// SPDX-License-Identifier: GPL-2.0 // rc-main.c - Remote Controller core module // // Copyright (C) 2009-2010 by Mauro Carvalho Chehab #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include #include #include #include #include #include #include #include #include #include #include "rc-core-priv.h" /* Sizes are in bytes, 256 bytes allows for 32 entries on x64 */ #define IR_TAB_MIN_SIZE 256 #define IR_TAB_MAX_SIZE 8192 static const struct { const char *name; unsigned int repeat_period; unsigned int scancode_bits; } protocols[] = { [RC_PROTO_UNKNOWN] = { .name = "unknown", .repeat_period = 250 }, [RC_PROTO_OTHER] = { .name = "other", .repeat_period = 250 }, [RC_PROTO_RC5] = { .name = "rc-5", .scancode_bits = 0x1f7f, .repeat_period = 250 }, [RC_PROTO_RC5X_20] = { .name = "rc-5x-20", .scancode_bits = 0x1f7f3f, .repeat_period = 250 }, [RC_PROTO_RC5_SZ] = { .name = "rc-5-sz", .scancode_bits = 0x2fff, .repeat_period = 250 }, [RC_PROTO_JVC] = { .name = "jvc", .scancode_bits = 0xffff, .repeat_period = 250 }, [RC_PROTO_SONY12] = { .name = "sony-12", .scancode_bits = 0x1f007f, .repeat_period = 250 }, [RC_PROTO_SONY15] = { .name = "sony-15", .scancode_bits = 0xff007f, .repeat_period = 250 }, [RC_PROTO_SONY20] = { .name = "sony-20", .scancode_bits = 0x1fff7f, .repeat_period = 250 }, [RC_PROTO_NEC] = { .name = "nec", .scancode_bits = 0xffff, .repeat_period = 250 }, [RC_PROTO_NECX] = { .name = "nec-x", .scancode_bits = 0xffffff, .repeat_period = 250 }, [RC_PROTO_NEC32] = { .name = "nec-32", .scancode_bits = 0xffffffff, .repeat_period = 250 }, [RC_PROTO_SANYO] = { .name = "sanyo", .scancode_bits = 0x1fffff, .repeat_period = 250 }, [RC_PROTO_MCIR2_KBD] = { .name = "mcir2-kbd", .scancode_bits = 0xffff, .repeat_period = 250 }, [RC_PROTO_MCIR2_MSE] = { .name = "mcir2-mse", .scancode_bits = 0x1fffff, .repeat_period = 250 }, [RC_PROTO_RC6_0] = { .name = "rc-6-0", .scancode_bits = 0xffff, .repeat_period = 250 }, [RC_PROTO_RC6_6A_20] = { .name = "rc-6-6a-20", .scancode_bits = 0xfffff, .repeat_period = 250 }, [RC_PROTO_RC6_6A_24] = { .name = "rc-6-6a-24", .scancode_bits = 0xffffff, .repeat_period = 250 }, [RC_PROTO_RC6_6A_32] = { .name = "rc-6-6a-32", .scancode_bits = 0xffffffff, .repeat_period = 250 }, [RC_PROTO_RC6_MCE] = { .name = "rc-6-mce", .scancode_bits = 0xffff7fff, .repeat_period = 250 }, [RC_PROTO_SHARP] = { .name = "sharp", .scancode_bits = 0x1fff, .repeat_period = 250 }, [RC_PROTO_XMP] = { .name = "xmp", .repeat_period = 250 }, [RC_PROTO_CEC] = { .name = "cec", .repeat_period = 550 }, }; /* Used to keep track of known keymaps */ static LIST_HEAD(rc_map_list); static DEFINE_SPINLOCK(rc_map_lock); static struct led_trigger *led_feedback; /* Used to keep track of rc devices */ static DEFINE_IDA(rc_ida); static struct rc_map_list *seek_rc_map(const char *name) { struct rc_map_list *map = NULL; spin_lock(&rc_map_lock); list_for_each_entry(map, &rc_map_list, list) { if (!strcmp(name, map->map.name)) { spin_unlock(&rc_map_lock); return map; } } spin_unlock(&rc_map_lock); return NULL; } struct rc_map *rc_map_get(const char *name) { struct rc_map_list *map; map = seek_rc_map(name); #ifdef CONFIG_MODULES if (!map) { int rc = request_module("%s", name); if (rc < 0) { pr_err("Couldn't load IR keymap %s\n", name); return NULL; } msleep(20); /* Give some time for IR to register */ map = seek_rc_map(name); } #endif if (!map) { pr_err("IR keymap %s not found\n", name); return NULL; } printk(KERN_INFO "Registered IR keymap %s\n", map->map.name); return &map->map; } EXPORT_SYMBOL_GPL(rc_map_get); int rc_map_register(struct rc_map_list *map) { spin_lock(&rc_map_lock); list_add_tail(&map->list, &rc_map_list); spin_unlock(&rc_map_lock); return 0; } EXPORT_SYMBOL_GPL(rc_map_register); void rc_map_unregister(struct rc_map_list *map) { spin_lock(&rc_map_lock); list_del(&map->list); spin_unlock(&rc_map_lock); } EXPORT_SYMBOL_GPL(rc_map_unregister); static struct rc_map_table empty[] = { { 0x2a, KEY_COFFEE }, }; static struct rc_map_list empty_map = { .map = { .scan = empty, .size = ARRAY_SIZE(empty), .rc_proto = RC_PROTO_UNKNOWN, /* Legacy IR type */ .name = RC_MAP_EMPTY, } }; /** * ir_create_table() - initializes a scancode table * @rc_map: the rc_map to initialize * @name: name to assign to the table * @rc_proto: ir type to assign to the new table * @size: initial size of the table * * This routine will initialize the rc_map and will allocate * memory to hold at least the specified number of elements. * * return: zero on success or a negative error code */ static int ir_create_table(struct rc_map *rc_map, const char *name, u64 rc_proto, size_t size) { rc_map->name = kstrdup(name, GFP_KERNEL); if (!rc_map->name) return -ENOMEM; rc_map->rc_proto = rc_proto; rc_map->alloc = roundup_pow_of_two(size * sizeof(struct rc_map_table)); rc_map->size = rc_map->alloc / sizeof(struct rc_map_table); rc_map->scan = kmalloc(rc_map->alloc, GFP_KERNEL); if (!rc_map->scan) { kfree(rc_map->name); rc_map->name = NULL; return -ENOMEM; } IR_dprintk(1, "Allocated space for %u keycode entries (%u bytes)\n", rc_map->size, rc_map->alloc); return 0; } /** * ir_free_table() - frees memory allocated by a scancode table * @rc_map: the table whose mappings need to be freed * * This routine will free memory alloctaed for key mappings used by given * scancode table. */ static void ir_free_table(struct rc_map *rc_map) { rc_map->size = 0; kfree(rc_map->name); rc_map->name = NULL; kfree(rc_map->scan); rc_map->scan = NULL; } /** * ir_resize_table() - resizes a scancode table if necessary * @rc_map: the rc_map to resize * @gfp_flags: gfp flags to use when allocating memory * * This routine will shrink the rc_map if it has lots of * unused entries and grow it if it is full. * * return: zero on success or a negative error code */ static int ir_resize_table(struct rc_map *rc_map, gfp_t gfp_flags) { unsigned int oldalloc = rc_map->alloc; unsigned int newalloc = oldalloc; struct rc_map_table *oldscan = rc_map->scan; struct