// SPDX-License-Identifier: (GPL-2.0-only OR BSD-3-Clause) // // This file is provided under a dual BSD/GPLv2 license. When using or // redistributing this file, you may do so under either license. // // Copyright(c) 2018 Intel Corporation. All rights reserved. // // Author: Liam Girdwood // #include #include #include #include #include #include #include #include #include "sof-priv.h" #include "sof-audio.h" #include "ops.h" #define COMP_ID_UNASSIGNED 0xffffffff /* * Constants used in the computation of linear volume gain * from dB gain 20th root of 10 in Q1.16 fixed-point notation */ #define VOL_TWENTIETH_ROOT_OF_TEN 73533 /* 40th root of 10 in Q1.16 fixed-point notation*/ #define VOL_FORTIETH_ROOT_OF_TEN 69419 /* * Volume fractional word length define to 16 sets * the volume linear gain value to use Qx.16 format */ #define VOLUME_FWL 16 /* 0.5 dB step value in topology TLV */ #define VOL_HALF_DB_STEP 50 /* Full volume for default values */ #define VOL_ZERO_DB BIT(VOLUME_FWL) /* TLV data items */ #define TLV_ITEMS 3 #define TLV_MIN 0 #define TLV_STEP 1 #define TLV_MUTE 2 /* size of tplg abi in byte */ #define SOF_TPLG_ABI_SIZE 3 /** * sof_update_ipc_object - Parse multiple sets of tokens within the token array associated with the * token ID. * @scomp: pointer to SOC component * @object: target IPC struct to save the parsed values * @token_id: token ID for the token array to be searched * @tuples: pointer to the tuples array * @num_tuples: number of tuples in the tuples array * @object_size: size of the object * @token_instance_num: number of times the same @token_id needs to be parsed i.e. the function * looks for @token_instance_num of each token in the token array associated * with the @token_id */ int sof_update_ipc_object(struct snd_soc_component *scomp, void *object, enum sof_tokens token_id, struct snd_sof_tuple *tuples, int num_tuples, size_t object_size, int token_instance_num) { struct snd_sof_dev *sdev = snd_soc_component_get_drvdata(scomp); const struct sof_ipc_tplg_ops *ipc_tplg_ops = sdev->ipc->ops->tplg; const struct sof_token_info *token_list = ipc_tplg_ops->token_list; const struct sof_topology_token *tokens; int i, j; if (token_list[token_id].count < 0) { dev_err(scomp->dev, "Invalid token count for token ID: %d\n", token_id); return -EINVAL; } /* No tokens to match */ if (!token_list[token_id].count) return 0; tokens = token_list[token_id].tokens; if (!tokens) { dev_err(scomp->dev, "Invalid tokens for token id: %d\n", token_id); return -EINVAL; } for (i = 0; i < token_list[token_id].count; i++) { int offset = 0; int num_tokens_matched = 0; for (j = 0; j < num_tuples; j++) { if (tokens[i].token == tuples[j].token) { switch (tokens[i].type) { case SND_SOC_TPLG_TUPLE_TYPE_WORD: { u32 *val = (u32 *)((u8 *)object + tokens[i].offset + offset); *val = tuples[j].value.v; break; } case SND_SOC_TPLG_TUPLE_TYPE_SHORT: case SND_SOC_TPLG_TUPLE_TYPE_BOOL: { u16 *val = (u16 *)((u8 *)object + tokens[i].offset + offset); *val = (u16)tuples[j].value.v; break; } case SND_SOC_TPLG_TUPLE_TYPE_STRING: { if (!tokens[i].get_token) { dev_err(scomp->dev, "get_token not defined for token %d in %s\n", tokens[i].token, token_list[token_id].name); return -EINVAL; } tokens[i].get_token((void *)tuples[j].value.s, object, tokens[i].offset + offset); break; } default: break; } num_tokens_matched++; /* found all required sets of current token. Move to the next one */ if (!(num_tokens_matched % token_instance_num)) break; /* move to the next object */ offset += object_size; } } } return 0; } struct sof_widget_data { int ctrl_type; int ipc_cmd; struct sof_abi_hdr *pdata; struct snd_sof_control *control; }; /* send pcm params ipc */ static int ipc_pcm_params(struct snd_sof_widget *swidget, int dir) { struct sof_ipc_pcm_params_reply ipc_params_reply; struct snd_soc_component *scomp = swidget->scomp; struct snd_sof_dev *sdev = snd_soc_component_get_drvdata(scomp); struct sof_ipc_pcm_params pcm; struct snd_pcm_hw_params *params; struct snd_sof_pcm *spcm; int ret; memset(&pcm, 0, sizeof(pcm)); /* get runtime PCM params using widget's stream name */ spcm = snd_sof_find_spcm_name(scomp, swidget->widget->sname); if (!spcm) { dev_err(scomp->dev, "error: cannot find PCM for %s\n", swidget->widget->name); return -EINVAL; } params = &spcm->params[dir]; /* set IPC PCM params */ pcm.hdr.size = sizeof(pcm); pcm.hdr.cmd = SOF_IPC_GLB_STREAM_MSG | SOF_IPC_STREAM_PCM_PARAMS; pcm.comp_id = swidget->comp_id; pcm.params.hdr.size = sizeof(pcm.params); pcm.params.direction = dir; pcm.params.sample_valid_bytes = params_width(params) >> 3; pcm.params.buffer_fmt = SOF_IPC_BUFFER_INTERLEAVED; pcm.params.rate = params_rate(params); pcm.params.channels = params_channels(params); pcm.params.host_period_bytes = params_period_bytes(params); /* set format */ switch (params_format(params)) { case SNDRV_PCM_FORMAT_S16: pcm.params.frame_fmt = SOF_IPC_FRAME_S16_LE; break; case SNDRV_PCM_FORMAT_S24: pcm.params.frame_fmt = SOF_IPC_FRAME_S24_4LE; break; case SNDRV_PCM_FORMAT_S32: pcm.params.frame_fmt = SOF_IPC_FRAME_S32_LE; break; default: return -EINVAL; } /* send IPC to the DSP */ ret = sof_ipc_tx_message(sdev->ipc, pcm.hdr.cmd, &pcm, sizeof(pcm), &ipc_params_reply, sizeof(ipc_params_reply)); if (ret < 0) dev_err(scomp->dev, "error: pcm params failed for %s\n", swidget->widget->name); return ret; } /* send stream trigger ipc */ static int ipc_trigger(struct snd_sof_widget *swidget, int cmd) { struct snd_soc_component *scomp = swidget->scomp; struct snd_sof_dev *sdev = snd_soc_component_get_drvdata(scomp); struct sof_ipc_stream stream; struct sof_ipc_reply reply; int ret; /* set IPC stream params */ stream.hdr.size = sizeof(stream); stream.hdr.cmd = SOF_IPC_GLB_STREAM_MSG | cmd; stream.comp_id = swidget->comp_id; /* send IPC to the DSP */ ret = sof_ipc_tx_message(sdev->ipc, stream.hdr.cmd, &stream, sizeof(stream), &reply, sizeof(reply)); if (ret < 0) dev_err(scomp->dev, "error: failed to trigger %s\n", swidget->widget->name); return ret; } static int sof_keyword_dapm_event(struct snd_soc_dapm_widget *w, struct snd_kcontrol *k, int event) { struct snd_sof_widget *swidget = w->dobj.private; struct snd_soc_component *scomp; int stream = SNDRV_PCM_STREAM_CAPTURE; struct snd_sof_pcm *spcm; int ret = 0; if (!swidget) return 0; scomp = swidget->scomp; dev_dbg(scomp->dev, "received event %d for widget %s\n", event, w->name); /* get runtime PCM params using widget's stream name */ spcm = snd_sof_find_spcm_name(scomp, swidget->widget->sname); if (!spcm) { dev_err(scomp->dev, "error: cannot find PCM for %s\n", swidget->widget->name); return -EINVAL; } /* process events */ switch (event) { case SND_SOC_DAPM_PRE_PMU: if (spcm->stream[stream].suspend_ignored) { dev_dbg(scomp->dev, "PRE_PMU event ignored, KWD pipeline is already RUNNING\n"); return 0; } /* set pcm params */ ret = ipc_pcm_params(swidget, stream); if (ret < 0) { dev_err(scomp->dev, "error: failed to set pcm params for widget %s\n", swidget->widget->name); break; } /* start trigger */ ret = ipc_trigger(swidget, SOF_IPC_STREAM_TRIG_START); if (ret < 0) dev_err(scomp->dev, "error: failed to trigger widget %s\n", swidget->widget->name); break; case SND_SOC_DAPM_POST_PMD: if (spcm->stream[stream].suspend_ignored) { dev_dbg(scomp->dev, "POST_PMD even ignored, KWD pipeline will remain RUNNING\n"); return 0; } /* stop trigger */ ret = ipc_trigger(swidget, SOF_IPC_STREAM_TRIG_STOP); if (ret < 0) dev_err(scomp->dev, "error: failed to trigger widget %s\n", swidget->widget->name); /* pcm free */ ret = ipc_trigger(swidget, SOF_IPC_STREAM_PCM_FREE); if (ret < 0) dev_err(scomp->dev, "error: failed to trigger widget %s\n", swidget->widget->name); break; default: break; } return ret; } /* event handlers for keyword detect component */ static const struct snd_soc_tplg_widget_events sof_kwd_events[] = { {SOF_KEYWORD_DETECT_DAPM_EVENT, sof_keyword_dapm_event}, }; static inline int get_tlv_data(const int *p, int tlv[TLV_ITEMS]) { /* we only support dB scale TLV type at the moment */ if ((int)p[SNDRV_CTL_TLVO_TYPE] != SNDRV_CTL_TLVT_DB_SCALE) return -EINVAL; /* min value in topology tlv data is multiplied by 100 */ tlv[TLV_MIN] = (int)p[SNDRV_CTL_TLVO_DB_SCALE_MIN] / 100; /* volume steps */ tlv[TLV_STEP] = (int)(p[SNDRV_CTL_TLVO_DB_SCALE_MUTE_AND_STEP] & TLV_DB_SCALE_MASK); /* mute ON/OFF */ if ((p[SNDRV_CTL_TLVO_DB_SCALE_MUTE_AND_STEP] & TLV_DB_SCALE_MUTE) == 0) tlv[TLV_MUTE] = 0; else tlv[TLV_MUTE] = 1; return 0; } /* * Function to truncate an unsigned 64-bit number * by x bits and return 32-bit unsigned number. This * function also takes care of rounding while truncating */ static inline u32 vol_shift_64(u64 i, u32 x) { /* do not truncate more than 32 bits */ if (x > 32) x = 32; if (x == 0) return (u32)i; return (u32)(((i >> (x - 1)) + 1) >> 1); } /* * Function to compute a ^ exp where, * a is a fractional number represented by a fixed-point * integer with a fractional world length of "fwl" * exp is an integer * fwl is the fractional word length * Return value is a fractional number represented by a * fixed-point integer with a fractional word length of "fwl" */ static u32 vol_pow32(u32 a, int exp, u32 fwl) { int i, iter; u32 power = 1 << fwl; u64 numerator; /* if exponent is 0, return 1 */ if (exp == 0) return power; /* determine the number of iterations based on the exponent */ if (exp < 0) iter = exp * -1; else iter = exp; /* mutiply a "iter" times to compute power */ for (i = 0; i < iter; i++) { /* * Product of 2 Qx.fwl fixed-point numbers yields a Q2*x.2*fwl * Truncate product back to fwl fractional bits with rounding */ power = vol_shift_64((u64)power * a, fwl); } if (exp > 0) { /* if exp is positive, return the result */ return power; } /* if exp is negative, return the multiplicative inverse */ numerator = (u64)1 << (fwl << 1); do_div(numerator, power); return (u32)numerator; } /* * Function to calculate volume gain from TLV data. * This function can only handle gain steps that are multiples of 0.5 dB */ static u32 vol_compute_gain(u32 value, int *tlv) { int dB_gain; u32 linear_gain; int f_step; /* mute volume */ if (value == 0 && tlv[TLV_MUTE]) return 0; /* * compute dB gain from tlv. tlv_step * in topology is multiplied by 100 */ dB_gain = tlv[TLV_MIN] + (value * tlv[TLV_STEP]) / 100; /* * compute linear gain represented by fixed-point * int with VOLUME_FWL fractional bits */ linear_gain = vol_pow32(VOL_TWENTIETH_ROOT_OF_TEN, dB_gain, VOLUME_FWL); /* extract the fractional part of volume step */ f_step = tlv[TLV_STEP] - (tlv[TLV_STEP] / 100); /* if volume step is an odd multiple of 0.5 dB */ if (f_step == VOL_HALF_DB_STEP && (value & 1)) linear_gain = vol_shift_64((u64)linear_gain * VOL_FORTIETH_ROOT_OF_TEN, VOLUME_FWL); return linear_gain; } /* * Set up volume table for kcontrols from tlv data * "size" specifies the number of entries in the table */ static int set_up_volume_table(struct snd_sof_control *scontrol, int tlv[TLV_ITEMS], int size) { int j; /* init the volume table */ scontrol->volume_table = kcalloc(size, sizeof(u32), GFP_KERNEL); if (!scontrol->volume_table) return -ENOMEM; /* populate the volume table */ for (j = 0; j < size ; j++) scontrol->volume_table[j] = vol_compute_gain(j, tlv); return 0; } struct sof_dai_types { const char *name; enum sof_ipc_dai_type type; }; static const struct sof_dai_types sof_dais[] = { {"SSP", SOF_DAI_INTEL_SSP}, {"HDA", SOF_DAI_INTEL_HDA}, {"DMIC", SOF_DAI_INTEL_DMIC}, {"ALH", SOF_DAI_INTEL_ALH}, {"SAI", SOF_DAI_IMX_SAI}, {"ESAI", SOF_DAI_IMX_ESAI}, {"ACP", SOF_DAI_AMD_BT}, {"ACPSP", SOF_DAI_AMD_SP}, {"ACPDMIC", SOF_DAI_AMD_DMIC}, {"AFE", SOF_DAI_MEDIATEK_AFE}, }; static enum sof_ipc_dai_type find_dai(const char *name) { int i; for (i = 0; i < ARRAY_SIZE(sof_dais); i++) { if (strcmp(name, sof_dais[i].name) == 0) return sof_dais[i].type; } return SOF_DAI_INTEL_NONE; } /* * Supported Frame format types and lookup, add new ones to end of list. */ struct sof_frame_types { const char *name; enum sof_ipc_frame frame; }; static const struct sof_frame_types sof_frames[] = { {"s16le", SOF_IPC_FRAME_S16_LE}, {"s24le", SOF_IPC_FRAME_S24_4LE}, {"s32le", SOF_IPC_FRAME_S32_LE}, {"float", SOF_IPC_FRAME_FLOAT}, }; static enum sof_ipc_frame find_format(const char *name) { int i; for (i = 0; i < ARRAY_SIZE(sof_frames); i++) { if (strcmp(name, sof_frames[i].name) == 0) return sof_frames[i].frame; } /* use s32le if nothing is specified */ return SOF_IPC_FRAME_S32_LE; } struct sof_process_types { const char *name; enum sof_ipc_process_type type; enum sof_comp_type comp_type; }; static