// SPDX-License-Identifier: GPL-2.0-only /* * fs/fs-writeback.c * * Copyright (C) 2002, Linus Torvalds. * * Contains all the functions related to writing back and waiting * upon dirty inodes against superblocks, and writing back dirty * pages against inodes. ie: data writeback. Writeout of the * inode itself is not handled here. * * 10Apr2002 Andrew Morton * Split out of fs/inode.c * Additions for address_space-based writeback */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "internal.h" /* * 4MB minimal write chunk size */ #define MIN_WRITEBACK_PAGES (4096UL >> (PAGE_SHIFT - 10)) /* * Passed into wb_writeback(), essentially a subset of writeback_control */ struct wb_writeback_work { long nr_pages; struct super_block *sb; enum writeback_sync_modes sync_mode; unsigned int tagged_writepages:1; unsigned int for_kupdate:1; unsigned int range_cyclic:1; unsigned int for_background:1; unsigned int for_sync:1; /* sync(2) WB_SYNC_ALL writeback */ unsigned int auto_free:1; /* free on completion */ enum wb_reason reason; /* why was writeback initiated? */ struct list_head list; /* pending work list */ struct wb_completion *done; /* set if the caller waits */ }; /* * If an inode is constantly having its pages dirtied, but then the * updates stop dirtytime_expire_interval seconds in the past, it's * possible for the worst case time between when an inode has its * timestamps updated and when they finally get written out to be two * dirtytime_expire_intervals. We set the default to 12 hours (in * seconds), which means most of the time inodes will have their * timestamps written to disk after 12 hours, but in the worst case a * few inodes might not their timestamps updated for 24 hours. */ unsigned int dirtytime_expire_interval = 12 * 60 * 60; static inline struct inode *wb_inode(struct list_head *head) { return list_entry(head, struct inode, i_io_list); } /* * Include the creation of the trace points after defining the * wb_writeback_work structure and inline functions so that the definition * remains local to this file. */ #define CREATE_TRACE_POINTS #include EXPORT_TRACEPOINT_SYMBOL_GPL(wbc_writepage); static bool wb_io_lists_populated(struct bdi_writeback *wb) { if (wb_has_dirty_io(wb)) { return false; } else { set_bit(WB_has_dirty_io, &wb->state); WARN_ON_ONCE(!wb->avg_write_bandwidth); atomic_long_add(wb->avg_write_bandwidth, &wb->bdi->tot_write_bandwidth); return true; } } static void wb_io_lists_depopulated(struct bdi_writeback *wb) { if (wb_has_dirty_io(wb) && list_empty(&wb->b_dirty) && list_empty(&wb->b_io) && list_empty(&wb->b_more_io)) { clear_bit(WB_has_dirty_io, &wb->state); WARN_ON_ONCE(atomic_long_sub_return(wb->avg_write_bandwidth, &wb->bdi->tot_write_bandwidth) < 0); } } /** * inode_io_list_move_locked - move an inode onto a bdi_writeback IO list * @inode: inode to be moved * @wb: target bdi_writeback * @head: one of @wb->b_{dirty|io|more_io|dirty_time} * * Move @inode->i_io_list to @list of @wb and set %WB_has_dirty_io. * Returns %true if @inode is the first occupant of the !dirty_time IO * lists; otherwise, %false. */ static bool inode_io_list_move_locked(struct inode *inode, struct bdi_writeback *wb, struct list_head *head) { assert_spin_locked(&wb->list_lock); assert_spin_locked(&inode->i_lock); list_move(&inode->i_io_list, head); /* dirty_time doesn't count as dirty_io until expiration */ if (head != &wb->b_dirty_time) return wb_io_lists_populated(wb); wb_io_lists_depopulated(wb); return false; } static void wb_wakeup(struct bdi_writeback *wb) { spin_lock_irq(&wb->work_lock); if (test_bit(WB_registered, &wb->state)) mod_delayed_work(bdi_wq, &wb->dwork, 0); spin_unlock_irq(&wb->work_lock); } static void finish_writeback_work(struct bdi_writeback *wb, struct wb_writeback_work *work) { struct wb_completion *done = work->done; if (work->auto_free) kfree(work); if (done) { wait_queue_head_t *waitq = done->waitq; /* @done can't be accessed after the following dec */ if (atomic_dec_and_test(&done->cnt)) wake_up_all(waitq); } } static void wb_queue_work(struct bdi_writeback *wb, struct wb_writeback_work *work) { trace_writeback_queue(wb, work); if (work->done) atomic_inc(&work->done->cnt); spin_lock_irq(&wb->work_lock); if (test_bit(WB_registered, &wb->state)) { list_add_tail(&work->list, &wb->work_list); mod_delayed_work(bdi_wq, &wb->dwork, 0); } else finish_writeback_work(wb, work); spin_unlock_irq(&wb->work_lock); } /** * wb_wait_for_completion - wait for completion of bdi_writeback_works * @done: target wb_completion * * Wait for one or more work items issued to @bdi with their ->done field * set to @done, which should have been initialized with * DEFINE_WB_COMPLETION(). This function returns after all such work items * are completed. Work items which are waited upon aren't freed * automatically on completion. */ void wb_wait_for_completion(struct wb_completion *done) { atomic_dec(&done->cnt); /* put down the initial count */ wait_event(*done->waitq, !atomic_read(&done->cnt)); } #ifdef CONFIG_CGROUP_WRITEBACK /* * Parameters for foreign inode detection, see wbc_detach_inode() to