// SPDX-License-Identifier: GPL-2.0 /* * Copyright 2017 NXP * Copyright 2016 Freescale Semiconductor, Inc. */ #include #include #include #include #include #include #include #include #include #include #include #define COUNTER_CNTL 0x0 #define COUNTER_READ 0x20 #define COUNTER_DPCR1 0x30 #define CNTL_OVER 0x1 #define CNTL_CLEAR 0x2 #define CNTL_EN 0x4 #define CNTL_EN_MASK 0xFFFFFFFB #define CNTL_CLEAR_MASK 0xFFFFFFFD #define CNTL_OVER_MASK 0xFFFFFFFE #define CNTL_CSV_SHIFT 24 #define CNTL_CSV_MASK (0xFF << CNTL_CSV_SHIFT) #define EVENT_CYCLES_ID 0 #define EVENT_CYCLES_COUNTER 0 #define NUM_COUNTERS 4 #define AXI_MASKING_REVERT 0xffff0000 /* AXI_MASKING(MSB 16bits) + AXI_ID(LSB 16bits) */ #define to_ddr_pmu(p) container_of(p, struct ddr_pmu, pmu) #define DDR_PERF_DEV_NAME "imx8_ddr" #define DDR_CPUHP_CB_NAME DDR_PERF_DEV_NAME "_perf_pmu" static DEFINE_IDA(ddr_ida); /* DDR Perf hardware feature */ #define DDR_CAP_AXI_ID_FILTER 0x1 /* support AXI ID filter */ #define DDR_CAP_AXI_ID_FILTER_ENHANCED 0x3 /* support enhanced AXI ID filter */ struct fsl_ddr_devtype_data { unsigned int quirks; /* quirks needed for different DDR Perf core */ const char *identifier; /* system PMU identifier for userspace */ }; static const struct fsl_ddr_devtype_data imx8_devtype_data; static const struct fsl_ddr_devtype_data imx8m_devtype_data = { .quirks = DDR_CAP_AXI_ID_FILTER, }; static const struct fsl_ddr_devtype_data imx8mq_devtype_data = { .quirks = DDR_CAP_AXI_ID_FILTER, .identifier = "i.MX8MQ", }; static const struct fsl_ddr_devtype_data imx8mm_devtype_data = { .quirks = DDR_CAP_AXI_ID_FILTER, .identifier = "i.MX8MM", }; static const struct fsl_ddr_devtype_data imx8mn_devtype_data = { .quirks = DDR_CAP_AXI_ID_FILTER, .identifier = "i.MX8MN", }; static const struct fsl_ddr_devtype_data imx8mp_devtype_data = { .quirks = DDR_CAP_AXI_ID_FILTER_ENHANCED, .identifier = "i.MX8MP", }; static const struct of_device_id imx_ddr_pmu_dt_ids[] = { { .compatible = "fsl,imx8-ddr-pmu", .data = &imx8_devtype_data}, { .compatible = "fsl,imx8m-ddr-pmu", .data = &imx8m_devtype_data}, { .compatible = "fsl,imx8mq-ddr-pmu", .data = &imx8mq_devtype_data}, { .compatible = "fsl,imx8mm-ddr-pmu", .data = &imx8mm_devtype_data}, { .compatible = "fsl,imx8mn-ddr-pmu", .data = &imx8mn_devtype_data}, { .compatible = "fsl,imx8mp-ddr-pmu", .data = &imx8mp_devtype_data}, { /* sentinel */ } }; MODULE_DEVICE_TABLE(of, imx_ddr_pmu_dt_ids); struct ddr_pmu { struct pmu pmu; void __iomem *base; unsigned int cpu; struct hlist_node node; struct device *dev; struct perf_event *events[NUM_COUNTERS]; int active_events; enum cpuhp_state cpuhp_state; const struct fsl_ddr_devtype_data *devtype_data; int irq; int id; }; static ssize_t ddr_perf_identifier_show(struct device *dev, struct device_attribute *attr, char *page) { struct ddr_pmu *pmu = dev_get_drvdata(dev); return sysfs_emit(page, "%s\n", pmu->devtype_data->identifier); } static umode_t ddr_perf_identifier_attr_visible(struct kobject *kobj, struct attribute *attr, int n) { struct device *dev = kobj_to_dev(kobj); struct ddr_pmu *pmu = dev_get_drvdata(dev); if (!pmu->devtype_data->identifier) return 0; return attr->mode; }; static struct device_attribute ddr_perf_identifier_attr = __ATTR(identifier, 0444, ddr_perf_identifier_show, NULL); static