rc_map_table *newscan; if (rc_map->size == rc_map->len) { /* All entries in use -> grow keytable */ if (rc_map->alloc >= IR_TAB_MAX_SIZE) return -ENOMEM; newalloc *= 2; IR_dprintk(1, "Growing table to %u bytes\n", newalloc); } if ((rc_map->len * 3 < rc_map->size) && (oldalloc > IR_TAB_MIN_SIZE)) { /* Less than 1/3 of entries in use -> shrink keytable */ newalloc /= 2; IR_dprintk(1, "Shrinking table to %u bytes\n", newalloc); } if (newalloc == oldalloc) return 0; newscan = kmalloc(newalloc, gfp_flags); if (!newscan) { IR_dprintk(1, "Failed to kmalloc %u bytes\n", newalloc); return -ENOMEM; } memcpy(newscan, rc_map->scan, rc_map->len * sizeof(struct rc_map_table)); rc_map->scan = newscan; rc_map->alloc = newalloc; rc_map->size = rc_map->alloc / sizeof(struct rc_map_table); kfree(oldscan); return 0; } /** * ir_update_mapping() - set a keycode in the scancode->keycode table * @dev: the struct rc_dev device descriptor * @rc_map: scancode table to be adjusted * @index: index of the mapping that needs to be updated * @new_keycode: the desired keycode * * This routine is used to update scancode->keycode mapping at given * position. * * return: previous keycode assigned to the mapping * */ static unsigned int ir_update_mapping(struct rc_dev *dev, struct rc_map *rc_map, unsigned int index, unsigned int new_keycode) { int old_keycode = rc_map->scan[index].keycode; int i; /* Did the user wish to remove the mapping? */ if (new_keycode == KEY_RESERVED || new_keycode == KEY_UNKNOWN) { IR_dprintk(1, "#%d: Deleting scan 0x%04x\n", index, rc_map->scan[index].scancode); rc_map->len--; memmove(&rc_map->scan[index], &rc_map->scan[index+ 1], (rc_map->len - index) * sizeof(struct rc_map_table)); } else { IR_dprintk(1, "#%d: %s scan 0x%04x with key 0x%04x\n", index, old_keycode == KEY_RESERVED ? "New" : "Replacing", rc_map->scan[index].scancode, new_keycode); rc_map->scan[index].keycode = new_keycode; __set_bit(new_keycode, dev->input_dev->keybit); } if (old_keycode != KEY_RESERVED) { /* A previous mapping was updated... */ __clear_bit(old_keycode, dev->input_dev->keybit); /* ... but another scancode might use the same keycode */ for (i = 0; i < rc_map->len; i++) { if (rc_map->scan[i].keycode == old_keycode) { __set_bit(old_keycode, dev->input_dev->keybit); break; } } /* Possibly shrink the keytable, failure is not a problem */ ir_resize_table(rc_map, GFP_ATOMIC); } return old_keycode; } /** * ir_establish_scancode() - set a keycode in the scancode->keycode table * @dev: the struct rc_dev device descriptor * @rc_map: scancode table to be searched * @scancode: the desired scancode * @resize: controls whether we allowed to resize the table to * accommodate not yet present scancodes * * This routine is used to locate given scancode in rc_map. * If scancode is not yet present the routine will allocate a new slot * for it. * * return: index of the mapping containing scancode in question * or -1U in case of failure. */ static unsigned int ir_establish_scancode(struct rc_dev *dev, struct rc_map *rc_map, unsigned int scancode, bool resize) { unsigned int i; /* * Unfortunately, some hardware-based IR decoders don't provide * all bits for the complete IR code. In general, they provide only * the command part of the IR code. Yet, as it is possible to replace * the provided IR with another one, it is needed to allow loading * IR tables from other remotes. So, we support specifying a mask to * indicate the valid bits of the scancodes. */ if (dev->scancode_mask) scancode &= dev->scancode_mask; /* First check if we already have a mapping for this ir command */ for (i = 0; i < rc_map->len; i++) { if (rc_map->scan[i].scancode == scancode) return i; /* Keytable is sorted from lowest to highest scancode */ if (rc_map->scan[i].scancode >= scancode) break; } /* No previous mapping found, we might need to grow the table */ if (rc_map->size == rc_map->len) { if (!resize || ir_resize_table(rc_map, GFP_ATOMIC)) return -1U; } /* i is the proper index to insert our new keycode */ if (i < rc_map->len) memmove(&rc_map->scan[i + 1], &rc_map->scan[i], (rc_map->len - i) * sizeof(struct rc_map_table)); rc_map->scan[i].scancode = scancode; rc_map->scan[i].keycode = KEY_RESERVED; rc_map->len++; return i; } /** * ir_setkeycode() - set a keycode in the scancode->keycode table * @idev: the struct input_dev device descriptor * @ke: Input keymap entry * @old_keycode: result * * This routine is used to handle evdev EVIOCSKEY ioctl. * * return: -EINVAL if the keycode could not be inserted, otherwise zero. */ static int ir_setkeycode(struct input_dev *idev, const struct input_keymap_entry *ke, unsigned int *old_keycode) { struct rc_dev *rdev = input_get_drvdata(idev); struct rc_map *rc_map = &rdev->rc_map; unsigned int index; unsigned int scancode; int retval = 0; unsigned long flags; spin_lock_irqsave(&rc_map->lock, flags); if (ke->flags & INPUT_KEYMAP_BY_INDEX) { index = ke->index; if (index >= rc_map->len) { retval = -EINVAL; goto out; } } else { retval = input_scancode_to_scalar(ke, &scancode); if (retval) goto out; index = ir_establish_scancode(rdev, rc_map, scancode, true); if (index >= rc_map->len) { retval = -ENOMEM; goto out; } } *old_keycode = ir_update_mapping(rdev, rc_map, index, ke->keycode); out: spin_unlock_irqrestore(&rc_map->lock, flags); return retval; } /** * ir_setkeytable() - sets several entries in the scancode->keycode table * @dev: the struct rc_dev device descriptor * @from: the struct rc_map to copy entries from * * This routine is used to handle table initialization. * * return: -ENOMEM if all keycodes could not be inserted, otherwise zero. */ static int ir_setkeytable(struct rc_dev *dev, const struct rc_map *from) { struct rc_map *rc_map = &dev->rc_map; unsigned int i, index; int rc; rc = ir_create_table(rc_map, from->name, from->rc_proto, from->size); if (rc) return rc; for (i = 0; i < from->size; i++) { index = ir_establish_scancode(dev, rc_map, from->scan[i].scancode, false); if (index >= rc_map->len) { rc = -ENOMEM; break; } ir_update_mapping(dev, rc_map, index, from->scan[i].keycode); } if (rc) ir_free_table(rc_map); return rc; } static int rc_map_cmp(const void *key, const void *elt) { const unsigned int *scancode = key; const struct rc_map_table *e = elt; if (*scancode < e->scancode) return -1; else if (*scancode > e->scancode) return 1; return 0; } /** * ir_lookup_by_scancode() - locate mapping by scancode * @rc_map: the struct rc_map to search * @scancode: scancode to look for in the table * * This routine performs binary search in RC keykeymap table for * given scancode. * * return: index in the table, -1U if not found */ static unsigned int ir_lookup_by_scancode(const struct rc_map *rc_map, unsigned int scancode) { struct rc_map_table *res; res = bsearch(&scancode, rc_map->scan, rc_map->len, sizeof(struct rc_map_table), rc_map_cmp); if (!res) return -1U; else return res - rc_map->scan; } /** * ir_getkeycode() - get a keycode from the scancode->keycode table * @idev: the struct input_dev device descriptor * @ke: Input keymap entry * * This routine is used to handle evdev EVIOCGKEY ioctl. * * return: always returns zero. */ static int ir_getkeycode(struct input_dev *idev, struct input_keymap_entry *ke) { struct rc_dev *rdev = input_get_drvdata(idev); struct rc_map *rc_map = &rdev->rc_map; struct rc_map_table *entry; unsigned long flags; unsigned int index; unsigned int scancode; int retval; spin_lock_irqsave(&rc_map->lock, flags); if (ke->flags & INPUT_KEYMAP_BY_INDEX) { index = ke->index; } else { retval = input_scancode_to_scalar(ke, &scancode); if (retval) goto out; index = ir_lookup_by_scancode(rc_map, scancode); } if (index < rc_map->len) { entry = &rc_map->scan[index]; ke->index = index; ke->keycode = entry->keycode; ke->len = sizeof(entry->scancode); memcpy(ke->scancode, &entry->scancode, sizeof(entry->scancode)); } else if (!(ke->flags & INPUT_KEYMAP_BY_INDEX)) { /* * We do not really know the valid range of scancodes * so let's respond with KEY_RESERVED to anything we * do not have mapping for [yet]. */ ke->index = index; ke->keycode = KEY_RESERVED; } else { retval = -EINVAL; goto out; } retval = 0; out: spin_unlock_irqrestore(&rc_map->lock, flags); return retval; } /** * rc_g_keycode_from_table() - gets the keycode that corresponds to a scancode * @dev: the struct rc_dev descriptor of the device * @scancode: the scancode to look for * * This routine is used by drivers which need to convert a scancode to a * keycode. Normally it should not be used since drivers should have no * interest in keycodes. * * return: the corresponding keycode, or KEY_RESERVED */ u32 rc_g_keycode_from_table(struct rc_dev *dev, u32 scancode) { struct rc_map *rc_map = &dev->rc_map; unsigned int keycode; unsigned int index; unsigned long flags; spin_lock_irqsave(&rc_map->lock, flags); index = ir_lookup_by_scancode(rc_map, scancode); keycode = index < rc_map->len ? rc_map->scan[index].keycode : KEY_RESERVED; spin_unlock_irqrestore(&rc_map->lock, flags); if (keycode != KEY_RESERVED) IR_dprintk(1, "%s: scancode 0x%04x keycode 0x%02x\n", dev->device_name, scancode, keycode); return keycode; } EXPORT_SYMBOL_GPL(rc_g_keycode_from_table); /** * ir_do_keyup() - internal function to signal the release of a keypress * @dev: the struct rc_dev descriptor of the device * @sync: whether or not to call input_sync * * This function is used internally to release a keypress, it must be * called with keylock held. */ static void ir_do_keyup(struct rc_dev *dev, bool sync) { if (!dev->keypressed) return; IR_dprintk(1, "keyup key 0x%04x\n", dev->last_keycode); input_report_key(dev->input_dev, dev->last_keycode, 0); led_trigger_event(led_feedback, LED_OFF); if (sync) input_sync(dev->input_dev); dev->keypressed = false; } /** * rc_keyup() - signals the release of a keypress * @dev: the struct rc_dev descriptor of the device * * This routine is used to signal that a key has been released on the * remote control. */ void rc_keyup(struct rc_dev *dev) { unsigned long flags; spin_lock_irqsave(&dev->keylock, flags); ir_do_keyup(dev, true); spin_unlock_irqrestore(&dev->keylock, flags); } EXPORT_SYMBOL_GPL(rc_keyup); /** * ir_timer_keyup() - generates a keyup event after a timeout * * @t: a pointer to the struct timer_list * * This routine will generate a keyup event some time after a keydown event * is generated when no further activity has been detected. */ static void ir_timer_keyup(struct timer_list *t) { struct rc_dev *dev = from_timer(dev, t, timer_keyup); unsigned long flags; /* * ir->keyup_jiffies is used to prevent a race condition if a * hardware interrupt occurs at this point and the keyup timer * event is moved further into the future as a result. * * The timer will then be reactivated and this function called * again in the future. We need to exit gracefully in that case * to allow the input subsystem to do its auto-repeat magic or * a keyup event might follow immediately after the keydown. */ spin_lock_irqsave(&dev->keylock, flags); if (time_is_before_eq_jiffies(dev->keyup_jiffies)) ir_do_keyup(dev, true); spin_unlock_irqrestore(&dev->keylock, flags); } /** * rc_repeat() - signals that a key is still pressed * @dev: the struct rc_dev descriptor of the device * * This routine is used by IR decoders when a repeat message which does * not include the necessary bits to reproduce the scancode has been * received. */ void rc_repeat(struct rc_dev *dev) { unsigned long flags; unsigned int timeout = protocols[dev->last_protocol].repeat_period; struct lirc_scancode sc = { .scancode = dev->last_scancode, .rc_proto = dev->last_protocol, .keycode = dev->keypressed ? dev->last_keycode : KEY_RESERVED, .flags = LIRC_SCANCODE_FLAG_REPEAT | (dev->last_toggle ? LIRC_SCANCODE_FLAG_TOGGLE : 0) }; ir_lirc_scancode_event(dev, &sc); spin_lock_irqsave(&dev->keylock, flags); input_event(dev->input_dev, EV_MSC, MSC_SCAN, dev->last_scancode); input_sync(dev->input_dev); if (dev->keypressed) { dev->keyup_jiffies = jiffies + msecs_to_jiffies(timeout); mod_timer(&dev->timer_keyup, dev->keyup_jiffies); } spin_unlock_irqrestore(&dev->keylock, flags); } EXPORT_SYMBOL_GPL(rc_repeat); /** * ir_do_keydown() - internal function to process a keypress * @dev: the struct rc_dev descriptor of the device * @protocol: the protocol of the keypress * @scancode: the scancode of the keypress * @keycode: the keycode of the keypress * @toggle: the toggle value of the keypress * * This function is used internally to register a keypress, it must be * called with keylock held. */ static void ir_do_keydown(struct rc_dev *dev, enum rc_proto protocol, u32 scancode, u32 keycode, u8 toggle) { bool new_event = (!dev->keypressed || dev->last_protocol != protocol || dev->last_scancode != scancode || dev->last_toggle != toggle); struct lirc_scancode sc = { .scancode = scancode, .rc_proto = protocol, .flags = toggle ? LIRC_SCANCODE_FLAG_TOGGLE : 0, .keycode = keycode }; ir_lirc_scancode_event(dev, &sc); if (new_event && dev->keypressed) ir_do_keyup(dev, false); input_event(dev->input_dev, EV_MSC, MSC_SCAN, scancode); dev->last_protocol = protocol; dev->last_scancode = scancode; dev->last_toggle = toggle; dev->last_keycode = keycode; if (new_event && keycode != KEY_RESERVED) { /* Register a keypress */ dev->keypressed = true; IR_dprintk(1, "%s: key down event, key 0x%04x, protocol 0x%04x, scancode 0x%08x\n", dev->device_name, keycode, protocol, scancode); input_report_key(dev->input_dev, keycode, 1); led_trigger_event(led_feedback, LED_FULL); } input_sync(dev->input_dev); } /** * rc_keydown() - generates input event for a key press * @dev: the struct rc_dev descriptor of the device * @protocol: the protocol for the keypress * @scancode: the scancode for the keypress * @toggle: the toggle value (protocol dependent, if the protocol doesn't * support toggle values, this should be set to zero) * * This routine is used to signal that a key has been pressed on the * remote control. */ void rc_keydown(struct rc_dev *dev, enum rc_proto protocol, u32 scancode, u8 toggle) { unsigned long flags; u32 keycode = rc_g_keycode_from_table(dev, scancode); spin_lock_irqsave(&dev->keylock, flags); ir_do_keydown(dev, protocol, scancode, keycode, toggle); if (dev->keypressed) { dev->keyup_jiffies = jiffies + msecs_to_jiffies(protocols[protocol].repeat_period); mod_timer(&dev->timer_keyup, dev->keyup_jiffies); } spin_unlock_irqrestore(&dev->keylock, flags); } EXPORT_SYMBOL_GPL(rc_keydown); /** * rc_keydown_notimeout() - generates input event for a key press without * an automatic keyup event at a later time * @dev: the struct rc_dev descriptor of the device * @protocol: the protocol for the keypress * @scancode: the scancode for the keypress * @toggle: the toggle value (protocol dependent, if the protocol doesn't * support toggle values, this should be set to zero) * * This routine is used to signal that a key has been pressed on the * remote control. The driver must manually call rc_keyup() at a later stage. */ void rc_keydown_notimeout(struct rc_dev *dev, enum rc_proto protocol, u32 scancode, u8 toggle) { unsigned long flags; u32 keycode = rc_g_keycode_from_table(dev, scancode); spin_lock_irqsave(&dev->keylock, flags); ir_do_keydown(dev, protocol, scancode, keycode, toggle); spin_unlock_irqrestore(&dev->keylock, flags); } EXPORT_SYMBOL_GPL(rc_keydown_notimeout); /** * rc_validate_scancode() - checks that a scancode is valid for a protocol. * For nec, it should do the opposite of ir_nec_bytes_to_scancode() * @proto: protocol * @scancode: scancode */ bool rc_validate_scancode(enum rc_proto proto, u32 scancode) { switch (proto) { /* * NECX has a 16-bit address; if the lower 8 bits match the upper * 8 bits inverted, then the address would match regular nec. */ case RC_PROTO_NECX: if ((((scancode >> 16) ^ ~(scancode >> 8)) & 0xff) == 0) return false; break; /* * NEC32 has a 16 bit address and 16 bit command. If the lower 8 bits * of the command match the upper 8 bits inverted, then it would * be either NEC or NECX. */ case RC_PROTO_NEC32: if ((((scancode >> 8) ^ ~scancode) & 0xff) == 0) return false; break; /* * If the customer code (top 32-bit) is 0x800f, it is MCE else it * is regular mode-6a 32 bit */ case RC_PROTO_RC6_MCE: if ((scancode & 0xffff0000) != 0x800f0000) return false; break; case RC_PROTO_RC6_6A_32: if ((scancode & 0xffff0000) == 0x800f0000) return false; break; default: break; } return true; } /** * rc_validate_filter() - checks that the scancode and mask are valid and * provides sensible defaults * @dev: the struct rc_dev descriptor of the device * @filter: the scancode and mask * * return: 0 or -EINVAL if the filter is not valid */ static int rc_validate_filter(struct rc_dev *dev, struct rc_scancode_filter *filter) { u32 mask, s = filter->data; enum rc_proto protocol = dev->wakeup_protocol; if (protocol >= ARRAY_SIZE(protocols)) return -EINVAL; mask = protocols[protocol].scancode_bits; if (!rc_validate_scancode(protocol, s)) return -EINVAL; filter->data &= mask; filter->mask &= mask; /* * If we have to raw encode the IR for wakeup, we cannot have a mask */ if (dev->encode_wakeup && filter->mask != 0 && filter->mask != mask) return -EINVAL; return 0; } int rc_open(struct rc_dev *rdev) { int rval = 0; if (!rdev) return -EINVAL; mutex_lock(&rdev->lock); if (!rdev->registered) { rval = -ENODEV; } else { if (!rdev->users++ && rdev->open) rval = rdev->open(rdev); if (rval) rdev->users--; } mutex_unlock(&rdev->lock); return rval; } static int ir_open(struct input_dev *idev) { struct rc_dev *rdev = input_get_drvdata(idev); return rc_open(rdev); } void rc_close(struct rc_dev *rdev) { if (rdev) { mutex_lock(&rdev->lock); if (!