupts(vmx); } static void vmx_load_vmcs01(struct kvm_vcpu *vcpu) { struct vcpu_vmx *vmx = to_vmx(vcpu); int cpu; if (vmx->loaded_vmcs == &vmx->vmcs01) return; cpu = get_cpu(); vmx->loaded_vmcs = &vmx->vmcs01; vmx_vcpu_put(vcpu); vmx_vcpu_load(vcpu, cpu); vcpu->cpu = cpu; put_cpu(); } static void vmx_free_vcpu(struct kvm_vcpu *vcpu) { struct vcpu_vmx *vmx = to_vmx(vcpu); if (enable_pml) vmx_destroy_pml_buffer(vmx); free_vpid(vmx->vpid); leave_guest_mode(vcpu); vmx_load_vmcs01(vcpu); free_nested(vmx); free_loaded_vmcs(vmx->loaded_vmcs); kfree(vmx->guest_msrs); kvm_vcpu_uninit(vcpu); kmem_cache_free(kvm_vcpu_cache, vmx); } static struct kvm_vcpu *vmx_create_vcpu(struct kvm *kvm, unsigned int id) { int err; struct vcpu_vmx *vmx = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL); int cpu; if (!vmx) return ERR_PTR(-ENOMEM); vmx->vpid = allocate_vpid(); err = kvm_vcpu_init(&vmx->vcpu, kvm, id); if (err) goto free_vcpu; vmx->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL); BUILD_BUG_ON(ARRAY_SIZE(vmx_msr_index) * sizeof(vmx->guest_msrs[0]) > PAGE_SIZE); err = -ENOMEM; if (!vmx->guest_msrs) { goto uninit_vcpu; } vmx->loaded_vmcs = &vmx->vmcs01; vmx->loaded_vmcs->vmcs = alloc_vmcs(); if (!vmx->loaded_vmcs->vmcs) goto free_msrs; if (!vmm_exclusive) kvm_cpu_vmxon(__pa(per_cpu(vmxarea, raw_smp_processor_id()))); loaded_vmcs_init(vmx->loaded_vmcs); if (!vmm_exclusive) kvm_cpu_vmxoff(); cpu = get_cpu(); vmx_vcpu_load(&vmx->vcpu, cpu); vmx->vcpu.cpu = cpu; err = vmx_vcpu_setup(vmx); vmx_vcpu_put(&vmx->vcpu); put_cpu(); if (err) goto free_vmcs; if (cpu_need_virtualize_apic_accesses(&vmx->vcpu)) { err = alloc_apic_access_page(kvm); if (err) goto free_vmcs; } if (enable_ept) { if (!kvm->arch.ept_identity_map_addr) kvm->arch.ept_identity_map_addr = VMX_EPT_IDENTITY_PAGETABLE_ADDR; err = init_rmode_identity_map(kvm); if (err) goto free_vmcs; } if (nested) { nested_vmx_setup_ctls_msrs(vmx); vmx->nested.vpid02 = allocate_vpid(); } vmx->nested.posted_intr_nv = -1; vmx->nested.current_vmptr = -1ull; vmx->nested.current_vmcs12 = NULL; /* * If PML is turned on, failure on enabling PML just results in failure * of creating the vcpu, therefore we can simplify PML logic (by * avoiding dealing with cases, such as enabling PML partially on vcpus * for the guest, etc. */ if (enable_pml) { err = vmx_create_pml_buffer(vmx); if (err) goto free_vmcs; } vmx->msr_ia32_feature_control_valid_bits = FEATURE_CONTROL_LOCKED; return &vmx->vcpu; free_vmcs: free_vpid(vmx->nested.vpid02); free_loaded_vmcs(vmx->loaded_vmcs); free_msrs: kfree(vmx->guest_msrs); uninit_vcpu: kvm_vcpu_uninit(&vmx->vcpu); free_vcpu: free_vpid(vmx->vpid); kmem_cache_free(kvm_vcpu_cache, vmx); return ERR_PTR(err); } static void __init vmx_check_processor_compat(void *rtn) { struct vmcs_config vmcs_conf; *(int *)rtn = 0; if (setup_vmcs_config(&vmcs_conf) < 0) *(int *)rtn = -EIO; if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) { printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n", smp_processor_id()); *(int *)rtn = -EIO; } } static int get_ept_level(void) { return VMX_EPT_DEFAULT_GAW + 1; } static u64 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio) { u8 cache; u64 ipat = 0; /* For VT-d and EPT combination * 1. MMIO: always map as UC * 2. EPT with VT-d: * a. VT-d without snooping control feature: can't guarantee the * result, try to trust guest. * b. VT-d with snooping control feature: snooping control feature of * VT-d engine can guarantee the cache correctness. Just set it * to WB to keep consistent with host. So the same as item 3. * 3. EPT without VT-d: always map as WB and set IPAT=1 to keep * consistent with host MTRR */ if (is_mmio) { cache = MTRR_TYPE_UNCACHABLE; goto exit; } if (!kvm_arch_has_noncoherent_dma(vcpu->kvm)) { ipat = VMX_EPT_IPAT_BIT; cache = MTRR_TYPE_WRBACK; goto exit; } if (kvm_read_cr0(vcpu) & X86_CR0_CD) { ipat = VMX_EPT_IPAT_BIT; if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED)) cache = MTRR_TYPE_WRBACK; else cache = MTRR_TYPE_UNCACHABLE; goto exit; } cache = kvm_mtrr_get_guest_memory_type(vcpu, gfn); exit: return (cache << VMX_EPT_MT_EPTE_SHIFT) | ipat; } static int vmx_get_lpage_level(void) { if (enable_ept && !cpu_has_vmx_ept_1g_page()) return PT_DIRECTORY_LEVEL; else /* For shadow and EPT supported 1GB page */ return PT_PDPE_LEVEL; } static void vmcs_set_secondary_exec_control(u32 new_ctl) { /* * These bits in the secondary execution controls field * are dynamic, the others are mostly based on the hypervisor * architecture and the guest's CPUID. Do not touch the * dynamic bits. */ u32 mask = SECONDARY_EXEC_SHADOW_VMCS | SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE | SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES; u32 cur_ctl = vmcs_read32(SECONDARY_VM_EXEC_CONTROL); vmcs_write32(SECONDARY_VM_EXEC_CONTROL, (new_ctl & ~mask) | (cur_ctl & mask)); } static void vmx_cpuid_update(struct kvm_vcpu *vcpu) { struct kvm_cpuid_entry2 *best; struct vcpu_vmx *vmx = to_vmx(vcpu); u32 secondary_exec_ctl = vmx_secondary_exec_control(vmx); if (vmx_rdtscp_supported()) { bool rdtscp_enabled = guest_cpuid_has_rdtscp(vcpu); if (!rdtscp_enabled) secondary_exec_ctl &= ~SECONDARY_EXEC_RDTSCP; if (nested) { if (rdtscp_enabled) vmx->nested.nested_vmx_secondary_ctls_high |= SECONDARY_EXEC_RDTSCP; else vmx->nested.nested_vmx_secondary_ctls_high &= ~SECONDARY_EXEC_RDTSCP; } } /* Exposing INVPCID only when PCID is exposed */ best = kvm_find_cpuid_entry(vcpu, 0x7, 0); if (vmx_invpcid_supported() && (!best || !(best->ebx & bit(X86_FEATURE_INVPCID)) || !guest_cpuid_has_pcid(vcpu))) { secondary_exec_ctl &= ~SECONDARY_EXEC_ENABLE_INVPCID; if (best) best->ebx &= ~bit(X86_FEATURE_INVPCID); } if (cpu_has_secondary_exec_ctrls()) vmcs_set_secondary_exec_control(secondary_exec_ctl); if (static_cpu_has(X86_FEATURE_PCOMMIT) && nested) { if (guest_cpuid_has_pcommit(vcpu)) vmx->nested.nested_vmx_secondary_ctls_high |= SECONDARY_EXEC_PCOMMIT; else vmx->nested.nested_vmx_secondary_ctls_high &= ~SECONDARY_EXEC_PCOMMIT; } if (nested_vmx_allowed(vcpu)) to_vmx(vcpu)->msr_ia32_feature_control_valid_bits |= FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX; else to_vmx(vcpu)->msr_ia32_feature_control_valid_bits &= ~FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX; } static void vmx_set_supported_cpuid(u32 func, struct kvm_cpuid_entry2 *entry) { if (func == 1 && nested) entry->ecx |= bit(X86_FEATURE_VMX); } static void nested_ept_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault) { struct vmcs12 *vmcs12 = get_vmcs12(vcpu); u32 exit_reason; if (fault->error_code & PFERR_RSVD_MASK) exit_reason = EXIT_REASON_EPT_MISCONFIG; else exit_reason = EXIT_REASON_EPT_VIOLATION; nested_vmx_vmexit(vcpu, exit_reason, 0, vcpu->arch.exit_qualification); vmcs12->guest_physical_address = fault->address; } /* Callbacks for nested_ept_init_mmu_context: */ static unsigned long nested_ept_get_cr3(struct kvm_vcpu *vcpu) { /* return the page table to be shadowed - in our case, EPT12 */ return get_vmcs12(vcpu)->ept_pointer; } static void nested_ept_init_mmu_context(struct kvm_vcpu *vcpu) { WARN_ON(mmu_is_nested(vcpu)); kvm_init_shadow_ept_mmu(vcpu, to_vmx(vcpu)->nested.nested_vmx_ept_caps & VMX_EPT_EXECUTE_ONLY_BIT); vcpu->arch.mmu.set_cr3 = vmx_set_cr3; vcpu->arch.mmu.get_cr3 = nested_ept_get_cr3; vcpu->arch.mmu.inject_page_fault = nested_ept_inject_page_fault; vcpu->arch.walk_mmu = &vcpu->arch.nested_mmu; } static void nested_ept_uninit_mmu_context(struct kvm_vcpu *vcpu) { vcpu->arch.walk_mmu = &vcpu->arch.mmu; } static bool nested_vmx_is_page_fault_vmexit(struct vmcs12 *vmcs12, u16 error_code) { bool inequality, bit; bit = (vmcs12->exception_bitmap & (1u << PF_VECTOR)) != 0; inequality = (error_code & vmcs12->page_fault_error_code_mask) != vmcs12->page_fault_error_code_match; return inequality ^ bit; } static void vmx_inject_page_fault_nested(struct kvm_vcpu *vcpu, struct x86_exception *fault) { struct vmcs12 *vmcs12 = get_vmcs12(vcpu); WARN_ON(!is_guest_mode(vcpu)); if (nested_vmx_is_page_fault_vmexit(vmcs12, fault->error_code)) nested_vmx_vmexit(vcpu, to_vmx(vcpu)->exit_reason, vmcs_read32(VM_EXIT_INTR_INFO), vmcs_readl(EXIT_QUALIFICATION)); else kvm_inject_page_fault(vcpu, fault); } static bool nested_get_vmcs12_pages(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12) { struct vcpu_vmx *vmx = to_vmx(vcpu); int maxphyaddr = cpuid_maxphyaddr(vcpu); if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) { if (!PAGE_ALIGNED(vmcs12->apic_access_addr) || vmcs12->apic_access_addr >> maxphyaddr) return false; /* * Translate L1 physical address to host physical * address for vmcs02. Keep the page pinned, so this * physical address remains valid. We keep a