const struct sof_process_types sof_process[] = { {"EQFIR", SOF_PROCESS_EQFIR, SOF_COMP_EQ_FIR}, {"EQIIR", SOF_PROCESS_EQIIR, SOF_COMP_EQ_IIR}, {"KEYWORD_DETECT", SOF_PROCESS_KEYWORD_DETECT, SOF_COMP_KEYWORD_DETECT}, {"KPB", SOF_PROCESS_KPB, SOF_COMP_KPB}, {"CHAN_SELECTOR", SOF_PROCESS_CHAN_SELECTOR, SOF_COMP_SELECTOR}, {"MUX", SOF_PROCESS_MUX, SOF_COMP_MUX}, {"DEMUX", SOF_PROCESS_DEMUX, SOF_COMP_DEMUX}, {"DCBLOCK", SOF_PROCESS_DCBLOCK, SOF_COMP_DCBLOCK}, {"SMART_AMP", SOF_PROCESS_SMART_AMP, SOF_COMP_SMART_AMP}, }; static enum sof_ipc_process_type find_process(const char *name) { int i; for (i = 0; i < ARRAY_SIZE(sof_process); i++) { if (strcmp(name, sof_process[i].name) == 0) return sof_process[i].type; } return SOF_PROCESS_NONE; } static enum sof_comp_type find_process_comp_type(enum sof_ipc_process_type type) { int i; for (i = 0; i < ARRAY_SIZE(sof_process); i++) { if (sof_process[i].type == type) return sof_process[i].comp_type; } return SOF_COMP_NONE; } int get_token_u32(void *elem, void *object, u32 offset) { struct snd_soc_tplg_vendor_value_elem *velem = elem; u32 *val = (u32 *)((u8 *)object + offset); *val = le32_to_cpu(velem->value); return 0; } int get_token_u16(void *elem, void *object, u32 offset) { struct snd_soc_tplg_vendor_value_elem *velem = elem; u16 *val = (u16 *)((u8 *)object + offset); *val = (u16)le32_to_cpu(velem->value); return 0; } int get_token_uuid(void *elem, void *object, u32 offset) { struct snd_soc_tplg_vendor_uuid_elem *velem = elem; u8 *dst = (u8 *)object + offset; memcpy(dst, velem->uuid, UUID_SIZE); return 0; } int get_token_comp_format(void *elem, void *object, u32 offset) { u32 *val = (u32 *)((u8 *)object + offset); *val = find_format((const char *)elem); return 0; } int get_token_dai_type(void *elem, void *object, u32 offset) { u32 *val = (u32 *)((u8 *)object + offset); *val = find_dai((const char *)elem); return 0; } static int get_token_process_type(void *elem, void *object, u32 offset) { u32 *val = (u32 *)((u8 *)object + offset); *val = find_process((const char *)elem); return 0; } /* DAI */ static const struct sof_topology_token dai_tokens[] = { {SOF_TKN_DAI_TYPE, SND_SOC_TPLG_TUPLE_TYPE_STRING, get_token_dai_type, offsetof(struct sof_ipc_comp_dai, type)}, {SOF_TKN_DAI_INDEX, SND_SOC_TPLG_TUPLE_TYPE_WORD, get_token_u32, offsetof(struct sof_ipc_comp_dai, dai_index)}, {SOF_TKN_DAI_DIRECTION, SND_SOC_TPLG_TUPLE_TYPE_WORD, get_token_u32, offsetof(struct sof_ipc_comp_dai, direction)}, }; /* BE DAI link */ static const struct sof_topology_token dai_link_tokens[] = { {SOF_TKN_DAI_TYPE, SND_SOC_TPLG_TUPLE_TYPE_STRING, get_token_dai_type, offsetof(struct sof_ipc_dai_config, type)}, {SOF_TKN_DAI_INDEX, SND_SOC_TPLG_TUPLE_TYPE_WORD, get_token_u32, offsetof(struct sof_ipc_dai_config, dai_index)}, }; /* SRC */ static const struct sof_topology_token src_tokens[] = { {SOF_TKN_SRC_RATE_IN, SND_SOC_TPLG_TUPLE_TYPE_WORD, get_token_u32, offsetof(struct sof_ipc_comp_src, source_rate)}, {SOF_TKN_SRC_RATE_OUT, SND_SOC_TPLG_TUPLE_TYPE_WORD, get_token_u32, offsetof(struct sof_ipc_comp_src, sink_rate)}, }; /* ASRC */ static const struct sof_topology_token asrc_tokens[] = { {SOF_TKN_ASRC_RATE_IN, SND_SOC_TPLG_TUPLE_TYPE_WORD, get_token_u32, offsetof(struct sof_ipc_comp_asrc, source_rate)}, {SOF_TKN_ASRC_RATE_OUT, SND_SOC_TPLG_TUPLE_TYPE_WORD, get_token_u32, offsetof(struct sof_ipc_comp_asrc, sink_rate)}, {SOF_TKN_ASRC_ASYNCHRONOUS_MODE, SND_SOC_TPLG_TUPLE_TYPE_WORD, get_token_u32, offsetof(struct sof_ipc_comp_asrc, asynchronous_mode)}, {SOF_TKN_ASRC_OPERATION_MODE, SND_SOC_TPLG_TUPLE_TYPE_WORD, get_token_u32, offsetof(struct sof_ipc_comp_asrc, operation_mode)}, }; /* Tone */ static const struct sof_topology_token tone_tokens[] = { }; /* EFFECT */ static const struct sof_topology_token process_tokens[] = { {SOF_TKN_PROCESS_TYPE, SND_SOC_TPLG_TUPLE_TYPE_STRING, get_token_process_type, offsetof(struct sof_ipc_comp_process, type)}, }; /* PCM */ static const struct sof_topology_token stream_tokens[] = { {SOF_TKN_STREAM_PLAYBACK_COMPATIBLE_D0I3, SND_SOC_TPLG_TUPLE_TYPE_BOOL, get_token_u16, offsetof(struct snd_sof_pcm, stream[0].d0i3_compatible)}, {SOF_TKN_STREAM_CAPTURE_COMPATIBLE_D0I3, SND_SOC_TPLG_TUPLE_TYPE_BOOL, get_token_u16, offsetof(struct snd_sof_pcm, stream[1].d0i3_compatible)}, }; /* Generic components */ static const struct sof_topology_token comp_tokens[] = { {SOF_TKN_COMP_PERIOD_SINK_COUNT, SND_SOC_TPLG_TUPLE_TYPE_WORD, get_token_u32, offsetof(struct sof_ipc_comp_config, periods_sink)}, {SOF_TKN_COMP_PERIOD_SOURCE_COUNT, SND_SOC_TPLG_TUPLE_TYPE_WORD, get_token_u32, offsetof(struct sof_ipc_comp_config, periods_source)}, {SOF_TKN_COMP_FORMAT, SND_SOC_TPLG_TUPLE_TYPE_STRING, get_token_comp_format, offsetof(struct sof_ipc_comp_config, frame_fmt)}, }; /* SSP */ static const struct sof_topology_token ssp_tokens[] = { {SOF_TKN_INTEL_SSP_CLKS_CONTROL, SND_SOC_TPLG_TUPLE_TYPE_WORD, get_token_u32, offsetof(struct sof_ipc_dai_ssp_params, clks_control)}, {SOF_TKN_INTEL_SSP_MCLK_ID, SND_SOC_TPLG_TUPLE_TYPE_SHORT, get_token_u16, offsetof(struct sof_ipc_dai_ssp_params, mclk_id)}, {SOF_TKN_INTEL_SSP_SAMPLE_BITS, SND_SOC_TPLG_TUPLE_TYPE_WORD, get_token_u32, offsetof(struct sof_ipc_dai_ssp_params, sample_valid_bits)}, {SOF_TKN_INTEL_SSP_FRAME_PULSE_WIDTH, SND_SOC_TPLG_TUPLE_TYPE_SHORT, get_token_u16, offsetof(struct sof_ipc_dai_ssp_params, frame_pulse_width)}, {SOF_TKN_INTEL_SSP_QUIRKS, SND_SOC_TPLG_TUPLE_TYPE_WORD, get_token_u32, offsetof(struct sof_ipc_dai_ssp_params, quirks)}, {SOF_TKN_INTEL_SSP_TDM_PADDING_PER_SLOT, SND_SOC_TPLG_TUPLE_TYPE_BOOL, get_token_u16, offsetof(struct sof_ipc_dai_ssp_params, tdm_per_slot_padding_flag)}, {SOF_TKN_INTEL_SSP_BCLK_DELAY, SND_SOC_TPLG_TUPLE_TYPE_WORD, get_token_u32, offsetof(struct sof_ipc_dai_ssp_params, bclk_delay)}, }; /* ALH */ static const struct sof_topology_token alh_tokens[] = { {SOF_TKN_INTEL_ALH_RATE, SND_SOC_TPLG_TUPLE_TYPE_WORD, get_token_u32, offsetof(struct sof_ipc_dai_alh_params, rate)}, {SOF_TKN_INTEL_ALH_CH, SND_SOC_TPLG_TUPLE_TYPE_WORD, get_token_u32, offsetof(struct sof_ipc_dai_alh_params, channels)}, }; /* DMIC */ static const struct sof_topology_token dmic_tokens[] = { {SOF_TKN_INTEL_DMIC_DRIVER_VERSION, SND_SOC_TPLG_TUPLE_TYPE_WORD, get_token_u32, offsetof(struct sof_ipc_dai_dmic_params, driver_ipc_version)}, {SOF_TKN_INTEL_DMIC_CLK_MIN, SND_SOC_TPLG_TUPLE_TYPE_WORD, get_token_u32, offsetof(struct sof_ipc_dai_dmic_params, pdmclk_min)}, {SOF_TKN_INTEL_DMIC_CLK_MAX, SND_SOC_TPLG_TUPLE_TYPE_WORD, get_token_u32, offsetof(struct sof_ipc_dai_dmic_params, pdmclk_max)}, {SOF_TKN_INTEL_DMIC_SAMPLE_RATE, SND_SOC_TPLG_TUPLE_TYPE_WORD, get_token_u32, offsetof(struct sof_ipc_dai_dmic_params, fifo_fs)}, {SOF_TKN_INTEL_DMIC_DUTY_MIN, SND_SOC_TPLG_TUPLE_TYPE_SHORT, get_token_u16, offsetof(struct sof_ipc_dai_dmic_params, duty_min)}, {SOF_TKN_INTEL_DMIC_DUTY_MAX, SND_SOC_TPLG_TUPLE_TYPE_SHORT, get_token_u16, offsetof(struct sof_ipc_dai_dmic_params, duty_max)}, {SOF_TKN_INTEL_DMIC_NUM_PDM_ACTIVE, SND_SOC_TPLG_TUPLE_TYPE_WORD, get_token_u32, offsetof(struct sof_ipc_dai_dmic_params, num_pdm_active)}, {SOF_TKN_INTEL_DMIC_FIFO_WORD_LENGTH, SND_SOC_TPLG_TUPLE_TYPE_SHORT, get_token_u16, offsetof(struct sof_ipc_dai_dmic_params, fifo_bits)}, {SOF_TKN_INTEL_DMIC_UNMUTE_RAMP_TIME_MS, SND_SOC_TPLG_TUPLE_TYPE_WORD, get_token_u32, offsetof(struct sof_ipc_dai_dmic_params, unmute_ramp_time)}, }; /* ESAI */ static const struct sof_topology_token esai_tokens[] = { {SOF_TKN_IMX_ESAI_MCLK_ID, SND_SOC_TPLG_TUPLE_TYPE_SHORT, get_token_u16, offsetof(struct sof_ipc_dai_esai_params, mclk_id)}, }; /* SAI */ static const struct sof_topology_token sai_tokens[] = { {SOF_TKN_IMX_SAI_MCLK_ID, SND_SOC_TPLG_TUPLE_TYPE_SHORT, get_token_u16, offsetof(struct sof_ipc_dai_sai_params, mclk_id)}, }; /* Core tokens */ static const struct sof_topology_token core_tokens[] = { {SOF_TKN_COMP_CORE_ID, SND_SOC_TPLG_TUPLE_TYPE_WORD, get_token_u32, offsetof(struct sof_ipc_comp, core)}, }; /* Component extended tokens */ static const struct sof_topology_token comp_ext_tokens[] = { {SOF_TKN_COMP_UUID, SND_SOC_TPLG_TUPLE_TYPE_UUID, get_token_uuid, offsetof(struct snd_sof_widget, uuid)}, }; /* * DMIC PDM Tokens * SOF_TKN_INTEL_DMIC_PDM_CTRL_ID should be the first token * as it increments the index while parsing the array of pdm tokens * and determines the correct offset */ static const struct sof_topology_token dmic_pdm_tokens[] = { {SOF_TKN_INTEL_DMIC_PDM_CTRL_ID, SND_SOC_TPLG_TUPLE_TYPE_SHORT, get_token_u16, offsetof(struct sof_ipc_dai_dmic_pdm_ctrl, id),}, {SOF_TKN_INTEL_DMIC_PDM_MIC_A_Enable, SND_SOC_TPLG_TUPLE_TYPE_SHORT, get_token_u16, offsetof(struct sof_ipc_dai_dmic_pdm_ctrl, enable_mic_a)}, {SOF_TKN_INTEL_DMIC_PDM_MIC_B_Enable, SND_SOC_TPLG_TUPLE_TYPE_SHORT, get_token_u16, offsetof(struct sof_ipc_dai_dmic_pdm_ctrl, enable_mic_b)}, {SOF_TKN_INTEL_DMIC_PDM_POLARITY_A, SND_SOC_TPLG_TUPLE_TYPE_SHORT, get_token_u16, offsetof(struct sof_ipc_dai_dmic_pdm_ctrl, polarity_mic_a)}, {SOF_TKN_INTEL_DMIC_PDM_POLARITY_B, SND_SOC_TPLG_TUPLE_TYPE_SHORT, get_token_u16, offsetof(struct sof_ipc_dai_dmic_pdm_ctrl, polarity_mic_b)}, {SOF_TKN_INTEL_DMIC_PDM_CLK_EDGE, SND_SOC_TPLG_TUPLE_TYPE_SHORT, get_token_u16, offsetof(struct sof_ipc_dai_dmic_pdm_ctrl, clk_edge)}, {SOF_TKN_INTEL_DMIC_PDM_SKEW, SND_SOC_TPLG_TUPLE_TYPE_SHORT, get_token_u16, offsetof(struct sof_ipc_dai_dmic_pdm_ctrl, skew)}, }; /* HDA */ static const struct sof_topology_token hda_tokens[] = { {SOF_TKN_INTEL_HDA_RATE, SND_SOC_TPLG_TUPLE_TYPE_WORD, get_token_u32, offsetof(struct sof_ipc_dai_hda_params, rate)}, {SOF_TKN_INTEL_HDA_CH, SND_SOC_TPLG_TUPLE_TYPE_WORD, get_token_u32, offsetof(struct sof_ipc_dai_hda_params, channels)}, }; /* Leds */ static const struct sof_topology_token led_tokens[] = { {SOF_TKN_MUTE_LED_USE, SND_SOC_TPLG_TUPLE_TYPE_WORD, get_token_u32, offsetof(struct snd_sof_led_control, use_led)}, {SOF_TKN_MUTE_LED_DIRECTION, SND_SOC_TPLG_TUPLE_TYPE_WORD, get_token_u32, offsetof(struct snd_sof_led_control, direction)}, }; /* AFE */ static const struct sof_topology_token afe_tokens[] = { {SOF_TKN_MEDIATEK_AFE_RATE, SND_SOC_TPLG_TUPLE_TYPE_WORD, get_token_u32, offsetof(struct sof_ipc_dai_mtk_afe_params, rate)}, {SOF_TKN_MEDIATEK_AFE_CH, SND_SOC_TPLG_TUPLE_TYPE_WORD, get_token_u32, offsetof(struct sof_ipc_dai_mtk_afe_params, channels)}, {SOF_TKN_MEDIATEK_AFE_FORMAT, SND_SOC_TPLG_TUPLE_TYPE_STRING, get_token_comp_format, offsetof(struct sof_ipc_dai_mtk_afe_params, format)}, }; /** * sof_parse_uuid_tokens - Parse multiple sets of UUID tokens * @scomp: pointer to soc component * @object: target ipc struct for parsed values * @offset: offset within the object pointer * @tokens: array of struct sof_topology_token containing the tokens to be matched * @num_tokens: number of tokens in tokens array * @array: source pointer to consecutive vendor arrays in topology * * This function parses multiple sets of string type tokens in vendor arrays */ static int sof_parse_uuid_tokens(struct snd_soc_component *scomp, void *object, size_t offset, const struct sof_topology_token *tokens, int num_tokens, struct snd_soc_tplg_vendor_array *array) { struct snd_soc_tplg_vendor_uuid_elem *elem; int found = 0; int i, j; /* parse element by element */ for (i = 0; i < le32_to_cpu(array->num_elems); i++) { elem = &array->uuid[i]; /* search for token */ for (j = 0; j < num_tokens; j++) { /* match token type */ if (tokens[j].type != SND_SOC_TPLG_TUPLE_TYPE_UUID) continue; /* match token id */ if (tokens[j].token != le32_to_cpu(elem->token)) continue; /* matched - now load token */ tokens[j].get_token(elem, object, offset + tokens[j].offset); found++; } } return found; } /** * sof_copy_tuples - Parse tokens and copy them to the @tuples array * @sdev: pointer to struct snd_sof_dev * @array: source pointer to consecutive vendor arrays in topology * @array_size: size of @array * @token_id: Token ID associated with a token array * @token_instance_num: number of times the same @token_id needs to be parsed i.e. the function * looks for @token_instance_num of each token in the token array associated * with the @token_id * @tuples: tuples array to copy the matched tuples to * @tuples_size: size of @tuples * @num_copied_tuples: pointer to the number of copied tuples in the tuples array * */ static int sof_copy_tuples(struct snd_sof_dev *sdev, struct snd_soc_tplg_vendor_array *array, int array_size, u32 token_id, int token_instance_num, struct snd_sof_tuple *tuples, int tuples_size, int *num_copied_tuples) { const struct sof_ipc_tplg_ops *ipc_tplg_ops = sdev->ipc->ops->tplg; const struct sof_token_info *token_list = ipc_tplg_ops->token_list; const struct sof_topology_token *tokens; int found = 0; int num_tokens, asize; int i, j; /* nothing to do if token_list is NULL */ if (!token_list) return 0; if (!tuples || !num_copied_tuples) { dev_err(sdev->dev, "Invalid tuples array\n"); return -EINVAL; } tokens = token_list[token_id].tokens; num_tokens = token_list[token_id].count; if (!tokens) { dev_err(sdev->dev, "No token array defined for token ID: %d\n", token_id); return -EINVAL; } /* check if there's space in the tuples array for new tokens */ if (*num_copied_tuples >= tuples_size) { dev_err(sdev->dev, "No space in tuples array for new tokens from %s", token_list[token_id].name); return -EINVAL; } while (array_size > 0 && found < num_tokens * token_instance_num) { asize = le32_to_cpu(array->size); /* validate asize */ if (asize < 0) { dev_err(sdev->dev, "Invalid array size 0x%x\n", asize); return -EINVAL; } /* make sure there is enough data before parsing */ array_size -= asize; if (array_size < 0) { dev_err(sdev->dev, "Invalid array size 0x%x\n", asize); return -EINVAL; } /* parse element by element */ for (i = 0; i < le32_to_cpu(array->num_elems); i++) { /* search for token */ for (j = 0; j < num_tokens; j++) { /* match token type */ if (!