/* * Copyright (C) 2015-2016 Marvell International Ltd. * This program is free software: you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation, either version 2 of the * License, or any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. */ #include <linux/clk.h> #include <linux/dma-mapping.h> #include <linux/interrupt.h> #include <linux/io.h> #include <linux/module.h> #include <linux/msi.h> #include <linux/of.h> #include <linux/of_irq.h> #include <linux/platform_device.h> #include <linux/spinlock.h> #include "dmaengine.h" /* DMA Engine Registers */ #define MV_XOR_V2_DMA_DESQ_BALR_OFF 0x000 #define MV_XOR_V2_DMA_DESQ_BAHR_OFF 0x004 #define MV_XOR_V2_DMA_DESQ_SIZE_OFF 0x008 #define MV_XOR_V2_DMA_DESQ_DONE_OFF 0x00C #define MV_XOR_V2_DMA_DESQ_DONE_PENDING_MASK 0x7FFF #define MV_XOR_V2_DMA_DESQ_DONE_PENDING_SHIFT 0 #define MV_XOR_V2_DMA_DESQ_DONE_READ_PTR_MASK 0x1FFF #define MV_XOR_V2_DMA_DESQ_DONE_READ_PTR_SHIFT 16 #define MV_XOR_V2_DMA_DESQ_ARATTR_OFF 0x010 #define MV_XOR_V2_DMA_DESQ_ATTR_CACHE_MASK 0x3F3F #define MV_XOR_V2_DMA_DESQ_ATTR_OUTER_SHAREABLE 0x202 #define MV_XOR_V2_DMA_DESQ_ATTR_CACHEABLE 0x3C3C #define MV_XOR_V2_DMA_IMSG_CDAT_OFF 0x014 #define MV_XOR_V2_DMA_IMSG_THRD_OFF 0x018 #define MV_XOR_V2_DMA_IMSG_THRD_MASK 0x7FFF #define MV_XOR_V2_DMA_IMSG_THRD_SHIFT 0x0 #define MV_XOR_V2_DMA_IMSG_TIMER_EN BIT(18) #define MV_XOR_V2_DMA_DESQ_AWATTR_OFF 0x01C /* Same flags as MV_XOR_V2_DMA_DESQ_ARATTR_OFF */ #define MV_XOR_V2_DMA_DESQ_ALLOC_OFF 0x04C #define MV_XOR_V2_DMA_DESQ_ALLOC_WRPTR_MASK 0xFFFF #define MV_XOR_V2_DMA_DESQ_ALLOC_WRPTR_SHIFT 16 #define MV_XOR_V2_DMA_IMSG_BALR_OFF 0x050 #define MV_XOR_V2_DMA_IMSG_BAHR_OFF 0x054 #define MV_XOR_V2_DMA_DESQ_CTRL_OFF 0x100 #define MV_XOR_V2_DMA_DESQ_CTRL_32B 1 #define MV_XOR_V2_DMA_DESQ_CTRL_128B 7 #define MV_XOR_V2_DMA_DESQ_STOP_OFF 0x800 #define MV_XOR_V2_DMA_DESQ_DEALLOC_OFF 0x804 #define MV_XOR_V2_DMA_DESQ_ADD_OFF 0x808 #define MV_XOR_V2_DMA_IMSG_TMOT 0x810 #define MV_XOR_V2_DMA_IMSG_TIMER_THRD_MASK 0x1FFF #define MV_XOR_V2_DMA_IMSG_TIMER_THRD_SHIFT 0 /* XOR Global registers */ #define MV_XOR_V2_GLOB_BW_CTRL 0x4 #define MV_XOR_V2_GLOB_BW_CTRL_NUM_OSTD_RD_SHIFT 0 #define MV_XOR_V2_GLOB_BW_CTRL_NUM_OSTD_RD_VAL 64 #define MV_XOR_V2_GLOB_BW_CTRL_NUM_OSTD_WR_SHIFT 8 #define MV_XOR_V2_GLOB_BW_CTRL_NUM_OSTD_WR_VAL 8 #define MV_XOR_V2_GLOB_BW_CTRL_RD_BURST_LEN_SHIFT 12 #define MV_XOR_V2_GLOB_BW_CTRL_RD_BURST_LEN_VAL 4 #define MV_XOR_V2_GLOB_BW_CTRL_WR_BURST_LEN_SHIFT 16 #define MV_XOR_V2_GLOB_BW_CTRL_WR_BURST_LEN_VAL 4 #define MV_XOR_V2_GLOB_PAUSE 0x014 #define MV_XOR_V2_GLOB_PAUSE_AXI_TIME_DIS_VAL 0x8 #define MV_XOR_V2_GLOB_SYS_INT_CAUSE 0x200 #define MV_XOR_V2_GLOB_SYS_INT_MASK 0x204 #define MV_XOR_V2_GLOB_MEM_INT_CAUSE 0x220 #define MV_XOR_V2_GLOB_MEM_INT_MASK 0x224 #define MV_XOR_V2_MIN_DESC_SIZE 32 #define MV_XOR_V2_EXT_DESC_SIZE 128 #define MV_XOR_V2_DESC_RESERVED_SIZE 12 #define MV_XOR_V2_DESC_BUFF_D_ADDR_SIZE 12 #define MV_XOR_V2_CMD_LINE_NUM_MAX_D_BUF 8 /* * Descriptors queue size. With 32 bytes descriptors, up to 2^14 * descriptors are allowed, with 128 bytes descriptors, up to 2^12 * descriptors are allowed. This driver uses 128 bytes descriptors, * but