see * how they're used. * * These paramters are inherently heuristical as the detection target * itself is fuzzy. All we want to do is detaching an inode from the * current owner if it's being written to by some other cgroups too much. * * The current cgroup writeback is built on the assumption that multiple * cgroups writing to the same inode concurrently is very rare and a mode * of operation which isn't well supported. As such, the goal is not * taking too long when a different cgroup takes over an inode while * avoiding too aggressive flip-flops from occasional foreign writes. * * We record, very roughly, 2s worth of IO time history and if more than * half of that is foreign, trigger the switch. The recording is quantized * to 16 slots. To avoid tiny writes from swinging the decision too much, * writes smaller than 1/8 of avg size are ignored. */ #define WB_FRN_TIME_SHIFT 13 /* 1s = 2^13, upto 8 secs w/ 16bit */ #define WB_FRN_TIME_AVG_SHIFT 3 /* avg = avg * 7/8 + new * 1/8 */ #define WB_FRN_TIME_CUT_DIV 8 /* ignore rounds < avg / 8 */ #define WB_FRN_TIME_PERIOD (2 * (1 << WB_FRN_TIME_SHIFT)) /* 2s */ #define WB_FRN_HIST_SLOTS 16 /* inode->i_wb_frn_history is 16bit */ #define WB_FRN_HIST_UNIT (WB_FRN_TIME_PERIOD / WB_FRN_HIST_SLOTS) /* each slot's duration is 2s / 16 */ #define WB_FRN_HIST_THR_SLOTS (WB_FRN_HIST_SLOTS / 2) /* if foreign slots >= 8, switch */ #define WB_FRN_HIST_MAX_SLOTS (WB_FRN_HIST_THR_SLOTS / 2 + 1) /* one round can affect upto 5 slots */ #define WB_FRN_MAX_IN_FLIGHT 1024 /* don't queue too many concurrently */ /* * Maximum inodes per isw. A specific value has been chosen to make * struct inode_switch_wbs_context fit into 1024 bytes kmalloc. */ #define WB_MAX_INODES_PER_ISW ((1024UL - sizeof(struct inode_switch_wbs_context)) \ / sizeof(struct inode *)) static atomic_t isw_nr_in_flight = ATOMIC_INIT(0); static struct workqueue_struct *isw_wq; void __inode_attach_wb(struct inode *inode, struct page *page) { struct backing_dev_info *bdi = inode_to_bdi(inode); struct bdi_writeback *wb = NULL; if (inode_cgwb_enabled(inode)) { struct cgroup_subsys_state *memcg_css; if (page) { memcg_css = mem_cgroup_css_from_page(page); wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC); } else { /* must pin memcg_css, see wb_get_create() */ memcg_css = task_get_css(current, memory_cgrp_id); wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC); css_put(memcg_css); } } if (!wb) wb = &bdi->wb; /* * There may be multiple instances of this function racing to * update the same inode. Use cmpxchg() to tell the winner. */ if (unlikely(cmpxchg(&inode->i_wb, NULL, wb))) wb_put(wb); } EXPORT_SYMBOL_GPL(__inode_attach_wb); /** * inode_cgwb_move_to_attached - put the inode onto wb->b_attached list * @inode: inode of interest with i_lock held * @wb: target bdi_writeback * * Remove the inode from wb's io lists and if necessarily put onto b_attached * list. Only inodes attached to cgwb's are kept on this list. */ static void inode_cgwb_move_to_attached(struct inode *inode, struct bdi_writeback *wb) { assert_spin_locked(&wb->list_lock); assert_spin_locked(&inode->i_lock); inode->i_state &= ~I_SYNC_QUEUED; if (wb != &wb->bdi->wb) list_move(&inode->i_io_list, &wb->b_attached); else list_del_init(&inode->i_io_list); wb_io_lists_depopulated(wb); } /** * locked_inode_to_wb_and_lock_list - determine a locked inode's wb and lock it * @inode: inode of interest with i_lock held * * Returns @inode's wb with its list_lock held. @inode->i_lock must be * held on entry and is released on return. The returned wb is guaranteed * to stay @inode's associated wb until its list_lock is released. */ static struct bdi_writeback * locked_inode_to_wb_and_lock_list(struct inode *inode) __releases(&inode->i_lock) __acquires(&wb->list_lock) { while (true) { struct bdi_writeback *wb = inode_to_wb(inode); /* * inode_to_wb() association is protected by both * @inode->i_lock and @wb->list_lock but list_lock nests * outside i_lock. Drop i_lock and verify that the * association hasn't changed after acquiring list_lock. */ wb_get(wb); spin_unlock(&inode->i_lock); spin_lock(&wb->list_lock); /* i_wb may have changed inbetween, can't use inode_to_wb() */ if (likely(wb == inode->i_wb)) { wb_put(wb); /* @inode already has ref */ return wb; } spin_unlock(&wb->list_lock); wb_put(wb); cpu_relax(); spin_lock(&inode->i_lock); } } /** * inode_to_wb_and_lock_list - determine an inode's wb and lock it * @inode: inode of interest * * Same as locked_inode_to_wb_and_lock_list() but @inode->i_lock isn't held * on entry. */ static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode) __acquires(&wb->list_lock) { spin_lock(&inode->i_lock); return locked_inode_to_wb_and_lock_list(inode); } struct inode_switch_wbs_context { struct rcu_work work; /* * Multiple inodes can be switched at once. The switching procedure * consists of two parts, separated by a RCU grace period. To make * sure that the second part is executed for each inode gone through * the first part, all inode pointers are placed into a NULL-terminated * array embedded into struct