struct attribute *ddr_perf_identifier_attrs[] = { &ddr_perf_identifier_attr.attr, NULL, }; static const struct attribute_group ddr_perf_identifier_attr_group = { .attrs = ddr_perf_identifier_attrs, .is_visible = ddr_perf_identifier_attr_visible, }; enum ddr_perf_filter_capabilities { PERF_CAP_AXI_ID_FILTER = 0, PERF_CAP_AXI_ID_FILTER_ENHANCED, PERF_CAP_AXI_ID_FEAT_MAX, }; static u32 ddr_perf_filter_cap_get(struct ddr_pmu *pmu, int cap) { u32 quirks = pmu->devtype_data->quirks; switch (cap) { case PERF_CAP_AXI_ID_FILTER: return !!(quirks & DDR_CAP_AXI_ID_FILTER); case PERF_CAP_AXI_ID_FILTER_ENHANCED: quirks &= DDR_CAP_AXI_ID_FILTER_ENHANCED; return quirks == DDR_CAP_AXI_ID_FILTER_ENHANCED; default: WARN(1, "unknown filter cap %d\n", cap); } return 0; } static ssize_t ddr_perf_filter_cap_show(struct device *dev, struct device_attribute *attr, char *buf) { struct ddr_pmu *pmu = dev_get_drvdata(dev); struct dev_ext_attribute *ea = container_of(attr, struct dev_ext_attribute, attr); int cap = (long)ea->var; return sysfs_emit(buf, "%u\n", ddr_perf_filter_cap_get(pmu, cap)); } #define PERF_EXT_ATTR_ENTRY(_name, _func, _var) \ (&((struct dev_ext_attribute) { \ __ATTR(_name, 0444, _func, NULL), (void *)_var \ }).attr.attr) #define PERF_FILTER_EXT_ATTR_ENTRY(_name, _var) \ PERF_EXT_ATTR_ENTRY(_name, ddr_perf_filter_cap_show, _var) static struct attribute *ddr_perf_filter_cap_attr[] = { PERF_FILTER_EXT_ATTR_ENTRY(filter, PERF_CAP_AXI_ID_FILTER), PERF_FILTER_EXT_ATTR_ENTRY(enhanced_filter, PERF_CAP_AXI_ID_FILTER_ENHANCED), NULL, }; static const struct attribute_group ddr_perf_filter_cap_attr_group = { .name = "caps", .attrs = ddr_perf_filter_cap_attr, }; static ssize_t ddr_perf_cpumask_show(struct device *dev, struct device_attribute *attr, char *buf) { struct ddr_pmu *pmu = dev_get_drvdata(dev); return cpumap_print_to_pagebuf(true, buf, cpumask_of(pmu->cpu)); } static struct device_attribute ddr_perf_cpumask_attr = __ATTR(cpumask, 0444, ddr_perf_cpumask_show, NULL); static struct attribute *ddr_perf_cpumask_attrs[] = { &ddr_perf_cpumask_attr.attr, NULL, }; static const struct attribute_group ddr_perf_cpumask_attr_group = { .attrs = ddr_perf_cpumask_attrs, }; static ssize_t ddr_pmu_event_show(struct device *dev, struct device_attribute *attr, char *page) { struct perf_pmu_events_attr *pmu_attr; pmu_attr = container_of(attr, struct perf_pmu_events_attr, attr); return sysfs_emit(page, "event=0x%02llx\n", pmu_attr->id); } #define IMX8_DDR_PMU_EVENT_ATTR(_name, _id) \ PMU_EVENT_ATTR_ID(_name, ddr_pmu_event_show, _id) static struct attribute *ddr_perf_events_attrs[] = { IMX8_DDR_PMU_EVENT_ATTR(cycles, EVENT_CYCLES_ID), IMX8_DDR_PMU_EVENT_ATTR(selfresh, 0x01), IMX8_DDR_PMU_EVENT_ATTR(read-accesses, 0x04), IMX8_DDR_PMU_EVENT_ATTR(write-accesses, 0x05), IMX8_DDR_PMU_EVENT_ATTR(read-queue-depth, 0x08), IMX8_DDR_PMU_EVENT_ATTR(write-queue-depth, 0x09), IMX8_DDR_PMU_EVENT_ATTR(lp-read-credit-cnt, 0x10), IMX8_DDR_PMU_EVENT_ATTR(hp-read-credit-cnt, 0x11), IMX8_DDR_PMU_EVENT_ATTR(write-credit-cnt, 0x12), IMX8_DDR_PMU_EVENT_ATTR(read-command, 0x20), IMX8_DDR_PMU_EVENT_ATTR(write-command, 0x21), IMX8_DDR_PMU_EVENT_ATTR(read-modify-write-command, 0x22), IMX8_DDR_PMU_EVENT_ATTR(hp-read, 0x23), IMX8_DDR_PMU_EVENT_ATTR(hp-req-nocredit, 