--rdev->users && rdev->close && rdev->registered) rdev->close(rdev); mutex_unlock(&rdev->lock); } } static void ir_close(struct input_dev *idev) { struct rc_dev *rdev = input_get_drvdata(idev); rc_close(rdev); } /* class for /sys/class/rc */ static char *rc_devnode(struct device *dev, umode_t *mode) { return kasprintf(GFP_KERNEL, "rc/%s", dev_name(dev)); } static struct class rc_class = { .name = "rc", .devnode = rc_devnode, }; /* * These are the protocol textual descriptions that are * used by the sysfs protocols file. Note that the order * of the entries is relevant. */ static const struct { u64 type; const char *name; const char *module_name; } proto_names[] = { { RC_PROTO_BIT_NONE, "none", NULL }, { RC_PROTO_BIT_OTHER, "other", NULL }, { RC_PROTO_BIT_UNKNOWN, "unknown", NULL }, { RC_PROTO_BIT_RC5 | RC_PROTO_BIT_RC5X_20, "rc-5", "ir-rc5-decoder" }, { RC_PROTO_BIT_NEC | RC_PROTO_BIT_NECX | RC_PROTO_BIT_NEC32, "nec", "ir-nec-decoder" }, { RC_PROTO_BIT_RC6_0 | RC_PROTO_BIT_RC6_6A_20 | RC_PROTO_BIT_RC6_6A_24 | RC_PROTO_BIT_RC6_6A_32 | RC_PROTO_BIT_RC6_MCE, "rc-6", "ir-rc6-decoder" }, { RC_PROTO_BIT_JVC, "jvc", "ir-jvc-decoder" }, { RC_PROTO_BIT_SONY12 | RC_PROTO_BIT_SONY15 | RC_PROTO_BIT_SONY20, "sony", "ir-sony-decoder" }, { RC_PROTO_BIT_RC5_SZ, "rc-5-sz", "ir-rc5-decoder" }, { RC_PROTO_BIT_SANYO, "sanyo", "ir-sanyo-decoder" }, { RC_PROTO_BIT_SHARP, "sharp", "ir-sharp-decoder" }, { RC_PROTO_BIT_MCIR2_KBD | RC_PROTO_BIT_MCIR2_MSE, "mce_kbd", "ir-mce_kbd-decoder" }, { RC_PROTO_BIT_XMP, "xmp", "ir-xmp-decoder" }, { RC_PROTO_BIT_CEC, "cec", NULL }, }; /** * struct rc_filter_attribute - Device attribute relating to a filter type. * @attr: Device attribute. * @type: Filter type. * @mask: false for filter value, true for filter mask. */ struct rc_filter_attribute { struct device_attribute attr; enum rc_filter_type type; bool mask; }; #define to_rc_filter_attr(a) container_of(a, struct rc_filter_attribute, attr) #define RC_FILTER_ATTR(_name, _mode, _show, _store, _type, _mask) \ struct rc_filter_attribute dev_attr_##_name = { \ .attr = __ATTR(_name, _mode, _show, _store), \ .type = (_type), \ .mask = (_mask), \ } /** * show_protocols() - shows the current IR protocol(s) * @device: the device descriptor * @mattr: the device attribute struct * @buf: a pointer to the output buffer * * This routine is a callback routine for input read the IR protocol type(s). * it is trigged by reading /sys/class/rc/rc?/protocols. * It returns the protocol names of supported protocols. * Enabled protocols are printed in brackets. * * dev->lock is taken to guard against races between * store_protocols and show_protocols. */ static ssize_t show_protocols(struct device *device, struct device_attribute *mattr, char *buf) { struct rc_dev *dev = to_rc_dev(device); u64 allowed, enabled; char *tmp = buf; int i; mutex_lock(&dev->lock); enabled = dev->enabled_protocols; allowed = dev->allowed_protocols; if (dev->raw && !allowed) allowed = ir_raw_get_allowed_protocols(); mutex_unlock(&dev->lock); IR_dprintk(1, "%s: allowed - 0x%llx, enabled - 0x%llx\n", __func__, (long long)allowed, (long long)enabled); for (i = 0; i < ARRAY_SIZE(proto_names); i++) { if (allowed & enabled & proto_names[i].type) tmp += sprintf(tmp, "[%s] ", proto_names[i].name); else if (allowed & proto_names[i].type) tmp += sprintf(tmp, "%s ", proto_names[i].name); if (allowed & proto_names[i].type) allowed &= ~proto_names[i].type; } #ifdef CONFIG_LIRC if (dev->driver_type == RC_DRIVER_IR_RAW) tmp += sprintf(tmp, "[lirc] "); #endif if (tmp != buf) tmp--; *tmp = '\n'; return tmp + 1 - buf; } /** * parse_protocol_change() - parses a protocol change request * @protocols: pointer to the bitmask of current protocols * @buf: pointer to the buffer with a list of changes * * Writing "+proto" will add a protocol to the protocol mask. * Writing "-proto" will remove a protocol from protocol mask. * Writing "proto" will enable only "proto". * Writing "none" will disable all protocols. * Returns the number of changes performed or a negative error code. */ static int parse_protocol_change(u64 *protocols, const char *buf) { const char *tmp; unsigned count = 0; bool enable, disable; u64 mask; int i; while ((tmp = strsep((char **)&buf, " \n")) != NULL) { if (!*tmp) break; if (*tmp == '+') { enable = true; disable = false; tmp++; } else if (*tmp == '-') { enable = false; disable = true; tmp++; } else { enable = false; disable = false; } for (i = 0; i < ARRAY_SIZE(proto_names); i++) { if (!strcasecmp(tmp, proto_names[i].name)) { mask = proto_names[i].type; break; } } if (i == ARRAY_SIZE(proto_names)) { if (!strcasecmp(tmp, "lirc")) mask = 0; else { IR_dprintk(1, "Unknown protocol: '%s'\n", tmp); return -EINVAL; } } count++; if (enable) *protocols |= mask; else if (disable) *protocols &= ~mask; else *protocols = mask; } if (!count) { IR_dprintk(1, "Protocol not specified\n"); return -EINVAL; } return count; } void ir_raw_load_modules(u64 *protocols) { u64 available; int i, ret; for (i = 0; i < ARRAY_SIZE(proto_names); i++) { if (proto_names[i].type == RC_PROTO_BIT_NONE || proto_names[i].type & (RC_PROTO_BIT_OTHER | RC_PROTO_BIT_UNKNOWN)) continue; available = ir_raw_get_allowed_protocols(); if (!(*protocols & proto_names[i].type & ~available)) continue; if (!proto_names[i].module_name) { pr_err("Can't enable IR protocol %s\n", proto_names[i].name); *protocols &= ~proto_names[i].type; continue; } ret = request_module("%s", proto_names[i].module_name); if (ret < 0) { pr_err("Couldn't load IR protocol module %s\n", proto_names[i].module_name); *protocols &= ~proto_names[i].type; continue; } msleep(20); available = ir_raw_get_allowed_protocols(); if (!(*protocols & proto_names[i].type & ~available)) continue; pr_err("Loaded IR protocol module %s, but protocol %s still not available\n", proto_names[i].module_name, proto_names[i].name); *protocols &= ~proto_names[i].type; } } /** * store_protocols() - changes the current/wakeup IR protocol(s) * @device: the device descriptor * @mattr: the device attribute struct * @buf: a pointer to the input buffer * @len: length of the input buffer * * This routine is for changing the IR protocol type. * It is trigged by writing to /sys/class/rc/rc?