experimentation has shown that a set of 1024 descriptors is * sufficient to reach a good level of performance. */ #define MV_XOR_V2_DESC_NUM 1024 /* * Threshold values for descriptors and timeout, determined by * experimentation as giving a good level of performance. */ #define MV_XOR_V2_DONE_IMSG_THRD 0x14 #define MV_XOR_V2_TIMER_THRD 0xB0 /** * struct mv_xor_v2_descriptor - DMA HW descriptor * @desc_id: used by S/W and is not affected by H/W. * @flags: error and status flags * @crc32_result: CRC32 calculation result * @desc_ctrl: operation mode and control flags * @buff_size: amount of bytes to be processed * @fill_pattern_src_addr: Fill-Pattern or Source-Address and * AW-Attributes * @data_buff_addr: Source (and might be RAID6 destination) * addresses of data buffers in RAID5 and RAID6 * @reserved: reserved */ struct mv_xor_v2_descriptor { u16 desc_id; u16 flags; u32 crc32_result; u32 desc_ctrl; /* Definitions for desc_ctrl */ #define DESC_NUM_ACTIVE_D_BUF_SHIFT 22 #define DESC_OP_MODE_SHIFT 28 #define DESC_OP_MODE_NOP 0 /* Idle operation */ #define DESC_OP_MODE_MEMCPY 1 /* Pure-DMA operation */ #define DESC_OP_MODE_MEMSET 2 /* Mem-Fill operation */ #define DESC_OP_MODE_MEMINIT 3 /* Mem-Init operation */ #define DESC_OP_MODE_MEM_COMPARE 4 /* Mem-Compare operation */ #define DESC_OP_MODE_CRC32 5 /* CRC32 calculation */ #define DESC_OP_MODE_XOR 6 /* RAID5 (XOR) operation */ #define DESC_OP_MODE_RAID6 7 /* RAID6 P&Q-generation */ #define DESC_OP_MODE_RAID6_REC 8 /* RAID6 Recovery */ #define DESC_Q_BUFFER_ENABLE BIT(16) #define DESC_P_BUFFER_ENABLE BIT(17) #define DESC_IOD BIT(27) u32 buff_size; u32 fill_pattern_src_addr[4]; u32 data_buff_addr[MV_XOR_V2_DESC_BUFF_D_ADDR_SIZE]; u32 reserved[MV_XOR_V2_DESC_RESERVED_SIZE]; }; /** * struct mv_xor_v2_device - implements a xor device * @lock: lock for the engine * @dma_base: memory mapped DMA register base * @glob_base: memory mapped global register base * @irq_tasklet: * @free_sw_desc: linked list of free SW descriptors * @dmadev: dma device * @dmachan: dma channel * @hw_desq: HW descriptors queue * @hw_desq_virt: virtual address of DESCQ * @sw_desq: SW descriptors queue * @desc_size: HW descriptor size * @npendings: number of pending descriptors (for which tx_submit has * been called, but not yet issue_pending) */ struct mv_xor_v2_device { spinlock_t lock; void __iomem *dma_base; void __iomem *glob_base; struct clk *clk; struct clk *reg_clk; struct tasklet_struct irq_tasklet; struct list_head free_sw_desc; struct dma_device dmadev; struct dma_chan dmachan; dma_addr_t hw_desq; struct mv_xor_v2_descriptor *hw_desq_virt; struct mv_xor_v2_sw_desc *sw_desq; int desc_size; unsigned int npendings; unsigned int hw_queue_idx; }; /** * struct mv_xor_v2_sw_desc - implements a xor SW descriptor * @idx: descriptor index * @async_tx: support for the async_tx api * @hw_desc: assosiated HW descriptor * @free_list: node of the free SW descriprots list */ struct mv_xor_v2_sw_desc { int idx; struct dma_async_tx_descriptor async_tx; struct mv_xor_v2_descriptor hw_desc; struct list_head free_list; }; /* * Fill the data buffers to a HW descriptor */ static void mv_xor_v2_set_data_buffers(struct