reference * to it so we can release it later. */ if (vmx->nested.apic_access_page) /* shouldn't happen */ nested_release_page(vmx->nested.apic_access_page); vmx->nested.apic_access_page = nested_get_page(vcpu, vmcs12->apic_access_addr); } if (nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) { if (!PAGE_ALIGNED(vmcs12->virtual_apic_page_addr) || vmcs12->virtual_apic_page_addr >> maxphyaddr) return false; if (vmx->nested.virtual_apic_page) /* shouldn't happen */ nested_release_page(vmx->nested.virtual_apic_page); vmx->nested.virtual_apic_page = nested_get_page(vcpu, vmcs12->virtual_apic_page_addr); /* * Failing the vm entry is _not_ what the processor does * but it's basically the only possibility we have. * We could still enter the guest if CR8 load exits are * enabled, CR8 store exits are enabled, and virtualize APIC * access is disabled; in this case the processor would never * use the TPR shadow and we could simply clear the bit from * the execution control. But such a configuration is useless, * so let's keep the code simple. */ if (!vmx->nested.virtual_apic_page) return false; } if (nested_cpu_has_posted_intr(vmcs12)) { if (!IS_ALIGNED(vmcs12->posted_intr_desc_addr, 64) || vmcs12->posted_intr_desc_addr >> maxphyaddr) return false; if (vmx->nested.pi_desc_page) { /* shouldn't happen */ kunmap(vmx->nested.pi_desc_page); nested_release_page(vmx->nested.pi_desc_page); } vmx->nested.pi_desc_page = nested_get_page(vcpu, vmcs12->posted_intr_desc_addr); if (!vmx->nested.pi_desc_page) return false; vmx->nested.pi_desc = (struct pi_desc *)kmap(vmx->nested.pi_desc_page); if (!vmx->nested.pi_desc) { nested_release_page_clean(vmx->nested.pi_desc_page); return false; } vmx->nested.pi_desc = (struct pi_desc *)((void *)vmx->nested.pi_desc + (unsigned long)(vmcs12->posted_intr_desc_addr & (PAGE_SIZE - 1))); } return true; } static void vmx_start_preemption_timer(struct kvm_vcpu *vcpu) { u64 preemption_timeout = get_vmcs12(vcpu)->vmx_preemption_timer_value; struct vcpu_vmx *vmx = to_vmx(vcpu); if (vcpu->arch.virtual_tsc_khz == 0) return; /* Make sure short timeouts reliably trigger an immediate vmexit. * hrtimer_start does not guarantee this. */ if (preemption_timeout <= 1) { vmx_preemption_timer_fn(&vmx->nested.preemption_timer); return; } preemption_timeout <<= VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE; preemption_timeout *= 1000000; do_div(preemption_timeout, vcpu->arch.virtual_tsc_khz); hrtimer_start(&vmx->nested.preemption_timer, ns_to_ktime(preemption_timeout), HRTIMER_MODE_REL); } static int nested_vmx_check_msr_bitmap_controls(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12) { int maxphyaddr; u64 addr; if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS)) return 0; if (vmcs12_read_any(vcpu, MSR_BITMAP, &addr)) { WARN_ON(1); return -EINVAL; } maxphyaddr = cpuid_maxphyaddr(vcpu); if (!PAGE_ALIGNED(vmcs12->msr_bitmap) || ((addr + PAGE_SIZE) >> maxphyaddr)) return -EINVAL; return 0; } /* * Merge L0's and L1's MSR bitmap, return false to indicate that * we do not use the hardware. */ static inline bool nested_vmx_merge_msr_bitmap(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12) { int msr; struct page *page; unsigned long *msr_bitmap; if (!nested_cpu_has_virt_x2apic_mode(vmcs12)) return false; page = nested_get_page(vcpu, vmcs12->msr_bitmap); if (!page) { WARN_ON(1); return false; } msr_bitmap = (unsigned long *)kmap(page); if (!msr_bitmap) { nested_release_page_clean(page); WARN_ON(1); return false; } if (nested_cpu_has_virt_x2apic_mode(vmcs12)) { if (nested_cpu_has_apic_reg_virt(vmcs12)) for (msr = 0x800; msr <= 0x8ff; msr++) nested_vmx_disable_intercept_for_msr( msr_bitmap, vmx_msr_bitmap_nested, msr, MSR_TYPE_R); /* TPR is allowed */ nested_vmx_disable_intercept_for_msr(msr_bitmap, vmx_msr_bitmap_nested, APIC_BASE_MSR + (APIC_TASKPRI >> 4), MSR_TYPE_R | MSR_TYPE_W); if (nested_cpu_has_vid(vmcs12)) { /* EOI and self-IPI are allowed */ nested_vmx_disable_intercept_for_msr( msr_bitmap, vmx_msr_bitmap_nested, APIC_BASE_MSR + (APIC_EOI >> 4), MSR_TYPE_W); nested_vmx_disable_intercept_for_msr( msr_bitmap, vmx_msr_bitmap_nested, APIC_BASE_MSR + (APIC_SELF_IPI >> 4), MSR_TYPE_W); } } else { /* * Enable reading intercept of all the x2apic * MSRs. We should not rely on vmcs12 to do any * optimizations here, it may have been modified * by L1. */ for (msr = 0x800; msr <= 0x8ff; msr++) __vmx_enable_intercept_for_msr( vmx_msr_bitmap_nested, msr, MSR_TYPE_R); __vmx_enable_intercept_for_msr( vmx_msr_bitmap_nested, APIC_BASE_MSR + (APIC_TASKPRI >> 4), MSR_TYPE_W); __vmx_enable_intercept_for_msr( vmx_msr_bitmap_nested, APIC_BASE_MSR + (APIC_EOI >> 4), MSR_TYPE_W); __vmx_enable_intercept_for_msr( vmx_msr_bitmap_nested, APIC_BASE_MSR + (APIC_SELF_IPI >> 4), MSR_TYPE_W); } kunmap(page); nested_release_page_clean(page); return true; } static int nested_vmx_check_apicv_controls(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12) { if (!nested_cpu_has_virt_x2apic_mode(vmcs12) && !nested_cpu_has_apic_reg_virt(vmcs12) && !nested_cpu_has_vid(vmcs12) && !nested_cpu_has_posted_intr(vmcs12)) return 0; /* * If virtualize x2apic mode is enabled, * virtualize apic access must be disabled. */ if (nested_cpu_has_virt_x2apic_mode(vmcs12) && nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) return -EINVAL; /* * If virtual interrupt delivery is enabled, * we must exit on external interrupts. */ if (nested_cpu_has_vid(vmcs12) && !nested_exit_on_intr(vcpu)) return -EINVAL; /* * bits 15:8 should be zero in posted_intr_nv, * the descriptor address has been already checked * in nested_get_vmcs12_pages. */ if (nested_cpu_has_posted_intr(vmcs12) && (!nested_cpu_has_vid(vmcs12) || !nested_exit_intr_ack_set(vcpu) || vmcs12->posted_intr_nv & 0xff00)) return -EINVAL; /* tpr shadow is needed by all apicv features. */ if (!nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) return -EINVAL; return 0; } static int nested_vmx_check_msr_switch(struct kvm_vcpu *vcpu, unsigned long count_field, unsigned long addr_field) { int maxphyaddr; u64 count, addr; if (vmcs12_read_any(vcpu, count_field, &count) || vmcs12_read_any(vcpu, addr_field, &addr)) { WARN_ON(1); return -EINVAL; } if (count == 0) return 0; maxphyaddr = cpuid_maxphyaddr(vcpu); if (!IS_ALIGNED(addr, 16) || addr >> maxphyaddr || (addr + count * sizeof(struct vmx_msr_entry) - 1) >> maxphyaddr) { pr_warn_ratelimited( "nVMX: invalid MSR switch (0x%lx, %d, %llu, 0x%08llx)", addr_field, maxphyaddr, count, addr); return -EINVAL; } return 0; } static int nested_vmx_check_msr_switch_controls(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12) { if (vmcs12->vm_exit_msr_load_count == 0 && vmcs12->vm_exit_msr_store_count == 0 && vmcs12->vm_entry_msr_load_count == 0) return 0; /* Fast path */ if (nested_vmx_check_msr_switch(vcpu, VM_EXIT_MSR_LOAD_COUNT, VM_EXIT_MSR_LOAD_ADDR) || nested_vmx_check_msr_switch(vcpu, VM_EXIT_MSR_STORE_COUNT, VM_EXIT_MSR_STORE_ADDR) || nested_vmx_check_msr_switch(vcpu, VM_ENTRY_MSR_LOAD_COUNT, VM_ENTRY_MSR_LOAD_ADDR)) return -EINVAL; return 0; } static int nested_vmx_msr_check_common(struct kvm_vcpu *vcpu, struct vmx_msr_entry *e) { /* x2APIC MSR accesses are not allowed */ if (vcpu->arch.apic_base & X2APIC_ENABLE && e->index >> 8 == 0x8) return -EINVAL; if (e->index == MSR_IA32_UCODE_WRITE || /* SDM Table 35-2 */ e->index == MSR_IA32_UCODE_REV) return -EINVAL; if (e->reserved != 0) return -EINVAL; return 0; } static int nested_vmx_load_msr_check(struct kvm_vcpu *vcpu, struct vmx_msr_entry *e) { if (e->index == MSR_FS_BASE || e->index == MSR_GS_BASE || e->index == MSR_IA32_SMM_MONITOR_CTL || /* SMM is not supported */ nested_vmx_msr_check_common(vcpu, e)) return -EINVAL; return 0; } static int nested_vmx_store_msr_check(struct kvm_vcpu *vcpu, struct vmx_msr_entry *e) { if (e->index == MSR_IA32_SMBASE || /* SMM is not supported */ nested_vmx_msr_check_common(vcpu, e)) return -EINVAL; return 0; } /* * Load guest's/host's msr at nested entry/exit. * return 0 for success, entry index for failure. */ static u32 nested_vmx_load_msr(struct kvm_vcpu *vcpu, u64 gpa, u32 count) { u32 i; struct vmx_msr_entry e; struct msr_data msr; msr.host_initiated = false; for (i = 0; i < count; i++) { if (kvm_vcpu_read_guest(vcpu, gpa + i * sizeof(e), &e, sizeof(e))) { pr_warn_ratelimited( "%s cannot read MSR entry (%u, 0x%08llx)\n", __func__, i, gpa + i * sizeof(e)); goto fail; } if (nested_vmx_load_msr_check(vcpu, &e)) { pr_warn_ratelimited( "%s check failed (%u, 0x%x, 0x%x)\n", __func__, i, e.index, e.reserved); goto fail; } msr.index = e.index; msr.data = e.value; if (kvm_set_msr(vcpu, &msr)) { pr_warn_ratelimited( "%s cannot write MSR (%u, 0x%x, 0x%llx)\n", __func__, i, e.index, e.value); goto