/* * arch/sh/kernel/hw_breakpoint.c * * Unified kernel/user-space hardware breakpoint facility for the on-chip UBC. * * Copyright (C) 2009 Paul Mundt * * This file is subject to the terms and conditions of the GNU General Public * License. See the file "COPYING" in the main directory of this archive * for more details. */ #include #include #include #include #include #include #include #include #include #include #include struct ubc_context { unsigned long pc; unsigned long state; }; /* Per cpu ubc channel state */ static DEFINE_PER_CPU(struct ubc_context, ubc_ctx[HBP_NUM]); /* * Stores the breakpoints currently in use on each breakpoint address * register for each cpus */ static DEFINE_PER_CPU(struct perf_event *, bp_per_reg[HBP_NUM]); static int __init ubc_init(void) { __raw_writel(0, UBC_CAMR0); __raw_writel(0, UBC_CBR0); __raw_writel(0, UBC_CBCR); __raw_writel(UBC_CRR_BIE | UBC_CRR_PCB, UBC_CRR0); /* dummy read for write posting */ (void)__raw_readl(UBC_CRR0); return 0; } arch_initcall(ubc_init); /* * Install a perf counter breakpoint. * * We seek a free UBC channel and use it for this breakpoint. * * Atomic: we hold the counter->ctx->lock and we only handle variables * and registers local to this cpu. */ int arch_install_hw_breakpoint(struct perf_event *bp) { struct arch_hw_breakpoint *info = counter_arch_bp(bp); struct ubc_context *ubc_ctx; int i; for (i = 0; i < HBP_NUM; i++) { struct perf_event **slot = &__get_cpu_var(bp_per_reg[i]); if (!*slot) { *slot = bp; break; } } if (WARN_ONCE(i == HBP_NUM, "Can't find any breakpoint slot")) return -EBUSY; ubc_ctx = &__get_cpu_var(ubc_ctx[i]); ubc_ctx->pc = info->address; ubc_ctx->state = info->len | info->type; __raw_writel(UBC_CBR_CE | ubc_ctx->state, UBC_CBR0); __raw_writel(ubc_ctx->pc, UBC_CAR0); return 0; } /* * Uninstall the breakpoint contained in the given counter. * * First we search the debug address register it uses and then we disable * it. * * Atomic: we hold the counter->ctx->lock and we only handle variables * and registers local to this cpu. */ void arch_uninstall_hw_breakpoint(struct perf_event *bp) { struct arch_hw_breakpoint *info = counter_arch_bp(bp); struct ubc_context *ubc_ctx; int i; for (i = 0; i < HBP_NUM; i++) { struct perf_event **slot = &__get_cpu_var(bp_per_reg[i]); if (*slot == bp) { *slot = NULL; break; } } if (WARN_ONCE(i == HBP_NUM, "Can't find any breakpoint slot")) return; ubc_ctx = &__get_cpu_var(ubc_ctx[i]); ubc_ctx->pc = 0; ubc_ctx->state &= ~(info->len | info->type); __raw_writel(ubc_ctx->pc, UBC_CBR0); __raw_writel(ubc_ctx->state, UBC_CAR0); } static int get_hbp_len(u16 hbp_len) { unsigned int len_in_bytes = 0; switch (hbp_len) { case SH_BREAKPOINT_LEN_1: len_in_bytes = 1; break; case SH_BREAKPOINT_LEN_2: len_in_bytes = 2; break; case SH_BREAKPOINT_LEN_4: len_in_bytes = 4; break; case SH_BREAKPOINT_LEN_8: len_in_bytes = 8; break; } return len_in_bytes; } /* * Check for virtual address in user space. */ int arch_check_va_in_userspace(unsigned long va, u16 hbp_len) { unsigned int len; len = get_hbp_len(hbp_len); return (va <= TASK_SIZE - len); } /* * Check for virtual address in kernel space. */ static int arch_check_va_in_kernelspace(unsigned long va, u8 hbp_len) { unsigned int len; len = get_hbp_len(hbp_len); return (va >= TASK_SIZE) && ((va + len - 1) >= TASK_SIZE); } /* * Store a breakpoint's encoded address, length, and type. */ static int arch_store_info(struct perf_event *bp) { struct arch_hw_breakpoint *info = counter_arch_bp(bp); /* * User-space requests will always have the address field populated * For kernel-addresses, either the address or symbol name can be * specified. */ if (info->name) info->address = (unsigned long)kallsyms_lookup_name(info->name); if (info->address) { info->asid = get_asid(); return 0; } return -EINVAL; } int arch_bp_generic_fields(int sh_len, int sh_type, int *gen_len, int *gen_type) { /* Len */ switch (sh_len) { case