// SPDX-License-Identifier: GPL-2.0-only /**************************************************************************** * Driver for Solarflare network controllers and boards * Copyright 2018 Solarflare Communications Inc. * Copyright 2019-2020 Xilinx Inc. * * This program is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 as published * by the Free Software Foundation, incorporated herein by reference. */ #include "ef100_nic.h" #include "efx_common.h" #include "efx_channels.h" #include "io.h" #include "selftest.h" #include "ef100_regs.h" #include "mcdi.h" #include "mcdi_pcol.h" #include "mcdi_port_common.h" #include "mcdi_functions.h" #include "mcdi_filters.h" #include "ef100_rx.h" #include "ef100_tx.h" #include "ef100_netdev.h" #define EF100_MAX_VIS 4096 #define EF100_NUM_MCDI_BUFFERS 1 #define MCDI_BUF_LEN (8 + MCDI_CTL_SDU_LEN_MAX) #define EF100_RESET_PORT ((ETH_RESET_MAC | ETH_RESET_PHY) << ETH_RESET_SHARED_SHIFT) /* MCDI */ static u8 *ef100_mcdi_buf(struct efx_nic *efx, u8 bufid, dma_addr_t *dma_addr) { struct ef100_nic_data *nic_data = efx->nic_data; if (dma_addr) *dma_addr = nic_data->mcdi_buf.dma_addr + bufid * ALIGN(MCDI_BUF_LEN, 256); return nic_data->mcdi_buf.addr + bufid * ALIGN(MCDI_BUF_LEN, 256); } static int ef100_get_warm_boot_count(struct efx_nic *efx) { efx_dword_t reg; efx_readd(efx, ®, efx_reg(efx, ER_GZ_MC_SFT_STATUS)); if (EFX_DWORD_FIELD(reg, EFX_DWORD_0) == 0xffffffff) { netif_err(efx, hw, efx->net_dev, "Hardware unavailable\n"); efx->state = STATE_DISABLED; return -ENETDOWN; } else { return EFX_DWORD_FIELD(reg, EFX_WORD_1) == 0xb007 ? EFX_DWORD_FIELD(reg, EFX_WORD_0) : -EIO; } } static void ef100_mcdi_request(struct efx_nic *efx, const efx_dword_t *hdr, size_t hdr_len, const efx_dword_t *sdu, size_t sdu_len) { dma_addr_t dma_addr; u8 *pdu = ef100_mcdi_buf(efx, 0, &dma_addr); memcpy(pdu, hdr, hdr_len); memcpy(pdu + hdr_len, sdu, sdu_len); wmb(); /* The hardware provides 'low' and 'high' (doorbell) registers * for passing the 64-bit address of an MCDI request to * firmware. However the dwords are swapped by firmware. The * least significant bits of the doorbell are then 0 for all * MCDI requests due to alignment. */ _efx_writed(efx, cpu_to_le32((u64)dma_addr >> 32), efx_reg(efx, ER_GZ_MC_DB_LWRD)); _efx_writed(efx, cpu_to_le32((u32)dma_addr), efx_reg(efx, ER_GZ_MC_DB_HWRD)); } static bool ef100_mcdi_poll_response(struct efx_nic *efx) { const efx_dword_t hdr = *(const efx_dword_t *)(ef100_mcdi_buf(efx, 0, NULL)); rmb(); return EFX_DWORD_FIELD(hdr, MCDI_HEADER_RESPONSE); } static void ef100_mcdi_read_response(struct efx_nic *efx, efx_dword_t *outbuf, size_t offset, size_t outlen) { const u8 *pdu = ef100_mcdi_buf(efx, 0, NULL); memcpy(outbuf, pdu + offset, outlen); } static int ef100_mcdi_poll_reboot(struct efx_nic *efx) { struct ef100_nic_data *nic_data = efx->nic_data; int rc; rc = ef100_get_warm_boot_count(efx); if (rc < 0) { /* The firmware is presumably in the process of * rebooting. However, we are supposed to report each * reboot just once, so we must only do that once we * can read and store the updated warm boot count. */ return 0; } if (rc == nic_data->warm_boot_count) return 0; nic_data->warm_boot_count = rc; return -EIO; } static void ef100_mcdi_reboot_detected(struct efx_nic *efx) { } /* MCDI calls */ static int efx_ef100_init_datapath_caps(struct efx_nic *efx) { MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_CAPABILITIES_V7_OUT_LEN); struct ef100_nic_data *nic_data = efx->nic_data; u8 vi_window_mode; size_t outlen; int rc; BUILD_BUG_ON(MC_CMD_GET_CAPABILITIES_IN_LEN != 0); rc = efx_mcdi_rpc(efx, MC_CMD_GET_CAPABILITIES, NULL, 0, outbuf, sizeof(outbuf), &outlen); if (rc) return rc; if (outlen < MC_CMD_GET_CAPABILITIES_V4_OUT_LEN) { netif_err(efx, drv, efx->net_dev, "unable to read datapath firmware capabilities\n"); return -EIO; } nic_data->datapath_caps = MCDI_DWORD(outbuf, GET_CAPABILITIES_OUT_FLAGS1); nic_data->datapath_caps2 = MCDI_DWORD(outbuf, GET_CAPABILITIES_V2_OUT_FLAGS2); if (outlen < MC_CMD_GET_CAPABILITIES_V7_OUT_LEN) nic_data->datapath_caps3 = 0; else nic_data->datapath_caps3 = MCDI_DWORD(outbuf, GET_CAPABILITIES_V7_OUT_FLAGS3); vi_window_mode = MCDI_BYTE(outbuf, GET_CAPABILITIES_V3_OUT_VI_WINDOW_MODE); rc = efx_mcdi_window_mode_to_stride(efx, vi_window_mode); if (rc) return rc; if (efx_ef100_has_cap(nic_data->datapath_caps2, TX_TSO_V3)) efx->net_dev->features |= NETIF_F_TSO | NETIF_F_TSO6; efx->num_mac_stats = MCDI_WORD(outbuf, GET_CAPABILITIES_V4_OUT_MAC_STATS_NUM_STATS); netif_dbg(efx, probe, efx->net_dev, "firmware reports num_mac_stats = %u\n", efx->num_mac_stats); return 0; } /* Event handling */ static int ef100_ev_probe(struct efx_channel *channel) { /* Allocate an extra descriptor for the QMDA status completion entry */ return efx_nic_alloc_buffer(channel->efx, &channel->eventq.buf, (channel->eventq_mask + 2) * sizeof(efx_qword_t), GFP_KERNEL); } static int ef100_ev_init(struct efx_channel *channel) { struct ef100_nic_data *nic_data = channel->efx->nic_data; /* initial phase is 0 */ clear_bit(channel->channel, nic_data->evq_phases); return efx_mcdi_ev_init(channel, false, false); } static void ef100_ev_read_ack(struct efx_channel *channel) { efx_dword_t evq_prime; EFX_POPULATE_DWORD_2(evq_prime, ERF_GZ_EVQ_ID, channel->channel, ERF_GZ_IDX, channel->eventq_read_ptr & channel->eventq_mask); efx_writed(channel->efx, &evq_prime, efx_reg(channel->efx, ER_GZ_EVQ_INT_PRIME)); } static int ef100_ev_process(struct efx_channel *channel, int quota) { struct efx_nic *efx = channel->efx; struct ef100_nic_data *nic_data; bool evq_phase, old_evq_phase; unsigned int read_ptr; efx_qword_t *p_event; int spent = 0; bool ev_phase; int ev_type; if (unlikely(!channel->enabled)) return 0; nic_data = efx->nic_data; evq_phase = test_bit(channel->channel, nic_data->evq_phases); old_evq_phase = evq_phase; read_ptr = channel->eventq_read_ptr; BUILD_BUG_ON(ESF_GZ_EV_RXPKTS_PHASE_LBN != ESF_GZ_EV_TXCMPL_PHASE_LBN); while (spent < quota) { p_event = efx_event(channel, read_ptr); ev_phase = !!EFX_QWORD_FIELD(*p_event, ESF_GZ_EV_RXPKTS_PHASE); if (ev_phase != evq_phase) break; netif_vdbg(efx, drv, efx->net_dev, "processing event on %d " EFX_QWORD_FMT "\n", channel->channel, EFX_QWORD_VAL(*p_event)); ev_type = EFX_QWORD_FIELD(*p_event, ESF_GZ_E_TYPE); switch (ev_type) { case ESE_GZ_EF100_EV_MCDI: efx_mcdi_process_event(channel, p_event); break; case ESE_GZ_EF100_EV_DRIVER: netif_info(efx, drv, efx->net_dev, "Driver initiated event " EFX_QWORD_FMT "\n", EFX_QWORD_VAL(*p_event)); break; default: netif_info(efx, drv, efx->net_dev, "Unhandled event " EFX_QWORD_FMT "\n", EFX_QWORD_VAL(*p_event)); } ++read_ptr; if ((read_ptr & channel->eventq_mask) == 0) evq_phase = !evq_phase; } channel->eventq_read_ptr = read_ptr; if (evq_phase != old_evq_phase) change_bit(channel->channel, nic_data->evq_phases); return spent; } static irqreturn_t ef100_msi_interrupt(int irq, void *dev_id) { struct