fail; } } return 0; fail: return i + 1; } static int nested_vmx_store_msr(struct kvm_vcpu *vcpu, u64 gpa, u32 count) { u32 i; struct vmx_msr_entry e; for (i = 0; i < count; i++) { struct msr_data msr_info; if (kvm_vcpu_read_guest(vcpu, gpa + i * sizeof(e), &e, 2 * sizeof(u32))) { pr_warn_ratelimited( "%s cannot read MSR entry (%u, 0x%08llx)\n", __func__, i, gpa + i * sizeof(e)); return -EINVAL; } if (nested_vmx_store_msr_check(vcpu, &e)) { pr_warn_ratelimited( "%s check failed (%u, 0x%x, 0x%x)\n", __func__, i, e.index, e.reserved); return -EINVAL; } msr_info.host_initiated = false; msr_info.index = e.index; if (kvm_get_msr(vcpu, &msr_info)) { pr_warn_ratelimited( "%s cannot read MSR (%u, 0x%x)\n", __func__, i, e.index); return -EINVAL; } if (kvm_vcpu_write_guest(vcpu, gpa + i * sizeof(e) + offsetof(struct vmx_msr_entry, value), &msr_info.data, sizeof(msr_info.data))) { pr_warn_ratelimited( "%s cannot write MSR (%u, 0x%x, 0x%llx)\n", __func__, i, e.index, msr_info.data); return -EINVAL; } } return 0; } /* * prepare_vmcs02 is called when the L1 guest hypervisor runs its nested * L2 guest. L1 has a vmcs for L2 (vmcs12), and this function "merges" it * with L0's requirements for its guest (a.k.a. vmcs01), so we can run the L2 * guest in a way that will both be appropriate to L1's requests, and our * needs. In addition to modifying the active vmcs (which is vmcs02), this * function also has additional necessary side-effects, like setting various * vcpu->arch fields. */ static void prepare_vmcs02(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12) { struct vcpu_vmx *vmx = to_vmx(vcpu); u32 exec_control; vmcs_write16(GUEST_ES_SELECTOR, vmcs12->guest_es_selector); vmcs_write16(GUEST_CS_SELECTOR, vmcs12->guest_cs_selector); vmcs_write16(GUEST_SS_SELECTOR, vmcs12->guest_ss_selector); vmcs_write16(GUEST_DS_SELECTOR, vmcs12->guest_ds_selector); vmcs_write16(GUEST_FS_SELECTOR, vmcs12->guest_fs_selector); vmcs_write16(GUEST_GS_SELECTOR, vmcs12->guest_gs_selector); vmcs_write16(GUEST_LDTR_SELECTOR, vmcs12->guest_ldtr_selector); vmcs_write16(GUEST_TR_SELECTOR, vmcs12->guest_tr_selector); vmcs_write32(GUEST_ES_LIMIT, vmcs12->guest_es_limit); vmcs_write32(GUEST_CS_LIMIT, vmcs12->guest_cs_limit); vmcs_write32(GUEST_SS_LIMIT, vmcs12->guest_ss_limit); vmcs_write32(GUEST_DS_LIMIT, vmcs12->guest_ds_limit); vmcs_write32(GUEST_FS_LIMIT, vmcs12->guest_fs_limit); vmcs_write32(GUEST_GS_LIMIT, vmcs12->guest_gs_limit); vmcs_write32(GUEST_LDTR_LIMIT, vmcs12->guest_ldtr_limit); vmcs_write32(GUEST_TR_LIMIT, vmcs12->guest_tr_limit); vmcs_write32(GUEST_GDTR_LIMIT, vmcs12->guest_gdtr_limit); vmcs_write32(GUEST_IDTR_LIMIT, vmcs12->guest_idtr_limit); vmcs_write32(GUEST_ES_AR_BYTES, vmcs12->guest_es_ar_bytes); vmcs_write32(GUEST_CS_AR_BYTES, vmcs12->guest_cs_ar_bytes); vmcs_write32(GUEST_SS_AR_BYTES, vmcs12->guest_ss_ar_bytes); vmcs_write32(GUEST_DS_AR_BYTES, vmcs12->guest_ds_ar_bytes); vmcs_write32(GUEST_FS_AR_BYTES, vmcs12->guest_fs_ar_bytes); vmcs_write32(GUEST_GS_AR_BYTES, vmcs12->guest_gs_ar_bytes); vmcs_write32(GUEST_LDTR_AR_BYTES, vmcs12->guest_ldtr_ar_bytes); vmcs_write32(GUEST_TR_AR_BYTES, vmcs12->guest_tr_ar_bytes); vmcs_writel(GUEST_ES_BASE, vmcs12->guest_es_base); vmcs_writel(GUEST_CS_BASE, vmcs12->guest_cs_base); vmcs_writel(GUEST_SS_BASE, vmcs12->guest_ss_base); vmcs_writel(GUEST_DS_BASE, vmcs12->guest_ds_base); vmcs_writel(GUEST_FS_BASE, vmcs12->guest_fs_base); vmcs_writel(GUEST_GS_BASE, vmcs12->guest_gs_base); vmcs_writel(GUEST_LDTR_BASE, vmcs12->guest_ldtr_base); vmcs_writel(GUEST_TR_BASE, vmcs12->guest_tr_base); vmcs_writel(GUEST_GDTR_BASE, vmcs12->guest_gdtr_base); vmcs_writel(GUEST_IDTR_BASE, vmcs12->guest_idtr_base); if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS) { kvm_set_dr(vcpu, 7, vmcs12->guest_dr7); vmcs_write64(GUEST_IA32_DEBUGCTL, vmcs12->guest_ia32_debugctl); } else { kvm_set_dr(vcpu, 7, vcpu->arch.dr7); vmcs_write64(GUEST_IA32_DEBUGCTL, vmx->nested.vmcs01_debugctl); } vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, vmcs12->vm_entry_intr_info_field); vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, vmcs12->vm_entry_exception_error_code); vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, vmcs12->vm_entry_instruction_len); vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, vmcs12->guest_interruptibility_info); vmcs_write32(GUEST_SYSENTER_CS, vmcs12->guest_sysenter_cs); vmx_set_rflags(vcpu, vmcs12->guest_rflags); vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS, vmcs12->guest_pending_dbg_exceptions); vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->guest_sysenter_esp); vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->guest_sysenter_eip); if (nested_cpu_has_xsaves(vmcs12)) vmcs_write64(XSS_EXIT_BITMAP, vmcs12->xss_exit_bitmap); vmcs_write64(VMCS_LINK_POINTER, -1ull); exec_control = vmcs12->pin_based_vm_exec_control; /* Preemption timer setting is only taken from vmcs01. */ exec_control &= ~PIN_BASED_VMX_PREEMPTION_TIMER; exec_control |= vmcs_config.pin_based_exec_ctrl; if (vmx->hv_deadline_tsc == -1) exec_control &= ~PIN_BASED_VMX_PREEMPTION_TIMER; /* Posted interrupts setting is only taken from vmcs12. */ if (nested_cpu_has_posted_intr(vmcs12)) { /* * Note that we use L0's vector here and in * vmx_deliver_nested_posted_interrupt. */ vmx->nested.posted_intr_nv = vmcs12->posted_intr_nv; vmx->nested.pi_pending = false; vmcs_write16(POSTED_INTR_NV, POSTED_INTR_VECTOR); vmcs_write64(POSTED_INTR_DESC_ADDR, page_to_phys(vmx->nested.pi_desc_page) + (unsigned long)(vmcs12->posted_intr_desc_addr & (PAGE_SIZE - 1))); } else exec_control &= ~PIN_BASED_POSTED_INTR; vmcs_write32(PIN_BASED_VM_EXEC_CONTROL, exec_control); vmx->nested.preemption_timer_expired = false; if (nested_cpu_has_preemption_timer(vmcs12)) vmx_start_preemption_timer(vcpu); /* * Whether page-faults are trapped is determined by a combination of * 3 settings: PFEC_MASK, PFEC_MATCH and EXCEPTION_BITMAP.PF. * If enable_ept, L0 doesn't care about page faults and we should * set all of these to L1's desires. However, if !enable_ept, L0 does * care about (at least some) page faults, and because it is not easy * (if at all possible?) to merge L0 and L1's desires, we simply ask * to exit on each and every L2 page fault. This is done by setting * MASK=MATCH=0 and (see below) EB.PF=1. * Note that below we don't need special code to set EB.PF beyond the * "or"ing of the EB of vmcs01 and vmcs12, because when enable_ept, * vmcs01's EB.PF is 0 so the "or" will take vmcs12's value, and when * !enable_ept, EB.PF is 1, so the "or" will always be 1. * * A problem with this approach (when !enable_ept) is that L1 may be * injected with more page faults than it asked for. This could have * caused problems, but in practice existing hypervisors don't care. * To fix this, we will need to emulate the PFEC checking (on the L1 * page tables), using walk_addr(), when injecting PFs to L1. */ vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, enable_ept ? vmcs12->page_fault_error_code_mask : 0); vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, enable_ept ? vmcs12->page_fault_error_code_match : 0); if (cpu_has_secondary_exec_ctrls()) { exec_control = vmx_secondary_exec_control(vmx); /* Take the following fields only from vmcs12 */ exec_control &= ~(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES | SECONDARY_EXEC_RDTSCP | SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY | SECONDARY_EXEC_APIC_REGISTER_VIRT | SECONDARY_EXEC_PCOMMIT); if (nested_cpu_has(vmcs12, CPU_BASED_ACTIVATE_SECONDARY_CONTROLS)) exec_control |= vmcs12->secondary_vm_exec_control; if (exec_control & SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES) { /* * If translation failed, no matter: This feature asks * to exit when accessing the given address, and if it * can never be accessed, this feature won't do * anything anyway. */ if (!vmx->nested.apic_access_page) exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES; else vmcs_write64(APIC_ACCESS_ADDR, page_to_phys(vmx->nested.apic_access_page)); } else if (!