(tokens[j].type == SND_SOC_TPLG_TUPLE_TYPE_WORD || tokens[j].type == SND_SOC_TPLG_TUPLE_TYPE_SHORT || tokens[j].type == SND_SOC_TPLG_TUPLE_TYPE_BYTE || tokens[j].type == SND_SOC_TPLG_TUPLE_TYPE_BOOL || tokens[j].type == SND_SOC_TPLG_TUPLE_TYPE_STRING)) continue; if (tokens[j].type == SND_SOC_TPLG_TUPLE_TYPE_STRING) { struct snd_soc_tplg_vendor_string_elem *elem; elem = &array->string[i]; /* match token id */ if (tokens[j].token != le32_to_cpu(elem->token)) continue; tuples[*num_copied_tuples].token = tokens[j].token; tuples[*num_copied_tuples].value.s = elem->string; } else { struct snd_soc_tplg_vendor_value_elem *elem; elem = &array->value[i]; /* match token id */ if (tokens[j].token != le32_to_cpu(elem->token)) continue; tuples[*num_copied_tuples].token = tokens[j].token; tuples[*num_copied_tuples].value.v = le32_to_cpu(elem->value); } found++; (*num_copied_tuples)++; /* stop if there's no space for any more new tuples */ if (*num_copied_tuples == tuples_size) return 0; } } /* next array */ array = (struct snd_soc_tplg_vendor_array *)((u8 *)array + asize); } return 0; } /** * sof_parse_string_tokens - Parse multiple sets of tokens * @scomp: pointer to soc component * @object: target ipc struct for parsed values * @offset: offset within the object pointer * @tokens: array of struct sof_topology_token containing the tokens to be matched * @num_tokens: number of tokens in tokens array * @array: source pointer to consecutive vendor arrays in topology * * This function parses multiple sets of string type tokens in vendor arrays */ static int sof_parse_string_tokens(struct snd_soc_component *scomp, void *object, int offset, const struct sof_topology_token *tokens, int num_tokens, struct snd_soc_tplg_vendor_array *array) { struct snd_soc_tplg_vendor_string_elem *elem; int found = 0; int i, j; /* parse element by element */ for (i = 0; i < le32_to_cpu(array->num_elems); i++) { elem = &array->string[i]; /* search for token */ for (j = 0; j < num_tokens; j++) { /* match token type */ if (tokens[j].type != SND_SOC_TPLG_TUPLE_TYPE_STRING) continue; /* match token id */ if (tokens[j].token != le32_to_cpu(elem->token)) continue; /* matched - now load token */ tokens[j].get_token(elem->string, object, offset + tokens[j].offset); found++; } } return found; } /** * sof_parse_word_tokens - Parse multiple sets of tokens * @scomp: pointer to soc component * @object: target ipc struct for parsed values * @offset: offset within the object pointer * @tokens: array of struct sof_topology_token containing the tokens to be matched * @num_tokens: number of tokens in tokens array * @array: source pointer to consecutive vendor arrays in topology * * This function parses multiple sets of word type tokens in vendor arrays */ static int sof_parse_word_tokens(struct snd_soc_component *scomp, void *object, int offset, const struct sof_topology_token *tokens, int num_tokens, struct snd_soc_tplg_vendor_array *array) { struct snd_soc_tplg_vendor_value_elem *elem; int found = 0; int i, j; /* parse element by element */ for (i = 0; i < le32_to_cpu(array->num_elems); i++) { elem = &array->value[i]; /* search for token */ for (j = 0; j < num_tokens; j++) { /* match token type */ if (!(tokens[j].type == SND_SOC_TPLG_TUPLE_TYPE_WORD || tokens[j].type == SND_SOC_TPLG_TUPLE_TYPE_SHORT || tokens[j].type == SND_SOC_TPLG_TUPLE_TYPE_BYTE || tokens[j].type == SND_SOC_TPLG_TUPLE_TYPE_BOOL)) continue; /* match token id */ if (tokens[j].token != le32_to_cpu(elem->token)) continue; /* load token */ tokens[j].get_token(elem, object, offset + tokens[j].offset); found++; } } return found; } /** * sof_parse_token_sets - Parse multiple sets of tokens * @scomp: pointer to soc component * @object: target ipc struct for parsed values * @tokens: token definition array describing what tokens to parse * @count: number of tokens in definition array * @array: source pointer to consecutive vendor arrays in topology * @array_size: total size of @array * @token_instance_num: number of times the same tokens needs to be parsed i.e. the function * looks for @token_instance_num of each token in the @tokens * @object_size: offset to next target ipc struct with multiple sets * * This function parses multiple sets of tokens in vendor arrays into * consecutive ipc structs. */ static int sof_parse_token_sets(struct snd_soc_component *scomp, void *object, const struct sof_topology_token *tokens, int count, struct snd_soc_tplg_vendor_array *array, int array_size, int token_instance_num, size_t object_size) { size_t offset = 0; int found = 0; int total = 0; int asize; while (array_size > 0 && total < count * token_instance_num) { asize = le32_to_cpu(array->size); /* validate asize */ if (asize < 0) { /* FIXME: A zero-size array makes no sense */ dev_err(scomp->dev, "error: invalid array size 0x%x\n", asize); return -EINVAL; } /* make sure there is enough data before parsing */ array_size -= asize; if (array_size < 0) { dev_err(scomp->dev, "error: invalid array size 0x%x\n", asize); return -EINVAL; } /* call correct parser depending on type */ switch (le32_to_cpu(array->type)) { case SND_SOC_TPLG_TUPLE_TYPE_UUID: found += sof_parse_uuid_tokens(scomp, object, offset, tokens, count, array); break; case SND_SOC_TPLG_TUPLE_TYPE_STRING: found += sof_parse_string_tokens(scomp, object, offset, tokens, count, array); break; case SND_SOC_TPLG_TUPLE_TYPE_BOOL: case SND_SOC_TPLG_TUPLE_TYPE_BYTE: case SND_SOC_TPLG_TUPLE_TYPE_WORD: case SND_SOC_TPLG_TUPLE_TYPE_SHORT: found += sof_parse_word_tokens(scomp, object, offset, tokens, count, array); break; default: dev_err(scomp->dev, "error: unknown token type %d\n", array->type); return -EINVAL; } /* next array */ array = (struct snd_soc_tplg_vendor_array *)((u8 *)array + asize); /* move to next target struct */ if (found >= count) { offset += object_size; total += found; found = 0; } } return 0; } /** * sof_parse_tokens - Parse one set of tokens * @scomp: pointer to soc component * @object: target ipc struct for parsed values * @tokens: token definition array describing what tokens to parse * @num_tokens: number of tokens in definition array * @array: source pointer to consecutive vendor arrays in topology * @array_size: total size of @array * * This function parses a single set of tokens in vendor arrays into * consecutive ipc structs. */ static int sof_parse_tokens(struct snd_soc_component *scomp, void *object, const struct sof_topology_token *tokens, int num_tokens, struct snd_soc_tplg_vendor_array *array, int array_size) { /* * sof_parse_tokens is used when topology contains only a single set of * identical tuples arrays. So additional parameters to * sof_parse_token_sets are sets = 1 (only 1 set) and * object_size = 0 (irrelevant). */ return sof_parse_token_sets(scomp, object, tokens, num_tokens, array, array_size, 1, 0); } static void sof_dbg_comp_config(struct snd_soc_component *scomp, struct sof_ipc_comp_config *config) { dev_dbg(scomp->dev, " config: periods snk %d src %d fmt %d\n", config->periods_sink, config->periods_source, config->frame_fmt); } /* * Standard Kcontrols. */ static int sof_control_load_volume(struct snd_soc_component *scomp, struct snd_sof_control *scontrol, struct snd_kcontrol_new *kc, struct snd_soc_tplg_ctl_hdr *hdr) { struct snd_sof_dev *sdev = snd_soc_component_get_drvdata(scomp); struct snd_soc_tplg_mixer_control *mc = container_of(hdr, struct snd_soc_tplg_mixer_control, hdr); struct sof_ipc_ctrl_data *cdata; int tlv[TLV_ITEMS]; unsigned int i; int ret; /* validate topology data */ if (le32_to_cpu(mc->num_channels) > SND_SOC_TPLG_MAX_CHAN) { ret = -EINVAL; goto out; } /* * If control has more than 2 channels we need to override the info. This is because even if * ASoC layer has defined topology's max channel count to SND_SOC_TPLG_MAX_CHAN = 8, the * pre-defined dapm control types (and related functions) creating the actual control * restrict the channels only to mono or stereo. */ if (le32_to_cpu(mc->num_channels) > 2) kc->info = snd_sof_volume_info; /* init the volume get/put data */ scontrol->size = struct_size(scontrol->control_data, chanv, le32_to_cpu(mc->num_channels)); scontrol->control_data = kzalloc(scontrol->size, GFP_KERNEL); if (!scontrol->control_data) { ret = -ENOMEM; goto out; } scontrol->comp_id = sdev->next_comp_id; scontrol->min_volume_step = le32_to_cpu(mc->min); scontrol->max_volume_step = le32_to_cpu(mc->max); scontrol->num_channels = le32_to_cpu(mc->num_channels); scontrol->control_data->index = kc->index; /* set cmd for mixer control */ if (le32_to_cpu(mc->max) == 1) { scontrol->control_data->cmd = SOF_CTRL_CMD_SWITCH; goto skip; } scontrol->control_data->cmd = SOF_CTRL_CMD_VOLUME; /* extract tlv data */ if (!kc->tlv.p || get_tlv_data(kc->tlv.p, tlv) < 0) { dev_err(scomp->dev, "error: invalid TLV data\n"); ret = -EINVAL; goto out_free; } /* set up volume table */ ret = set_up_volume_table(scontrol, tlv, le32_to_cpu(mc->max) + 1); if (ret < 0) { dev_err(scomp->dev, "error: setting up volume table\n"); goto out_free; } /* set default volume values to 0dB in control */ cdata = scontrol->control_data; for (i = 0; i < scontrol->num_channels; i++) { cdata->chanv[i].channel = i; cdata->chanv[i].value = VOL_ZERO_DB; } skip: /* set up possible led control from mixer private data */ ret = sof_parse_tokens(scomp, &scontrol->led_ctl, led_tokens, ARRAY_SIZE(led_tokens), mc->priv.array, le32_to_cpu(mc->priv.size)); if (ret != 0) { dev_err(scomp->dev, "error: parse led tokens failed %d\n", le32_to_cpu(mc->priv.size)); goto out_free_table; } dev_dbg(scomp->dev, "tplg: load kcontrol index %d chans %d\n", scontrol->comp_id, scontrol->num_channels); return 0; out_free_table: if (le32_to_cpu(mc->max) > 1) kfree(scontrol->volume_table); out_free: kfree(scontrol->control_data); out: return ret; } static int sof_control_load_enum(struct snd_soc_component *scomp, struct snd_sof_control *scontrol, struct snd_kcontrol_new *kc, struct snd_soc_tplg_ctl_hdr *hdr) { struct snd_sof_dev *sdev = snd_soc_component_get_drvdata(scomp); struct snd_soc_tplg_enum_control *ec = container_of(hdr, struct snd_soc_tplg_enum_control, hdr); /* validate topology data */ if (le32_to_cpu(ec->num_channels) > SND_SOC_TPLG_MAX_CHAN) return -EINVAL; /* init the enum get/put data */ scontrol->size = struct_size(scontrol->control_data, chanv, le32_to_cpu(ec->num_channels)); scontrol->control_data = kzalloc(scontrol->size, GFP_KERNEL); if (!scontrol->control_data) return -ENOMEM; scontrol->comp_id = sdev->next_comp_id; scontrol->num_channels = le32_to_cpu(ec->num_channels); scontrol->control_data->index = kc->index; scontrol->control_data->cmd = SOF_CTRL_CMD_ENUM; dev_dbg(scomp->dev, "tplg: load kcontrol index %d chans %d comp_id %d\n", scontrol->comp_id, scontrol->num_channels, scontrol->comp_id); return 0; } static int sof_control_load_bytes(struct snd_soc_component *scomp, struct snd_sof_control *scontrol, struct snd_kcontrol_new *kc, struct snd_soc_tplg_ctl_hdr *hdr) { struct snd_sof_dev *sdev = snd_soc_component_get_drvdata(scomp); struct sof_ipc_ctrl_data *cdata; struct snd_soc_tplg_bytes_control *control = container_of(hdr, struct snd_soc_tplg_bytes_control, hdr); struct soc_bytes_ext *sbe = (struct soc_bytes_ext *)kc->private_value; size_t max_size = sbe->max; size_t priv_size = le32_to_cpu(control->priv.size); int ret; if (max_size < sizeof(struct sof_ipc_ctrl_data) || max_size < sizeof(struct sof_abi_hdr)) { ret = -EINVAL; goto out; } /* init the get/put bytes data */ if (priv_size > max_size - sizeof(struct sof_ipc_ctrl_data)) { dev_err(scomp->dev, "err: bytes data size %zu exceeds max %zu.