inode_switch_wbs_context. Otherwise * an inode could be left in a non-consistent state. */ struct bdi_writeback *new_wb; struct inode *inodes[]; }; static void bdi_down_write_wb_switch_rwsem(struct backing_dev_info *bdi) { down_write(&bdi->wb_switch_rwsem); } static void bdi_up_write_wb_switch_rwsem(struct backing_dev_info *bdi) { up_write(&bdi->wb_switch_rwsem); } static bool inode_do_switch_wbs(struct inode *inode, struct bdi_writeback *old_wb, struct bdi_writeback *new_wb) { struct address_space *mapping = inode->i_mapping; XA_STATE(xas, &mapping->i_pages, 0); struct page *page; bool switched = false; spin_lock(&inode->i_lock); xa_lock_irq(&mapping->i_pages); /* * Once I_FREEING or I_WILL_FREE are visible under i_lock, the eviction * path owns the inode and we shouldn't modify ->i_io_list. */ if (unlikely(inode->i_state & (I_FREEING | I_WILL_FREE))) goto skip_switch; trace_inode_switch_wbs(inode, old_wb, new_wb); /* * Count and transfer stats. Note that PAGECACHE_TAG_DIRTY points * to possibly dirty pages while PAGECACHE_TAG_WRITEBACK points to * pages actually under writeback. */ xas_for_each_marked(&xas, page, ULONG_MAX, PAGECACHE_TAG_DIRTY) { if (PageDirty(page)) { dec_wb_stat(old_wb, WB_RECLAIMABLE); inc_wb_stat(new_wb, WB_RECLAIMABLE); } } xas_set(&xas, 0); xas_for_each_marked(&xas, page, ULONG_MAX, PAGECACHE_TAG_WRITEBACK) { WARN_ON_ONCE(!PageWriteback(page)); dec_wb_stat(old_wb, WB_WRITEBACK); inc_wb_stat(new_wb, WB_WRITEBACK); } if (mapping_tagged(mapping, PAGECACHE_TAG_WRITEBACK)) { atomic_dec(&old_wb->writeback_inodes); atomic_inc(&new_wb->writeback_inodes); } wb_get(new_wb); /* * Transfer to @new_wb's IO list if necessary. If the @inode is dirty, * the specific list @inode was on is ignored and the @inode is put on * ->b_dirty which is always correct including from ->b_dirty_time. * The transfer preserves @inode->dirtied_when ordering. If the @inode * was clean, it means it was on the b_attached list, so move it onto * the b_attached list of @new_wb. */ if (!list_empty(&inode->i_io_list)) { inode->i_wb = new_wb; if (inode->i_state & I_DIRTY_ALL) { struct inode *pos; list_for_each_entry(pos, &new_wb->b_dirty, i_io_list) if (time_after_eq(inode->dirtied_when, pos->dirtied_when)) break; inode_io_list_move_locked(inode, new_wb, pos->i_io_list.prev); } else { inode_cgwb_move_to_attached(inode, new_wb); } } else { inode->i_wb = new_wb; } /* ->i_wb_frn updates may race wbc_detach_inode() but doesn't matter */ inode->i_wb_frn_winner = 0; inode->i_wb_frn_avg_time = 0; inode->i_wb_frn_history = 0; switched = true; skip_switch: /* * Paired with load_acquire in unlocked_inode_to_wb_begin() and * ensures that the new wb is visible if they see !I_WB_SWITCH. */ smp_store_release(&inode->i_state, inode->i_state & ~I_WB_SWITCH); xa_unlock_irq(&mapping->i_pages); spin_unlock(&inode->i_lock); return switched; } static void inode_switch_wbs_work_fn(struct work_struct *work) { struct inode_switch_wbs_context *isw = container_of(to_rcu_work(work), struct inode_switch_wbs_context, work); struct backing_dev_info *bdi = inode_to_bdi(isw->inodes[0]); struct bdi_writeback *old_wb = isw->inodes[0]->i_wb; struct bdi_writeback *new_wb = isw->new_wb; unsigned long nr_switched = 0; struct inode **inodep; /* * If @inode switches cgwb membership while sync_inodes_sb() is * being issued, sync_inodes_sb() might miss it. Synchronize. */ down_read(&bdi->wb_switch_rwsem); /* * By the time control reaches here, RCU grace period has passed * since I_WB_SWITCH assertion and all wb stat update transactions * between unlocked_inode_to_wb_begin/end() are guaranteed to be * synchronizing against the i_pages lock. * * Grabbing old_wb->list_lock, inode->i_lock and the i_pages lock * gives us exclusion against all wb related operations on @inode * including IO list manipulations and stat updates. */ if (old_wb < new_wb) { spin_lock(&old_wb->list_lock); spin_lock_nested(&new_wb->list_lock, SINGLE_DEPTH_NESTING); } else { spin_lock(&new_wb->list_lock); spin_lock_nested(&old_wb->list_lock, SINGLE_DEPTH_NESTING); } for (inodep = isw->inodes; *inodep; inodep++) { WARN_ON_ONCE((*inodep)->i_wb != old_wb); if (inode_do_switch_wbs(*inodep, old_wb, new_wb)) nr_switched++; } spin_unlock(&new_wb->list_lock); spin_unlock(&old_wb->list_lock); up_read(&bdi->wb_switch_rwsem); if (nr_switched) { wb_wakeup(new_wb); wb_put_many(old_wb, nr_switched); } for (inodep = isw->inodes; *inodep; inodep++) iput(*inodep); wb_put(new_wb); kfree(isw); atomic_dec(&isw_nr_in_flight); } static bool inode_prepare_wbs_switch(struct inode *inode, struct bdi_writeback *new_wb) { /* * Paired with smp_mb() in cgroup_writeback_umount(). * isw_nr_in_flight must be increased before checking SB_ACTIVE and * grabbing an inode, otherwise isw_nr_in_flight can be observed as 0 * in cgroup_writeback_umount() and the isw_wq will be not flushed. */ smp_mb(); if (IS_DAX(inode)) return false; /* while holding I_WB_SWITCH, no one else can update the association */ spin_lock(&inode->i_lock); if (!