(nested_cpu_has_virt_x2apic_mode(vmcs12)) && cpu_need_virtualize_apic_accesses(&vmx->vcpu)) { exec_control |= SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES; kvm_vcpu_reload_apic_access_page(vcpu); } if (exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY) { vmcs_write64(EOI_EXIT_BITMAP0, vmcs12->eoi_exit_bitmap0); vmcs_write64(EOI_EXIT_BITMAP1, vmcs12->eoi_exit_bitmap1); vmcs_write64(EOI_EXIT_BITMAP2, vmcs12->eoi_exit_bitmap2); vmcs_write64(EOI_EXIT_BITMAP3, vmcs12->eoi_exit_bitmap3); vmcs_write16(GUEST_INTR_STATUS, vmcs12->guest_intr_status); } vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control); } /* * Set host-state according to L0's settings (vmcs12 is irrelevant here) * Some constant fields are set here by vmx_set_constant_host_state(). * Other fields are different per CPU, and will be set later when * vmx_vcpu_load() is called, and when vmx_save_host_state() is called. */ vmx_set_constant_host_state(vmx); /* * HOST_RSP is normally set correctly in vmx_vcpu_run() just before * entry, but only if the current (host) sp changed from the value * we wrote last (vmx->host_rsp). This cache is no longer relevant * if we switch vmcs, and rather than hold a separate cache per vmcs, * here we just force the write to happen on entry. */ vmx->host_rsp = 0; exec_control = vmx_exec_control(vmx); /* L0's desires */ exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING; exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING; exec_control &= ~CPU_BASED_TPR_SHADOW; exec_control |= vmcs12->cpu_based_vm_exec_control; if (exec_control & CPU_BASED_TPR_SHADOW) { vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, page_to_phys(vmx->nested.virtual_apic_page)); vmcs_write32(TPR_THRESHOLD, vmcs12->tpr_threshold); } if (cpu_has_vmx_msr_bitmap() && exec_control & CPU_BASED_USE_MSR_BITMAPS) { nested_vmx_merge_msr_bitmap(vcpu, vmcs12); /* MSR_BITMAP will be set by following vmx_set_efer. */ } else exec_control &= ~CPU_BASED_USE_MSR_BITMAPS; /* * Merging of IO bitmap not currently supported. * Rather, exit every time. */ exec_control &= ~CPU_BASED_USE_IO_BITMAPS; exec_control |= CPU_BASED_UNCOND_IO_EXITING; vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, exec_control); /* EXCEPTION_BITMAP and CR0_GUEST_HOST_MASK should basically be the * bitwise-or of what L1 wants to trap for L2, and what we want to * trap. Note that CR0.TS also needs updating - we do this later. */ update_exception_bitmap(vcpu); vcpu->arch.cr0_guest_owned_bits &= ~vmcs12->cr0_guest_host_mask; vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits); /* L2->L1 exit controls are emulated - the hardware exit is to L0 so * we should use its exit controls. Note that VM_EXIT_LOAD_IA32_EFER * bits are further modified by vmx_set_efer() below. */ vmcs_write32(VM_EXIT_CONTROLS, vmcs_config.vmexit_ctrl); /* vmcs12's VM_ENTRY_LOAD_IA32_EFER and VM_ENTRY_IA32E_MODE are * emulated by vmx_set_efer(), below. */ vm_entry_controls_init(vmx, (vmcs12->vm_entry_controls & ~VM_ENTRY_LOAD_IA32_EFER & ~VM_ENTRY_IA32E_MODE) | (vmcs_config.vmentry_ctrl & ~VM_ENTRY_IA32E_MODE)); if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PAT) { vmcs_write64(GUEST_IA32_PAT, vmcs12->guest_ia32_pat); vcpu->arch.pat = vmcs12->guest_ia32_pat; } else if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat); set_cr4_guest_host_mask(vmx); if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS) vmcs_write64(GUEST_BNDCFGS, vmcs12->guest_bndcfgs); if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETING) vmcs_write64(TSC_OFFSET, vmx->nested.vmcs01_tsc_offset + vmcs12->tsc_offset); else vmcs_write64(TSC_OFFSET, vmx->nested.vmcs01_tsc_offset); if (enable_vpid) { /* * There is no direct mapping between vpid02 and vpid12, the * vpid02 is per-vCPU for L0 and reused while the value of * vpid12 is changed w/ one invvpid during nested vmentry. * The vpid12 is allocated by L1 for L2, so it will not * influence global bitmap(for vpid01 and vpid02 allocation) * even if spawn a lot of nested vCPUs. */ if (nested_cpu_has_vpid(vmcs12) && vmx->nested.vpid02) { vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->nested.vpid02); if (vmcs12->virtual_processor_id != vmx->nested.last_vpid) { vmx->nested.last_vpid = vmcs12->virtual_processor_id; __vmx_flush_tlb(vcpu, to_vmx(vcpu)->nested.vpid02); } } else { vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid); vmx_flush_tlb(vcpu); } } if (nested_cpu_has_ept(vmcs12)) { kvm_mmu_unload(vcpu); nested_ept_init_mmu_context(vcpu); } if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER) vcpu->arch.efer = vmcs12->guest_ia32_efer; else if (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE) vcpu->arch.efer |= (EFER_LMA | EFER_LME); else vcpu->arch.efer &= ~(EFER_LMA | EFER_LME); /* Note: modifies VM_ENTRY/EXIT_CONTROLS and GUEST/HOST_IA32_EFER */ vmx_set_efer(vcpu, vcpu->arch.efer); /* * This sets GUEST_CR0 to vmcs12->guest_cr0, with possibly a modified * TS bit (for lazy fpu) and bits which we consider mandatory enabled. * The CR0_READ_SHADOW is what L2 should have expected to read given * the specifications by L1; It's not enough to take * vmcs12->cr0_read_shadow because on our cr0_guest_host_mask we we * have more bits than L1 expected. */ vmx_set_cr0(vcpu, vmcs12->guest_cr0); vmcs_writel(CR0_READ_SHADOW, nested_read_cr0(vmcs12)); vmx_set_cr4(vcpu, vmcs12->guest_cr4); vmcs_writel(CR4_READ_SHADOW, nested_read_cr4(vmcs12)); /* shadow page tables on either EPT or shadow page tables */ kvm_set_cr3(vcpu, vmcs12->guest_cr3); kvm_mmu_reset_context(vcpu); if (!enable_ept) vcpu->arch.walk_mmu->inject_page_fault = vmx_inject_page_fault_nested; /* * L1 may access the L2's PDPTR, so save them to construct vmcs12 */ if (enable_ept) { vmcs_write64(GUEST_PDPTR0, vmcs12->guest_pdptr0); vmcs_write64(GUEST_PDPTR1, vmcs12->guest_pdptr1); vmcs_write64(GUEST_PDPTR2, vmcs12->guest_pdptr2); vmcs_write64(GUEST_PDPTR3, vmcs12->guest_pdptr3); } kvm_register_write(vcpu, VCPU_REGS_RSP, vmcs12->guest_rsp); kvm_register_write(vcpu, VCPU_REGS_RIP, vmcs12->guest_rip); } /* * nested_vmx_run() handles a nested entry, i.e., a VMLAUNCH or VMRESUME on L1 * for running an L2 nested guest. */ static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch) { struct vmcs12 *vmcs12; struct vcpu_vmx *vmx = to_vmx(vcpu); int cpu; struct loaded_vmcs *vmcs02; bool ia32e; u32 msr_entry_idx; if (!nested_vmx_check_permission(vcpu) || !nested_vmx_check_vmcs12(vcpu)) return 1; skip_emulated_instruction(vcpu); vmcs12 = get_vmcs12(vcpu); if (enable_shadow_vmcs) copy_shadow_to_vmcs12(vmx); /* * The nested entry process starts with enforcing various prerequisites * on vmcs12 as required by the Intel SDM, and act appropriately when * they fail: As the SDM explains, some conditions should cause the * instruction to fail, while others will cause the instruction to seem * to succeed, but return an EXIT_REASON_INVALID_STATE. * To speed up the normal (success) code path, we should avoid checking * for misconfigurations which will anyway be caught by the processor * when using the merged vmcs02. */ if (vmcs12->launch_state == launch) { nested_vmx_failValid(vcpu, launch ? VMXERR_VMLAUNCH_NONCLEAR_VMCS : VMXERR_VMRESUME_NONLAUNCHED_VMCS); return 1; } if (vmcs12->guest_activity_state != GUEST_ACTIVITY_ACTIVE && vmcs12->guest_activity_state != GUEST_ACTIVITY_HLT) { nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD); return 1; } if (!nested_get_vmcs12_pages(vcpu, vmcs12)) { nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD); return 1; } if (nested_vmx_check_msr_bitmap_controls(vcpu, vmcs12)) { nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD); return 1; } if (nested_vmx_check_apicv_controls(vcpu, vmcs12)) { nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD); return 1; } if (nested_vmx_check_msr_switch_controls(vcpu, vmcs12)) { nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD); return 1; } if (!vmx_control_verify(vmcs12->cpu_based_vm_exec_control, vmx->nested.nested_vmx_true_procbased_ctls_low, vmx->nested.nested_vmx_procbased_ctls_high) || !vmx_control_verify(vmcs12->secondary_vm_exec_control, vmx->nested.nested_vmx_secondary_ctls_low, vmx->nested.nested_vmx_secondary_ctls_high) || !vmx_control_verify(vmcs12->pin_based_vm_exec_control, vmx->nested.nested_vmx_pinbased_ctls_low, vmx->nested.nested_vmx_pinbased_ctls_high) || !vmx_control_verify(vmcs12->vm_exit_controls, vmx->nested.nested_vmx_true_exit_ctls_low, vmx->nested.nested_vmx_exit_ctls_high) || !vmx_control_verify(vmcs12->vm_entry_controls, vmx->nested.nested_vmx_true_entry_ctls_low, vmx->nested.nested_vmx_entry_ctls_high)) { nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD); return 1; } if (((vmcs12->host_cr0 & VMXON_CR0_ALWAYSON) != VMXON_CR0_ALWAYSON) || ((vmcs12->host_cr4 & VMXON_CR4_ALWAYSON) != VMXON_CR4_ALWAYSON)) { nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_HOST_STATE_FIELD); return 1; } if (!nested_cr0_valid(vcpu, vmcs12->guest_cr0) || ((vmcs12->guest_cr4 & VMXON_CR4_ALWAYSON) != VMXON_CR4_ALWAYSON)) { nested_vmx_entry_failure(vcpu, vmcs12, EXIT_REASON_INVALID_STATE, ENTRY_FAIL_DEFAULT); return 1; } if (vmcs12->vmcs_link_pointer != -1ull) { nested_vmx_entry_failure(vcpu, vmcs12, EXIT_REASON_INVALID_STATE, ENTRY_FAIL_VMCS_LINK_PTR); return 1; } /* * If the load IA32_EFER VM-entry control is 1, the following checks * are performed on the field for the IA32_EFER MSR: * - Bits reserved in the IA32_EFER MSR must be 0. * - Bit 10 (corresponding to IA32_EFER.LMA) must equal the value of * the IA-32e mode guest VM-exit control. It must also be identical * to bit 8 (LME) if bit 31 in the CR0 field (corresponding to * CR0.PG) is 1. */ if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER) { ia32e = (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE) != 0; if (!kvm_valid_efer(vcpu, vmcs12->guest_ia32_efer) || ia32e != !!