\n", priv_size, max_size - sizeof(struct sof_ipc_ctrl_data)); ret = -EINVAL; goto out; } scontrol->size = sizeof(struct sof_ipc_ctrl_data) + priv_size; scontrol->control_data = kzalloc(max_size, GFP_KERNEL); cdata = scontrol->control_data; if (!scontrol->control_data) { ret = -ENOMEM; goto out; } scontrol->comp_id = sdev->next_comp_id; scontrol->control_data->cmd = SOF_CTRL_CMD_BINARY; scontrol->control_data->index = kc->index; dev_dbg(scomp->dev, "tplg: load kcontrol index %d chans %d\n", scontrol->comp_id, scontrol->num_channels); if (le32_to_cpu(control->priv.size) > 0) { memcpy(cdata->data, control->priv.data, le32_to_cpu(control->priv.size)); if (cdata->data->magic != SOF_ABI_MAGIC) { dev_err(scomp->dev, "error: Wrong ABI magic 0x%08x.\n", cdata->data->magic); ret = -EINVAL; goto out_free; } if (SOF_ABI_VERSION_INCOMPATIBLE(SOF_ABI_VERSION, cdata->data->abi)) { dev_err(scomp->dev, "error: Incompatible ABI version 0x%08x.\n", cdata->data->abi); ret = -EINVAL; goto out_free; } if (cdata->data->size + sizeof(struct sof_abi_hdr) != le32_to_cpu(control->priv.size)) { dev_err(scomp->dev, "error: Conflict in bytes vs. priv size.\n"); ret = -EINVAL; goto out_free; } } return 0; out_free: kfree(scontrol->control_data); out: return ret; } /* external kcontrol init - used for any driver specific init */ static int sof_control_load(struct snd_soc_component *scomp, int index, struct snd_kcontrol_new *kc, struct snd_soc_tplg_ctl_hdr *hdr) { struct soc_mixer_control *sm; struct soc_bytes_ext *sbe; struct soc_enum *se; struct snd_sof_dev *sdev = snd_soc_component_get_drvdata(scomp); struct snd_soc_dobj *dobj; struct snd_sof_control *scontrol; int ret; dev_dbg(scomp->dev, "tplg: load control type %d name : %s\n", hdr->type, hdr->name); scontrol = kzalloc(sizeof(*scontrol), GFP_KERNEL); if (!scontrol) return -ENOMEM; scontrol->scomp = scomp; scontrol->access = kc->access; switch (le32_to_cpu(hdr->ops.info)) { case SND_SOC_TPLG_CTL_VOLSW: case SND_SOC_TPLG_CTL_VOLSW_SX: case SND_SOC_TPLG_CTL_VOLSW_XR_SX: sm = (struct soc_mixer_control *)kc->private_value; dobj = &sm->dobj; ret = sof_control_load_volume(scomp, scontrol, kc, hdr); break; case SND_SOC_TPLG_CTL_BYTES: sbe = (struct soc_bytes_ext *)kc->private_value; dobj = &sbe->dobj; ret = sof_control_load_bytes(scomp, scontrol, kc, hdr); break; case SND_SOC_TPLG_CTL_ENUM: case SND_SOC_TPLG_CTL_ENUM_VALUE: se = (struct soc_enum *)kc->private_value; dobj = &se->dobj; ret = sof_control_load_enum(scomp, scontrol, kc, hdr); break; case SND_SOC_TPLG_CTL_RANGE: case SND_SOC_TPLG_CTL_STROBE: case SND_SOC_TPLG_DAPM_CTL_VOLSW: case SND_SOC_TPLG_DAPM_CTL_ENUM_DOUBLE: case SND_SOC_TPLG_DAPM_CTL_ENUM_VIRT: case SND_SOC_TPLG_DAPM_CTL_ENUM_VALUE: case SND_SOC_TPLG_DAPM_CTL_PIN: default: dev_warn(scomp->dev, "control type not supported %d:%d:%d\n", hdr->ops.get, hdr->ops.put, hdr->ops.info); kfree(scontrol); return 0; } if (ret < 0) { kfree(scontrol); return ret; } scontrol->led_ctl.led_value = -1; dobj->private = scontrol; list_add(&scontrol->list, &sdev->kcontrol_list); return 0; } static int sof_control_unload(struct snd_soc_component *scomp, struct snd_soc_dobj *dobj) { struct snd_sof_dev *sdev = snd_soc_component_get_drvdata(scomp); struct sof_ipc_free fcomp; struct snd_sof_control *scontrol = dobj->private; dev_dbg(scomp->dev, "tplg: unload control name : %s\n", scomp->name); fcomp.hdr.cmd = SOF_IPC_GLB_TPLG_MSG | SOF_IPC_TPLG_COMP_FREE; fcomp.hdr.size = sizeof(fcomp); fcomp.id = scontrol->comp_id; kfree(scontrol->control_data); list_del(&scontrol->list); kfree(scontrol); /* send IPC to the DSP */ return sof_ipc_tx_message(sdev->ipc, fcomp.hdr.cmd, &fcomp, sizeof(fcomp), NULL, 0); } /* * DAI Topology */ static int sof_connect_dai_widget(struct snd_soc_component *scomp, struct snd_soc_dapm_widget *w, struct snd_soc_tplg_dapm_widget *tw, struct snd_sof_dai *dai) { struct snd_soc_card *card = scomp->card; struct snd_soc_pcm_runtime *rtd; struct snd_soc_dai *cpu_dai; int i; list_for_each_entry(rtd, &card->rtd_list, list) { dev_vdbg(scomp->dev, "tplg: check widget: %s stream: %s dai stream: %s\n", w->name, w->sname, rtd->dai_link->stream_name); if (!w->sname || !rtd->dai_link->stream_name) continue; /* does stream match DAI link ? */ if (strcmp(w->sname, rtd->dai_link->stream_name)) continue; switch (w->id) { case snd_soc_dapm_dai_out: for_each_rtd_cpu_dais(rtd, i, cpu_dai) { /* * Please create DAI widget in the right order * to ensure BE will connect to the right DAI * widget. */ if (!cpu_dai->capture_widget) { cpu_dai->capture_widget = w; break; } } if (i == rtd->num_cpus) { dev_err(scomp->dev, "error: can't find BE for DAI %s\n", w->name); return -EINVAL; } dai->name = rtd->dai_link->name; dev_dbg(scomp->dev, "tplg: connected widget %s -> DAI link %s\n", w->name, rtd->dai_link->name); break; case snd_soc_dapm_dai_in: for_each_rtd_cpu_dais(rtd, i, cpu_dai) { /* * Please create DAI widget in the right order * to ensure BE will connect to the right DAI * widget. */ if (!cpu_dai->playback_widget) { cpu_dai->playback_widget = w; break; } } if (i == rtd->num_cpus) { dev_err(scomp->dev, "error: can't find BE for DAI %s\n", w->name); return -EINVAL; } dai->name = rtd->dai_link->name; dev_dbg(scomp->dev, "tplg: connected widget %s -> DAI link %s\n", w->name, rtd->dai_link->name); break; default: break; } } /* check we have a connection */ if (!dai->name) { dev_err(scomp->dev, "error: can't connect DAI %s stream %s\n", w->name, w->sname); return -EINVAL; } return 0; } /** * sof_comp_alloc - allocate and initialize buffer for a new component * @swidget: pointer to struct snd_sof_widget containing extended data * @ipc_size: IPC payload size that will be updated depending on valid * extended data. * @index: ID of the pipeline the component belongs to * * Return: The pointer to the new allocated component, NULL if failed. */ static struct sof_ipc_comp *sof_comp_alloc(struct snd_sof_widget *swidget, size_t *ipc_size, int index) { struct sof_ipc_comp *comp; size_t total_size = *ipc_size; size_t ext_size = sizeof(swidget->uuid); /* only non-zero UUID is valid */ if (!guid_is_null(&swidget->uuid)) total_size += ext_size; comp = kzalloc(total_size, GFP_KERNEL); if (!comp) return NULL; /* configure comp new IPC message */ comp->hdr.size = total_size; comp->hdr.cmd = SOF_IPC_GLB_TPLG_MSG | SOF_IPC_TPLG_COMP_NEW; comp->id = swidget->comp_id; comp->pipeline_id = index; comp->core = swidget->core; /* handle the extended data if needed */ if (total_size > *ipc_size) { /* append extended data to the end of the component */ memcpy((u8 *)comp + *ipc_size, &swidget->uuid, ext_size); comp->ext_data_length = ext_size; } /* update ipc_size and return */ *ipc_size = total_size; return comp; } static int sof_widget_load_dai(struct snd_soc_component *scomp, int index, struct snd_sof_widget *swidget, struct snd_soc_tplg_dapm_widget *tw, struct snd_sof_dai *dai) { struct snd_soc_tplg_private *private = &tw->priv; struct sof_dai_private_data *dai_data; struct sof_ipc_comp_dai *comp_dai; size_t ipc_size = sizeof(*comp_dai); int ret; dai_data = kzalloc(sizeof(*dai_data), GFP_KERNEL); if (!dai_data) return -ENOMEM; comp_dai = (struct sof_ipc_comp_dai *) sof_comp_alloc(swidget, &ipc_size, index); if (!comp_dai) { ret = -ENOMEM; goto free; } /* configure dai IPC message */ comp_dai->comp.type = SOF_COMP_DAI; comp_dai->config.hdr.size = sizeof(comp_dai->config); ret = sof_parse_tokens(scomp, comp_dai, dai_tokens, ARRAY_SIZE(dai_tokens), private->array, le32_to_cpu(private->size)); if (ret != 0) { dev_err(scomp->dev, "error: parse dai tokens failed %d\n", le32_to_cpu(private->size)); goto free; } ret = sof_parse_tokens(scomp, &comp_dai->config, comp_tokens, ARRAY_SIZE(comp_tokens), private->array, le32_to_cpu(private->size)); if (ret != 0) { dev_err(scomp->dev, "error: parse dai.cfg tokens failed %d\n", private->size); goto free; } dev_dbg(scomp->dev, "dai %s: type %d index %d\n", swidget->widget->name, comp_dai->type, comp_dai->dai_index); sof_dbg_comp_config(scomp, &comp_dai->config); if (dai) { dai->scomp = scomp; dai_data->comp_dai = comp_dai; dai->private = dai_data; } return 0; free: kfree(dai_data); return ret; } /* bind PCM ID to host component ID */ static int spcm_bind(struct snd_soc_component *scomp, struct snd_sof_pcm *spcm, int dir) { struct snd_sof_widget *host_widget; host_widget = snd_sof_find_swidget_sname(scomp, spcm->pcm.caps[dir].name, dir); if (!host_widget) { dev_err(scomp->dev, "can't find host comp to bind pcm\n"); return -EINVAL; } spcm->stream[dir].comp_id = host_widget->comp_id; return 0; } static int sof_widget_parse_tokens(struct snd_soc_component *scomp, struct snd_sof_widget *swidget, struct snd_soc_tplg_dapm_widget *tw, enum sof_tokens *object_token_list, int count) { struct snd_sof_dev *sdev = snd_soc_component_get_drvdata(scomp); const struct sof_ipc_tplg_ops *ipc_tplg_ops = sdev->ipc->ops->tplg; const struct sof_token_info *token_list = ipc_tplg_ops->token_list; struct snd_soc_tplg_private *private = &tw->priv; int num_tuples = 0; size_t size; int ret, i; if (count > 0 && !object_token_list) { dev_err(scomp->dev, "No token list for widget %s\n", swidget->widget->name); return -EINVAL; } /* calculate max size of tuples array */ for (i = 0; i < count; i++) num_tuples += token_list[object_token_list[i]].count; /* allocate memory for tuples array */ size = sizeof(struct snd_sof_tuple) * num_tuples; swidget->tuples = kzalloc(size, GFP_KERNEL); if (!swidget->tuples) return -ENOMEM; /* parse token list for widget */ for (i = 0; i < count; i++) { if (object_token_list[i] >= SOF_TOKEN_COUNT) { dev_err(scomp->dev, "Invalid token id %d for widget %s\n", object_token_list[i], swidget->widget->name); ret = -EINVAL; goto err; } /* parse and save UUID in swidget */ if (object_token_list[i] == SOF_COMP_EXT_TOKENS) { ret = sof_parse_tokens(scomp, swidget, token_list[object_token_list[i]].tokens, token_list[object_token_list[i]].count, private->array, le32_to_cpu(private->size)); if (ret < 0) { dev_err(scomp->dev, "Failed parsing %s for widget %s\n", token_list[object_token_list[i]].name, swidget->widget->name); goto err; } continue; } /* copy one set of tuples per token ID into swidget->tuples */ ret = sof_copy_tuples(sdev, private->array, le32_to_cpu(private->size), object_token_list[i], 1, swidget->tuples, num_tuples, &swidget->num_tuples); if (ret < 0) { dev_err(scomp->dev, "Failed parsing %s for widget %s err: %d\n", token_list[object_token_list[i]].name, swidget->widget->name, ret); goto err; } } return 0; err: kfree(swidget->tuples); return ret; } /* * Mixer topology */ static int sof_widget_load_mixer(struct snd_soc_component *scomp, int index, struct snd_sof_widget *swidget, struct snd_soc_tplg_dapm_widget *tw) { struct snd_soc_tplg_private *private = &tw->priv; struct sof_ipc_comp_mixer *mixer; size_t ipc_size = sizeof(*mixer); int ret; mixer = (struct sof_ipc_comp_mixer *) sof_comp_alloc(swidget, &ipc_size, index); if (!mixer) return -ENOMEM; /* configure mixer IPC message */ mixer->comp.type = SOF_COMP_MIXER; mixer->config.hdr.size = sizeof(mixer->config); ret = sof_parse_tokens(scomp, &mixer->config, comp_tokens, ARRAY_SIZE(comp_tokens), private->array, le32_to_cpu(private->size)); if (ret != 0) { dev_err(scomp->dev, "error: parse mixer.cfg tokens failed %d\n", private->size); kfree(mixer); return ret; } sof_dbg_comp_config(scomp, &mixer->config); swidget->private = mixer; return 0; } /* * Mux topology */ static int sof_widget_load_mux(struct snd_soc_component *scomp, int index, struct snd_sof_widget *swidget, struct snd_soc_tplg_dapm_widget *tw) { struct snd_soc_tplg_private *private = &tw->priv; struct sof_ipc_comp_mux *mux; size_t ipc_size = sizeof(*mux); int ret; mux = (struct sof_ipc_comp_mux *) sof_comp_alloc(swidget, &ipc_size, index); if (!mux) return -ENOMEM; /* configure mux IPC message */ mux->comp.type = SOF_COMP_MUX; mux->config.hdr.size = sizeof(mux->config); ret = sof_parse_tokens(scomp, &mux->config, comp_tokens, ARRAY_SIZE(comp_tokens), private->array, le32_to_cpu(private->size)); if (ret != 0) { dev_err(scomp->dev, "error: parse mux.cfg tokens failed %d\n", private->size); kfree(mux); return ret; } sof_dbg_comp_config(scomp, &mux->config); swidget->private = mux; return 0; } /* * SRC Topology */ static int sof_widget_load_src(struct snd_soc_component *scomp, int index, struct snd_sof_widget *swidget, struct snd_soc_tplg_dapm_widget *tw) { struct snd_soc_tplg_private *private = &tw->priv; struct sof_ipc_comp_src *src; size_t ipc_size = sizeof(*src); int ret; src = (struct sof_ipc_comp_src *) sof_comp_alloc(swidget, &ipc_size, index); if (!src) return -ENOMEM; /* configure src IPC message */ src->comp.type = SOF_COMP_SRC; src->config.hdr.size = sizeof(src->config); ret = sof_parse_tokens(scomp, src, src_tokens, ARRAY_SIZE(src_tokens), private->array, le32_to_cpu(private->size)); if (ret != 0) { dev_err(scomp->dev, "error: parse src tokens failed %d\n", private->size); goto err; } ret = sof_parse_tokens(scomp, &src->config, comp_tokens, ARRAY_SIZE(comp_tokens), private->array, le32_to_cpu(private->size)); if (ret != 0) { dev_err(scomp->dev, "error: parse src.cfg tokens failed %d\n", le32_to_cpu(private->size)); goto err; } dev_dbg(scomp->dev, "src %s: source rate %d sink rate %d\n", swidget->widget->name, src->source_rate, src->sink_rate); sof_dbg_comp_config(scomp, &src->config); swidget->private = src; return 0; err: kfree(src); return ret; } /* * ASRC Topology */ static int sof_widget_load_asrc(struct snd_soc_component *scomp, int index, struct snd_sof_widget *swidget, struct snd_soc_tplg_dapm_widget *tw) { struct snd_soc_tplg_private *private = &tw->priv; struct sof_ipc_comp_asrc *asrc; size_t ipc_size = sizeof(*asrc); int ret; asrc = (struct sof_ipc_comp_asrc *) sof_comp_alloc(swidget, &ipc_size, index); if (!asrc) return -ENOMEM; /* configure ASRC IPC message */ asrc->comp.type = SOF_COMP_ASRC; asrc->config.hdr.size = sizeof(asrc->config); ret = sof_parse_tokens(scomp, asrc, asrc_tokens, ARRAY_SIZE(asrc_tokens), private->array, le32_to_cpu(private->size)); if (ret != 0) { dev_err(scomp->dev, "error: parse asrc tokens failed %d\n", private->size); goto err; } ret = sof_parse_tokens(scomp, &asrc->config, comp_tokens, ARRAY_SIZE(comp_tokens), private->array, le32_to_cpu(private->size)); if (ret != 0) { dev_err(scomp->dev, "error: parse asrc.cfg tokens failed %d\n", le32_to_cpu(private->size)); goto err; } dev_dbg(scomp->dev, "asrc %s: source rate %d sink rate %d " "asynch %d operation %d\n", swidget->widget->name, asrc->source_rate, asrc->sink_rate, asrc->asynchronous_mode, asrc->operation_mode); sof_dbg_comp_config(scomp, &asrc->config); swidget->private = asrc; return 0; err: kfree(asrc); return ret; } /* * Signal Generator Topology */ static int sof_widget_load_siggen(struct snd_soc_component *scomp, int index, struct snd_sof_widget *swidget, struct snd_soc_tplg_dapm_widget *tw) { struct snd_soc_tplg_private *private = &tw->priv; struct sof_ipc_comp_tone *tone; size_t ipc_size = sizeof(*tone); int ret; tone = (struct sof_ipc_comp_tone *) sof_comp_alloc(swidget, &ipc_size, index); if (!tone) return -ENOMEM; /* configure siggen IPC message */ tone->comp.type = SOF_COMP_TONE; tone->config.hdr.size = sizeof(tone->config); ret = sof_parse_tokens(scomp, tone, tone_tokens, ARRAY_SIZE(tone_tokens), private->array, le32_to_cpu(private->size)); if (ret != 0) { dev_err(scomp->dev, "error: parse tone tokens failed %d\n", le32_to_cpu(private->size)); goto err; } ret = sof_parse_tokens(scomp, &tone->config, comp_tokens, ARRAY_SIZE(comp_tokens), private->array, le32_to_cpu(private->size)); if (ret != 0) { dev_err(scomp->dev, "error: parse tone.cfg tokens failed %d\n", le32_to_cpu(private->size)); goto err; } dev_dbg(scomp->dev, "tone %s: frequency %d amplitude %d\n", swidget->widget->name, tone->frequency, tone->amplitude); sof_dbg_comp_config(scomp, &tone->config); swidget->private = tone; return 0; err: kfree(tone); return ret; } static int sof_get_control_data(struct snd_soc_component *scomp, struct snd_soc_dapm_widget *widget, struct sof_widget_data *wdata, size_t *size) { const struct snd_kcontrol_new *kc; struct soc_mixer_control *sm; struct soc_bytes_ext *sbe; struct soc_enum *se; int i; *size = 0; for (i = 0; i < widget->num_kcontrols; i++) { kc = &widget->kcontrol_news[i]; switch (widget->dobj.widget.kcontrol_type[i]) { case SND_SOC_TPLG_TYPE_MIXER: sm = (struct soc_mixer_control *)kc->private_value; wdata[i].control = sm->dobj.private; break; case SND_SOC_TPLG_TYPE_BYTES: sbe = (struct soc_bytes_ext *)kc->private_value; wdata[i].control = sbe->dobj.private; break; case SND_SOC_TPLG_TYPE_ENUM: se = (struct soc_enum *)kc->private_value; wdata[i].control = se->dobj.private; break; default: dev_err(scomp->dev, "error: unknown kcontrol type %u in widget %s\n", widget->dobj.widget.kcontrol_type[i], widget->name); return -EINVAL; } if (!wdata[i].control) { dev_err(scomp->dev, "error: no scontrol for widget %s\n", widget->name); return -EINVAL; } wdata[i].pdata = wdata[i].control->control_data->data; if (!wdata[i].pdata) return -EINVAL; /* make sure data is valid - data can be updated at runtime */ if (widget->dobj.widget.kcontrol_type[i] == SND_SOC_TPLG_TYPE_BYTES && wdata[i].pdata->magic != SOF_ABI_MAGIC) return -EINVAL; *size += wdata[i].pdata->size; /* get data type */ switch (wdata[i].control->control_data->cmd) { case SOF_CTRL_CMD_VOLUME: case SOF_CTRL_CMD_ENUM: case SOF_CTRL_CMD_SWITCH: wdata[i].ipc_cmd = SOF_IPC_COMP_SET_VALUE; wdata[i].ctrl_type = SOF_CTRL_TYPE_VALUE_CHAN_SET; break; case SOF_CTRL_CMD_BINARY: wdata[i].ipc_cmd = SOF_IPC_COMP_SET_DATA; wdata[i].ctrl_type = SOF_CTRL_TYPE_DATA_SET; break; default: break; } } return 0; } static int sof_process_load(struct snd_soc_component *scomp, int index, struct snd_sof_widget *swidget, struct snd_soc_tplg_dapm_widget *tw, int type) { struct snd_soc_dapm_widget *widget = swidget->widget; struct snd_soc_tplg_private *private = &tw->priv; struct sof_ipc_comp_process *process; struct sof_widget_data *wdata = NULL; size_t ipc_data_size = 0; size_t ipc_size; int offset = 0; int ret; int i; /* allocate struct for widget control data sizes and types */ if (widget->num_kcontrols) { wdata = kcalloc(widget->num_kcontrols, sizeof(*wdata), GFP_KERNEL); if (!wdata) return -ENOMEM; /* get possible component controls and get size of all pdata */ ret = sof_get_control_data(scomp, widget, wdata, &ipc_data_size); if (ret < 0) goto out; } ipc_size = sizeof(struct sof_ipc_comp_process) + ipc_data_size; /* we are exceeding max ipc size, config needs to be sent separately */ if (ipc_size > SOF_IPC_MSG_MAX_SIZE) { ipc_size -= ipc_data_size; ipc_data_size = 0; } process = (struct sof_ipc_comp_process *) sof_comp_alloc(swidget, &ipc_size, index); if (!process) { ret = -ENOMEM; goto out; } /* configure iir IPC message */ process->comp.type = type; process->config.hdr.size = sizeof(process->config); ret = sof_parse_tokens(scomp, &process->config, comp_tokens, ARRAY_SIZE(comp_tokens), private->array, le32_to_cpu(private->size)); if (ret != 0) { dev_err(scomp->dev, "error: parse process.cfg tokens failed %d\n", le32_to_cpu(private->size)); goto err; } sof_dbg_comp_config(scomp, &process->config); /* * found private data in control, so copy it. * get possible component controls - get size of all pdata, * then memcpy with headers */ if (ipc_data_size) { for (i = 0; i < widget->num_kcontrols; i++) { memcpy(&process->data[offset], wdata[i].pdata->data, wdata[i].pdata->size); offset += wdata[i].pdata->size; } } process->size = ipc_data_size; swidget->private = process; err: if (ret < 0) kfree(process); out: kfree(wdata); return ret; } /* * Processing Component Topology - can be "effect", "codec", or general * "processing". */ static int sof_widget_load_process(struct snd_soc_component *scomp, int index, struct snd_sof_widget *swidget, struct snd_soc_tplg_dapm_widget *tw) { struct snd_soc_tplg_private *private = &tw->priv; struct sof_ipc_comp_process config; int ret; /* check we have some tokens - we need at least process type */ if (le32_to_cpu(private->size) == 0) { dev_err(scomp->dev, "error: process tokens not found\n"); return -EINVAL; } memset(&config, 0, sizeof(config)); config.comp.core = swidget->core; /* get the process token */ ret = sof_parse_tokens(scomp, &config, process_tokens, ARRAY_SIZE(process_tokens), private->array, le32_to_cpu(private->size)); if (ret != 0) { dev_err(scomp->dev, "error: parse process tokens failed %d\n", le32_to_cpu(private->size)); return ret; } /* now load process specific data and send IPC */ ret = sof_process_load(scomp, index, swidget, tw, find_process_comp_type(config.type)); if (ret < 0) { dev_err(scomp->dev, "error: process loading failed\n"); return ret; } return 0; } static int sof_widget_bind_event(struct snd_soc_component *scomp, struct snd_sof_widget *swidget, u16 event_type) { struct sof_ipc_comp *ipc_comp; /* validate widget event type */ switch (event_type) { case SOF_KEYWORD_DETECT_DAPM_EVENT: /* only KEYWORD_DETECT comps should handle this */ if (swidget->id != snd_soc_dapm_effect) break; ipc_comp = swidget->private; if (ipc_comp && ipc_comp->type != SOF_COMP_KEYWORD_DETECT) break; /* bind event to keyword detect comp */ return snd_soc_tplg_widget_bind_event(swidget->widget, sof_kwd_events, ARRAY_SIZE(sof_kwd_events), event_type); default: break; } dev_err(scomp->dev, "error: invalid event type %d for widget %s\n", event_type, swidget->widget->name); return -EINVAL; } /* external widget init - used for any driver specific init */ static int sof_widget_ready(struct snd_soc_component *scomp, int index, struct snd_soc_dapm_widget *w, struct snd_soc_tplg_dapm_widget *tw) { struct snd_sof_dev *sdev = snd_soc_component_get_drvdata(scomp); const struct sof_ipc_tplg_ops *ipc_tplg_ops = sdev->ipc->ops->tplg; const struct sof_ipc_tplg_widget_ops *widget_ops = ipc_tplg_ops->widget; struct snd_sof_widget *swidget; struct snd_sof_dai *dai; enum sof_tokens *token_list; int token_list_size; struct sof_ipc_comp comp = { .core = SOF_DSP_PRIMARY_CORE, }; int ret = 0; swidget = kzalloc(sizeof(*swidget), GFP_KERNEL); if (!swidget) return -ENOMEM; swidget->scomp = scomp; swidget->widget = w; swidget->comp_id = sdev->next_comp_id++; swidget->complete = 0; swidget->id = w->id; swidget->pipeline_id = index; swidget->private = NULL; dev_dbg(scomp->dev, "tplg: ready widget id %d pipe %d type %d name : %s stream %s\n", swidget->comp_id, index, swidget->id, tw->name, strnlen(tw->sname, SNDRV_CTL_ELEM_ID_NAME_MAXLEN) > 0 ? tw->sname : "none"); token_list = widget_ops[w->id].token_list; token_list_size = widget_ops[w->id].token_list_size; ret = sof_parse_tokens(scomp, &comp, core_tokens, ARRAY_SIZE(core_tokens), tw->priv.array, le32_to_cpu(tw->priv.size)); if (ret != 0) { dev_err(scomp->dev, "error: parsing core tokens failed %d\n", ret); kfree(swidget); return ret; } if (sof_debug_check_flag(SOF_DBG_DISABLE_MULTICORE)) comp.core = SOF_DSP_PRIMARY_CORE; swidget->core = comp.core; ret = sof_parse_tokens(scomp, swidget, comp_ext_tokens, ARRAY_SIZE(comp_ext_tokens), tw->priv.array, le32_to_cpu(tw->priv.size)); if (ret != 0) { dev_err(scomp->dev, "error: parsing comp_ext_tokens failed %d\n", ret); kfree(swidget); return ret; } /* handle any special case widgets */ switch (w->id) { case snd_soc_dapm_dai_in: case snd_soc_dapm_dai_out: dai = kzalloc(sizeof(*dai), GFP_KERNEL); if (!dai) { kfree(swidget); return -ENOMEM; } ret = sof_widget_load_dai(scomp, index, swidget, tw, dai); if (!ret) ret = sof_connect_dai_widget(scomp, w, tw, dai); if (ret < 0) { kfree(dai); break; } list_add(&dai->list, &sdev->dai_list); swidget->private = dai; break; case snd_soc_dapm_mixer: ret = sof_widget_load_mixer(scomp, index, swidget, tw); break; case snd_soc_dapm_pga: if (!le32_to_cpu(tw->num_kcontrols)) { dev_err(scomp->dev, "invalid kcontrol count %d for volume\n", tw->num_kcontrols); ret = -EINVAL; break; } fallthrough; case snd_soc_dapm_buffer: case snd_soc_dapm_scheduler: case snd_soc_dapm_aif_out: case snd_soc_dapm_aif_in: ret = sof_widget_parse_tokens(scomp, swidget, tw, token_list, token_list_size); break; case snd_soc_dapm_src: ret = sof_widget_load_src(scomp, index, swidget, tw); break; case snd_soc_dapm_asrc: ret = sof_widget_load_asrc(scomp, index, swidget, tw); break; case snd_soc_dapm_siggen: ret = sof_widget_load_siggen(scomp, index, swidget, tw); break; case snd_soc_dapm_effect: ret = sof_widget_load_process(scomp, index, swidget, tw); break; case snd_soc_dapm_mux: case snd_soc_dapm_demux: ret = sof_widget_load_mux(scomp, index, swidget, tw); break; case snd_soc_dapm_switch: case snd_soc_dapm_dai_link: case snd_soc_dapm_kcontrol: default: dev_dbg(scomp->dev, "widget type %d name %s