0x24), IMX8_DDR_PMU_EVENT_ATTR(hp-xact-credit, 0x25), IMX8_DDR_PMU_EVENT_ATTR(lp-req-nocredit, 0x26), IMX8_DDR_PMU_EVENT_ATTR(lp-xact-credit, 0x27), IMX8_DDR_PMU_EVENT_ATTR(wr-xact-credit, 0x29), IMX8_DDR_PMU_EVENT_ATTR(read-cycles, 0x2a), IMX8_DDR_PMU_EVENT_ATTR(write-cycles, 0x2b), IMX8_DDR_PMU_EVENT_ATTR(read-write-transition, 0x30), IMX8_DDR_PMU_EVENT_ATTR(precharge, 0x31), IMX8_DDR_PMU_EVENT_ATTR(activate, 0x32), IMX8_DDR_PMU_EVENT_ATTR(load-mode, 0x33), IMX8_DDR_PMU_EVENT_ATTR(perf-mwr, 0x34), IMX8_DDR_PMU_EVENT_ATTR(read, 0x35), IMX8_DDR_PMU_EVENT_ATTR(read-activate, 0x36), IMX8_DDR_PMU_EVENT_ATTR(refresh, 0x37), IMX8_DDR_PMU_EVENT_ATTR(write, 0x38), IMX8_DDR_PMU_EVENT_ATTR(raw-hazard, 0x39), IMX8_DDR_PMU_EVENT_ATTR(axid-read, 0x41), IMX8_DDR_PMU_EVENT_ATTR(axid-write, 0x42), NULL, }; static const struct attribute_group ddr_perf_events_attr_group = { .name = "events", .attrs = ddr_perf_events_attrs, }; PMU_FORMAT_ATTR(event, "config:0-7"); PMU_FORMAT_ATTR(axi_id, "config1:0-15"); PMU_FORMAT_ATTR(axi_mask, "config1:16-31"); static struct attribute *ddr_perf_format_attrs[] = { &format_attr_event.attr, &format_attr_axi_id.attr, &format_attr_axi_mask.attr, NULL, }; static const struct attribute_group ddr_perf_format_attr_group = { .name = "format", .attrs = ddr_perf_format_attrs, }; static const struct attribute_group *attr_groups[] = { &ddr_perf_events_attr_group, &ddr_perf_format_attr_group, &ddr_perf_cpumask_attr_group, &ddr_perf_filter_cap_attr_group, &ddr_perf_identifier_attr_group, NULL, }; static bool ddr_perf_is_filtered(struct perf_event *event) { return event->attr.config == 0x41 || event->attr.config == 0x42; } static u32 ddr_perf_filter_val(struct perf_event *event) { return event->attr.config1; } static bool ddr_perf_filters_compatible(struct perf_event *a, struct perf_event *b) { if (!ddr_perf_is_filtered(a)) return true; if (!ddr_perf_is_filtered(b)) return true; return ddr_perf_filter_val(a) == ddr_perf_filter_val(b); } static bool ddr_perf_is_enhanced_filtered(struct perf_event *event) { unsigned int filt; struct ddr_pmu *pmu = to_ddr_pmu(event->pmu); filt = pmu->devtype_data->quirks & DDR_CAP_AXI_ID_FILTER_ENHANCED; return (filt == DDR_CAP_AXI_ID_FILTER_ENHANCED) && ddr_perf_is_filtered(event); } static u32 ddr_perf_alloc_counter(struct ddr_pmu *pmu, int event) { int i; /* * Always map cycle event to counter 0 * Cycles counter is dedicated for cycle event * can't used for the other events */ if (event == EVENT_CYCLES_ID) { if (pmu->events[EVENT_CYCLES_COUNTER] == NULL) return EVENT_CYCLES_COUNTER; else return -ENOENT; } for (i = 1; i < NUM_COUNTERS; i++) { if (pmu->events[i] == NULL) return i; } return -ENOENT; } static void ddr_perf_free_counter(struct ddr_pmu *pmu, int counter) { pmu->events[counter] = NULL; } static u32 ddr_perf_read_counter(struct ddr_pmu *pmu, int counter) { struct perf_event *event = pmu->events[counter]; void __iomem *base = pmu->base; /* * return bytes instead of bursts from ddr transaction for * axid-read and axid-write event if PMU core supports enhanced * filter. */ base += ddr_perf_is_enhanced_filtered(event) ? COUNTER_DPCR1 : COUNTER_READ; return readl_relaxed(base + counter * 4); } static int ddr_perf_event_init(struct perf_event *event) { struct ddr_pmu *pmu = to_ddr_pmu(event->pmu); struct hw_perf_event *hwc = &event->hw; struct perf_event *sibling; if (event->attr.type != event->pmu->type) return -ENOENT; if (is_sampling_event(event) || event->attach_state & PERF_ATTACH_TASK) return -EOPNOTSUPP; if (event->cpu < 0) { dev_warn(pmu->dev, "Can't provide per-task data!