mv_xor_v2_device *xor_dev, struct mv_xor_v2_descriptor *desc, dma_addr_t src, int index) { int arr_index = ((index >> 1) * 3); /* * Fill the buffer's addresses to the descriptor. * * The format of the buffers address for 2 sequential buffers * X and X + 1: * * First word: Buffer-DX-Address-Low[31:0] * Second word: Buffer-DX+1-Address-Low[31:0] * Third word: DX+1-Buffer-Address-High[47:32] [31:16] * DX-Buffer-Address-High[47:32] [15:0] */ if ((index & 0x1) == 0) { desc->data_buff_addr[arr_index] = lower_32_bits(src); desc->data_buff_addr[arr_index + 2] &= ~0xFFFF; desc->data_buff_addr[arr_index + 2] |= upper_32_bits(src) & 0xFFFF; } else { desc->data_buff_addr[arr_index + 1] = lower_32_bits(src); desc->data_buff_addr[arr_index + 2] &= ~0xFFFF0000; desc->data_buff_addr[arr_index + 2] |= (upper_32_bits(src) & 0xFFFF) << 16; } } /* * notify the engine of new descriptors, and update the available index. */ static void mv_xor_v2_add_desc_to_desq(struct mv_xor_v2_device *xor_dev, int num_of_desc) { /* write the number of new descriptors in the DESQ. */ writel(num_of_desc, xor_dev->dma_base + MV_XOR_V2_DMA_DESQ_ADD_OFF); } /* * free HW descriptors */ static void mv_xor_v2_free_desc_from_desq(struct mv_xor_v2_device *xor_dev, int num_of_desc) { /* write the number of new descriptors in the DESQ. */ writel(num_of_desc, xor_dev->dma_base + MV_XOR_V2_DMA_DESQ_DEALLOC_OFF); } /* * Set descriptor size * Return the HW descriptor size in bytes */ static int mv_xor_v2_set_desc_size(struct mv_xor_v2_device *xor_dev) { writel(MV_XOR_V2_DMA_DESQ_CTRL_128B, xor_dev->dma_base + MV_XOR_V2_DMA_DESQ_CTRL_OFF); return MV_XOR_V2_EXT_DESC_SIZE; } /* * Set the IMSG threshold */ static inline void mv_xor_v2_enable_imsg_thrd(struct mv_xor_v2_device *xor_dev) { u32 reg; /* Configure threshold of number of descriptors, and enable timer */ reg = readl(xor_dev->dma_base + MV_XOR_V2_DMA_IMSG_THRD_OFF); reg &= (~MV_XOR_V2_DMA_IMSG_THRD_MASK << MV_XOR_V2_DMA_IMSG_THRD_SHIFT); reg |= (MV_XOR_V2_DONE_IMSG_THRD << MV_XOR_V2_DMA_IMSG_THRD_SHIFT); reg |= MV_XOR_V2_DMA_IMSG_TIMER_EN; writel(reg, xor_dev->dma_base + MV_XOR_V2_DMA_IMSG_THRD_OFF); /* Configure Timer Threshold */ reg = readl(xor_dev->dma_base + MV_XOR_V2_DMA_IMSG_TMOT); reg &= (~MV_XOR_V2_DMA_IMSG_TIMER_THRD_MASK << MV_XOR_V2_DMA_IMSG_TIMER_THRD_SHIFT); reg |= (MV_XOR_V2_TIMER_THRD << MV_XOR_V2_DMA_IMSG_TIMER_THRD_SHIFT); writel(reg, xor_dev->dma_base + MV_XOR_V2_DMA_IMSG_TMOT); } static irqreturn_t mv_xor_v2_interrupt_handler(int irq, void *data) { struct mv_xor_v2_device *xor_dev = data; unsigned int ndescs; u32 reg; reg = readl(xor_dev->dma_base + MV_XOR_V2_DMA_DESQ_DONE_OFF); ndescs = ((reg >> MV_XOR_V2_DMA_DESQ_DONE_PENDING_SHIFT) & MV_XOR_V2_DMA_DESQ_DONE_PENDING_MASK); /* No descriptors to process */ if (!ndescs) return IRQ_NONE; /* schedule a tasklet to handle descriptors callbacks */ tasklet_schedule(&xor_dev->irq_tasklet); return IRQ_HANDLED; } /* * submit a descriptor to the DMA engine */ static dma_cookie_t mv_xor_v2_tx_submit(struct dma_async_tx_descriptor *tx) { void *dest_hw_desc; dma_cookie_t cookie; struct mv_xor_v2_sw_desc *sw_desc = container_of(tx, struct mv_xor_v2_sw_desc, async_tx); struct