efx_msi_context *context = dev_id; struct efx_nic *efx = context->efx; netif_vdbg(efx, intr, efx->net_dev, "IRQ %d on CPU %d\n", irq, raw_smp_processor_id()); if (likely(READ_ONCE(efx->irq_soft_enabled))) { /* Note test interrupts */ if (context->index == efx->irq_level) efx->last_irq_cpu = raw_smp_processor_id(); /* Schedule processing of the channel */ efx_schedule_channel_irq(efx->channel[context->index]); } return IRQ_HANDLED; } static int ef100_phy_probe(struct efx_nic *efx) { struct efx_mcdi_phy_data *phy_data; int rc; /* Probe for the PHY */ efx->phy_data = kzalloc(sizeof(struct efx_mcdi_phy_data), GFP_KERNEL); if (!efx->phy_data) return -ENOMEM; rc = efx_mcdi_get_phy_cfg(efx, efx->phy_data); if (rc) return rc; /* Populate driver and ethtool settings */ phy_data = efx->phy_data; mcdi_to_ethtool_linkset(phy_data->media, phy_data->supported_cap, efx->link_advertising); efx->fec_config = mcdi_fec_caps_to_ethtool(phy_data->supported_cap, false); /* Default to Autonegotiated flow control if the PHY supports it */ efx->wanted_fc = EFX_FC_RX | EFX_FC_TX; if (phy_data->supported_cap & (1 << MC_CMD_PHY_CAP_AN_LBN)) efx->wanted_fc |= EFX_FC_AUTO; efx_link_set_wanted_fc(efx, efx->wanted_fc); /* Push settings to the PHY. Failure is not fatal, the user can try to * fix it using ethtool. */ rc = efx_mcdi_port_reconfigure(efx); if (rc && rc != -EPERM) netif_warn(efx, drv, efx->net_dev, "could not initialise PHY settings\n"); return 0; } /* Other */ static int ef100_reconfigure_mac(struct efx_nic *efx, bool mtu_only) { WARN_ON(!mutex_is_locked(&efx->mac_lock)); efx_mcdi_filter_sync_rx_mode(efx); if (mtu_only && efx_has_cap(efx, SET_MAC_ENHANCED)) return efx_mcdi_set_mtu(efx); return efx_mcdi_set_mac(efx); } static enum reset_type ef100_map_reset_reason(enum reset_type reason) { if (reason == RESET_TYPE_TX_WATCHDOG) return reason; return RESET_TYPE_DISABLE; } static int ef100_map_reset_flags(u32 *flags) { /* Only perform a RESET_TYPE_ALL because we don't support MC_REBOOTs */ if ((*flags & EF100_RESET_PORT)) { *flags &= ~EF100_RESET_PORT; return RESET_TYPE_ALL; } if (*flags & ETH_RESET_MGMT) { *flags &= ~ETH_RESET_MGMT; return RESET_TYPE_DISABLE; } return -EINVAL; } static int ef100_reset(struct efx_nic *efx, enum reset_type reset_type) { int rc; dev_close(efx->net_dev); if (reset_type == RESET_TYPE_TX_WATCHDOG) { netif_device_attach(efx->net_dev); __clear_bit(reset_type, &efx->reset_pending); rc = dev_open(efx->net_dev, NULL); } else if (reset_type == RESET_TYPE_ALL) { rc = efx_mcdi_reset(efx, reset_type); if (rc) return rc; netif_device_attach(efx->net_dev); rc = dev_open(efx->net_dev, NULL); } else { rc = 1; /* Leave the device closed */ } return rc; } static unsigned int ef100_check_caps(const struct efx_nic *efx, u8 flag, u32 offset) { const struct ef100_nic_data *nic_data = efx->nic_data; switch (offset) { case MC_CMD_GET_CAPABILITIES_V8_OUT_FLAGS1_OFST: return nic_data->datapath_caps & BIT_ULL(flag); case MC_CMD_GET_CAPABILITIES_V8_OUT_FLAGS2_OFST: return nic_data->datapath_caps2 & BIT_ULL(flag); case MC_CMD_GET_CAPABILITIES_V8_OUT_FLAGS3_OFST: return nic_data->datapath_caps3 & BIT_ULL(flag); default: return 0; } } /* NIC level access functions */ const struct efx_nic_type ef100_pf_nic_type = { .revision = EFX_REV_EF100, .is_vf = false, .probe = ef100_probe_pf, .mcdi_max_ver = 2, .mcdi_request = ef100_mcdi_request, .mcdi_poll_response = ef100_mcdi_poll_response, .mcdi_read_response = ef100_mcdi_read_response, .mcdi_poll_reboot = ef100_mcdi_poll_reboot, .mcdi_reboot_detected = ef100_mcdi_reboot_detected, .irq_enable_master = efx_port_dummy_op_void, .irq_disable_non_ev = efx_port_dummy_op_void, .push_irq_moderation = efx_channel_dummy_op_void, .min_interrupt_mode = EFX_INT_MODE_MSIX, .map_reset_reason = ef100_map_reset_reason, .map_reset_flags = ef100_map_reset_flags, .reset = ef100_reset, .check_caps = ef100_check_caps, .ev_probe = ef100_ev_probe, .ev_init = ef100_ev_init, .ev_fini = efx_mcdi_ev_fini, .ev_remove = efx_mcdi_ev_remove, .irq_handle_msi = ef100_msi_interrupt, .ev_process = ef100_ev_process, .ev_read_ack = ef100_ev_read_ack, .tx_probe = ef100_tx_probe, .tx_init = ef100_tx_init, .tx_write = ef100_tx_write, .tx_enqueue = ef100_enqueue_skb, .rx_probe = efx_mcdi_rx_probe, .rx_init = efx_mcdi_rx_init, .rx_remove = efx_mcdi_rx_remove, .rx_write = ef100_rx_write, .rx_packet = __ef100_rx_packet, .reconfigure_mac = ef100_reconfigure_mac, /* Per-type bar/size configuration not used on ef100. Location of * registers is defined by extended capabilities. */ .mem_bar = NULL, .mem_map_size = NULL, }; /* NIC probe and remove */ static int ef100_probe_main(struct efx_nic *efx) { unsigned int bar_size = resource_size(&efx->pci_dev->resource[efx->mem_bar]); struct net_device *net_dev = efx->net_dev; struct ef100_nic_data *nic_data; int i, rc; if (WARN_ON(bar_size == 0)) return -EIO; nic_data = kzalloc(sizeof(*nic_data), GFP_KERNEL); if (!nic_data) return -ENOMEM; efx->nic_data = nic_data; nic_data->efx = efx; net_dev->features |= efx->type->offload_features; net_dev->hw_features |= efx->type->offload_features; /* we assume later that we can copy from this buffer in dwords */ BUILD_BUG_ON(MCDI_CTL_SDU_LEN_MAX_V2 % 4); /* MCDI buffers must be 256 byte aligned. */ rc = efx_nic_alloc_buffer(efx, &nic_data->mcdi_buf, MCDI_BUF_LEN, GFP_KERNEL); if (rc) goto fail; /* Get the MC's warm boot count. In case it's rebooting right * now, be prepared to retry. */ i = 0; for (;;) { rc = ef100_get_warm_boot_count(efx); if (rc >= 0) break; if (++i == 5) goto fail; ssleep(1); } nic_data->warm_boot_count = rc; /* In case we're recovering from a crash (kexec), we want to * cancel any outstanding request by the previous user of this * function. We send a special message using the least * significant bits of the 'high' (doorbell) register. */ _efx_writed(efx, cpu_to_le32(1), efx_reg(efx, ER_GZ_MC_DB_HWRD)); /* Post-IO section. */ rc = efx_mcdi_init(efx); if (!rc && efx->mcdi->fn_flags & (1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_NO_ACTIVE_PORT)) { netif_info(efx, probe, efx->net_dev, "No network port on this PCI function"); rc = -ENODEV; } if (rc) goto fail; /* Reset (most) configuration for this function */ rc = efx_mcdi_reset(efx, RESET_TYPE_ALL); if (rc) goto fail; rc = efx_ef100_init_datapath_caps(efx); if (rc < 0) goto fail; efx->max_vis = EF100_MAX_VIS; rc = ef100_phy_probe(efx); if (rc) goto fail; rc = efx_init_channels(efx); if (rc) goto fail; rc = ef100_register_netdev(efx); if (rc) goto fail; return 0; fail: return rc; } int ef100_probe_pf(struct efx_nic *efx) { return ef100_probe_main(efx); } void ef100_remove(struct efx_nic *efx) { struct ef100_nic_data *nic_data = efx->nic_data; ef100_unregister_netdev(efx); efx_fini_channels(efx); kfree(efx->phy_data); efx->phy_data = NULL; efx_mcdi_detach(efx); efx_mcdi_fini(efx); if (nic_data) efx_nic_free_buffer(efx, &nic_data->mcdi_buf); kfree(nic_data); efx->nic_data = NULL; }