(vmcs12->guest_ia32_efer & EFER_LMA) || ((vmcs12->guest_cr0 & X86_CR0_PG) && ia32e != !!(vmcs12->guest_ia32_efer & EFER_LME))) { nested_vmx_entry_failure(vcpu, vmcs12, EXIT_REASON_INVALID_STATE, ENTRY_FAIL_DEFAULT); return 1; } } /* * If the load IA32_EFER VM-exit control is 1, bits reserved in the * IA32_EFER MSR must be 0 in the field for that register. In addition, * the values of the LMA and LME bits in the field must each be that of * the host address-space size VM-exit control. */ if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER) { ia32e = (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE) != 0; if (!kvm_valid_efer(vcpu, vmcs12->host_ia32_efer) || ia32e != !!(vmcs12->host_ia32_efer & EFER_LMA) || ia32e != !!(vmcs12->host_ia32_efer & EFER_LME)) { nested_vmx_entry_failure(vcpu, vmcs12, EXIT_REASON_INVALID_STATE, ENTRY_FAIL_DEFAULT); return 1; } } /* * We're finally done with prerequisite checking, and can start with * the nested entry. */ vmcs02 = nested_get_current_vmcs02(vmx); if (!vmcs02) return -ENOMEM; enter_guest_mode(vcpu); vmx->nested.vmcs01_tsc_offset = vmcs_read64(TSC_OFFSET); if (!(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS)) vmx->nested.vmcs01_debugctl = vmcs_read64(GUEST_IA32_DEBUGCTL); cpu = get_cpu(); vmx->loaded_vmcs = vmcs02; vmx_vcpu_put(vcpu); vmx_vcpu_load(vcpu, cpu); vcpu->cpu = cpu; put_cpu(); vmx_segment_cache_clear(vmx); prepare_vmcs02(vcpu, vmcs12); msr_entry_idx = nested_vmx_load_msr(vcpu, vmcs12->vm_entry_msr_load_addr, vmcs12->vm_entry_msr_load_count); if (msr_entry_idx) { leave_guest_mode(vcpu); vmx_load_vmcs01(vcpu); nested_vmx_entry_failure(vcpu, vmcs12, EXIT_REASON_MSR_LOAD_FAIL, msr_entry_idx); return 1; } vmcs12->launch_state = 1; if (vmcs12->guest_activity_state == GUEST_ACTIVITY_HLT) return kvm_vcpu_halt(vcpu); vmx->nested.nested_run_pending = 1; /* * Note no nested_vmx_succeed or nested_vmx_fail here. At this point * we are no longer running L1, and VMLAUNCH/VMRESUME has not yet * returned as far as L1 is concerned. It will only return (and set * the success flag) when L2 exits (see nested_vmx_vmexit()). */ return 1; } /* * On a nested exit from L2 to L1, vmcs12.guest_cr0 might not be up-to-date * because L2 may have changed some cr0 bits directly (CRO_GUEST_HOST_MASK). * This function returns the new value we should put in vmcs12.guest_cr0. * It's not enough to just return the vmcs02 GUEST_CR0. Rather, * 1. Bits that neither L0 nor L1 trapped, were set directly by L2 and are now * available in vmcs02 GUEST_CR0. (Note: It's enough to check that L0 * didn't trap the bit, because if L1 did, so would L0). * 2. Bits that L1 asked to trap (and therefore L0 also did) could not have * been modified by L2, and L1 knows it. So just leave the old value of * the bit from vmcs12.guest_cr0. Note that the bit from vmcs02 GUEST_CR0 * isn't relevant, because if L0 traps this bit it can set it to anything. * 3. Bits that L1 didn't trap, but L0 did. L1 believes the guest could have * changed these bits, and therefore they need to be updated, but L0 * didn't necessarily allow them to be changed in GUEST_CR0 - and rather * put them in vmcs02 CR0_READ_SHADOW. So take these bits from there. */ static inline unsigned long vmcs12_guest_cr0(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12) { return /*1*/ (vmcs_readl(GUEST_CR0) & vcpu->arch.cr0_guest_owned_bits) | /*2*/ (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask) | /*3*/ (vmcs_readl(CR0_READ_SHADOW) & ~(vmcs12->cr0_guest_host_mask | vcpu->arch.cr0_guest_owned_bits)); } static inline unsigned long vmcs12_guest_cr4(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12) { return /*1*/ (vmcs_readl(GUEST_CR4) & vcpu->arch.cr4_guest_owned_bits) | /*2*/ (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask) | /*3*/ (vmcs_readl(CR4_READ_SHADOW) & ~(vmcs12->cr4_guest_host_mask | vcpu->arch.cr4_guest_owned_bits)); } static void vmcs12_save_pending_event(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12) { u32 idt_vectoring; unsigned int nr; if (vcpu->arch.exception.pending && vcpu->arch.exception.reinject) { nr = vcpu->arch.exception.nr; idt_vectoring = nr | VECTORING_INFO_VALID_MASK; if (kvm_exception_is_soft(nr)) { vmcs12->vm_exit_instruction_len = vcpu->arch.event_exit_inst_len; idt_vectoring |= INTR_TYPE_SOFT_EXCEPTION; } else idt_vectoring |= INTR_TYPE_HARD_EXCEPTION; if (vcpu->arch.exception.has_error_code) { idt_vectoring |= VECTORING_INFO_DELIVER_CODE_MASK; vmcs12->idt_vectoring_error_code = vcpu->arch.exception.error_code; } vmcs12->idt_vectoring_info_field = idt_vectoring; } else if (vcpu->arch.nmi_injected) { vmcs12->idt_vectoring_info_field = INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR; } else if (vcpu->arch.interrupt.pending) { nr = vcpu->arch.interrupt.nr; idt_vectoring = nr | VECTORING_INFO_VALID_MASK; if (vcpu->arch.interrupt.soft) { idt_vectoring |= INTR_TYPE_SOFT_INTR; vmcs12->vm_entry_instruction_len = vcpu->arch.event_exit_inst_len; } else idt_vectoring |= INTR_TYPE_EXT_INTR; vmcs12->idt_vectoring_info_field = idt_vectoring; } } static int vmx_check_nested_events(struct kvm_vcpu *vcpu, bool external_intr) { struct vcpu_vmx *vmx = to_vmx(vcpu); if (nested_cpu_has_preemption_timer(get_vmcs12(vcpu)) && vmx->nested.preemption_timer_expired) { if (vmx->nested.nested_run_pending) return -EBUSY; nested_vmx_vmexit(vcpu, EXIT_REASON_PREEMPTION_TIMER, 0, 0); return 0; } if (vcpu->arch.nmi_pending && nested_exit_on_nmi(vcpu)) { if (vmx->nested.nested_run_pending || vcpu->arch.interrupt.pending) return -EBUSY; nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI, NMI_VECTOR | INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK, 0); /* * The NMI-triggered VM exit counts as injection: * clear this one and block further NMIs. */ vcpu->arch.nmi_pending = 0; vmx_set_nmi_mask(vcpu, true); return 0; } if ((kvm_cpu_has_interrupt(vcpu) || external_intr) && nested_exit_on_intr(vcpu)) { if (vmx->nested.nested_run_pending) return -EBUSY; nested_vmx_vmexit(vcpu, EXIT_REASON_EXTERNAL_INTERRUPT, 0, 0); return 0; } return vmx_complete_nested_posted_interrupt(vcpu); } static u32 vmx_get_preemption_timer_value(struct kvm_vcpu *vcpu) { ktime_t remaining = hrtimer_get_remaining(&to_vmx(vcpu)->nested.preemption_timer); u64 value; if (ktime_to_ns(remaining) <= 0) return 0; value = ktime_to_ns(remaining) * vcpu->arch.virtual_tsc_khz; do_div(value, 1000000); return value >> VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE; } /* * prepare_vmcs12 is part of what we need to do when the nested L2 guest exits * and we want to prepare to run its L1 parent. L1 keeps a vmcs for L2 (vmcs12), * and this function updates it to reflect the changes to the guest state while * L2 was running (and perhaps made some exits which were handled directly by L0 * without going back to L1), and to reflect the exit reason. * Note that we do not have to copy here all VMCS fields, just those that * could have changed by the L2 guest or the exit - i.e., the guest-state and * exit-information fields only. Other fields are modified by L1 with VMWRITE, * which already writes to vmcs12 directly. */ static void prepare_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12, u32 exit_reason, u32 exit_intr_info, unsigned long exit_qualification) { /* update guest state fields: */ vmcs12->guest_cr0 = vmcs12_guest_cr0(vcpu, vmcs12); vmcs12->guest_cr4 = vmcs12_guest_cr4(vcpu, vmcs12); vmcs12->guest_rsp = kvm_register_read(vcpu, VCPU_REGS_RSP); vmcs12->guest_rip = kvm_register_read(vcpu, VCPU_REGS_RIP); vmcs12->guest_rflags = vmcs_readl(GUEST_RFLAGS); vmcs12->guest_es_selector = vmcs_read16(GUEST_ES_SELECTOR); vmcs12->guest_cs_selector = vmcs_read16(GUEST_CS_SELECTOR); vmcs12->guest_ss_selector = vmcs_read16(GUEST_SS_SELECTOR); vmcs12->guest_ds_selector = vmcs_read16(GUEST_DS_SELECTOR); vmcs12->guest_fs_selector = vmcs_read16(GUEST_FS_SELECTOR); vmcs12->guest_gs_selector = vmcs_read16(GUEST_GS_SELECTOR); vmcs12->guest_ldtr_selector = vmcs_read16(GUEST_LDTR_SELECTOR); vmcs12->guest_tr_selector = vmcs_read16(GUEST_TR_SELECTOR); vmcs12->guest_es_limit = vmcs_read32(GUEST_ES_LIMIT); vmcs12->guest_cs_limit = vmcs_read32(GUEST_CS_LIMIT); vmcs12->guest_ss_limit = vmcs_read32(GUEST_SS_LIMIT); vmcs12->guest_ds_limit = vmcs_read32(GUEST_DS_LIMIT); vmcs12->guest_fs_limit = vmcs_read32(GUEST_FS_LIMIT); vmcs12->guest_gs_limit = vmcs_read32(GUEST_GS_LIMIT); vmcs12->guest_ldtr_limit = vmcs_read32(GUEST_LDTR_LIMIT); vmcs12->guest_tr_limit = vmcs_read32(GUEST_TR_LIMIT); vmcs12->guest_gdtr_limit = vmcs_read32(GUEST_GDTR_LIMIT); vmcs12->guest_idtr_limit = vmcs_read32(GUEST_IDTR_LIMIT); vmcs12->guest_es_ar_bytes = vmcs_read32(GUEST_ES_AR_BYTES); vmcs12->guest_cs_ar_bytes = vmcs_read32(GUEST_CS_AR_BYTES); vmcs12->guest_ss_ar_bytes = vmcs_read32(GUEST_SS_AR_BYTES); vmcs12->guest_ds_ar_bytes = vmcs_read32(GUEST_DS_AR_BYTES); vmcs12->guest_fs_ar_bytes = vmcs_read32(GUEST_FS_AR_BYTES); vmcs12->guest_gs_ar_bytes = vmcs_read32(GUEST_GS_AR_BYTES); vmcs12->guest_ldtr_ar_bytes = vmcs_read32(GUEST_LDTR_AR_BYTES); vmcs12->guest_tr_ar_bytes = vmcs_read32(GUEST_TR_AR_BYTES); vmcs12->guest_es_base = vmcs_readl(GUEST_ES_BASE); vmcs12->guest_cs_base = vmcs_readl(GUEST_CS_BASE); vmcs12->guest_ss_base = vmcs_readl(GUEST_SS_BASE); vmcs12->guest_ds_base = vmcs_readl(GUEST_DS_BASE); vmcs12->guest_fs_base = vmcs_readl(GUEST_FS_BASE); vmcs12->guest_gs_base = vmcs_readl(GUEST_GS_BASE); vmcs12->guest_ldtr_base = vmcs_readl(GUEST_LDTR_BASE); vmcs12->guest_tr_base = vmcs_readl(GUEST_TR_BASE); vmcs12->guest_gdtr_base = vmcs_readl(GUEST_GDTR_BASE); vmcs12->guest_idtr_base = vmcs_readl(GUEST_IDTR_BASE); vmcs12->guest_interruptibility_info = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO); vmcs12->guest_pending_dbg_exceptions = vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS); if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED) vmcs12->guest_activity_state = GUEST_ACTIVITY_HLT; else vmcs12->guest_activity_state = GUEST_ACTIVITY_ACTIVE; if (nested_cpu_has_preemption_timer(vmcs12)) { if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_VMX_PREEMPTION_TIMER) vmcs12->vmx_preemption_timer_value = vmx_get_preemption_timer_value(vcpu); hrtimer_cancel(&to_vmx(vcpu)->nested.preemption_timer); } /* * In some cases (usually, nested EPT), L2 is allowed to change its * own CR3 without exiting. If it has changed it, we must keep it. * Of course, if L0 is using shadow page tables, GUEST_CR3 was defined * by L0, not L1 or L2, so we mustn't unconditionally copy it to vmcs12. * * Additionally, restore L2's PDPTR to vmcs12. */ if (enable_ept) { vmcs12->guest_cr3 = vmcs_readl(GUEST_CR3); vmcs12->guest_pdptr0 = vmcs_read64(GUEST_PDPTR0); vmcs12->guest_pdptr1 = vmcs_read64(GUEST_PDPTR1); vmcs12->guest_pdptr2 = vmcs_read64(GUEST_PDPTR2); vmcs12->guest_pdptr3 = vmcs_read64(GUEST_PDPTR3); } if (nested_cpu_has_vid(vmcs12)) vmcs12->guest_intr_status = vmcs_read16(GUEST_INTR_STATUS); vmcs12->vm_entry_controls = (vmcs12->vm_entry_controls & ~VM_ENTRY_IA32E_MODE) | (vm_entry_controls_get(to_vmx(vcpu)) & VM_ENTRY_IA32E_MODE); if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_DEBUG_CONTROLS) { kvm_get_dr(vcpu, 7, (unsigned long *)&vmcs12->guest_dr7); vmcs12->guest_ia32_debugctl = vmcs_read64(GUEST_IA32_DEBUGCTL); } /* TODO: These cannot have changed unless we have MSR bitmaps and * the relevant bit asks not to trap the change */ if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_IA32_PAT) vmcs12->guest_ia32_pat = vmcs_read64(GUEST_IA32_PAT); if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_IA32_EFER) vmcs12->guest_ia32_efer = vcpu->arch.efer; vmcs12->guest_sysenter_cs = vmcs_read32(GUEST_SYSENTER_CS); vmcs12->guest_sysenter_esp = vmcs_readl(GUEST_SYSENTER_ESP); vmcs12->guest_sysenter_eip = vmcs_readl(GUEST_SYSENTER_EIP); if (kvm_mpx_supported()) vmcs12->guest_bndcfgs = vmcs_read64(GUEST_BNDCFGS); if (nested_cpu_has_xsaves(vmcs12)) vmcs12->xss_exit_bitmap = vmcs_read64(XSS_EXIT_BITMAP); /* update exit information fields: */ vmcs12->vm_exit_reason = exit_reason; vmcs12->exit_qualification = exit_qualification; vmcs12->vm_exit_intr_info = exit_intr_info; if ((vmcs12->vm_exit_intr_info & (INTR_INFO_VALID_MASK | INTR_INFO_DELIVER_CODE_MASK)) == (INTR_INFO_VALID_MASK | INTR_INFO_DELIVER_CODE_MASK)) vmcs12->vm_exit_intr_error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE); vmcs12->idt_vectoring_info_field = 0; vmcs12->vm_exit_instruction_len = vmcs_read32(VM_EXIT_INSTRUCTION_LEN); vmcs12->vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO); if (!(vmcs12->vm_exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY)) { /* vm_entry_intr_info_field is cleared on exit. Emulate this * instead of reading the real value. */ vmcs12->vm_entry_intr_info_field &= ~INTR_INFO_VALID_MASK; /* * Transfer the event that L0 or L1 may wanted to inject into * L2 to IDT_VECTORING_INFO_FIELD. */ vmcs12_save_pending_event(vcpu, vmcs12); } /* * Drop what we picked up for L2 via vmx_complete_interrupts. It is * preserved above and would only end up incorrectly in L1. */ vcpu->arch.nmi_injected = false; kvm_clear_exception_queue(vcpu); kvm_clear_interrupt_queue(vcpu); } /* * A part of what we need to when the nested L2 guest exits and we want to * run its L1 parent, is to reset L1's guest state to the host state specified * in vmcs12. * This function is to be called not only on normal nested exit, but also on * a nested entry failure, as explained in Intel's spec, 3B.23.7 ("VM-Entry * Failures During or After Loading Guest State"). * This function should be called when the active VMCS is L1's (vmcs01). */ static void load_vmcs12_host_state(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12) { struct kvm_segment seg; if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER) vcpu->arch.efer = vmcs12->host_ia32_efer; else if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE) vcpu->arch.efer |= (EFER_LMA | EFER_LME); else vcpu->arch.efer &= ~(EFER_LMA | EFER_LME); vmx_set_efer(vcpu, vcpu->arch.efer); kvm_register_write(vcpu, VCPU_REGS_RSP, vmcs12->host_rsp); kvm_register_write(vcpu, VCPU_REGS_RIP, vmcs12->host_rip); vmx_set_rflags(vcpu, X86_EFLAGS_FIXED); /* * Note that calling vmx_set_cr0 is important, even if cr0 hasn't * actually changed, because it depends on the current state of * fpu_active (which may have changed). * Note that vmx_set_cr0 refers to efer set above. */ vmx_set_cr0(vcpu, vmcs12->host_cr0); /* * If we did fpu_activate()/fpu_deactivate() during L2's run, we need * to apply the same changes to L1's vmcs. We just set cr0 correctly, * but we also need to update cr0_guest_host_mask and exception_bitmap. */ update_exception_bitmap(vcpu); vcpu->arch.cr0_guest_owned_bits = (vcpu->fpu_active ? X86_CR0_TS : 0); vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits); /* * Note that CR4_GUEST_HOST_MASK is already set in the original vmcs01 * (KVM doesn't change it)- no reason to call set_cr4_guest_host_mask(); */ vcpu->arch.cr4_guest_owned_bits = ~vmcs_readl(CR4_GUEST_HOST_MASK); kvm_set_cr4(vcpu, vmcs12->host_cr4); nested_ept_uninit_mmu_context(vcpu); kvm_set_cr3(vcpu, vmcs12->host_cr3); kvm_mmu_reset_context(vcpu); if (!enable_ept) vcpu->arch.walk_mmu->inject_page_fault = kvm_inject_page_fault; if (enable_vpid) { /* * Trivially support vpid by letting L2s share their parent * L1's vpid. TODO: move to a more elaborate solution, giving * each L2 its own vpid and exposing the vpid feature to L1. */ vmx_flush_tlb(vcpu); } vmcs_write32(GUEST_SYSENTER_CS, vmcs12->host_ia32_sysenter_cs); vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->host_ia32_sysenter_esp); vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->host_ia32_sysenter_eip); vmcs_writel(GUEST_IDTR_BASE, vmcs12->host_idtr_base); vmcs_writel(GUEST_GDTR_BASE, vmcs12->host_gdtr_base); /* If not VM_EXIT_CLEAR_BNDCFGS, the L2 value propagates to L1. */ if (vmcs12->vm_exit_controls & VM_EXIT_CLEAR_BNDCFGS) vmcs_write64(GUEST_BNDCFGS, 0); if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PAT) { vmcs_write64(GUEST_IA32_PAT, vmcs12->host_ia32_pat); vcpu->arch.pat = vmcs12->host_ia32_pat; } if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL) vmcs_write64(GUEST_IA32_PERF_GLOBAL_CTRL, vmcs12->host_ia32_perf_global_ctrl); /* Set L1 segment info according to Intel SDM 27.5.2 Loading Host Segment and Descriptor-Table Registers */ seg = (struct kvm_segment) { .base = 0, .limit = 0xFFFFFFFF, .selector = vmcs12->host_cs_selector, .type = 11, .present = 1, .s = 1, .g = 1 }; if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE) seg.l = 1; else seg.db = 1; vmx_set_segment(vcpu, &seg, VCPU_SREG_CS); seg = (struct kvm_segment) { .base = 0, .limit = 0xFFFFFFFF, .type = 3, .present = 1, .s = 1, .db = 1, .g = 1 }; seg.selector = vmcs12->host_ds_selector; vmx_set_segment(vcpu, &seg, VCPU_SREG_DS); seg.selector = vmcs12->host_es_selector; vmx_set_segment(vcpu, &seg, VCPU_SREG_ES); seg.selector = vmcs12->host_ss_selector; vmx_set_segment(vcpu, &seg, VCPU_SREG_SS); seg.selector = vmcs12->host_fs_selector; seg.base = vmcs12->host_fs_base; vmx_set_segment(vcpu, &seg, VCPU_SREG_FS); seg.selector = vmcs12->host_gs_selector; seg.base = vmcs12->host_gs_base; vmx_set_segment(vcpu, &seg, VCPU_SREG_GS); seg = (struct kvm_segment) { .base = vmcs12->host_tr_base, .limit = 0x67, .selector = vmcs12->host_tr_selector, .type = 11, .present = 1 }; vmx_set_segment(vcpu, &seg, VCPU_SREG_TR); kvm_set_dr(vcpu, 7, 0x400); vmcs_write64(GUEST_IA32_DEBUGCTL, 0); if (cpu_has_vmx_msr_bitmap()) vmx_set_msr_bitmap(vcpu); if (nested_vmx_load_msr(vcpu, vmcs12->vm_exit_msr_load_addr, vmcs12->vm_exit_msr_load_count)) nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_MSR_FAIL); } /* * Emulate an exit from nested guest (L2) to L1, i.e., prepare to run L1 * and modify vmcs12 to make it see what it would expect to see there if * L2 was its real guest. Must only be called when in L2 (is_guest_mode()) */ static void nested_vmx_vmexit(struct kvm_vcpu *vcpu, u32 exit_reason, u32 exit_intr_info, unsigned long exit_qualification) { struct vcpu_vmx *vmx = to_vmx(vcpu); struct vmcs12 *vmcs12 = get_vmcs12(vcpu); /* trying to cancel vmlaunch/vmresume is a bug */ WARN_ON_ONCE(vmx->nested.nested_run_pending); leave_guest_mode(vcpu); prepare_vmcs12(vcpu, vmcs12, exit_reason, exit_intr_info, exit_qualification); if (nested_vmx_store_msr(vcpu, vmcs12->vm_exit_msr_store_addr, vmcs12->vm_exit_msr_store_count)) nested_vmx_abort(vcpu, VMX_ABORT_SAVE_GUEST_MSR_FAIL); vmx_load_vmcs01(vcpu); if ((exit_reason == EXIT_REASON_EXTERNAL_INTERRUPT) && nested_exit_intr_ack_set(vcpu)) { int irq = kvm_cpu_get_interrupt(vcpu); WARN_ON(irq < 0); vmcs12->vm_exit_intr_info = irq | INTR_INFO_VALID_MASK | INTR_TYPE_EXT_INTR; } trace_kvm_nested_vmexit_inject(vmcs12->vm_exit_reason, vmcs12->exit_qualification, vmcs12->idt_vectoring_info_field, vmcs12->vm_exit_intr_info, vmcs12->vm_exit_intr_error_code, KVM_ISA_VMX); vm_entry_controls_reset_shadow(vmx); vm_exit_controls_reset_shadow(vmx); vmx_segment_cache_clear(vmx); /* if no vmcs02 cache requested, remove the one we used */ if (VMCS02_POOL_SIZE == 0) nested_free_vmcs02(vmx, vmx->nested.current_vmptr); load_vmcs12_host_state(vcpu, vmcs12); /* Update any VMCS fields that might have changed while L2 ran */ vmcs_write64(TSC_OFFSET, vmx->nested.vmcs01_tsc_offset); if (vmx->hv_deadline_tsc == -1) vmcs_clear_bits(PIN_BASED_VM_EXEC_CONTROL, PIN_BASED_VMX_PREEMPTION_TIMER); else vmcs_set_bits(PIN_BASED_VM_EXEC_CONTROL, PIN_BASED_VMX_PREEMPTION_TIMER); /* This is needed for same reason as it was needed in prepare_vmcs02 */ vmx->host_rsp = 0; /* Unpin physical memory we referred to in vmcs02 */ if (vmx->nested.apic_access_page) { nested_release_page(vmx->nested.apic_access_page); vmx->nested.apic_access_page = NULL; } if (vmx->nested.virtual_apic_page) { nested_release_page(vmx->nested.virtual_apic_page); vmx->nested.virtual_apic_page = NULL; } if (vmx->nested.pi_desc_page) { kunmap(vmx->nested.pi_desc_page); nested_release_page(vmx->nested.pi_desc_page); vmx->nested.pi_desc_page = NULL; vmx->nested.pi_desc = NULL; } /* * We are now running in L2, mmu_notifier will force to reload the * page's hpa for L2 vmcs. Need to reload it for L1 before entering L1. */ kvm_vcpu_reload_apic_access_page(vcpu); /* * Exiting from L2 to L1, we're now back to L1 which thinks it just * finished a VMLAUNCH or VMRESUME instruction, so we need to set the * success or failure flag accordingly. */ if (unlikely(vmx->fail)) { vmx->fail = 0; nested_vmx_failValid(vcpu, vmcs_read32(VM_INSTRUCTION_ERROR)); } else nested_vmx_succeed(vcpu); if (enable_shadow_vmcs) vmx->nested.sync_shadow_vmcs = true; /* in case we halted in L2 */ vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; } /* * Forcibly leave nested mode in order to be able to reset the VCPU later on. */ static void vmx_leave_nested(struct kvm_vcpu *vcpu) { if (is_guest_mode(vcpu)) nested_vmx_vmexit(vcpu, -1, 0, 0); free_nested(to_vmx(vcpu)); } /* * L1's failure to enter L2 is a subset of a normal exit, as explained in * 23.7 "VM-entry failures during or after loading guest state" (this also * lists the acceptable exit-reason and exit-qualification parameters). * It should only be called before L2 actually succeeded to run, and when * vmcs01 is current (it doesn't leave_guest_mode() or switch vmcss). */ static void nested_vmx_entry_failure(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12, u32 reason, unsigned long qualification) { load_vmcs12_host_state(vcpu, vmcs12); vmcs12->vm_exit_reason = reason | VMX_EXIT_REASONS_FAILED_VMENTRY; vmcs12->exit_qualification = qualification; nested_vmx_succeed(vcpu); if (enable_shadow_vmcs) to_vmx(vcpu)->nested.sync_shadow_vmcs = true; } static int vmx_check_intercept(struct kvm_vcpu *vcpu, struct x86_instruction_info *info, enum x86_intercept_stage stage) { return X86EMUL_CONTINUE; } #ifdef CONFIG_X86_64 /* (a << shift) / divisor, return 1 if overflow otherwise 0 */ static inline int u64_shl_div_u64(u64 a, unsigned int shift, u64 divisor, u64 *result) { u64 low = a << shift, high = a >> (64 - shift); /* To avoid the overflow on divq */ if (high >= divisor) return 1; /* Low hold the result, high hold rem which is discarded */ asm("divq %2\n\t" : "=a" (low), "=d" (high) : "rm" (divisor), "0" (low), "1" (high)); *result = low; return 0; } static int vmx_set_hv_timer(struct kvm_vcpu *vcpu, u64 guest_deadline_tsc) { struct vcpu_vmx *vmx = to_vmx(vcpu); u64 tscl = rdtsc(); u64 guest_tscl = kvm_read_l1_tsc(vcpu, tscl); u64 delta_tsc = max(guest_deadline_tsc, guest_tscl) - guest_tscl; /* Convert to host delta tsc if tsc scaling is enabled */ if (vcpu->arch.tsc_scaling_ratio != kvm_default_tsc_scaling_ratio && u64_shl_div_u64(delta_tsc, kvm_tsc_scaling_ratio_frac_bits, vcpu->arch.tsc_scaling_ratio, &delta_tsc)) return -ERANGE; /* * If the delta tsc can't fit in the 32 bit after the multi shift, * we can't use the preemption timer. * It's possible that it fits on later vmentries, but checking * on every vmentry is costly so we just use an hrtimer. */ if (delta_tsc >> (cpu_preemption_timer_multi + 32)) return -ERANGE; vmx->hv_deadline_tsc = tscl + delta_tsc; vmcs_set_bits(PIN_BASED_VM_EXEC_CONTROL, PIN_BASED_VMX_PREEMPTION_TIMER); return 0; } static void vmx_cancel_hv_timer(struct kvm_vcpu *vcpu) { struct vcpu_vmx *vmx = to_vmx(vcpu); vmx->hv_deadline_tsc = -1; vmcs_clear_bits(PIN_BASED_VM_EXEC_CONTROL, PIN_BASED_VMX_PREEMPTION_TIMER); } #endif static void vmx_sched_in(struct kvm_vcpu *vcpu, int cpu) { if (ple_gap) shrink_ple_window(vcpu); } static void vmx_slot_enable_log_dirty(struct kvm *kvm, struct kvm_memory_slot *slot) { kvm_mmu_slot_leaf_clear_dirty(kvm, slot); kvm_mmu_slot_largepage_remove_write_access(kvm, slot); } static void vmx_slot_disable_log_dirty(struct kvm *kvm, struct kvm_memory_slot *slot) { kvm_mmu_slot_set_dirty(kvm, slot); } static void vmx_flush_log_dirty(struct kvm *kvm) { kvm_flush_pml_buffers(kvm); } static void vmx_enable_log_dirty_pt_masked(struct kvm *kvm, struct kvm_memory_slot *memslot, gfn_t offset, unsigned long mask) { kvm_mmu_clear_dirty_pt_masked(kvm, memslot, offset, mask); } /* * This routine does the following things for vCPU which is going * to be blocked if VT-d PI is enabled. * - Store the vCPU to the wakeup list, so when interrupts happen * we can find the right vCPU to wake up. * - Change the Posted-interrupt descriptor as below: * 'NDST' <-- vcpu->pre_pcpu * 'NV' <-- POSTED_INTR_WAKEUP_VECTOR * - If 'ON' is set during this process, which means at least one * interrupt is posted for this vCPU, we cannot block it, in * this case, return 1, otherwise, return 0. * */ static int pi_pre_block(struct kvm_vcpu *vcpu) { unsigned long flags; unsigned int dest; struct pi_desc old, new; struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu); if (!kvm_arch_has_assigned_device(vcpu->kvm) || !irq_remapping_cap(IRQ_POSTING_CAP)) return 0; vcpu->pre_pcpu = vcpu->cpu; spin_lock_irqsave(&per_cpu(blocked_vcpu_on_cpu_lock, vcpu->pre_pcpu), flags); list_add_tail(&vcpu->blocked_vcpu_list, &per_cpu(blocked_vcpu_on_cpu, vcpu->pre_pcpu)); spin_unlock_irqrestore(&per_cpu(blocked_vcpu_on_cpu_lock, vcpu->pre_pcpu), flags); do { old.control = new.control = pi_desc->control; /* * We should not block the vCPU if * an interrupt is posted for it. */ if (pi_test_on(pi_desc) == 1) { spin_lock_irqsave(&per_cpu(blocked_vcpu_on_cpu_lock, vcpu->pre_pcpu), flags); list_del(&vcpu->blocked_vcpu_list); spin_unlock_irqrestore( &per_cpu(blocked_vcpu_on_cpu_lock, vcpu->pre_pcpu), flags); vcpu->pre_pcpu = -1; return 