/[wakeup_]protocols. * See parse_protocol_change() for the valid commands. * Returns @len on success or a negative error code. * * dev->lock is taken to guard against races between * store_protocols and show_protocols. */ static ssize_t store_protocols(struct device *device, struct device_attribute *mattr, const char *buf, size_t len) { struct rc_dev *dev = to_rc_dev(device); u64 *current_protocols; struct rc_scancode_filter *filter; u64 old_protocols, new_protocols; ssize_t rc; IR_dprintk(1, "Normal protocol change requested\n"); current_protocols = &dev->enabled_protocols; filter = &dev->scancode_filter; if (!dev->change_protocol) { IR_dprintk(1, "Protocol switching not supported\n"); return -EINVAL; } mutex_lock(&dev->lock); old_protocols = *current_protocols; new_protocols = old_protocols; rc = parse_protocol_change(&new_protocols, buf); if (rc < 0) goto out; rc = dev->change_protocol(dev, &new_protocols); if (rc < 0) { IR_dprintk(1, "Error setting protocols to 0x%llx\n", (long long)new_protocols); goto out; } if (dev->driver_type == RC_DRIVER_IR_RAW) ir_raw_load_modules(&new_protocols); if (new_protocols != old_protocols) { *current_protocols = new_protocols; IR_dprintk(1, "Protocols changed to 0x%llx\n", (long long)new_protocols); } /* * If a protocol change was attempted the filter may need updating, even * if the actual protocol mask hasn't changed (since the driver may have * cleared the filter). * Try setting the same filter with the new protocol (if any). * Fall back to clearing the filter. */ if (dev->s_filter && filter->mask) { if (new_protocols) rc = dev->s_filter(dev, filter); else rc = -1; if (rc < 0) { filter->data = 0; filter->mask = 0; dev->s_filter(dev, filter); } } rc = len; out: mutex_unlock(&dev->lock); return rc; } /** * show_filter() - shows the current scancode filter value or mask * @device: the device descriptor * @attr: the device attribute struct * @buf: a pointer to the output buffer * * This routine is a callback routine to read a scancode filter value or mask. * It is trigged by reading /sys/class/rc/rc?/[wakeup_]filter[_mask]. * It prints the current scancode filter value or mask of the appropriate filter * type in hexadecimal into @buf and returns the size of the buffer. * * Bits of the filter value corresponding to set bits in the filter mask are * compared against input scancodes and non-matching scancodes are discarded. * * dev->lock is taken to guard against races between * store_filter and show_filter. */ static ssize_t show_filter(struct device *device, struct device_attribute *attr, char *buf) { struct rc_dev *dev = to_rc_dev(device); struct rc_filter_attribute *fattr = to_rc_filter_attr(attr); struct rc_scancode_filter *filter; u32 val; mutex_lock(&dev->lock); if (fattr->type == RC_FILTER_NORMAL) filter = &dev->scancode_filter; else filter = &dev->scancode_wakeup_filter; if (fattr->mask) val = filter->mask; else val = filter->data; mutex_unlock(&dev->lock); return sprintf(buf, "%#x\n", val); } /** * store_filter() - changes the scancode filter value * @device: the device descriptor * @attr: the device attribute struct * @buf: a pointer to the input buffer * @len: length of the input buffer * * This routine is for changing a scancode filter value or mask. * It is trigged by writing to /sys/class/rc/rc?/[wakeup_]filter[_mask]. * Returns -EINVAL if an invalid filter value for the current protocol was * specified or if scancode filtering is not supported by the driver, otherwise * returns @len. * * Bits of the filter value corresponding to set bits in the filter mask are * compared against input scancodes and non-matching scancodes are discarded. * * dev->lock is taken to guard against races between * store_filter and show_filter. */ static ssize_t store_filter(struct device *device, struct device_attribute *attr, const char *buf, size_t len) { struct rc_dev *dev = to_rc_dev(device); struct rc_filter_attribute *fattr = to_rc_filter_attr(attr); struct rc_scancode_filter new_filter, *filter; int ret; unsigned long val; int (*set_filter)(struct rc_dev *dev, struct rc_scancode_filter *filter); ret = kstrtoul(buf, 0, &val); if (ret < 0) return ret; if (fattr->type == RC_FILTER_NORMAL) { set_filter = dev->s_filter; filter = &dev->scancode_filter; } else { set_filter = dev->s_wakeup_filter; filter = &dev->scancode_wakeup_filter; } if (!set_filter) return -EINVAL; mutex_lock(&dev->lock); new_filter = *filter; if (fattr->mask) new_filter.mask = val; else new_filter.data = val; if (fattr->type == RC_FILTER_WAKEUP) { /* * Refuse to set a filter unless a protocol is enabled * and the filter is valid for that protocol */ if (dev->wakeup_protocol != RC_PROTO_UNKNOWN) ret = rc_validate_filter(dev, &new_filter); else ret = -EINVAL; if (ret != 0) goto unlock; } if (fattr->type == RC_FILTER_NORMAL && !dev->enabled_protocols && val) { /* refuse to set a filter unless a protocol is enabled */ ret = -EINVAL; goto unlock; } ret = set_filter(dev, &new_filter); if (ret < 0) goto unlock; *filter = new_filter; unlock: mutex_unlock(&dev->lock); return (ret < 0) ? ret : len; } /** * show_wakeup_protocols() - shows the wakeup IR protocol * @device: the device descriptor * @mattr: the device attribute struct * @buf: a pointer to the output buffer * * This routine is a callback routine for input read the IR protocol type(s). * it is trigged by reading /sys/class/rc/rc?