not handled\n", swidget->id, tw->name); break; } /* check IPC reply */ if (ret < 0) { dev_err(scomp->dev, "error: failed to add widget id %d type %d name : %s stream %s\n", tw->shift, swidget->id, tw->name, strnlen(tw->sname, SNDRV_CTL_ELEM_ID_NAME_MAXLEN) > 0 ? tw->sname : "none"); kfree(swidget); return ret; } /* bind widget to external event */ if (tw->event_type) { ret = sof_widget_bind_event(scomp, swidget, le16_to_cpu(tw->event_type)); if (ret) { dev_err(scomp->dev, "error: widget event binding failed\n"); kfree(swidget->private); kfree(swidget->tuples); kfree(swidget); return ret; } } w->dobj.private = swidget; list_add(&swidget->list, &sdev->widget_list); return ret; } static int sof_route_unload(struct snd_soc_component *scomp, struct snd_soc_dobj *dobj) { struct snd_sof_route *sroute; sroute = dobj->private; if (!sroute) return 0; /* free sroute and its private data */ kfree(sroute->private); list_del(&sroute->list); kfree(sroute); return 0; } static int sof_widget_unload(struct snd_soc_component *scomp, struct snd_soc_dobj *dobj) { struct snd_sof_dev *sdev = snd_soc_component_get_drvdata(scomp); const struct sof_ipc_tplg_ops *ipc_tplg_ops = sdev->ipc->ops->tplg; const struct sof_ipc_tplg_widget_ops *widget_ops = ipc_tplg_ops->widget; const struct snd_kcontrol_new *kc; struct snd_soc_dapm_widget *widget; struct snd_sof_control *scontrol; struct snd_sof_widget *swidget; struct soc_mixer_control *sm; struct soc_bytes_ext *sbe; struct snd_sof_dai *dai; struct soc_enum *se; int ret = 0; int i; swidget = dobj->private; if (!swidget) return 0; widget = swidget->widget; switch (swidget->id) { case snd_soc_dapm_dai_in: case snd_soc_dapm_dai_out: dai = swidget->private; if (dai) { struct sof_dai_private_data *dai_data = dai->private; kfree(dai_data->comp_dai); kfree(dai_data->dai_config); kfree(dai_data); list_del(&dai->list); } break; default: break; } for (i = 0; i < widget->num_kcontrols; i++) { kc = &widget->kcontrol_news[i]; switch (widget->dobj.widget.kcontrol_type[i]) { case SND_SOC_TPLG_TYPE_MIXER: sm = (struct soc_mixer_control *)kc->private_value; scontrol = sm->dobj.private; if (sm->max > 1) kfree(scontrol->volume_table); break; case SND_SOC_TPLG_TYPE_ENUM: se = (struct soc_enum *)kc->private_value; scontrol = se->dobj.private; break; case SND_SOC_TPLG_TYPE_BYTES: sbe = (struct soc_bytes_ext *)kc->private_value; scontrol = sbe->dobj.private; break; default: dev_warn(scomp->dev, "unsupported kcontrol_type\n"); goto out; } kfree(scontrol->control_data); list_del(&scontrol->list); kfree(scontrol); } out: /* free IPC related data */ if (widget_ops[swidget->id].ipc_free) widget_ops[swidget->id].ipc_free(swidget); /* free private value */ kfree(swidget->private); kfree(swidget->tuples); /* remove and free swidget object */ list_del(&swidget->list); kfree(swidget); return ret; } /* * DAI HW configuration. */ /* FE DAI - used for any driver specific init */ static int sof_dai_load(struct snd_soc_component *scomp, int index, struct snd_soc_dai_driver *dai_drv, struct snd_soc_tplg_pcm *pcm, struct snd_soc_dai *dai) { struct snd_sof_dev *sdev = snd_soc_component_get_drvdata(scomp); struct snd_soc_tplg_stream_caps *caps; struct snd_soc_tplg_private *private = &pcm->priv; struct snd_sof_pcm *spcm; int stream; int ret; /* nothing to do for BEs atm */ if (!pcm) return 0; spcm = kzalloc(sizeof(*spcm), GFP_KERNEL); if (!spcm) return -ENOMEM; spcm->scomp = scomp; for_each_pcm_streams(stream) { spcm->stream[stream].comp_id = COMP_ID_UNASSIGNED; if (pcm->compress) snd_sof_compr_init_elapsed_work(&spcm->stream[stream].period_elapsed_work); else snd_sof_pcm_init_elapsed_work(&spcm->stream[stream].period_elapsed_work); } spcm->pcm = *pcm; dev_dbg(scomp->dev, "tplg: load pcm %s\n", pcm->dai_name); dai_drv->dobj.private = spcm; list_add(&spcm->list, &sdev->pcm_list); ret = sof_parse_tokens(scomp, spcm, stream_tokens, ARRAY_SIZE(stream_tokens), private->array, le32_to_cpu(private->size)); if (ret) { dev_err(scomp->dev, "error: parse stream tokens failed %d\n", le32_to_cpu(private->size)); return ret; } /* do we need to allocate playback PCM DMA pages */ if (!spcm->pcm.playback) goto capture; stream = SNDRV_PCM_STREAM_PLAYBACK; dev_vdbg(scomp->dev, "tplg: pcm %s stream tokens: playback d0i3:%d\n", spcm->pcm.pcm_name, spcm->stream[stream].d0i3_compatible); caps = &spcm->pcm.caps[stream]; /* allocate playback page table buffer */ ret = snd_dma_alloc_pages(SNDRV_DMA_TYPE_DEV, sdev->dev, PAGE_SIZE, &spcm->stream[stream].page_table); if (ret < 0) { dev_err(scomp->dev, "error: can't alloc page table for %s %d\n", caps->name, ret); return ret; } /* bind pcm to host comp */ ret = spcm_bind(scomp, spcm, stream); if (ret) { dev_err(scomp->dev, "error: can't bind pcm to host\n"); goto free_playback_tables; } capture: stream = SNDRV_PCM_STREAM_CAPTURE; /* do we need to allocate capture PCM DMA pages */ if (!spcm->pcm.capture) return ret; dev_vdbg(scomp->dev, "tplg: pcm %s stream tokens: capture d0i3:%d\n", spcm->pcm.pcm_name, spcm->stream[stream].d0i3_compatible); caps = &spcm->pcm.caps[stream]; /* allocate capture page table buffer */ ret = snd_dma_alloc_pages(SNDRV_DMA_TYPE_DEV, sdev->dev, PAGE_SIZE, &spcm->stream[stream].page_table); if (ret < 0) { dev_err(scomp->dev, "error: can't alloc page table for %s %d\n", caps->name, ret); goto free_playback_tables; } /* bind pcm to host comp */ ret = spcm_bind(scomp, spcm, stream); if (ret) { dev_err(scomp->dev, "error: can't bind pcm to host\n"); snd_dma_free_pages(&spcm->stream[stream].page_table); goto free_playback_tables; } return ret; free_playback_tables: if (spcm->pcm.playback) snd_dma_free_pages(&spcm->stream[SNDRV_PCM_STREAM_PLAYBACK].page_table); return ret; } static int sof_dai_unload(struct snd_soc_component *scomp, struct snd_soc_dobj *dobj) { struct snd_sof_pcm *spcm = dobj->private; /* free PCM DMA pages */ if (spcm->pcm.playback) snd_dma_free_pages(&spcm->stream[SNDRV_PCM_STREAM_PLAYBACK].page_table); if (spcm->pcm.capture) snd_dma_free_pages(&spcm->stream[SNDRV_PCM_STREAM_CAPTURE].page_table); /* remove from list and free spcm */ list_del(&spcm->list); kfree(spcm); return 0; } static void sof_dai_set_format(struct snd_soc_tplg_hw_config *hw_config, struct sof_ipc_dai_config *config) { /* clock directions wrt codec */ if (hw_config->bclk_provider == SND_SOC_TPLG_BCLK_CP) { /* codec is bclk provider */ if (hw_config->fsync_provider == SND_SOC_TPLG_FSYNC_CP) config->format |= SOF_DAI_FMT_CBP_CFP; else config->format |= SOF_DAI_FMT_CBP_CFC; } else { /* codec is bclk consumer */ if (hw_config->fsync_provider == SND_SOC_TPLG_FSYNC_CP) config->format |= SOF_DAI_FMT_CBC_CFP; else config->format |= SOF_DAI_FMT_CBC_CFC; } /* inverted clocks ? */ if (hw_config->invert_bclk) { if (hw_config->invert_fsync) config->format |= SOF_DAI_FMT_IB_IF; else config->format |= SOF_DAI_FMT_IB_NF; } else { if (hw_config->invert_fsync) config->format |= SOF_DAI_FMT_NB_IF; else config->format |= SOF_DAI_FMT_NB_NF; } } /* * Send IPC and set the same config for all DAIs with name matching the link * name. Note that the function can only be used for the case that all DAIs * have a common DAI config for now. */ static int sof_set_dai_config_multi(struct snd_sof_dev *sdev, u32 size, struct snd_soc_dai_link *link, struct sof_ipc_dai_config *config, int num_conf, int curr_conf) { struct sof_dai_private_data *dai_data; struct snd_sof_dai *dai; int found = 0; int i; list_for_each_entry(dai, &sdev->dai_list, list) { dai_data = dai->private; if (!dai->name) continue; if (strcmp(link->name, dai->name) == 0) { /* * the same dai config will be applied to all DAIs in * the same dai link. We have to ensure that the ipc * dai config's dai_index match to the component's * dai_index. */ for (i = 0; i < num_conf; i++) config[i].dai_index = dai_data->comp_dai->dai_index; dev_dbg(sdev->dev, "set DAI config for %s index %d\n", dai->name, config[curr_conf].dai_index); dai->number_configs = num_conf; dai->current_config = curr_conf; dai_data->dai_config = kmemdup(config, size * num_conf, GFP_KERNEL); if (!dai_data->dai_config) return -ENOMEM; found = 1; } } /* * machine driver may define a dai link with playback and capture * dai enabled, but the dai link in topology would support both, one * or none of them. Here print a warning message to notify user */ if (!found) { dev_warn(sdev->dev, "warning: failed to find dai for dai link %s", link->name); } return 0; } static int sof_set_dai_config(struct snd_sof_dev *sdev, u32 size, struct snd_soc_dai_link *link, struct sof_ipc_dai_config *config) { return sof_set_dai_config_multi(sdev, size, link, config, 1, 0); } static int sof_link_ssp_load(struct snd_soc_component *scomp, int index, struct snd_soc_dai_link *link, struct snd_soc_tplg_link_config *cfg, struct snd_soc_tplg_hw_config *hw_config, struct sof_ipc_dai_config *config, int curr_conf) { struct snd_sof_dev *sdev = snd_soc_component_get_drvdata(scomp); struct snd_soc_tplg_private *private = &cfg->priv; int num_conf = le32_to_cpu(cfg->num_hw_configs); u32 size = sizeof(*config); int ret; int i; /* * Parse common data, we should have 1 common data per hw_config. */ ret = sof_parse_token_sets(scomp, &config->ssp, ssp_tokens, ARRAY_SIZE(ssp_tokens), private->array, le32_to_cpu(private->size), num_conf, size); if (ret != 0) { dev_err(scomp->dev, "error: parse ssp tokens failed %d\n", le32_to_cpu(private->size)); return ret; } /* process all possible hw configs */ for (i = 0; i < num_conf; i++) { /* handle master/slave and inverted clocks */ sof_dai_set_format(&hw_config[i], &config[i]); config[i].hdr.size = size; /* copy differentiating hw configs to ipc structs */ config[i].ssp.mclk_rate = le32_to_cpu(hw_config[i].mclk_rate); config[i].ssp.bclk_rate = le32_to_cpu(hw_config[i].bclk_rate); config[i].ssp.fsync_rate = le32_to_cpu(hw_config[i].fsync_rate); config[i].ssp.tdm_slots = le32_to_cpu(hw_config[i].tdm_slots); config[i].ssp.tdm_slot_width = le32_to_cpu(hw_config[i].tdm_slot_width); config[i].ssp.mclk_direction = hw_config[i].mclk_direction; config[i].ssp.rx_slots = le32_to_cpu(hw_config[i].rx_slots); config[i].ssp.tx_slots = le32_to_cpu(hw_config[i].tx_slots); dev_dbg(scomp->dev, "tplg: config SSP%d fmt %#x mclk %d bclk %d fclk %d width (%d)%d slots %d mclk id %d quirks %d clks_control %#x\n", config[i].dai_index, config[i].format, config[i].ssp.mclk_rate, config[i].ssp.bclk_rate, config[i].ssp.fsync_rate, config[i].ssp.sample_valid_bits, config[i].ssp.tdm_slot_width, config[i].ssp.tdm_slots, config[i].ssp.mclk_id, config[i].ssp.quirks, config[i].ssp.clks_control); /* validate SSP fsync rate and channel count */ if (config[i].ssp.fsync_rate < 8000 || config[i].ssp.fsync_rate > 192000) { dev_err(scomp->dev, "error: invalid fsync rate for SSP%d\n", config[i].dai_index); return -EINVAL; } if (config[i].ssp.tdm_slots < 1 || config[i].ssp.tdm_slots > 8) { dev_err(scomp->dev, "error: invalid channel count for SSP%d\n", config[i].dai_index); return -EINVAL; } } /* set config for all DAI's with name matching the link name */ ret = sof_set_dai_config_multi(sdev, size, link, config, num_conf, curr_conf); if (ret < 0) dev_err(scomp->dev, "error: failed to save DAI config for SSP%d\n", config->dai_index); return ret; } static int sof_link_sai_load(struct snd_soc_component *scomp, int index, struct snd_soc_dai_link *link, struct snd_soc_tplg_link_config *cfg, struct snd_soc_tplg_hw_config *hw_config, struct sof_ipc_dai_config *config) { struct snd_sof_dev *sdev = snd_soc_component_get_drvdata(scomp); struct snd_soc_tplg_private *private = &cfg->priv; u32 size = sizeof(*config); int ret; /* handle master/slave and inverted clocks */ sof_dai_set_format(hw_config, config); /* init IPC */ memset(&config->sai, 0, sizeof(struct sof_ipc_dai_sai_params)); config->hdr.size = size; ret = sof_parse_tokens(scomp, &config->sai, sai_tokens, ARRAY_SIZE(sai_tokens), private->array, le32_to_cpu(private->size)); if (ret != 0) { dev_err(scomp->dev, "error: parse sai tokens failed %d\n", le32_to_cpu(private->size)); return ret; } config->sai.mclk_rate = le32_to_cpu(hw_config->mclk_rate); config->sai.bclk_rate = le32_to_cpu(hw_config->bclk_rate); config->sai.fsync_rate = le32_to_cpu(hw_config->fsync_rate); config->sai.mclk_direction = hw_config->mclk_direction; config->sai.tdm_slots = le32_to_cpu(hw_config->tdm_slots); config->sai.tdm_slot_width = le32_to_cpu(hw_config->tdm_slot_width); config->sai.rx_slots = le32_to_cpu(hw_config->rx_slots); config->sai.tx_slots = le32_to_cpu(hw_config->tx_slots); dev_info(scomp->dev, "tplg: config SAI%d