1; } WARN((pi_desc->sn == 1), "Warning: SN field of posted-interrupts " "is set before blocking\n"); /* * Since vCPU can be preempted during this process, * vcpu->cpu could be different with pre_pcpu, we * need to set pre_pcpu as the destination of wakeup * notification event, then we can find the right vCPU * to wakeup in wakeup handler if interrupts happen * when the vCPU is in blocked state. */ dest = cpu_physical_id(vcpu->pre_pcpu); if (x2apic_enabled()) new.ndst = dest; else new.ndst = (dest << 8) & 0xFF00; /* set 'NV' to 'wakeup vector' */ new.nv = POSTED_INTR_WAKEUP_VECTOR; } while (cmpxchg(&pi_desc->control, old.control, new.control) != old.control); return 0; } static int vmx_pre_block(struct kvm_vcpu *vcpu) { if (pi_pre_block(vcpu)) return 1; if (kvm_lapic_hv_timer_in_use(vcpu)) kvm_lapic_switch_to_sw_timer(vcpu); return 0; } static void pi_post_block(struct kvm_vcpu *vcpu) { struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu); struct pi_desc old, new; unsigned int dest; unsigned long flags; if (!kvm_arch_has_assigned_device(vcpu->kvm) || !irq_remapping_cap(IRQ_POSTING_CAP)) return; do { old.control = new.control = pi_desc->control; dest = cpu_physical_id(vcpu->cpu); if (x2apic_enabled()) new.ndst = dest; else new.ndst = (dest << 8) & 0xFF00; /* Allow posting non-urgent interrupts */ new.sn = 0; /* set 'NV' to 'notification vector' */ new.nv = POSTED_INTR_VECTOR; } while (cmpxchg(&pi_desc->control, old.control, new.control) != old.control); if(vcpu->pre_pcpu != -1) { spin_lock_irqsave( &per_cpu(blocked_vcpu_on_cpu_lock, vcpu->pre_pcpu), flags); list_del(&vcpu->blocked_vcpu_list); spin_unlock_irqrestore( &per_cpu(blocked_vcpu_on_cpu_lock, vcpu->pre_pcpu), flags); vcpu->pre_pcpu = -1; } } static void vmx_post_block(struct kvm_vcpu *vcpu) { if (kvm_x86_ops->set_hv_timer) kvm_lapic_switch_to_hv_timer(vcpu); pi_post_block(vcpu); } /* * vmx_update_pi_irte - set IRTE for Posted-Interrupts * * @kvm: kvm * @host_irq: host irq of the interrupt * @guest_irq: gsi of the interrupt * @set: set or unset PI * returns 0 on success, < 0 on failure */ static int vmx_update_pi_irte(struct kvm *kvm, unsigned int host_irq, uint32_t guest_irq, bool set) { struct kvm_kernel_irq_routing_entry *e; struct kvm_irq_routing_table *irq_rt; struct kvm_lapic_irq irq; struct kvm_vcpu *vcpu; struct vcpu_data vcpu_info; int idx, ret = -EINVAL; if (!kvm_arch_has_assigned_device(kvm) || !irq_remapping_cap(IRQ_POSTING_CAP)) return 0; idx = srcu_read_lock(&kvm->irq_srcu); irq_rt = srcu_dereference(kvm->irq_routing, &kvm->irq_srcu); BUG_ON(guest_irq >= irq_rt->nr_rt_entries); hlist_for_each_entry(e, &irq_rt->map[guest_irq], link) { if (e->type != KVM_IRQ_ROUTING_MSI) continue; /* * VT-d PI cannot support posting multicast/broadcast * interrupts to a vCPU, we still use interrupt remapping * for these kind of interrupts. * * For lowest-priority interrupts, we only support * those with single CPU as the destination, e.g. user * configures the interrupts via /proc/irq or uses * irqbalance to make the interrupts single-CPU. * * We will support full lowest-priority interrupt later. */ kvm_set_msi_irq(e, &irq); if (!kvm_intr_is_single_vcpu(kvm, &irq, &vcpu)) { /* * Make sure the IRTE is in remapped mode if * we don't handle it in posted mode. */ ret = irq_set_vcpu_affinity(host_irq, NULL); if (ret < 0) { printk(KERN_INFO "failed to back to remapped mode, irq: %u\n", host_irq); goto out; } continue; } vcpu_info.pi_desc_addr = __pa(vcpu_to_pi_desc(vcpu)); vcpu_info.vector = irq.vector; trace_kvm_pi_irte_update(vcpu->vcpu_id, host_irq, e->gsi, vcpu_info.vector, vcpu_info.pi_desc_addr, set); if (set) ret = irq_set_vcpu_affinity(host_irq, &vcpu_info); else { /* suppress notification event before unposting */ pi_set_sn(vcpu_to_pi_desc(vcpu)); ret = irq_set_vcpu_affinity(host_irq, NULL); pi_clear_sn(vcpu_to_pi_desc(vcpu)); } if (ret < 0) { printk(KERN_INFO "%s: failed to update PI IRTE\n", __func__); goto out; } } ret = 0; out: srcu_read_unlock(&kvm->irq_srcu, idx); return ret; } static void vmx_setup_mce(struct kvm_vcpu *vcpu) { if (vcpu->arch.mcg_cap & MCG_LMCE_P) to_vmx(vcpu)->msr_ia32_feature_control_valid_bits |= FEATURE_CONTROL_LMCE; else to_vmx(vcpu)->msr_ia32_feature_control_valid_bits &= ~FEATURE_CONTROL_LMCE; } static struct kvm_x86_ops vmx_x86_ops = { .cpu_has_kvm_support = cpu_has_kvm_support, .disabled_by_bios = vmx_disabled_by_bios, .hardware_setup = hardware_setup, .hardware_unsetup = hardware_unsetup, .check_processor_compatibility = vmx_check_processor_compat, .hardware_enable = hardware_enable, .hardware_disable = hardware_disable, .cpu_has_accelerated_tpr = report_flexpriority, .cpu_has_high_real_mode_segbase = vmx_has_high_real_mode_segbase, .vcpu_create = vmx_create_vcpu, .vcpu_free = vmx_free_vcpu, .vcpu_reset = vmx_vcpu_reset, .prepare_guest_switch = vmx_save_host_state, .vcpu_load = vmx_vcpu_load, .vcpu_put = vmx_vcpu_put, .update_bp_intercept = update_exception_bitmap, .get_msr = vmx_get_msr, .set_msr = vmx_set_msr, .get_segment_base = vmx_get_segment_base, .get_segment = vmx_get_segment, .set_segment = vmx_set_segment, .get_cpl = vmx_get_cpl, .get_cs_db_l_bits = vmx_get_cs_db_l_bits, .decache_cr0_guest_bits = vmx_decache_cr0_guest_bits, .decache_cr3 = vmx_decache_cr3, .decache_cr4_guest_bits = vmx_decache_cr4_guest_bits, .set_cr0 = vmx_set_cr0, .set_cr3 = vmx_set_cr3, .set_cr4 = vmx_set_cr4, .set_efer = vmx_set_efer, .get_idt = vmx_get_idt, .set_idt = vmx_set_idt, .get_gdt = vmx_get_gdt, .set_gdt = vmx_set_gdt, .get_dr6 = vmx_get_dr6, .set_dr6 = vmx_set_dr6, .set_dr7 = vmx_set_dr7, .sync_dirty_debug_regs = vmx_sync_dirty_debug_regs, .cache_reg = vmx_cache_reg, .get_rflags = vmx_get_rflags, .set_rflags = vmx_set_rflags, .get_pkru = vmx_get_pkru, .fpu_activate = vmx_fpu_activate, .fpu_deactivate = vmx_fpu_deactivate, .tlb_flush = vmx_flush_tlb, .run = vmx_vcpu_run, .handle_exit = vmx_handle_exit, .skip_emulated_instruction = skip_emulated_instruction, .set_interrupt_shadow = vmx_set_interrupt_shadow, .get_interrupt_shadow = vmx_get_interrupt_shadow, .patch_hypercall = vmx_patch_hypercall, .set_irq = vmx_inject_irq, .set_nmi = vmx_inject_nmi, .queue_exception = vmx_queue_exception, .cancel_injection = vmx_cancel_injection, .interrupt_allowed = vmx_interrupt_allowed, .nmi_allowed = vmx_nmi_allowed, .get_nmi_mask = vmx_get_nmi_mask, .set_nmi_mask = vmx_set_nmi_mask, .enable_nmi_window = enable_nmi_window, .enable_irq_window = enable_irq_window, .update_cr8_intercept = update_cr8_intercept, .set_virtual_x2apic_mode = vmx_set_virtual_x2apic_mode, .set_apic_access_page_addr = vmx_set_apic_access_page_addr, .get_enable_apicv = vmx_get_enable_apicv, .refresh_apicv_exec_ctrl = vmx_refresh_apicv_exec_ctrl, .load_eoi_exitmap = vmx_load_eoi_exitmap, .hwapic_irr_update = vmx_hwapic_irr_update, .hwapic_isr_update = vmx_hwapic_isr_update, .sync_pir_to_irr = vmx_sync_pir_to_irr, .deliver_posted_interrupt = vmx_deliver_posted_interrupt, .set_tss_addr = vmx_set_tss_addr, .get_tdp_level = get_ept_level, .get_mt_mask = vmx_get_mt_mask, .get_exit_info = vmx_get_exit_info, .get_lpage_level = vmx_get_lpage_level, .cpuid_update = vmx_cpuid_update, .rdtscp_supported = vmx_rdtscp_supported, .invpcid_supported = vmx_invpcid_supported, .set_supported_cpuid = vmx_set_supported_cpuid, .has_wbinvd_exit = cpu_has_vmx_wbinvd_exit, .read_tsc_offset = vmx_read_tsc_offset, .write_tsc_offset = vmx_write_tsc_offset, .adjust_tsc_offset_guest = vmx_adjust_tsc_offset_guest, .read_l1_tsc = vmx_read_l1_tsc, .set_tdp_cr3 = vmx_set_cr3, .check_intercept = vmx_check_intercept, .handle_external_intr = vmx_handle_external_intr, .mpx_supported = vmx_mpx_supported, .xsaves_supported = vmx_xsaves_supported, .check_nested_events = vmx_check_nested_events, .sched_in = vmx_sched_in, .slot_enable_log_dirty = vmx_slot_enable_log_dirty, .slot_disable_log_dirty = vmx_slot_disable_log_dirty, .flush_log_dirty = vmx_flush_log_dirty, .enable_log_dirty_pt_masked = vmx_enable_log_dirty_pt_masked, .pre_block = vmx_pre_block, .post_block = vmx_post_block, .pmu_ops = &intel_pmu_ops, .update_pi_irte = vmx_update_pi_irte, #ifdef CONFIG_X86_64 .set_hv_timer = vmx_set_hv_timer, .cancel_hv_timer = vmx_cancel_hv_timer, #endif .setup_mce = vmx_setup_mce, }; static int __init vmx_init(void) { int r = kvm_init(&vmx_x86_ops, sizeof(struct vcpu_vmx), __alignof__(struct vcpu_vmx), THIS_MODULE); if (r) return r; #ifdef CONFIG_KEXEC_CORE rcu_assign_pointer(crash_vmclear_loaded_vmcss, crash_vmclear_local_loaded_vmcss); #endif return 0; } static void __exit vmx_exit(void) { #ifdef CONFIG_KEXEC_CORE RCU_INIT_POINTER(crash_vmclear_loaded_vmcss, NULL); synchronize_rcu(); #endif kvm_exit(); } module_init(vmx_init) module_exit(vmx_exit)