\n"); return -EOPNOTSUPP; } /* * We must NOT create groups containing mixed PMUs, although software * events are acceptable (for example to create a CCN group * periodically read when a hrtimer aka cpu-clock leader triggers). */ if (event->group_leader->pmu != event->pmu && !is_software_event(event->group_leader)) return -EINVAL; if (pmu->devtype_data->quirks & DDR_CAP_AXI_ID_FILTER) { if (!ddr_perf_filters_compatible(event, event->group_leader)) return -EINVAL; for_each_sibling_event(sibling, event->group_leader) { if (!ddr_perf_filters_compatible(event, sibling)) return -EINVAL; } } for_each_sibling_event(sibling, event->group_leader) { if (sibling->pmu != event->pmu && !is_software_event(sibling)) return -EINVAL; } event->cpu = pmu->cpu; hwc->idx = -1; return 0; } static void ddr_perf_counter_enable(struct ddr_pmu *pmu, int config, int counter, bool enable) { u8 reg = counter * 4 + COUNTER_CNTL; int val; if (enable) { /* * cycle counter is special which should firstly write 0 then * write 1 into CLEAR bit to clear it. Other counters only * need write 0 into CLEAR bit and it turns out to be 1 by * hardware. Below enable flow is harmless for all counters. */ writel(0, pmu->base + reg); val = CNTL_EN | CNTL_CLEAR; val |= FIELD_PREP(CNTL_CSV_MASK, config); writel(val, pmu->base + reg); } else { /* Disable counter */ val = readl_relaxed(pmu->base + reg) & CNTL_EN_MASK; writel(val, pmu->base + reg); } } static bool ddr_perf_counter_overflow(struct ddr_pmu *pmu, int counter) { int val; val = readl_relaxed(pmu->base + counter * 4 + COUNTER_CNTL); return val & CNTL_OVER; } static void ddr_perf_counter_clear(struct ddr_pmu *pmu, int counter) { u8 reg = counter * 4 + COUNTER_CNTL; int val; val = readl_relaxed(pmu->base + reg); val &= ~CNTL_CLEAR; writel(val, pmu->base + reg); val |= CNTL_CLEAR; writel(val, pmu->base + reg); } static void ddr_perf_event_update(struct perf_event *event) { struct ddr_pmu *pmu = to_ddr_pmu(event->pmu); struct hw_perf_event *hwc = &event->hw; u64 new_raw_count; int counter = hwc->idx; int ret; new_raw_count = ddr_perf_read_counter(pmu, counter); local64_add(new_raw_count, &event->count); /* * For legacy SoCs: event counter continue counting when overflow, * no need to clear the counter. * For new SoCs: event counter stop counting when overflow, need * clear counter to let it count again. */ if (counter != EVENT_CYCLES_COUNTER) { ret = ddr_perf_counter_overflow(pmu, counter); if (ret) dev_warn_ratelimited(pmu->dev, "events lost due to counter overflow (config 0x%llx)\n", event->attr.config); } /* clear counter every time for both cycle counter and event counter */ ddr_perf_counter_clear(pmu, counter); } static void ddr_perf_event_start(struct perf_event *event, int flags) { struct ddr_pmu *pmu = to_ddr_pmu(event->pmu); struct hw_perf_event *hwc = &event->hw; int counter = hwc->idx; local64_set(&hwc->prev_count, 0); ddr_perf_counter_enable(pmu, event->attr.config, counter, true); hwc->state = 0; } static int ddr_perf_event_add(struct perf_event *event, int flags) { struct ddr_pmu *pmu = to_ddr_pmu(event->pmu); struct hw_perf_event *hwc = &event->hw; int counter; int cfg = event->attr.config; int cfg1 = event->attr.config1; if (pmu->devtype_data->quirks & DDR_CAP_AXI_ID_FILTER) { int i; for (i = 1; i < NUM_COUNTERS; i++) { if (pmu->events[i] && !ddr_perf_filters_compatible(event, pmu->events[i])) return -EINVAL; } if (ddr_perf_is_filtered(event)) { /* revert axi id masking(axi_mask) value */ cfg1 ^= AXI_MASKING_REVERT; writel(cfg1, pmu->base + COUNTER_DPCR1); } } counter = ddr_perf_alloc_counter(pmu, cfg); if (counter < 0) { dev_dbg(pmu->dev, "There are not enough counters\n"); return -EOPNOTSUPP; } pmu->events[counter] = event; pmu->active_events++; hwc->idx = counter; hwc->state |= PERF_HES_STOPPED; if (flags & PERF_EF_START) ddr_perf_event_start(event, flags); return 0; } static void ddr_perf_event_stop(struct perf_event *event, int flags) { struct ddr_pmu *pmu = to_ddr_pmu(event->pmu); struct hw_perf_event *hwc = &event->hw; int counter = hwc->idx; ddr_perf_counter_enable(pmu, event->attr.config, counter, false); ddr_perf_event_update(event); hwc->state |= PERF_HES_STOPPED; } static void ddr_perf_event_del(struct perf_event *event, int flags) { struct ddr_pmu *pmu = to_ddr_pmu(event->pmu); struct hw_perf_event *hwc = &event->hw; int counter = hwc->idx; ddr_perf_event_stop(event, PERF_EF_UPDATE); ddr_perf_free_counter(pmu, counter); pmu->active_events--; hwc->idx = -1; } static void ddr_perf_pmu_enable(struct pmu *pmu) { struct ddr_pmu *ddr_pmu = to_ddr_pmu(pmu); /* enable cycle counter if cycle is not active event list */ if (ddr_pmu->events[EVENT_CYCLES_COUNTER] == NULL) ddr_perf_counter_enable(ddr_pmu, EVENT_CYCLES_ID, EVENT_CYCLES_COUNTER, true); } static void ddr_perf_pmu_disable(struct pmu *pmu) { struct ddr_pmu *ddr_pmu = to_ddr_pmu(pmu); if (ddr_pmu->events[EVENT_CYCLES_COUNTER] == NULL) ddr_perf_counter_enable(ddr_pmu, EVENT_CYCLES_ID, EVENT_CYCLES_COUNTER, false); } static int ddr_perf_init(struct ddr_pmu *pmu, void __iomem *base, struct device *dev) { *pmu = (struct ddr_pmu) { .pmu = (struct pmu) { .module = THIS_MODULE, .capabilities = PERF_PMU_CAP_NO_EXCLUDE, .task_ctx_nr = perf_invalid_context, .attr_groups = attr_groups, .event_init = ddr_perf_event_init, .add = ddr_perf_event_add, .del = ddr_perf_event_del, .start = ddr_perf_event_start, .stop = ddr_perf_event_stop, .read = ddr_perf_event_update, .pmu_enable = ddr_perf_pmu_enable, .pmu_disable = ddr_perf_pmu_disable, }, .base = base, .dev = dev, }; pmu->id = ida_simple_get(&ddr_ida, 0, 0, GFP_KERNEL); return pmu->id; } static irqreturn_t ddr_perf_irq_handler(int irq, void *p) { int i; struct ddr_pmu *pmu = (struct ddr_pmu *) p; struct perf_event *event; /* all counter will stop if cycle counter disabled */ ddr_perf_counter_enable(pmu, EVENT_CYCLES_ID, EVENT_CYCLES_COUNTER, false); /* * When the cycle counter overflows, all counters are stopped, * and an IRQ is raised. If any other counter overflows, it * continues counting, and no IRQ is raised. But for new SoCs, * such as i.MX8MP, event counter would stop when overflow, so * we need use cycle counter to stop overflow of event counter. * * Cycles occur at least 4 times as