(inode->i_sb->s_flags & SB_ACTIVE) || inode->i_state & (I_WB_SWITCH | I_FREEING | I_WILL_FREE) || inode_to_wb(inode) == new_wb) { spin_unlock(&inode->i_lock); return false; } inode->i_state |= I_WB_SWITCH; __iget(inode); spin_unlock(&inode->i_lock); return true; } /** * inode_switch_wbs - change the wb association of an inode * @inode: target inode * @new_wb_id: ID of the new wb * * Switch @inode's wb association to the wb identified by @new_wb_id. The * switching is performed asynchronously and may fail silently. */ static void inode_switch_wbs(struct inode *inode, int new_wb_id) { struct backing_dev_info *bdi = inode_to_bdi(inode); struct cgroup_subsys_state *memcg_css; struct inode_switch_wbs_context *isw; /* noop if seems to be already in progress */ if (inode->i_state & I_WB_SWITCH) return; /* avoid queueing a new switch if too many are already in flight */ if (atomic_read(&isw_nr_in_flight) > WB_FRN_MAX_IN_FLIGHT) return; isw = kzalloc(sizeof(*isw) + 2 * sizeof(struct inode *), GFP_ATOMIC); if (!isw) return; atomic_inc(&isw_nr_in_flight); /* find and pin the new wb */ rcu_read_lock(); memcg_css = css_from_id(new_wb_id, &memory_cgrp_subsys); if (memcg_css && !css_tryget(memcg_css)) memcg_css = NULL; rcu_read_unlock(); if (!memcg_css) goto out_free; isw->new_wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC); css_put(memcg_css); if (!isw->new_wb) goto out_free; if (!inode_prepare_wbs_switch(inode, isw->new_wb)) goto out_free; isw->inodes[0] = inode; /* * In addition to synchronizing among switchers, I_WB_SWITCH tells * the RCU protected stat update paths to grab the i_page * lock so that stat transfer can synchronize against them. * Let's continue after I_WB_SWITCH is guaranteed to be visible. */ INIT_RCU_WORK(&isw->work, inode_switch_wbs_work_fn); queue_rcu_work(isw_wq, &isw->work); return; out_free: atomic_dec(&isw_nr_in_flight); if (isw->new_wb) wb_put(isw->new_wb); kfree(isw); } /** * cleanup_offline_cgwb - detach associated inodes * @wb: target wb * * Switch all inodes attached to @wb to a nearest living ancestor's wb in order * to eventually release the dying @wb. Returns %true if not all inodes were * switched and the function has to be restarted. */ bool cleanup_offline_cgwb(struct bdi_writeback *wb) { struct cgroup_subsys_state *memcg_css; struct inode_switch_wbs_context *isw; struct inode *inode; int nr; bool restart = false; isw = kzalloc(sizeof(*isw) + WB_MAX_INODES_PER_ISW * sizeof(struct inode *), GFP_KERNEL); if (!isw) return restart; atomic_inc(&isw_nr_in_flight); for (memcg_css = wb->memcg_css->parent; memcg_css; memcg_css = memcg_css->parent) { isw->new_wb = wb_get_create(wb->bdi, memcg_css, GFP_KERNEL); if (isw->new_wb) break; } if (unlikely(!isw->new_wb)) isw->new_wb = &wb->bdi->wb; /* wb_get() is noop for bdi's wb */ nr = 0; spin_lock(&wb->list_lock); list_for_each_entry(inode, &wb->b_attached, i_io_list) { if (!inode_prepare_wbs_switch(inode, isw->new_wb)) continue; isw->inodes[nr++] = inode; if (nr >= WB_MAX_INODES_PER_ISW - 1) { restart = true; break; } } spin_unlock(&wb->list_lock); /* no attached inodes? bail out */ if (nr == 0) { atomic_dec(&isw_nr_in_flight); wb_put(isw->new_wb); kfree(isw); return restart; } /* * In addition to synchronizing among switchers, I_WB_SWITCH tells * the RCU protected stat update paths to grab the i_page * lock so that stat transfer can synchronize against them. * Let's continue after I_WB_SWITCH is guaranteed to be visible. */ INIT_RCU_WORK(&isw->work, inode_switch_wbs_work_fn); queue_rcu_work(isw_wq, &isw->work); return restart; } /** * wbc_attach_and_unlock_inode - associate wbc with target inode and unlock it * @wbc: writeback_control of interest * @inode: target inode * * @inode is locked and about to be written back under the control of @wbc. * Record @inode's writeback context into @wbc and unlock the i_lock. On * writeback completion, wbc_detach_inode() should be called. This is used * to track the cgroup writeback context. */ void wbc_attach_and_unlock_inode(struct writeback_control *wbc, struct inode *inode) { if (!inode_cgwb_enabled(inode)) { spin_unlock(&inode->i_lock); return; } wbc->wb = inode_to_wb(inode); wbc->inode = inode; wbc->wb_id = wbc->wb->memcg_css->id; wbc->wb_lcand_id = inode->i_wb_frn_winner; wbc->wb_tcand_id = 0; wbc->wb_bytes = 0; wbc->wb_lcand_bytes = 0; wbc->wb_tcand_bytes = 0; wb_get(wbc->wb); spin_unlock(&inode->i_lock); /* * A dying wb indicates that either the blkcg associated with the * memcg changed or the associated memcg is dying. In the first * case, a replacement wb should already be available and we should * refresh the wb immediately. In the second case, trying to * refresh will keep failing. */ if (unlikely(wb_dying(wbc->wb) && !css_is_dying(wbc->wb->memcg_css))) inode_switch_wbs(inode, wbc->wb_id); } EXPORT_SYMBOL_GPL(wbc_attach_and_unlock_inode); /** * wbc_detach_inode - disassociate wbc from inode and perform foreign detection * @wbc: writeback_control of the just finished writeback * * To be called after a writeback attempt of an inode finishes and undoes * wbc_attach_and_unlock_inode(). Can be called under any context. * * As concurrent write sharing