mv_xor_v2_device *xor_dev = container_of(tx->chan, struct mv_xor_v2_device, dmachan); dev_dbg(xor_dev->dmadev.dev, "%s sw_desc %p: async_tx %p\n", __func__, sw_desc, &sw_desc->async_tx); /* assign coookie */ spin_lock_bh(&xor_dev->lock); cookie = dma_cookie_assign(tx); /* copy the HW descriptor from the SW descriptor to the DESQ */ dest_hw_desc = xor_dev->hw_desq_virt + xor_dev->hw_queue_idx; memcpy(dest_hw_desc, &sw_desc->hw_desc, xor_dev->desc_size); xor_dev->npendings++; xor_dev->hw_queue_idx++; if (xor_dev->hw_queue_idx >= MV_XOR_V2_DESC_NUM) xor_dev->hw_queue_idx = 0; spin_unlock_bh(&xor_dev->lock); return cookie; } /* * Prepare a SW descriptor */ static struct mv_xor_v2_sw_desc * mv_xor_v2_prep_sw_desc(struct mv_xor_v2_device *xor_dev) { struct mv_xor_v2_sw_desc *sw_desc; bool found = false; /* Lock the channel */ spin_lock_bh(&xor_dev->lock); if (list_empty(&xor_dev->free_sw_desc)) { spin_unlock_bh(&xor_dev->lock); /* schedule tasklet to free some descriptors */ tasklet_schedule(&xor_dev->irq_tasklet); return NULL; } list_for_each_entry(sw_desc, &xor_dev->free_sw_desc, free_list) { if (async_tx_test_ack(&sw_desc->async_tx)) { found = true; break; } } if (!found) { spin_unlock_bh(&xor_dev->lock); return NULL; } list_del(&sw_desc->free_list); /* Release the channel */ spin_unlock_bh(&xor_dev->lock); return sw_desc; } /* * Prepare a HW descriptor for a memcpy operation */ static struct dma_async_tx_descriptor * mv_xor_v2_prep_dma_memcpy(struct dma_chan *chan, dma_addr_t dest, dma_addr_t src, size_t len, unsigned long flags) { struct mv_xor_v2_sw_desc *sw_desc; struct mv_xor_v2_descriptor *hw_descriptor; struct mv_xor_v2_device *xor_dev; xor_dev = container_of(chan, struct mv_xor_v2_device, dmachan); dev_dbg(xor_dev->dmadev.dev, "%s len: %zu src %pad dest %pad flags: %ld\n", __func__, len, &src, &dest, flags); sw_desc = mv_xor_v2_prep_sw_desc(xor_dev); if (!sw_desc) return NULL; sw_desc->async_tx.flags = flags; /* set the HW descriptor */ hw_descriptor = &sw_desc->hw_desc; /* save the SW descriptor ID to restore when operation is done */ hw_descriptor->desc_id = sw_desc->idx; /* Set the MEMCPY control word */ hw_descriptor->desc_ctrl = DESC_OP_MODE_MEMCPY << DESC_OP_MODE_SHIFT; if (flags & DMA_PREP_INTERRUPT) hw_descriptor->desc_ctrl |= DESC_IOD; /* Set source address */ hw_descriptor->fill_pattern_src_addr[0] = lower_32_bits(src); hw_descriptor->fill_pattern_src_addr[1] = upper_32_bits(src) & 0xFFFF; /* Set Destination address */ hw_descriptor->fill_pattern_src_addr[2] = lower_32_bits(dest); hw_descriptor->fill_pattern_src_addr[3] = upper_32_bits(dest) & 0xFFFF; /* Set buffers size */ hw_descriptor->buff_size = len; /* return the async tx descriptor */ return &sw_desc->async_tx; } /* * Prepare a HW descriptor for a XOR operation */ static struct dma_async_tx_descriptor * mv_xor_v2_prep_dma_xor(struct dma_chan *chan, dma_addr_t dest, dma_addr_t *src, unsigned int src_cnt, size_t len, unsigned long flags) { struct mv_xor_v2_sw_desc *sw_desc; struct mv_xor_v2_descriptor *hw_descriptor; struct mv_xor_v2_device *xor_dev = container_of(chan, struct mv_xor_v2_device, dmachan); int i; if (src_cnt > MV_XOR_V2_CMD_LINE_NUM_MAX_D_BUF || src_cnt < 1) return NULL; dev_dbg(xor_dev->dmadev.dev, "%s src_cnt: %d len: %zu dest %pad flags: %ld\n", __func__, src_cnt, len, &dest, flags); sw_desc = mv_xor_v2_prep_sw_desc(xor_dev); if (!sw_desc) return NULL; sw_desc->async_tx.flags = flags; /* set the HW descriptor */ hw_descriptor = &sw_desc->hw_desc; /* save the SW descriptor ID to restore when operation is done */ hw_descriptor->desc_id = sw_desc->idx; /* Set the XOR control word */ hw_descriptor->desc_ctrl = DESC_OP_MODE_XOR << DESC_OP_MODE_SHIFT; hw_descriptor->desc_ctrl |= DESC_P_BUFFER_ENABLE; if (flags & DMA_PREP_INTERRUPT) hw_descriptor->desc_ctrl |= DESC_IOD; /* Set the data buffers */ for (i = 0; i < src_cnt; i++) mv_xor_v2_set_data_buffers(xor_dev, hw_descriptor, src[i], i); hw_descriptor->desc_ctrl |= src_cnt << DESC_NUM_ACTIVE_D_BUF_SHIFT; /* Set Destination address */ hw_descriptor->fill_pattern_src_addr[2] = lower_32_bits(dest); hw_descriptor->fill_pattern_src_addr[3] = upper_32_bits(dest) & 0xFFFF; /* Set buffers size */ hw_descriptor->buff_size = len; /* return the async tx descriptor */ return &sw_desc->async_tx; } /* * Prepare a HW descriptor for interrupt operation. */ static struct dma_async_tx_descriptor * mv_xor_v2_prep_dma_interrupt(struct dma_chan *chan, unsigned long flags) { struct mv_xor_v2_sw_desc *sw_desc; struct mv_xor_v2_descriptor *hw_descriptor; struct mv_xor_v2_device *xor_dev = container_of(chan, struct mv_xor_v2_device, dmachan); sw_desc = mv_xor_v2_prep_sw_desc(xor_dev); if (!sw_desc) return NULL; /* set the HW descriptor */ hw_descriptor = &sw_desc->hw_desc; /* save the SW descriptor ID to restore when operation is done */ hw_descriptor->desc_id = sw_desc->idx; /* Set the INTERRUPT control word */ hw_descriptor->desc_ctrl = DESC_OP_MODE_NOP << DESC_OP_MODE_SHIFT; hw_descriptor->desc_ctrl |= DESC_IOD; /* return the async tx descriptor */ return &sw_desc->async_tx; } /* * push pending transactions to hardware */ static void mv_xor_v2_issue_pending(struct dma_chan *chan) { struct mv_xor_v2_device *xor_dev = container_of(chan, struct mv_xor_v2_device, dmachan); spin_lock_bh(&xor_dev->lock); /* * update the engine with the number of descriptors to * process */ mv_xor_v2_add_desc_to_desq(xor_dev, xor_dev->npendings); xor_dev->npendings = 0; spin_unlock_bh(&xor_dev->lock); } static inline int mv_xor_v2_get_pending_params(struct mv_xor_v2_device *xor_dev, int *pending_ptr) { u32 reg; reg = readl(xor_dev->dma_base + MV_XOR_V2_DMA_DESQ_DONE_OFF); /* get the next pending descriptor index */ *pending_ptr = ((reg >> MV_XOR_V2_DMA_DESQ_DONE_READ_PTR_SHIFT) & MV_XOR_V2_DMA_DESQ_DONE_READ_PTR_MASK); /* get the number of descriptors pending handle */ return ((reg >> MV_XOR_V2_DMA_DESQ_DONE_PENDING_SHIFT) & MV_XOR_V2_DMA_DESQ_DONE_PENDING_MASK); } /* * handle the descriptors after HW process */ static void mv_xor_v2_tasklet(unsigned long data) { struct mv_xor_v2_device *xor_dev = (struct mv_xor_v2_device *) data; int pending_ptr, num_of_pending, i; struct mv_xor_v2_sw_desc *next_pending_sw_desc = NULL; dev_dbg(xor_dev->dmadev.dev, "%s %d\n", __func__, __LINE__); /* get the pending descriptors parameters */ num_of_pending = mv_xor_v2_get_pending_params(xor_dev, &pending_ptr); /* loop over free descriptors */ for (i = 0; i < num_of_pending; i++) { struct mv_xor_v2_descriptor *next_pending_hw_desc = xor_dev->hw_desq_virt + pending_ptr; /* get the SW descriptor related to the HW descriptor */ next_pending_sw_desc = &xor_dev->sw_desq[next_pending_hw_desc->desc_id]; /* call the callback */ if (next_pending_sw_desc->async_tx.cookie > 0) { /* * update the channel's completed cookie - no * lock is required the IMSG threshold provide * the locking */ dma_cookie_complete(&next_pending_sw_desc->async_tx); if (next_pending_sw_desc->async_tx.callback) next_pending_sw_desc->async_tx.callback( next_pending_sw_desc->async_tx.callback_param); dma_descriptor_unmap(&next_pending_sw_desc->async_tx); } dma_run_dependencies(&next_pending_sw_desc->async_tx); /* Lock the channel */ spin_lock_bh(&xor_dev->lock); /* add the SW descriptor to the free descriptors list */ list_add(&next_pending_sw_desc->free_list, &xor_dev->free_sw_desc); /* Release the channel */ spin_unlock_bh(&xor_dev->lock); /* increment the next descriptor */ pending_ptr++; if (pending_ptr >= MV_XOR_V2_DESC_NUM) pending_ptr = 0; } if (num_of_pending != 0) { /* free the descriptores */ mv_xor_v2_free_desc_from_desq(xor_dev, num_of_pending); } } /* * Set DMA Interrupt-message (IMSG) parameters */ static void mv_xor_v2_set_msi_msg(struct msi_desc *desc, struct msi_msg *msg) { struct mv_xor_v2_device *xor_dev = dev_get_drvdata(desc->dev); writel(msg->address_lo, xor_dev->dma_base + MV_XOR_V2_DMA_IMSG_BALR_OFF); writel(msg->address_hi & 0xFFFF, xor_dev->dma_base + MV_XOR_V2_DMA_IMSG_BAHR_OFF); writel(msg->data, xor_dev->dma_base + MV_XOR_V2_DMA_IMSG_CDAT_OFF); } static int mv_xor_v2_descq_init(struct mv_xor_v2_device *xor_dev) { u32 reg; /* write the DESQ size to the DMA engine */ writel(MV_XOR_V2_DESC_NUM, xor_dev->dma_base + MV_XOR_V2_DMA_DESQ_SIZE_OFF); /* write the DESQ address to the DMA enngine*/ writel(xor_dev->hw_desq & 0xFFFFFFFF, xor_dev->dma_base + MV_XOR_V2_DMA_DESQ_BALR_OFF); writel((xor_dev->hw_desq & 0xFFFF00000000) >> 32, xor_dev->dma_base + MV_XOR_V2_DMA_DESQ_BAHR_OFF); /* * This is a temporary solution, until we activate the * SMMU. Set the attributes for reading & writing data buffers * & descriptors to: * * - OuterShareable - Snoops will be performed on CPU caches * - Enable cacheable - Bufferable, Modifiable, Other Allocate * and Allocate */ reg = readl(xor_dev->dma_base + MV_XOR_V2_DMA_DESQ_ARATTR_OFF); reg &= ~MV_XOR_V2_DMA_DESQ_ATTR_CACHE_MASK; reg |= MV_XOR_V2_DMA_DESQ_ATTR_OUTER_SHAREABLE | MV_XOR_V2_DMA_DESQ_ATTR_CACHEABLE; writel(reg, xor_dev->dma_base + MV_XOR_V2_DMA_DESQ_ARATTR_OFF); reg = readl(xor_dev->dma_base + MV_XOR_V2_DMA_DESQ_AWATTR_OFF); reg &= ~MV_XOR_V2_DMA_DESQ_ATTR_CACHE_MASK; reg |= MV_XOR_V2_DMA_DESQ_ATTR_OUTER_SHAREABLE | MV_XOR_V2_DMA_DESQ_ATTR_CACHEABLE; writel(reg, xor_dev->dma_base + MV_XOR_V2_DMA_DESQ_AWATTR_OFF); /* BW CTRL - set values to optimize the XOR performance: * * - Set WrBurstLen & RdBurstLen - the unit will issue * maximum of 256B write/read transactions. * - Limit the number of outstanding write & read data * (OBB/IBB) requests to