often as other events, so we * can update all events on a cycle counter overflow and not * lose events. * */ for (i = 0; i < NUM_COUNTERS; i++) { if (!pmu->events[i]) continue; event = pmu->events[i]; ddr_perf_event_update(event); } ddr_perf_counter_enable(pmu, EVENT_CYCLES_ID, EVENT_CYCLES_COUNTER, true); return IRQ_HANDLED; } static int ddr_perf_offline_cpu(unsigned int cpu, struct hlist_node *node) { struct ddr_pmu *pmu = hlist_entry_safe(node, struct ddr_pmu, node); int target; if (cpu != pmu->cpu) return 0; target = cpumask_any_but(cpu_online_mask, cpu); if (target >= nr_cpu_ids) return 0; perf_pmu_migrate_context(&pmu->pmu, cpu, target); pmu->cpu = target; WARN_ON(irq_set_affinity(pmu->irq, cpumask_of(pmu->cpu))); return 0; } static int ddr_perf_probe(struct platform_device *pdev) { struct ddr_pmu *pmu; struct device_node *np; void __iomem *base; char *name; int num; int ret; int irq; base = devm_platform_ioremap_resource(pdev, 0); if (IS_ERR(base)) return PTR_ERR(base); np = pdev->dev.of_node; pmu = devm_kzalloc(&pdev->dev, sizeof(*pmu), GFP_KERNEL); if (!pmu) return -ENOMEM; num = ddr_perf_init(pmu, base, &pdev->dev); platform_set_drvdata(pdev, pmu); name = devm_kasprintf(&pdev->dev, GFP_KERNEL, DDR_PERF_DEV_NAME "%d", num); if (!name) return -ENOMEM; pmu->devtype_data = of_device_get_match_data(&pdev->dev); pmu->cpu = raw_smp_processor_id(); ret = cpuhp_setup_state_multi(CPUHP_AP_ONLINE_DYN, DDR_CPUHP_CB_NAME, NULL, ddr_perf_offline_cpu); if (ret < 0) { dev_err(&pdev->dev, "cpuhp_setup_state_multi failed\n"); goto cpuhp_state_err; } pmu->cpuhp_state = ret; /* Register the pmu instance for cpu hotplug */ ret = cpuhp_state_add_instance_nocalls(pmu->cpuhp_state, &pmu->node); if (ret) { dev_err(&pdev->dev, "Error %d registering hotplug\n", ret); goto cpuhp_instance_err; } /* Request irq */ irq = of_irq_get(np, 0); if (irq < 0) { dev_err(&pdev->dev, "Failed to get irq: %d", irq); ret = irq; goto ddr_perf_err; } ret = devm_request_irq(&pdev->dev, irq, ddr_perf_irq_handler, IRQF_NOBALANCING | IRQF_NO_THREAD, DDR_CPUHP_CB_NAME, pmu); if (ret < 0) { dev_err(&pdev->dev, "Request irq failed: %d", ret); goto ddr_perf_err; } pmu->irq = irq; ret = irq_set_affinity(pmu->irq, cpumask_of(pmu->cpu)); if (ret) { dev_err(pmu->dev, "Failed to set interrupt affinity!\n"); goto ddr_perf_err; } ret = perf_pmu_register(&pmu->pmu, name, -1); if (ret) goto ddr_perf_err; return 0; ddr_perf_err: cpuhp_state_remove_instance_nocalls(pmu->cpuhp_state, &pmu->node); cpuhp_instance_err: cpuhp_remove_multi_state(pmu->cpuhp_state); cpuhp_state_err: ida_simple_remove(&ddr_ida, pmu->id); dev_warn(&pdev->dev, "i.MX8 DDR Perf PMU failed (%d), disabled\n", ret); return ret; } static int ddr_perf_remove(struct platform_device *pdev) { struct ddr_pmu *pmu = platform_get_drvdata(pdev); cpuhp_state_remove_instance_nocalls(pmu->cpuhp_state, &pmu->node); cpuhp_remove_multi_state(pmu->cpuhp_state); perf_pmu_unregister(&pmu->pmu); ida_simple_remove(&ddr_ida, pmu->id); return 0; } static struct platform_driver imx_ddr_pmu_driver = { .driver = { .name = "imx-ddr-pmu", .of_match_table = imx_ddr_pmu_dt_ids, .suppress_bind_attrs = true, }, .probe = ddr_perf_probe, .remove = ddr_perf_remove, }; module_platform_driver(imx_ddr_pmu_driver); MODULE_LICENSE("GPL v2");