of an inode is expected to be very rare and * memcg only tracks page ownership on first-use basis severely confining * the usefulness of such sharing, cgroup writeback tracks ownership * per-inode. While the support for concurrent write sharing of an inode * is deemed unnecessary, an inode being written to by different cgroups at * different points in time is a lot more common, and, more importantly, * charging only by first-use can too readily lead to grossly incorrect * behaviors (single foreign page can lead to gigabytes of writeback to be * incorrectly attributed). * * To resolve this issue, cgroup writeback detects the majority dirtier of * an inode and transfers the ownership to it. To avoid unnnecessary * oscillation, the detection mechanism keeps track of history and gives * out the switch verdict only if the foreign usage pattern is stable over * a certain amount of time and/or writeback attempts. * * On each writeback attempt, @wbc tries to detect the majority writer * using Boyer-Moore majority vote algorithm. In addition to the byte * count from the majority voting, it also counts the bytes written for the * current wb and the last round's winner wb (max of last round's current * wb, the winner from two rounds ago, and the last round's majority * candidate). Keeping track of the historical winner helps the algorithm * to semi-reliably detect the most active writer even when it's not the * absolute majority. * * Once the winner of the round is determined, whether the winner is * foreign or not and how much IO time the round consumed is recorded in * inode->i_wb_frn_history. If the amount of recorded foreign IO time is * over a certain threshold, the switch verdict is given. */ void wbc_detach_inode(struct writeback_control *wbc) { struct bdi_writeback *wb = wbc->wb; struct inode *inode = wbc->inode; unsigned long avg_time, max_bytes, max_time; u16 history; int max_id; if (!wb) return; history = inode->i_wb_frn_history; avg_time = inode->i_wb_frn_avg_time; /* pick the winner of this round */ if (wbc->wb_bytes >= wbc->wb_lcand_bytes && wbc->wb_bytes >= wbc->wb_tcand_bytes) { max_id = wbc->wb_id; max_bytes = wbc->wb_bytes; } else if (wbc->wb_lcand_bytes >= wbc->wb_tcand_bytes) { max_id = wbc->wb_lcand_id; max_bytes = wbc->wb_lcand_bytes; } else { max_id = wbc->wb_tcand_id; max_bytes = wbc->wb_tcand_bytes; } /* * Calculate the amount of IO time the winner consumed and fold it * into the running average kept per inode. If the consumed IO * time is lower than avag / WB_FRN_TIME_CUT_DIV, ignore it for * deciding whether to switch or not. This is to prevent one-off * small dirtiers from skewing the verdict. */ max_time = DIV_ROUND_UP((max_bytes >> PAGE_SHIFT) << WB_FRN_TIME_SHIFT, wb->avg_write_bandwidth); if (avg_time) avg_time += (max_time >> WB_FRN_TIME_AVG_SHIFT) - (avg_time >> WB_FRN_TIME_AVG_SHIFT); else avg_time = max_time; /* immediate catch up on first run */ if (max_time >= avg_time / WB_FRN_TIME_CUT_DIV) { int slots; /* * The switch verdict is reached if foreign wb's consume * more than a certain proportion of IO time in a * WB_FRN_TIME_PERIOD. This is loosely tracked by 16 slot * history mask where each bit represents one sixteenth of * the period. Determine the number of slots to shift into * history from @max_time. */ slots = min(DIV_ROUND_UP(max_time, WB_FRN_HIST_UNIT), (unsigned long)WB_FRN_HIST_MAX_SLOTS); history <<= slots; if (wbc->wb_id != max_id) history |= (1U << slots) - 1; if (history) trace_inode_foreign_history(inode, wbc, history); /* * Switch if the current wb isn't the consistent winner. * If there are multiple closely competing dirtiers, the * inode may switch across them repeatedly over time, which * is okay. The main goal is avoiding keeping an inode on * the wrong wb for an extended period of time. */ if (hweight32(history) > WB_FRN_HIST_THR_SLOTS) inode_switch_wbs(inode, max_id); } /* * Multiple instances of this function may race to update the * following fields but we don't mind occassional inaccuracies. */ inode->i_wb_frn_winner = max_id; inode->i_wb_frn_avg_time = min(avg_time, (unsigned long)U16_MAX); inode->i_wb_frn_history = history; wb_put(wbc->wb); wbc->wb = NULL; } EXPORT_SYMBOL_GPL(wbc_detach_inode); /** * wbc_account_cgroup_owner - account writeback to update inode cgroup ownership * @wbc: writeback_control of the writeback in progress * @page: page being written out * @bytes: number of bytes being written out * * @bytes from @page are about to written out during the writeback * controlled by @wbc. Keep the book for foreign inode detection. See * wbc_detach_inode(). */ void wbc_account_cgroup_owner(struct writeback_control *wbc, struct page *page, size_t bytes) { struct cgroup_subsys_state *css; int id; /* * pageout() path doesn't attach @wbc to the inode being written * out. This is intentional as we don't want the function to block * behind a slow cgroup. Ultimately, we want pageout() to kick off * regular writeback instead of writing things out itself. */ if (!wbc->wb || wbc->no_cgroup_owner) return; css = mem_cgroup_css_from_page(page); /* dead cgroups shouldn't contribute to inode ownership arbitration */ if (!