SH_BREAKPOINT_LEN_1: *gen_len = HW_BREAKPOINT_LEN_1; break; case SH_BREAKPOINT_LEN_2: *gen_len = HW_BREAKPOINT_LEN_2; break; case SH_BREAKPOINT_LEN_4: *gen_len = HW_BREAKPOINT_LEN_4; break; case SH_BREAKPOINT_LEN_8: *gen_len = HW_BREAKPOINT_LEN_8; break; default: return -EINVAL; } /* Type */ switch (sh_type) { case SH_BREAKPOINT_READ: *gen_type = HW_BREAKPOINT_R; case SH_BREAKPOINT_WRITE: *gen_type = HW_BREAKPOINT_W; break; case SH_BREAKPOINT_RW: *gen_type = HW_BREAKPOINT_W | HW_BREAKPOINT_R; break; default: return -EINVAL; } return 0; } static int arch_build_bp_info(struct perf_event *bp) { struct arch_hw_breakpoint *info = counter_arch_bp(bp); info->address = bp->attr.bp_addr; /* Len */ switch (bp->attr.bp_len) { case HW_BREAKPOINT_LEN_1: info->len = SH_BREAKPOINT_LEN_1; break; case HW_BREAKPOINT_LEN_2: info->len = SH_BREAKPOINT_LEN_2; break; case HW_BREAKPOINT_LEN_4: info->len = SH_BREAKPOINT_LEN_4; break; case HW_BREAKPOINT_LEN_8: info->len = SH_BREAKPOINT_LEN_8; break; default: return -EINVAL; } /* Type */ switch (bp->attr.bp_type) { case HW_BREAKPOINT_R: info->type = SH_BREAKPOINT_READ; break; case HW_BREAKPOINT_W: info->type = SH_BREAKPOINT_WRITE; break; case HW_BREAKPOINT_W | HW_BREAKPOINT_R: info->type = SH_BREAKPOINT_RW; break; default: return -EINVAL; } return 0; } /* * Validate the arch-specific HW Breakpoint register settings */ int arch_validate_hwbkpt_settings(struct perf_event *bp, struct task_struct *tsk) { struct arch_hw_breakpoint *info = counter_arch_bp(bp); unsigned int align; int ret; ret = arch_build_bp_info(bp); if (ret) return ret; ret = -EINVAL; switch (info->len) { case SH_BREAKPOINT_LEN_1: align = 0; break; case SH_BREAKPOINT_LEN_2: align = 1; break; case SH_BREAKPOINT_LEN_4: align = 3; break; case SH_BREAKPOINT_LEN_8: align = 7; break; default: return ret; } if (bp->callback) ret = arch_store_info(bp); if (ret < 0) return ret; /* * Check that the low-order bits of the address are appropriate * for the alignment implied by len. */ if (info->address & align) return -EINVAL; /* Check that the virtual address is in the proper range */ if (tsk) { if (!arch_check_va_in_userspace(info->address, info->len)) return -EFAULT; } else { if (!arch_check_va_in_kernelspace(info->address, info->len)) return -EFAULT; } return 0; } /* * Release the user breakpoints used by ptrace */ void flush_ptrace_hw_breakpoint(struct task_struct *tsk) { int i; struct thread_struct *t = &tsk->thread; for (i = 0; i < HBP_NUM; i++) { unregister_hw_breakpoint(t->ptrace_bps[i]); t->ptrace_bps[i] = NULL; } } static int __kprobes hw_breakpoint_handler(struct die_args *args) { int cpu, i, rc = NOTIFY_STOP; struct perf_event *bp; unsigned long val; val = __raw_readl(UBC_CBR0); __raw_writel(val & ~UBC_CBR_CE, UBC_CBR0); cpu = get_cpu(); for (i = 0; i < HBP_NUM; i++) { /* * The counter may be concurrently released but that can only * occur from a call_rcu() path. We can then safely fetch * the breakpoint, use its callback, touch its counter * while we are in an rcu_read_lock() path. */ rcu_read_lock(); bp = per_cpu(bp_per_reg[i], cpu); if (bp) { rc = NOTIFY_DONE; } else { rcu_read_unlock(); break; } (bp->callback)(bp, args->regs); rcu_read_unlock(); } if (bp) { struct arch_hw_breakpoint *info = counter_arch_bp(bp); __raw_writel(UBC_CBR_CE | info->len | info->type, UBC_CBR0); __raw_writel(info->address, UBC_CAR0); } put_cpu(); return rc; } BUILD_TRAP_HANDLER(breakpoint) { unsigned long ex = lookup_exception_vector(); TRAP_HANDLER_DECL; notify_die(DIE_BREAKPOINT, "breakpoint", regs, 0, ex, SIGTRAP); } /* * Handle debug exception notifications. */ int __kprobes hw_breakpoint_exceptions_notify(struct notifier_block *unused, unsigned long val, void *data) { if (val != DIE_BREAKPOINT) return NOTIFY_DONE; return hw_breakpoint_handler(data); } void hw_breakpoint_pmu_read(struct perf_event *bp) { /* TODO */ } void hw_breakpoint_pmu_unthrottle(struct perf_event *bp) { /* TODO */ }