the maximal value. */ reg = ((MV_XOR_V2_GLOB_BW_CTRL_NUM_OSTD_RD_VAL << MV_XOR_V2_GLOB_BW_CTRL_NUM_OSTD_RD_SHIFT) | (MV_XOR_V2_GLOB_BW_CTRL_NUM_OSTD_WR_VAL << MV_XOR_V2_GLOB_BW_CTRL_NUM_OSTD_WR_SHIFT) | (MV_XOR_V2_GLOB_BW_CTRL_RD_BURST_LEN_VAL << MV_XOR_V2_GLOB_BW_CTRL_RD_BURST_LEN_SHIFT) | (MV_XOR_V2_GLOB_BW_CTRL_WR_BURST_LEN_VAL << MV_XOR_V2_GLOB_BW_CTRL_WR_BURST_LEN_SHIFT)); writel(reg, xor_dev->glob_base + MV_XOR_V2_GLOB_BW_CTRL); /* Disable the AXI timer feature */ reg = readl(xor_dev->glob_base + MV_XOR_V2_GLOB_PAUSE); reg |= MV_XOR_V2_GLOB_PAUSE_AXI_TIME_DIS_VAL; writel(reg, xor_dev->glob_base + MV_XOR_V2_GLOB_PAUSE); /* enable the DMA engine */ writel(0, xor_dev->dma_base + MV_XOR_V2_DMA_DESQ_STOP_OFF); return 0; } static int mv_xor_v2_suspend(struct platform_device *dev, pm_message_t state) { struct mv_xor_v2_device *xor_dev = platform_get_drvdata(dev); /* Set this bit to disable to stop the XOR unit. */ writel(0x1, xor_dev->dma_base + MV_XOR_V2_DMA_DESQ_STOP_OFF); return 0; } static int mv_xor_v2_resume(struct platform_device *dev) { struct mv_xor_v2_device *xor_dev = platform_get_drvdata(dev); mv_xor_v2_set_desc_size(xor_dev); mv_xor_v2_enable_imsg_thrd(xor_dev); mv_xor_v2_descq_init(xor_dev); return 0; } static int mv_xor_v2_probe(struct platform_device *pdev) { struct mv_xor_v2_device *xor_dev; struct resource *res; int i, ret = 0; struct dma_device *dma_dev; struct mv_xor_v2_sw_desc *sw_desc; struct msi_desc *msi_desc; BUILD_BUG_ON(sizeof(struct mv_xor_v2_descriptor) != MV_XOR_V2_EXT_DESC_SIZE); xor_dev = devm_kzalloc(&pdev->dev, sizeof(*xor_dev), GFP_KERNEL); if (!xor_dev) return -ENOMEM; res = platform_get_resource(pdev, IORESOURCE_MEM, 0); xor_dev->dma_base = devm_ioremap_resource(&pdev->dev, res); if (IS_ERR(xor_dev->dma_base)) return PTR_ERR(xor_dev->dma_base); res = platform_get_resource(pdev, IORESOURCE_MEM, 1); xor_dev->glob_base = devm_ioremap_resource(&pdev->dev, res); if (IS_ERR(xor_dev->glob_base)) return PTR_ERR(xor_dev->glob_base); platform_set_drvdata(pdev, xor_dev); ret = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(40)); if (ret) return ret; xor_dev->reg_clk = devm_clk_get(&pdev->dev, "reg"); if (PTR_ERR(xor_dev->reg_clk) != -ENOENT) { if (!IS_ERR(xor_dev->reg_clk)) { ret = clk_prepare_enable(xor_dev->reg_clk); if (ret) return ret; } else { return PTR_ERR(xor_dev->reg_clk); } } xor_dev->clk = devm_clk_get(&pdev->dev, NULL); if (IS_ERR(xor_dev->clk) && PTR_ERR(xor_dev->clk) == -EPROBE_DEFER) { ret = EPROBE_DEFER; goto disable_reg_clk; } if (!IS_ERR(xor_dev->clk)) { ret = clk_prepare_enable(xor_dev->clk); if (ret) goto disable_reg_clk; } ret = platform_msi_domain_alloc_irqs(&pdev->dev, 1, mv_xor_v2_set_msi_msg); if (ret) goto disable_clk; msi_desc = first_msi_entry(&pdev->dev); if (!msi_desc) goto free_msi_irqs; ret = devm_request_irq(&pdev->dev, msi_desc->irq, mv_xor_v2_interrupt_handler, 0, dev_name(&pdev->dev), xor_dev); if (ret) goto free_msi_irqs; tasklet_init(&xor_dev->irq_tasklet, mv_xor_v2_tasklet, (unsigned long) xor_dev); xor_dev->desc_size = mv_xor_v2_set_desc_size(xor_dev); dma_cookie_init(&xor_dev->dmachan); /* * allocate coherent memory for hardware descriptors * note: writecombine gives slightly better performance, but * requires that we explicitly flush the writes */ xor_dev->hw_desq_virt = dma_alloc_coherent(&pdev->dev, xor_dev->desc_size * MV_XOR_V2_DESC_NUM, &xor_dev->hw_desq, GFP_KERNEL); if (!xor_dev->hw_desq_virt) { ret = -ENOMEM; goto free_msi_irqs; } /* alloc memory for the SW descriptors */ xor_dev->sw_desq = devm_kzalloc(&pdev->dev, sizeof(*sw_desc) * MV_XOR_V2_DESC_NUM, GFP_KERNEL); if (!xor_dev->sw_desq) { ret = -ENOMEM; goto free_hw_desq; } spin_lock_init(&xor_dev->lock); /* init the free SW descriptors list */ INIT_LIST_HEAD(&xor_dev->free_sw_desc); /* add all SW descriptors to the free list */ for (i = 0; i < MV_XOR_V2_DESC_NUM; i++) { struct mv_xor_v2_sw_desc *sw_desc = xor_dev->sw_desq + i; sw_desc->idx = i; dma_async_tx_descriptor_init(&sw_desc->async_tx, &xor_dev->dmachan); sw_desc->async_tx.tx_submit = mv_xor_v2_tx_submit; async_tx_ack(&sw_desc->async_tx); list_add(&sw_desc->free_list, &xor_dev->free_sw_desc); } dma_dev = &xor_dev->dmadev; /* set DMA capabilities */ dma_cap_zero(dma_dev->cap_mask); dma_cap_set(DMA_MEMCPY, dma_dev->cap_mask); dma_cap_set(DMA_XOR, dma_dev->cap_mask); dma_cap_set(DMA_INTERRUPT, dma_dev->cap_mask); /* init dma link list */ INIT_LIST_HEAD(&dma_dev->channels); /* set base routines */ dma_dev->device_tx_status = dma_cookie_status; dma_dev->device_issue_pending = mv_xor_v2_issue_pending; dma_dev->dev = &pdev->dev; dma_dev->device_prep_dma_memcpy = mv_xor_v2_prep_dma_memcpy; dma_dev->device_prep_dma_interrupt = mv_xor_v2_prep_dma_interrupt; dma_dev->max_xor = 8; dma_dev->device_prep_dma_xor = mv_xor_v2_prep_dma_xor; xor_dev->dmachan.device = dma_dev; list_add_tail(&xor_dev->dmachan.device_node, &dma_dev->channels); mv_xor_v2_enable_imsg_thrd(xor_dev); mv_xor_v2_descq_init(xor_dev); ret = dma_async_device_register(dma_dev); if (ret) goto free_hw_desq; dev_notice(&pdev->dev, "Marvell Version 2 XOR driver\n"); return 0; free_hw_desq: dma_free_coherent(&pdev->dev, xor_dev->desc_size * MV_XOR_V2_DESC_NUM, xor_dev->hw_desq_virt, xor_dev->hw_desq); free_msi_irqs: platform_msi_domain_free_irqs(&pdev->dev); disable_clk: clk_disable_unprepare(xor_dev->clk); disable_reg_clk: clk_disable_unprepare(xor_dev->reg_clk); return ret; } static int mv_xor_v2_remove(struct platform_device *pdev) { struct mv_xor_v2_device *xor_dev = platform_get_drvdata(pdev); dma_async_device_unregister(&xor_dev->dmadev); dma_free_coherent(&pdev->dev, xor_dev->desc_size * MV_XOR_V2_DESC_NUM, xor_dev->hw_desq_virt, xor_dev->hw_desq); platform_msi_domain_free_irqs(&pdev->dev); clk_disable_unprepare(xor_dev->clk); return 0; } #ifdef CONFIG_OF static const struct of_device_id mv_xor_v2_dt_ids[] = { { .compatible = "marvell,xor-v2", }, {}, }; MODULE_DEVICE_TABLE(of, mv_xor_v2_dt_ids); #endif static struct platform_driver mv_xor_v2_driver = { .probe = mv_xor_v2_probe, .suspend = mv_xor_v2_suspend, .resume = mv_xor_v2_resume, .remove = mv_xor_v2_remove, .driver = { .name = "mv_xor_v2", .of_match_table = of_match_ptr(mv_xor_v2_dt_ids), }, }; module_platform_driver(mv_xor_v2_driver); MODULE_DESCRIPTION("DMA engine driver for Marvell's Version 2 of XOR engine"); MODULE_LICENSE("GPL");