(css->flags & CSS_ONLINE)) return; id = css->id; if (id == wbc->wb_id) { wbc->wb_bytes += bytes; return; } if (id == wbc->wb_lcand_id) wbc->wb_lcand_bytes += bytes; /* Boyer-Moore majority vote algorithm */ if (!wbc->wb_tcand_bytes) wbc->wb_tcand_id = id; if (id == wbc->wb_tcand_id) wbc->wb_tcand_bytes += bytes; else wbc->wb_tcand_bytes -= min(bytes, wbc->wb_tcand_bytes); } EXPORT_SYMBOL_GPL(wbc_account_cgroup_owner); /** * inode_congested - test whether an inode is congested * @inode: inode to test for congestion (may be NULL) * @cong_bits: mask of WB_[a]sync_congested bits to test * * Tests whether @inode is congested. @cong_bits is the mask of congestion * bits to test and the return value is the mask of set bits. * * If cgroup writeback is enabled for @inode, the congestion state is * determined by whether the cgwb (cgroup bdi_writeback) for the blkcg * associated with @inode is congested; otherwise, the root wb's congestion * state is used. * * @inode is allowed to be NULL as this function is often called on * mapping->host which is NULL for the swapper space. */ int inode_congested(struct inode *inode, int cong_bits) { /* * Once set, ->i_wb never becomes NULL while the inode is alive. * Start transaction iff ->i_wb is visible. */ if (inode && inode_to_wb_is_valid(inode)) { struct bdi_writeback *wb; struct wb_lock_cookie lock_cookie = {}; bool congested; wb = unlocked_inode_to_wb_begin(inode, &lock_cookie); congested = wb_congested(wb, cong_bits); unlocked_inode_to_wb_end(inode, &lock_cookie); return congested; } return wb_congested(&inode_to_bdi(inode)->wb, cong_bits); } EXPORT_SYMBOL_GPL(inode_congested); /** * wb_split_bdi_pages - split nr_pages to write according to bandwidth * @wb: target bdi_writeback to split @nr_pages to * @nr_pages: number of pages to write for the whole bdi * * Split @wb's portion of @nr_pages according to @wb's write bandwidth in * relation to the total write bandwidth of all wb's w/ dirty inodes on * @wb->bdi. */ static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages) { unsigned long this_bw = wb->avg_write_bandwidth; unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth); if (nr_pages == LONG_MAX) return LONG_MAX; /* * This may be called on clean wb's and proportional distribution * may not make sense, just use the original @nr_pages in those * cases. In general, we wanna err on the side of writing more. */ if (!tot_bw || this_bw >= tot_bw) return nr_pages; else return DIV_ROUND_UP_ULL((u64)nr_pages * this_bw, tot_bw); } /** * bdi_split_work_to_wbs - split a wb_writeback_work to all wb's of a bdi * @bdi: target backing_dev_info * @base_work: wb_writeback_work to issue * @skip_if_busy: skip wb's which already have writeback in progress * * Split and issue @base_work to all wb's (bdi_writeback's) of @bdi which * have dirty inodes. If @base_work->nr_page isn't %LONG_MAX, it's * distributed to the busy wbs according to each wb's proportion in the * total active write bandwidth of @bdi. */ static void bdi_split_work_to_wbs(struct backing_dev_info *bdi, struct wb_writeback_work *base_work, bool skip_if_busy) { struct bdi_writeback *last_wb = NULL; struct bdi_writeback *wb = list_entry(&bdi->wb_list, struct bdi_writeback, bdi_node); might_sleep(); restart: rcu_read_lock(); list_for_each_entry_continue_rcu(wb, &bdi->wb_list, bdi_node) { DEFINE_WB_COMPLETION(fallback_work_done, bdi); struct wb_writeback_work fallback_work; struct wb_writeback_work *work; long nr_pages; if (last_wb) { wb_put(last_wb); last_wb = NULL; } /* SYNC_ALL writes out I_DIRTY_TIME too */ if (!wb_has_dirty_io(wb) && (base_work->sync_mode == WB_SYNC_NONE || list_empty(&wb->b_dirty_time))) continue; if (skip_if_busy && writeback_in_progress(wb)) continue; nr_pages = wb_split_bdi_pages(wb, base_work->nr_pages); work = kmalloc(sizeof(*work), GFP_ATOMIC); if (work) { *work = *base_work; work->nr_pages = nr_pages; work->auto_free = 1; wb_queue_work(wb, work); continue; } /* alloc failed, execute synchronously using on-stack fallback */ work = &fallback_work; *work = *base_work; work->nr_pages = nr_pages; work->auto_free = 0; work->done = &fallback_work_done; wb_queue_work(wb, work); /* * Pin @wb so that it stays on @bdi->wb_list. This allows * continuing iteration from @wb after dropping and * regrabbing rcu read lock. */ wb_get(wb); last_wb = wb; rcu_read_unlock(); wb_wait_for_completion(&fallback_work_done); goto restart; } rcu_read_unlock(); if (last_wb) wb_put(last_wb); } /** * cgroup_writeback_by_id - initiate cgroup writeback from bdi and memcg IDs * @bdi_id: target bdi id * @memcg_id: target memcg css id * @reason: reason why some writeback work initiated * @done: target wb_completion * * Initiate flush of the bdi_writeback identified by @bdi_id and @memcg_id * with the specified parameters. */ int cgroup_writeback_by_id(u64 bdi_id, int memcg_id, enum wb_reason reason, struct wb_completion *done) { struct backing_dev_info *bdi; struct cgroup_subsys_state *memcg_css; struct bdi_writeback *wb; struct