/wakeup_protocols. * It returns the protocol names of supported protocols. * The enabled protocols are printed in brackets. * * dev->lock is taken to guard against races between * store_wakeup_protocols and show_wakeup_protocols. */ static ssize_t show_wakeup_protocols(struct device *device, struct device_attribute *mattr, char *buf) { struct rc_dev *dev = to_rc_dev(device); u64 allowed; enum rc_proto enabled; char *tmp = buf; int i; mutex_lock(&dev->lock); allowed = dev->allowed_wakeup_protocols; enabled = dev->wakeup_protocol; mutex_unlock(&dev->lock); IR_dprintk(1, "%s: allowed - 0x%llx, enabled - %d\n", __func__, (long long)allowed, enabled); for (i = 0; i < ARRAY_SIZE(protocols); i++) { if (allowed & (1ULL << i)) { if (i == enabled) tmp += sprintf(tmp, "[%s] ", protocols[i].name); else tmp += sprintf(tmp, "%s ", protocols[i].name); } } if (tmp != buf) tmp--; *tmp = '\n'; return tmp + 1 - buf; } /** * store_wakeup_protocols() - changes the wakeup IR protocol(s) * @device: the device descriptor * @mattr: the device attribute struct * @buf: a pointer to the input buffer * @len: length of the input buffer * * This routine is for changing the IR protocol type. * It is trigged by writing to /sys/class/rc/rc?/wakeup_protocols. * Returns @len on success or a negative error code. * * dev->lock is taken to guard against races between * store_wakeup_protocols and show_wakeup_protocols. */ static ssize_t store_wakeup_protocols(struct device *device, struct device_attribute *mattr, const char *buf, size_t len) { struct rc_dev *dev = to_rc_dev(device); enum rc_proto protocol; ssize_t rc; u64 allowed; int i; mutex_lock(&dev->lock); allowed = dev->allowed_wakeup_protocols; if (sysfs_streq(buf, "none")) { protocol = RC_PROTO_UNKNOWN; } else { for (i = 0; i < ARRAY_SIZE(protocols); i++) { if ((allowed & (1ULL << i)) && sysfs_streq(buf, protocols[i].name)) { protocol = i; break; } } if (i == ARRAY_SIZE(protocols)) { rc = -EINVAL; goto out; } if (dev->encode_wakeup) { u64 mask = 1ULL << protocol; ir_raw_load_modules(&mask); if (!mask) { rc = -EINVAL; goto out; } } } if (dev->wakeup_protocol != protocol) { dev->wakeup_protocol = protocol; IR_dprintk(1, "Wakeup protocol changed to %d\n", protocol); if (protocol == RC_PROTO_RC6_MCE) dev->scancode_wakeup_filter.data = 0x800f0000; else dev->scancode_wakeup_filter.data = 0; dev->scancode_wakeup_filter.mask = 0; rc = dev->s_wakeup_filter(dev, &dev->scancode_wakeup_filter); if (rc == 0) rc = len; } else { rc = len; } out: mutex_unlock(&dev->lock); return rc; } static void rc_dev_release(struct device *device) { struct rc_dev *dev = to_rc_dev(device); kfree(dev); } #define ADD_HOTPLUG_VAR(fmt, val...) \ do { \ int err = add_uevent_var(env, fmt, val); \ if (err) \ return err; \ } while (0) static int rc_dev_uevent(struct device *device, struct kobj_uevent_env *env) { struct rc_dev *dev = to_rc_dev(device); if (dev->rc_map.name) ADD_HOTPLUG_VAR("NAME=%s", dev->rc_map.name); if (dev->driver_name) ADD_HOTPLUG_VAR("DRV_NAME=%s", dev->driver_name); if (dev->device_name) ADD_HOTPLUG_VAR("DEV_NAME=%s", dev->device_name); return 0; } /* * Static device attribute struct with the sysfs attributes for IR's */ static struct device_attribute dev_attr_ro_protocols = __ATTR(protocols, 0444, show_protocols, NULL); static struct device_attribute dev_attr_rw_protocols = __ATTR(protocols, 0644, show_protocols, store_protocols); static DEVICE_ATTR(wakeup_protocols, 0644, show_wakeup_protocols, store_wakeup_protocols); static RC_FILTER_ATTR(filter, S_IRUGO|S_IWUSR, show_filter, store_filter, RC_FILTER_NORMAL, false); static RC_FILTER_ATTR(filter_mask, S_IRUGO|S_IWUSR, show_filter, store_filter, RC_FILTER_NORMAL, true); static RC_FILTER_ATTR(wakeup_filter, S_IRUGO|S_IWUSR, show_filter, store_filter, RC_FILTER_WAKEUP, false); static RC_FILTER_ATTR(wakeup_filter_mask, S_IRUGO|S_IWUSR, show_filter, store_filter, RC_FILTER_WAKEUP, true); static struct attribute *rc_dev_rw_protocol_attrs[] = { &dev_attr_rw_protocols.attr, NULL, }; static const struct attribute_group rc_dev_rw_protocol_attr_grp = { .attrs = rc_dev_rw_protocol_attrs, }; static struct attribute *rc_dev_ro_protocol_attrs[] = { &dev_attr_ro_protocols.attr, NULL, }; static const struct attribute_group rc_dev_ro_protocol_attr_grp = { .attrs = rc_dev_ro_protocol_attrs, }; static struct attribute *rc_dev_filter_attrs[] = { &dev_attr_filter.attr.attr, &dev_attr_filter_mask.attr.attr, NULL, }; static const struct attribute_group rc_dev_filter_attr_grp = { .attrs = rc_dev_filter_attrs, }; static struct attribute *rc_dev_wakeup_filter_attrs[] = { &dev_attr_wakeup_filter.attr.attr, &dev_attr_wakeup_filter_mask.attr.attr, &dev_attr_wakeup_protocols.attr, NULL, }; static const struct attribute_group rc_dev_wakeup_filter_attr_grp = { .attrs = rc_dev_wakeup_filter_attrs, }; static const struct device_type rc_dev_type = { .release = rc_dev_release, .uevent = rc_dev_uevent, }; struct rc_dev *rc_allocate_device(enum rc_driver_type type) { struct rc_dev *dev; dev = kzalloc(sizeof(*dev), GFP_KERNEL); if (!dev) return NULL; if (type != RC_DRIVER_IR_RAW_TX) { dev->input_dev = input_allocate_device(); if (!dev->input_dev) { kfree(dev); return NULL; } dev->input_dev->getkeycode = ir_getkeycode; dev->input_dev->setkeycode = ir_setkeycode; input_set_drvdata(dev->input_dev, dev); timer_setup(&dev->timer_keyup, ir_timer_keyup, 0); spin_lock_init(&dev->rc_map.lock); spin_lock_init(&dev->keylock); } mutex_init(&dev->lock); dev->dev.type = &rc_dev_type; dev->dev.class = &rc_class; device_initialize(&dev->dev); dev->driver_type = type; __module_get(THIS_MODULE); return dev; } EXPORT_SYMBOL_GPL(rc_allocate_device); void rc_free_device(struct rc_dev *dev) { if (!dev) return; input_free_device(dev->input_dev); put_device(&dev->dev); /* kfree(dev) will be called by the callback function rc_dev_release() */ module_put(THIS_MODULE); } EXPORT_SYMBOL_GPL(rc_free_device); static void devm_rc_alloc_release(struct device *dev, void *res) { rc_free_device(*(struct rc_dev **)res); } struct rc_dev *devm_rc_allocate_device(struct device *dev, enum rc_driver_type type) { struct rc_dev **dr, *rc; dr = devres_alloc(devm_rc_alloc_release, sizeof(*dr), GFP_KERNEL); if (!dr) return NULL; rc = rc_allocate_device(type); if (!rc) { devres_free(dr); return NULL; } rc->dev.parent = dev; rc->managed_alloc = true; *dr = rc; devres_add(dev, dr); return rc; } EXPORT_SYMBOL_GPL(devm_rc_allocate_device); static int rc_prepare_rx_device(struct rc_dev *dev) { int rc; struct rc_map *rc_map; u64 rc_proto; if (!dev->map_name) return -EINVAL; rc_map = rc_map_get(dev->map_name); if (!rc_map) rc_map = rc_map_get(RC_MAP_EMPTY); if (!rc_map || !rc_map->scan || rc_map->size == 0) return -EINVAL; rc = ir_setkeytable(dev, rc_map); if (rc) return rc; rc_proto = BIT_ULL(rc_map->rc_proto); if (dev->driver_type == RC_DRIVER_SCANCODE && !dev->change_protocol) dev->enabled_protocols = dev->allowed_protocols; if (dev->change_protocol) { rc = dev->change_protocol(dev, &rc_proto); if (rc < 0) goto out_table; dev->enabled_protocols = rc_proto; } if (dev->driver_type == RC_DRIVER_IR_RAW) ir_raw_load_modules(&rc_proto); set_bit(EV_KEY, dev->input_dev->evbit); set_bit(EV_REP, dev->input_dev->evbit); set_bit(EV_MSC, dev->input_dev->evbit); set_bit(MSC_SCAN, dev->input_dev->mscbit); if (dev->open) dev->input_dev->open = ir_open; if (dev->close) dev->input_dev->close = ir_close; dev->input_dev->dev.parent = &dev->dev; memcpy(&dev->input_dev->id, &dev->input_id, sizeof(dev->input_id)); dev->input_dev->phys = dev->input_phys; dev->input_dev->name = dev->device_name; return 0; out_table: ir_free_table(&dev->rc_map); return rc; } static int rc_setup_rx_device(struct rc_dev *dev) { int rc; /* rc_open will be called here */ rc = input_register_device(dev->input_dev); if (rc) return rc; /* * Default delay of 250ms is too short for some protocols, especially * since the timeout is currently set to 250ms. Increase it to 500ms, * to avoid wrong repetition of the keycodes. Note that this must be * set after the call to input_register_device(). */ dev->input_dev->rep[REP_DELAY] = 500; /* * As a repeat event on protocols like RC-5 and NEC take as long as * 110/114ms, using 33ms as a repeat period is not the right thing * to do. */ dev->input_dev->rep[REP_PERIOD] = 125; return 0; } static void rc_free_rx_device(struct rc_dev *dev) { if (!dev) return; if (dev->input_dev) { input_unregister_device(dev->input_dev); dev->input_dev = NULL; } ir_free_table(&dev->rc_map); } int rc_register_device(struct rc_dev *dev) { const char *path; int attr = 0; int minor; int rc; if (!dev) return -EINVAL; minor = ida_simple_get(&rc_ida, 0, RC_DEV_MAX, GFP_KERNEL); if (minor < 0) return minor; dev->minor = minor; dev_set_name(&dev->dev, "rc%u", dev->minor); dev_set_drvdata(&dev->dev, dev); dev->dev.groups = dev->sysfs_groups; if (dev->driver_type == RC_DRIVER_SCANCODE && !dev->change_protocol) dev->sysfs_groups[attr++] = &rc_dev_ro_protocol_attr_grp; else if (dev->driver_type != RC_DRIVER_IR_RAW_TX) dev->sysfs_groups[attr++] = &rc_dev_rw_protocol_attr_grp; if (dev->s_filter) dev->sysfs_groups[attr++] = &rc_dev_filter_attr_grp; if (dev->s_wakeup_filter) dev->sysfs_groups[attr++] = &rc_dev_wakeup_filter_attr_grp; dev->sysfs_groups[attr++] = NULL; if (dev->driver_type == RC_DRIVER_IR_RAW) { rc = ir_raw_event_prepare(dev); if (rc < 0) goto out_minor; } if (dev->driver_type != RC_DRIVER_IR_RAW_TX) { rc = rc_prepare_rx_device(dev); if (rc) goto out_raw; } rc = device_add(&dev->dev); if (rc) goto out_rx_free; path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL); dev_info(&dev->dev, "%s as %s\n", dev->device_name ?: "Unspecified device", path ?: "N/A"); kfree(path); if (dev->driver_type != RC_DRIVER_IR_RAW_TX) { rc = rc_setup_rx_device(dev); if (rc) goto out_dev; } /* Ensure that the lirc kfifo is setup before we start the thread */ if (dev->driver_type != RC_DRIVER_SCANCODE) { rc = ir_lirc_register(dev); if (rc < 0) goto out_rx; } if (dev->driver_type == RC_DRIVER_IR_RAW) { rc = ir_raw_event_register(dev); if (rc < 0) goto out_lirc; } dev->registered = true; IR_dprintk(1, "Registered rc%u (driver: %s)\n", dev->minor, dev->driver_name ? dev->driver_name : "unknown"); return 0; out_lirc: if (dev->driver_type != RC_DRIVER_SCANCODE) ir_lirc_unregister(dev); out_rx: rc_free_rx_device(dev); out_dev: device_del(&dev->dev); out_rx_free: ir_free_table(&dev->rc_map); out_raw: ir_raw_event_free(dev); out_minor: ida_simple_remove(&rc_ida, minor); return rc; } EXPORT_SYMBOL_GPL(rc_register_device); static void devm_rc_release(struct device *dev, void *res) { rc_unregister_device(*(struct rc_dev **)res); } int devm_rc_register_device(struct device *parent, struct rc_dev *dev) { struct rc_dev **dr; int ret; dr = devres_alloc(devm_rc_release, sizeof(*dr), GFP_KERNEL); if (!dr) return -ENOMEM; ret = rc_register_device(dev); if (ret) { devres_free(dr); return ret; } *dr = dev; devres_add(parent, dr); return 0; } EXPORT_SYMBOL_GPL(devm_rc_register_device); void rc_unregister_device(struct rc_dev *dev) { if (!dev) return; del_timer_sync(&dev->timer_keyup); if (dev->driver_type == RC_DRIVER_IR_RAW) ir_raw_event_unregister(dev); rc_free_rx_device(dev); mutex_lock(&dev->lock); dev->registered = false; mutex_unlock(&dev->lock); /* * lirc device should be freed with dev->registered = false, so * that userspace polling will get notified. */ if (dev->driver_type != RC_DRIVER_SCANCODE) ir_lirc_unregister(dev); device_del(&dev->dev); ida_simple_remove(&rc_ida, dev->minor); if (!dev->managed_alloc) rc_free_device(dev); } EXPORT_SYMBOL_GPL(rc_unregister_device); /* * Init/exit code for the module. Basically, creates/removes /sys/class/rc */ static int __init rc_core_init(void) { int rc = class_register(&rc_class); if (rc) { pr_err("rc_core: unable to register rc class\n"); return rc; } rc = lirc_dev_init(); if (rc) { pr_err("rc_core: unable to init lirc\n"); class_unregister(&rc_class); return 0; } led_trigger_register_simple("rc-feedback", &led_feedback); rc_map_register(&empty_map); return 0; } static void __exit rc_core_exit(void) { lirc_dev_exit(); class_unregister(&rc_class); led_trigger_unregister_simple(led_feedback); rc_map_unregister(&empty_map); } subsys_initcall(rc_core_init); module_exit(rc_core_exit); int rc_core_debug; /* ir_debug level (0,1,2) */ EXPORT_SYMBOL_GPL(rc_core_debug); module_param_named(debug, rc_core_debug, int, 0644); MODULE_AUTHOR("Mauro Carvalho Chehab"); MODULE_LICENSE("GPL v2");