fmt 0x%x mclk %d width %d slots %d mclk id %d\n", config->dai_index, config->format, config->sai.mclk_rate, config->sai.tdm_slot_width, config->sai.tdm_slots, config->sai.mclk_id); if (config->sai.tdm_slots < 1 || config->sai.tdm_slots > 8) { dev_err(scomp->dev, "error: invalid channel count for SAI%d\n", config->dai_index); return -EINVAL; } /* set config for all DAI's with name matching the link name */ ret = sof_set_dai_config(sdev, size, link, config); if (ret < 0) dev_err(scomp->dev, "error: failed to save DAI config for SAI%d\n", config->dai_index); return ret; } static int sof_link_esai_load(struct snd_soc_component *scomp, int index, struct snd_soc_dai_link *link, struct snd_soc_tplg_link_config *cfg, struct snd_soc_tplg_hw_config *hw_config, struct sof_ipc_dai_config *config) { struct snd_sof_dev *sdev = snd_soc_component_get_drvdata(scomp); struct snd_soc_tplg_private *private = &cfg->priv; u32 size = sizeof(*config); int ret; /* handle master/slave and inverted clocks */ sof_dai_set_format(hw_config, config); /* init IPC */ memset(&config->esai, 0, sizeof(struct sof_ipc_dai_esai_params)); config->hdr.size = size; ret = sof_parse_tokens(scomp, &config->esai, esai_tokens, ARRAY_SIZE(esai_tokens), private->array, le32_to_cpu(private->size)); if (ret != 0) { dev_err(scomp->dev, "error: parse esai tokens failed %d\n", le32_to_cpu(private->size)); return ret; } config->esai.mclk_rate = le32_to_cpu(hw_config->mclk_rate); config->esai.bclk_rate = le32_to_cpu(hw_config->bclk_rate); config->esai.fsync_rate = le32_to_cpu(hw_config->fsync_rate); config->esai.mclk_direction = hw_config->mclk_direction; config->esai.tdm_slots = le32_to_cpu(hw_config->tdm_slots); config->esai.tdm_slot_width = le32_to_cpu(hw_config->tdm_slot_width); config->esai.rx_slots = le32_to_cpu(hw_config->rx_slots); config->esai.tx_slots = le32_to_cpu(hw_config->tx_slots); dev_info(scomp->dev, "tplg: config ESAI%d fmt 0x%x mclk %d width %d slots %d mclk id %d\n", config->dai_index, config->format, config->esai.mclk_rate, config->esai.tdm_slot_width, config->esai.tdm_slots, config->esai.mclk_id); if (config->esai.tdm_slots < 1 || config->esai.tdm_slots > 8) { dev_err(scomp->dev, "error: invalid channel count for ESAI%d\n", config->dai_index); return -EINVAL; } /* set config for all DAI's with name matching the link name */ ret = sof_set_dai_config(sdev, size, link, config); if (ret < 0) dev_err(scomp->dev, "error: failed to save DAI config for ESAI%d\n", config->dai_index); return ret; } static int sof_link_acp_dmic_load(struct snd_soc_component *scomp, int index, struct snd_soc_dai_link *link, struct snd_soc_tplg_link_config *cfg, struct snd_soc_tplg_hw_config *hw_config, struct sof_ipc_dai_config *config) { struct snd_sof_dev *sdev = snd_soc_component_get_drvdata(scomp); u32 size = sizeof(*config); int ret; /* handle master/slave and inverted clocks */ sof_dai_set_format(hw_config, config); /* init IPC */ memset(&config->acpdmic, 0, sizeof(struct sof_ipc_dai_acp_params)); config->hdr.size = size; config->acpdmic.fsync_rate = le32_to_cpu(hw_config->fsync_rate); config->acpdmic.tdm_slots = le32_to_cpu(hw_config->tdm_slots); dev_info(scomp->dev, "ACP_DMIC config ACP%d channel %d rate %d\n", config->dai_index, config->acpdmic.tdm_slots, config->acpdmic.fsync_rate); /* set config for all DAI's with name matching the link name */ ret = sof_set_dai_config(sdev, size, link, config); if (ret < 0) dev_err(scomp->dev, "ACP_DMIC failed to save DAI config for ACP%d\n", config->dai_index); return ret; } static int sof_link_acp_bt_load(struct snd_soc_component *scomp, int index, struct snd_soc_dai_link *link, struct snd_soc_tplg_link_config *cfg, struct snd_soc_tplg_hw_config *hw_config, struct sof_ipc_dai_config *config) { struct snd_sof_dev *sdev = snd_soc_component_get_drvdata(scomp); u32 size = sizeof(*config); int ret; /* handle master/slave and inverted clocks */ sof_dai_set_format(hw_config, config); /* init IPC */ memset(&config->acpbt, 0, sizeof(struct sof_ipc_dai_acp_params)); config->hdr.size = size; config->acpbt.fsync_rate = le32_to_cpu(hw_config->fsync_rate); config->acpbt.tdm_slots = le32_to_cpu(hw_config->tdm_slots); dev_info(scomp->dev, "ACP_BT config ACP%d channel %d rate %d\n", config->dai_index, config->acpbt.tdm_slots, config->acpbt.fsync_rate); /* set config for all DAI's with name matching the link name */ ret = sof_set_dai_config(sdev, size, link, config); if (ret < 0) dev_err(scomp->dev, "ACP_BT failed to save DAI config for ACP%d\n", config->dai_index); return ret; } static int sof_link_acp_sp_load(struct snd_soc_component *scomp, int index, struct snd_soc_dai_link *link, struct snd_soc_tplg_link_config *cfg, struct snd_soc_tplg_hw_config *hw_config, struct sof_ipc_dai_config *config) { struct snd_sof_dev *sdev = snd_soc_component_get_drvdata(scomp); u32 size = sizeof(*config); int ret; /* handle master/slave and inverted clocks */ sof_dai_set_format(hw_config, config); /* init IPC */ memset(&config->acpsp, 0, sizeof(struct sof_ipc_dai_acp_params)); config->hdr.size = size; config->acpsp.fsync_rate = le32_to_cpu(hw_config->fsync_rate); config->acpsp.tdm_slots = le32_to_cpu(hw_config->tdm_slots); dev_info(scomp->dev, "ACP_SP config ACP%d channel %d rate %d\n", config->dai_index, config->acpsp.tdm_slots, config->acpsp.fsync_rate); /* set config for all DAI's with name matching the link name */ ret = sof_set_dai_config(sdev, size, link, config); if (ret < 0) dev_err(scomp->dev, "ACP_SP failed to save DAI config for ACP%d\n", config->dai_index); return ret; } static int sof_link_afe_load(struct snd_soc_component *scomp, int index, struct snd_soc_dai_link *link, struct snd_soc_tplg_link_config *cfg, struct snd_soc_tplg_hw_config *hw_config, struct sof_ipc_dai_config *config) { struct snd_sof_dev *sdev = snd_soc_component_get_drvdata(scomp); struct snd_soc_tplg_private *private = &cfg->priv; u32 size = sizeof(*config); int ret; config->hdr.size = size; /* get any bespoke DAI tokens */ ret = sof_parse_tokens(scomp, &config->afe, afe_tokens, ARRAY_SIZE(afe_tokens), private->array, le32_to_cpu(private->size)); if (ret != 0) { dev_err(scomp->dev, "parse afe tokens failed %d\n", le32_to_cpu(private->size)); return ret; } dev_dbg(scomp->dev, "AFE config rate %d channels %d format:%d\n", config->afe.rate, config->afe.channels, config->afe.format); config->afe.stream_id = DMA_CHAN_INVALID; ret = sof_set_dai_config(sdev, size, link, config); if (ret < 0) dev_err(scomp->dev, "failed to process afe dai link %s", link->name); return ret; } static int sof_link_dmic_load(struct snd_soc_component *scomp, int index, struct snd_soc_dai_link *link, struct snd_soc_tplg_link_config *cfg, struct snd_soc_tplg_hw_config *hw_config, struct sof_ipc_dai_config *config) { struct snd_sof_dev *sdev = snd_soc_component_get_drvdata(scomp); struct snd_soc_tplg_private *private = &cfg->priv; struct sof_ipc_fw_ready *ready = &sdev->fw_ready; struct sof_ipc_fw_version *v = &ready->version; size_t size = sizeof(*config); int ret, j; /* Ensure the entire DMIC config struct is zeros */ memset(&config->dmic, 0, sizeof(struct sof_ipc_dai_dmic_params)); /* get DMIC tokens */ ret = sof_parse_tokens(scomp, &config->dmic, dmic_tokens, ARRAY_SIZE(dmic_tokens), private->array, le32_to_cpu(private->size)); if (ret != 0) { dev_err(scomp->dev, "error: parse dmic tokens failed %d\n", le32_to_cpu(private->size)); return ret; } /* get DMIC PDM tokens */ ret = sof_parse_token_sets(scomp, &config->dmic.pdm[0], dmic_pdm_tokens, ARRAY_SIZE(dmic_pdm_tokens), private->array, le32_to_cpu(private->size), config->dmic.num_pdm_active, sizeof(struct sof_ipc_dai_dmic_pdm_ctrl)); if (ret != 0) { dev_err(scomp->dev, "error: parse dmic pdm tokens failed %d\n", le32_to_cpu(private->size)); return ret; } /* set IPC header size */ config->hdr.size = size; /* debug messages */ dev_dbg(scomp->dev, "tplg: config DMIC%d driver version %d\n", config->dai_index, config->dmic.driver_ipc_version); dev_dbg(scomp->dev, "pdmclk_min %d pdm_clkmax %d duty_min %hd\n", config->dmic.pdmclk_min, config->dmic.pdmclk_max, config->dmic.duty_min); dev_dbg(scomp->dev, "duty_max %hd fifo_fs %d num_pdms active %d\n", config->dmic.duty_max, config->dmic.fifo_fs, config->dmic.num_pdm_active); dev_dbg(scomp->dev, "fifo word length %hd\n", config->dmic.fifo_bits); for (j = 0; j < config->dmic.num_pdm_active; j++) { dev_dbg(scomp->dev, "pdm %hd mic a %hd mic b %hd\n", config->dmic.pdm[j].id, config->dmic.pdm[j].enable_mic_a, config->dmic.pdm[j].enable_mic_b); dev_dbg(scomp->dev, "pdm %hd polarity a %hd polarity b %hd\n", config->dmic.pdm[j].id, config->dmic.pdm[j].polarity_mic_a, config->dmic.pdm[j].polarity_mic_b); dev_dbg(scomp->dev, "pdm %hd clk_edge %hd skew %hd\n", config->dmic.pdm[j].id, config->dmic.pdm[j].clk_edge, config->dmic.pdm[j].skew); } /* * this takes care of backwards compatible handling of fifo_bits_b. * It is deprecated since firmware ABI version 3.0.1. */ if (SOF_ABI_VER(v->major, v->minor, v->micro) < SOF_ABI_VER(3, 0, 1)) config->dmic.fifo_bits_b = config->dmic.fifo_bits; /* set config for all DAI's with name matching the link name */ ret = sof_set_dai_config(sdev, size, link, config); if (ret < 0) dev_err(scomp->dev, "error: failed to save DAI config for DMIC%d\n", config->dai_index); return ret; } static int sof_link_hda_load(struct snd_soc_component *scomp, int index, struct snd_soc_dai_link *link, struct snd_soc_tplg_link_config *cfg, struct snd_soc_tplg_hw_config *hw_config, struct sof_ipc_dai_config *config) { struct snd_sof_dev *sdev = snd_soc_component_get_drvdata(scomp); struct snd_soc_tplg_private *private = &cfg->priv; u32 size = sizeof(*config); int ret; /* init IPC */ memset(&config->hda, 0, sizeof(struct sof_ipc_dai_hda_params)); config->hdr.size = size; /* get any bespoke DAI tokens */ ret = sof_parse_tokens(scomp, &config->hda, hda_tokens, ARRAY_SIZE(hda_tokens), private->array, le32_to_cpu(private->size)); if (ret != 0) { dev_err(scomp->dev, "error: parse hda tokens failed %d\n", le32_to_cpu(private->size)); return ret; } dev_dbg(scomp->dev, "HDA config rate %d channels %d\n", config->hda.rate, config->hda.channels); config->hda.link_dma_ch = DMA_CHAN_INVALID; ret = sof_set_dai_config(sdev, size, link, config); if (ret < 0) dev_err(scomp->dev, "error: failed to process hda dai link %s", link->name); return ret; } static int sof_link_alh_load(struct snd_soc_component *scomp, int index, struct snd_soc_dai_link *link, struct snd_soc_tplg_link_config *cfg, struct snd_soc_tplg_hw_config *hw_config, struct sof_ipc_dai_config *config) { struct snd_sof_dev *sdev = snd_soc_component_get_drvdata(scomp); struct snd_soc_tplg_private *private = &cfg->priv; u32 size = sizeof(*config); int ret; ret = sof_parse_tokens(scomp, &config->alh, alh_tokens, ARRAY_SIZE(alh_tokens), private->array, le32_to_cpu(private->size)); if (ret != 0) { dev_err(scomp->dev, "error: parse alh tokens failed %d\n", le32_to_cpu(private->size)); return ret; } /* init IPC */ config->hdr.size = size; /* set config for all DAI's with name matching the link name */ ret = sof_set_dai_config(sdev, size, link, config); if (ret < 0) dev_err(scomp->dev, "error: failed to save DAI config for ALH %d\n", config->dai_index); return ret; } /* DAI link - used for any driver specific init */ static int sof_link_load(struct snd_soc_component *scomp, int index, struct snd_soc_dai_link *link, struct snd_soc_tplg_link_config *cfg) { struct snd_soc_tplg_private *private = &cfg->priv; struct snd_soc_tplg_hw_config *hw_config; struct sof_ipc_dai_config common_config; struct sof_ipc_dai_config *config; int curr_conf; int num_conf; int ret; int i; if (!link->platforms) { dev_err(scomp->dev, "error: no platforms\n"); return -EINVAL; } link->platforms->name = dev_name(scomp->dev); /* * Set nonatomic property for FE dai links as their trigger action * involves IPC's. */ if (!link->no_pcm) { link->nonatomic = true; /* * set default trigger order for all links. Exceptions to * the rule will be handled in sof_pcm_dai_link_fixup() * For playback, the sequence is the following: start FE, * start BE, stop BE, stop FE; for Capture the sequence is * inverted start BE, start FE, stop FE, stop BE */ link->trigger[SNDRV_PCM_STREAM_PLAYBACK] = SND_SOC_DPCM_TRIGGER_PRE; link->trigger[SNDRV_PCM_STREAM_CAPTURE] = SND_SOC_DPCM_TRIGGER_POST; /* nothing more to do for FE dai links */ return 0; } /* check we have some tokens - we need at least DAI type */ if (le32_to_cpu(private->size) == 0) { dev_err(scomp->dev, "error: expected tokens for DAI, none found\n"); return -EINVAL; } memset(&common_config, 0, sizeof(common_config)); /* get any common DAI tokens */ ret = sof_parse_tokens(scomp, &common_config, dai_link_tokens, ARRAY_SIZE(dai_link_tokens), private->array, le32_to_cpu(private->size)); if (ret != 0) { dev_err(scomp->dev, "error: parse link tokens failed %d\n", le32_to_cpu(private->size)); return ret; } /* * DAI links are expected to have at least 1 hw_config. * But some older topologies might have no hw_config for HDA dai links. */ hw_config = cfg->hw_config; num_conf = le32_to_cpu(cfg->num_hw_configs); if (!num_conf) { if (common_config.type != SOF_DAI_INTEL_HDA) { dev_err(scomp->dev, "error: unexpected DAI config count %d!\n", le32_to_cpu(cfg->num_hw_configs)); return -EINVAL; } num_conf = 1; curr_conf = 0; } else { dev_dbg(scomp->dev, "tplg: %d hw_configs found, default id: %d!\n", cfg->num_hw_configs, le32_to_cpu(cfg->default_hw_config_id)); for (curr_conf = 0; curr_conf < num_conf; curr_conf++) { if (hw_config[curr_conf].id == cfg->default_hw_config_id) break; } if (curr_conf == num_conf) { dev_err(scomp->dev, "error: default hw_config id: %d not found!\n", le32_to_cpu(cfg->default_hw_config_id)); return -EINVAL; } } /* Reserve memory for all hw configs, eventually freed by widget */ config = kcalloc(num_conf, sizeof(*config), GFP_KERNEL); if (!config) return -ENOMEM; /* Copy common data to all config ipc structs */ for (i = 0; i < num_conf; i++) { config[i].hdr.cmd = SOF_IPC_GLB_DAI_MSG | SOF_IPC_DAI_CONFIG; config[i].format = le32_to_cpu(hw_config[i].fmt); config[i].type = common_config.type; config[i].dai_index = common_config.dai_index; } /* now load DAI specific data and send IPC - type comes from token */ switch (common_config.type) { case SOF_DAI_INTEL_SSP: ret = sof_link_ssp_load(scomp, index, link, cfg, hw_config, config, curr_conf); break; case SOF_DAI_INTEL_DMIC: ret = sof_link_dmic_load(scomp, index, link, cfg, hw_config + curr_conf, config); break; case SOF_DAI_INTEL_HDA: ret = sof_link_hda_load(scomp, index, link, cfg, hw_config + curr_conf, config); break; case SOF_DAI_INTEL_ALH: ret = sof_link_alh_load(scomp, index, link, cfg, hw_config + curr_conf, config); break; case SOF_DAI_IMX_SAI: ret = sof_link_sai_load(scomp, index, link, cfg, hw_config + curr_conf, config); break; case SOF_DAI_IMX_ESAI: ret = sof_link_esai_load(scomp, index, link, cfg, hw_config + curr_conf, config); break; case SOF_DAI_AMD_BT: ret = sof_link_acp_bt_load(scomp, index, link, cfg, hw_config + curr_conf, config); break; case SOF_DAI_AMD_SP: ret = sof_link_acp_sp_load(scomp, index, link, cfg, hw_config + curr_conf, config); break; case SOF_DAI_AMD_DMIC: ret = sof_link_acp_dmic_load(scomp, index, link, cfg, hw_config + curr_conf, config); break; case SOF_DAI_MEDIATEK_AFE: ret = sof_link_afe_load(scomp, index, link, cfg, hw_config + curr_conf, config); break; default: dev_err(scomp->dev, "error: invalid DAI type %d\n", common_config.type); ret = -EINVAL; break; } kfree(config); return ret; } /* DAI link - used for any driver specific init */ static int sof_route_load(struct snd_soc_component *scomp, int index, struct snd_soc_dapm_route *route) { struct snd_sof_dev *sdev = snd_soc_component_get_drvdata(scomp); struct snd_sof_widget *source_swidget, *sink_swidget; struct snd_soc_dobj *dobj = &route->dobj; struct snd_sof_route *sroute; int ret = 0; /* allocate memory for sroute and connect */ sroute = kzalloc(sizeof(*sroute), GFP_KERNEL); if (!sroute) return -ENOMEM; sroute->scomp = scomp; dev_dbg(scomp->dev, "sink %s control %s source %s\n", route->sink, route->control ? route->control : "none", route->source); /* source component */ source_swidget = snd_sof_find_swidget(scomp, (char *)route->source); if (!source_swidget) { dev_err(scomp->dev, "error: source %s not found\n", route->source); ret = -EINVAL; goto err; } /* * Virtual widgets of type output/out_drv may be added in topology * for compatibility. These are not handled by the FW. * So, don't send routes whose source/sink widget is of such types * to the DSP. */ if (source_swidget->id == snd_soc_dapm_out_drv || source_swidget->id == snd_soc_dapm_output) goto err; /* sink component */ sink_swidget = snd_sof_find_swidget(scomp, (char *)route->sink); if (!sink_swidget) { dev_err(scomp->dev, "error: sink %s not found\n", route->sink); ret = -EINVAL; goto err; } /* * Don't send routes whose sink widget is of type * output or out_drv to the DSP */ if (sink_swidget->id == snd_soc_dapm_out_drv || sink_swidget->id == snd_soc_dapm_output) goto err; /* * For virtual routes, both sink and source are not * buffer. Since only buffer linked to component is supported by * FW, others are reported as error, add check in route function, * do not send it to FW when both source and sink are not buffer */ if (source_swidget->id != snd_soc_dapm_buffer && sink_swidget->id != snd_soc_dapm_buffer) { dev_dbg(scomp->dev, "warning: neither Linked source component %s nor sink component %s is of buffer type, ignoring link\n", route->source, route->sink); goto err; } else { sroute->route = route; dobj->private = sroute; sroute->src_widget = source_swidget; sroute->sink_widget = sink_swidget; /* add route to route list */ list_add(&sroute->list, &sdev->route_list); return 0; } err: kfree(sroute); return ret; } int snd_sof_complete_pipeline(struct snd_sof_dev *sdev, struct snd_sof_widget *swidget) { struct sof_ipc_pipe_ready ready; struct sof_ipc_reply reply; int ret; dev_dbg(sdev->dev, "tplg: complete pipeline %s id %d\n", swidget->widget->name, swidget->comp_id); memset(&ready, 0, sizeof(ready)); ready.hdr.size = sizeof(ready); ready.hdr.cmd = SOF_IPC_GLB_TPLG_MSG | SOF_IPC_TPLG_PIPE_COMPLETE; ready.comp_id = swidget->comp_id; ret = sof_ipc_tx_message(sdev->ipc, ready.hdr.cmd, &ready, sizeof(ready), &reply, sizeof(reply)); if (ret < 0) return ret; return 1; } /** * sof_set_pipe_widget - Set pipe_widget for a component * @sdev: pointer to struct snd_sof_dev * @pipe_widget: pointer to struct snd_sof_widget of type snd_soc_dapm_scheduler * @swidget: pointer to struct snd_sof_widget that has the same pipeline ID as @pipe_widget * * Return: 0 if successful, -EINVAL on error. * The function checks if @swidget is associated with any volatile controls. If so, setting * the dynamic_pipeline_widget is disallowed. */ static int sof_set_pipe_widget(struct snd_sof_dev *sdev, struct snd_sof_widget *pipe_widget, struct snd_sof_widget *swidget) { struct snd_sof_control *scontrol; if (pipe_widget->dynamic_pipeline_widget) { /* dynamic widgets cannot have volatile kcontrols */ list_for_each_entry(scontrol, &sdev->kcontrol_list, list) if (scontrol->comp_id == swidget->comp_id && (scontrol->access & SNDRV_CTL_ELEM_ACCESS_VOLATILE)) { dev_err(sdev->dev, "error: volatile control found for dynamic widget %s\n", swidget->widget->name); return -EINVAL; } } /* set the pipe_widget and apply the dynamic_pipeline_widget_flag */ swidget->pipe_widget = pipe_widget; swidget->dynamic_pipeline_widget = pipe_widget->dynamic_pipeline_widget; return 0; } /* completion - called at completion of firmware loading */ static int sof_complete(struct snd_soc_component *scomp) { struct snd_sof_dev *sdev = snd_soc_component_get_drvdata(scomp); struct snd_sof_widget *swidget, *comp_swidget; const struct sof_ipc_tplg_ops *ipc_tplg_ops = sdev->ipc->ops->tplg; const struct sof_ipc_tplg_widget_ops *widget_ops = ipc_tplg_ops->widget; int ret; /* * now update all widget IPC structures. If any of the ipc_setup callbacks fail, the * topology will be removed and all widgets will be unloaded resulting in freeing all * associated memories. */ list_for_each_entry(swidget, &sdev->widget_list, list) { if (widget_ops[swidget->id].ipc_setup) { ret = widget_ops[swidget->id].ipc_setup(swidget); if (ret < 0) { dev_err(sdev->dev, "failed updating IPC struct for %s\n", swidget->widget->name); return ret; } } } /* set the pipe_widget and apply the dynamic_pipeline_widget_flag */ list_for_each_entry(swidget, &sdev->widget_list, list) { switch (swidget->id) { case snd_soc_dapm_scheduler: /* * Apply the dynamic_pipeline_widget flag and set the pipe_widget field * for all widgets that have the same pipeline ID as the scheduler widget */ list_for_each_entry(comp_swidget, &sdev->widget_list, list) if (comp_swidget->pipeline_id == swidget->pipeline_id) { ret = sof_set_pipe_widget(sdev, swidget, comp_swidget); if (ret < 0) return ret; } break; default: break; } } /* verify topology components loading including dynamic pipelines */ if (sof_debug_check_flag(SOF_DBG_VERIFY_TPLG)) { ret = sof_set_up_pipelines(sdev, true); if (ret < 0) { dev_err(sdev->dev, "error: topology verification failed %d\n", ret); return ret; } ret = sof_tear_down_pipelines(sdev, true); if (ret < 0) { dev_err(sdev->dev, "error: topology tear down pipelines failed %d\n", ret); return ret; } } /* set up static pipelines */ return sof_set_up_pipelines(sdev, false); } /* manifest - optional to inform component of manifest */ static int sof_manifest(struct snd_soc_component *scomp, int index, struct snd_soc_tplg_manifest *man) { u32 size; u32 abi_version; size = le32_to_cpu(man->priv.size); /* backward compatible with tplg without ABI info */ if (!size) { dev_dbg(scomp->dev, "No topology ABI info\n"); return 0; } if (size != SOF_TPLG_ABI_SIZE) { dev_err(scomp->dev, "error: invalid topology ABI size\n"); return -EINVAL; } dev_info(scomp->dev, "Topology: ABI %d:%d:%d Kernel ABI %d:%d:%d\n", man->priv.data[0], man->priv.data[1], man->priv.data[2], SOF_ABI_MAJOR, SOF_ABI_MINOR, SOF_ABI_PATCH); abi_version = SOF_ABI_VER(man->priv.data[0], man->priv.data[1], man->priv.data[2]); if (SOF_ABI_VERSION_INCOMPATIBLE(SOF_ABI_VERSION, abi_version)) { dev_err(scomp->dev, "error: incompatible topology ABI version\n"); return -EINVAL; } if (SOF_ABI_VERSION_MINOR(abi_version) > SOF_ABI_MINOR) { if (!IS_ENABLED(CONFIG_SND_SOC_SOF_STRICT_ABI_CHECKS)) { dev_warn(scomp->dev, "warn: topology ABI is more recent than kernel\n"); } else { dev_err(scomp->dev, "error: topology ABI is more recent than kernel\n"); return -EINVAL; } } return 0; } /* vendor specific kcontrol handlers available for binding */ static const struct snd_soc_tplg_kcontrol_ops sof_io_ops[] = { {SOF_TPLG_KCTL_VOL_ID, snd_sof_volume_get, snd_sof_volume_put}, {SOF_TPLG_KCTL_BYTES_ID, snd_sof_bytes_get, snd_sof_bytes_put}, {SOF_TPLG_KCTL_ENUM_ID, snd_sof_enum_get, snd_sof_enum_put}, {SOF_TPLG_KCTL_SWITCH_ID, snd_sof_switch_get, snd_sof_switch_put}, }; /* vendor specific bytes ext handlers available for binding */ static const struct snd_soc_tplg_bytes_ext_ops sof_bytes_ext_ops[] = { {SOF_TPLG_KCTL_BYTES_ID, snd_sof_bytes_ext_get, snd_sof_bytes_ext_put}, {SOF_TPLG_KCTL_BYTES_VOLATILE_RO, snd_sof_bytes_ext_volatile_get}, }; static struct snd_soc_tplg_ops sof_tplg_ops = { /* external kcontrol init - used for any driver specific init */ .control_load = sof_control_load, .control_unload = sof_control_unload, /* external kcontrol init - used for any driver specific init */ .dapm_route_load = sof_route_load, .dapm_route_unload = sof_route_unload, /* external widget init - used for any driver specific init */ /* .widget_load is not currently used */ .widget_ready = sof_widget_ready, .widget_unload = sof_widget_unload, /* FE DAI - used for any driver specific init */ .dai_load = sof_dai_load, .dai_unload = sof_dai_unload, /* DAI link - used for any driver specific init */ .link_load = sof_link_load, /* completion - called at completion of firmware loading */ .complete = sof_complete, /* manifest - optional to inform component of manifest */ .manifest = sof_manifest, /* vendor specific kcontrol handlers available for binding */ .io_ops = sof_io_ops, .io_ops_count = ARRAY_SIZE(sof_io_ops), /* vendor specific bytes ext handlers available for binding */ .bytes_ext_ops = sof_bytes_ext_ops, .bytes_ext_ops_count = ARRAY_SIZE(sof_bytes_ext_ops), }; int snd_sof_load_topology(struct snd_soc_component *scomp, const char *file) { const struct firmware *fw; int ret; dev_dbg(scomp->dev, "loading topology:%s\n", file); ret = request_firmware(&fw, file, scomp->dev); if (ret < 0) { dev_err(scomp->dev, "error: tplg request firmware %s failed err: %d\n", file, ret); dev_err(scomp->dev, "you may need to download the firmware from https://github.com/thesofproject/sof-bin/\n"); return ret; } ret = snd_soc_tplg_component_load(scomp, &sof_tplg_ops, fw); if (ret < 0) { dev_err(scomp->dev, "error: tplg component load failed %d\n", ret); ret = -EINVAL; } release_firmware(fw); return ret; } EXPORT_SYMBOL(snd_sof_load_topology);