wb_writeback_work *work; unsigned long dirty; int ret; /* lookup bdi and memcg */ bdi = bdi_get_by_id(bdi_id); if (!bdi) return -ENOENT; rcu_read_lock(); memcg_css = css_from_id(memcg_id, &memory_cgrp_subsys); if (memcg_css && !css_tryget(memcg_css)) memcg_css = NULL; rcu_read_unlock(); if (!memcg_css) { ret = -ENOENT; goto out_bdi_put; } /* * And find the associated wb. If the wb isn't there already * there's nothing to flush, don't create one. */ wb = wb_get_lookup(bdi, memcg_css); if (!wb) { ret = -ENOENT; goto out_css_put; } /* * The caller is attempting to write out most of * the currently dirty pages. Let's take the current dirty page * count and inflate it by 25% which should be large enough to * flush out most dirty pages while avoiding getting livelocked by * concurrent dirtiers. * * BTW the memcg stats are flushed periodically and this is best-effort * estimation, so some potential error is ok. */ dirty = memcg_page_state(mem_cgroup_from_css(memcg_css), NR_FILE_DIRTY); dirty = dirty * 10 / 8; /* issue the writeback work */ work = kzalloc(sizeof(*work), GFP_NOWAIT | __GFP_NOWARN); if (work) { work->nr_pages = dirty; work->sync_mode = WB_SYNC_NONE; work->range_cyclic = 1; work->reason = reason; work->done = done; work->auto_free = 1; wb_queue_work(wb, work); ret = 0; } else { ret = -ENOMEM; } wb_put(wb); out_css_put: css_put(memcg_css); out_bdi_put: bdi_put(bdi); return ret; } /** * cgroup_writeback_umount - flush inode wb switches for umount * * This function is called when a super_block is about to be destroyed and * flushes in-flight inode wb switches. An inode wb switch goes through * RCU and then workqueue, so the two need to be flushed in order to ensure * that all previously scheduled switches are finished. As wb switches are * rare occurrences and synchronize_rcu() can take a while, perform * flushing iff wb switches are in flight. */ void cgroup_writeback_umount(void) { /* * SB_ACTIVE should be reliably cleared before checking * isw_nr_in_flight, see generic_shutdown_super(). */ smp_mb(); if (atomic_read(&isw_nr_in_flight)) { /* * Use rcu_barrier() to wait for all pending callbacks to * ensure that all in-flight wb switches are in the workqueue. */ rcu_barrier(); flush_workqueue(isw_wq); } } static int __init cgroup_writeback_init(void) { isw_wq = alloc_workqueue("inode_switch_wbs", 0, 0); if (!isw_wq) return -ENOMEM; return 0; } fs_initcall(cgroup_writeback_init); #else /* CONFIG_CGROUP_WRITEBACK */ static void bdi_down_write_wb_switch_rwsem(struct backing_dev_info *bdi) { } static void bdi_up_write_wb_switch_rwsem(struct backing_dev_info *bdi) { } static void inode_cgwb_move_to_attached(struct inode *inode, struct bdi_writeback *wb) { assert_spin_locked(&wb->list_lock); assert_spin_locked(&inode->i_lock); inode->i_state &= ~I_SYNC_QUEUED; list_del_init(&inode->i_io_list); wb_io_lists_depopulated(wb); } static struct bdi_writeback * locked_inode_to_wb_and_lock_list(struct inode *inode) __releases(&inode->i_lock) __acquires(&wb->list_lock) { struct bdi_writeback *wb = inode_to_wb(inode); spin_unlock(&inode->i_lock); spin_lock(&wb->list_lock); return wb; } static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode) __acquires(&wb->list_lock) { struct bdi_writeback *wb = inode_to_wb(inode); spin_lock(&wb->list_lock); return wb; } static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages) { return nr_pages; } static void bdi_split_work_to_wbs(struct backing_dev_info *bdi, struct wb_writeback_work *base_work, bool skip_if_busy) { might_sleep(); if (!skip_if_busy || !writeback_in_progress(&bdi->wb)) { base_work->auto_free = 0; wb_queue_work(&bdi->wb, base_work); } } #endif /* CONFIG_CGROUP_WRITEBACK */ /* * Add in the number of potentially dirty inodes, because each inode * write can dirty pagecache in the underlying blockdev. */ static unsigned long get_nr_dirty_pages(void) { return global_node_page_state(NR_FILE_DIRTY) + get_nr_dirty_inodes(); } static void wb_start_writeback(struct bdi_writeback *wb, enum wb_reason reason) { if (!wb_has_dirty_io(wb)) return; /* * All callers of this function want to start writeback of all * dirty pages. Places like vmscan can call this at a very * high frequency, causing pointless allocations of tons of * work items and keeping the flusher threads busy retrieving * that work. Ensure that we only allow one of them pending and * inflight at the time. */ if (test_bit(WB_start_all, &wb->state) || test_and_set_bit(WB_start_all, &wb->state)) return; wb->start_all_reason = reason; wb_wakeup(wb); } /** * wb_start_background_writeback - start background writeback * @wb: bdi_writback to write from * * Description: * This makes sure WB_SYNC_NONE background writeback happens. When * this function returns, it is only guaranteed that for given wb * some IO is happening if we are over background dirty threshold. * Caller need not hold sb s_umount semaphore. */ void wb_start_background_writeback(struct bdi_writeback *wb) { /* * We just wake up the flusher thread. It will perform background * writeback as soon as there is no other work to do. */ trace_writeback_wake_background(wb); wb_wakeup(wb); } /* * Remove the inode from the writeback list it is on. */ void inode_io_list_del(struct inode *inode) { struct bdi_writeback *wb; wb = inode_to_wb_and_lock_list(inode); spin_lock(&inode->i_lock); inode->i_state &= ~I_SYNC_QUEUED; list_del_init(&inode->i_io_list); wb_io_lists_depopulated(wb); spin_unlock(&inode->i_lock); spin_unlock(&wb->list_lock); } EXPORT_SYMBOL(inode_io_list_del); /* * mark an inode as under writeback on the sb */ void sb_mark_inode_writeback(struct inode *inode) { struct super_block *sb = inode->i_sb; unsigned long flags; if (list_empty(&inode->i_wb_list)) { spin_lock_irqsave(&sb->s_inode_wblist_lock, flags); if (list_empty(&inode->i_wb_list)) { list_add_tail(&inode->i_wb_list, &sb->s_inodes_wb); trace_sb_mark_inode_writeback(inode); } spin_unlock_irqrestore(&sb->s_inode_wblist_lock, flags); } } /* * clear an inode as under writeback on the sb */ void sb_clear_inode_writeback(struct inode *inode) { struct super_block *sb = inode->i_sb; unsigned long flags; if (!list_empty(&inode->i_wb_list)) { spin_lock_irqsave(&sb->s_inode_wblist_lock, flags); if (!list_empty(&inode->i_wb_list)) { list_del_init(&inode->i_wb_list); trace_sb_clear_inode_writeback(inode); } spin_unlock_irqrestore(&sb->s_inode_wblist_lock, flags); } } /* * Redirty an inode: set its when-it-was dirtied timestamp and move it to the * furthest end of its superblock's dirty-inode list. * * Before stamping the inode's ->dirtied_when, we check to see whether it is * already the most-recently-dirtied inode on the b_dirty list. If that is * the case then the inode must have been redirtied while it was being written * out and we don't reset its dirtied_when. */ static void redirty_tail_locked(struct inode *inode, struct bdi_writeback *wb) { assert_spin_locked(&inode->i_lock); if (!list_empty(&wb->b_dirty)) { struct inode *tail; tail = wb_inode(wb->b_dirty.next); if (time_before(inode->dirtied_when, tail->dirtied_when)) inode->dirtied_when = jiffies; } inode_io_list_move_locked(inode, wb, &wb->b_dirty); inode->i_state &= ~I_SYNC_QUEUED; } static void redirty_tail(struct inode *inode, struct bdi_writeback *wb) { spin_lock(&inode->i_lock); redirty_tail_locked(inode, wb); spin_unlock(&inode->i_lock); } /* * requeue inode for re-scanning after bdi->b_io list is exhausted. */ static void requeue_io(struct inode *inode, struct bdi_writeback *wb) { inode_io_list_move_locked(inode, wb, &wb->b_more_io); } static void inode_sync_complete(struct inode *inode) { inode->i_state &= ~I_SYNC; /* If inode is clean an unused, put it into LRU now... */ inode_add_lru(inode); /* Waiters must see I_SYNC cleared before being woken up */ smp_mb(); wake_up_bit(&inode->i_state, __I_SYNC); } static bool inode_dirtied_after(struct inode *inode, unsigned long t) { bool ret = time_after(inode->dirtied_when, t); #ifndef CONFIG_64BIT /* * For inodes being constantly redirtied, dirtied_when can get stuck. * It _appears_ to be in the future, but is actually in distant past. * This test is necessary to prevent such wrapped-around relative times * from permanently stopping the whole bdi writeback. */ ret = ret && time_before_eq(inode->dirtied_when, jiffies); #endif return ret; } #define EXPIRE_DIRTY_ATIME 0x0001 /* * Move expired (dirtied before dirtied_before) dirty inodes from * @delaying_queue to @dispatch_queue. */ static int move_expired_inodes(struct list_head *delaying_queue, struct list_head *dispatch_queue, unsigned long dirtied_before) { LIST_HEAD(tmp); struct list_head *pos, *node; struct super_block *sb = NULL; struct inode *inode; int do_sb_sort = 0; int moved = 0; while (!list_empty(delaying_queue)) { inode = wb_inode(delaying_queue->prev); if (inode_dirtied_after(inode, dirtied_before)) break; spin_lock(&inode->i_lock); list_move(&inode->i_io_list, &tmp); moved++; inode->i_state |= I_SYNC_QUEUED; spin_unlock(&inode->i_lock); if (sb_is_blkdev_sb(inode->i_sb)) continue; if (sb && sb != inode->i_sb) do_sb_sort = 1; sb = inode->i_sb; } /* just one sb in list, splice to dispatch_queue and we're done */ if (!do_sb_sort) { list_splice(&tmp, dispatch_queue); goto out; } /* * Although inode's i_io_list is moved from 'tmp' to 'dispatch_queue', * we don't take inode->i_lock here because it is just a pointless overhead. * Inode is already marked as I_SYNC_QUEUED so writeback list handling is * fully under our control. */ while (!list_empty(&tmp)) { sb = wb_inode(tmp.prev)->i_sb; list_for_each_prev_safe(pos, node, &tmp) { inode = wb_inode(pos); if (inode->i_sb == sb) list_move(&inode->i_io_list, dispatch_queue); } } out: return moved; } /* * Queue all expired dirty inodes for io, eldest first. * Before * newly dirtied b_dirty b_io b_more_io * =============> gf edc BA * After * newly dirtied b_dirty b_io b_more_io * =============> g fBAedc * | * +--> dequeue for IO */ static void queue_io(struct bdi_writeback *wb, struct wb_writeback_work *work, unsigned long dirtied_before) { int moved; unsigned long time_expire_jif = dirtied_before; assert_spin_locked(&wb->list_lock); list_splice_init(&wb->b_more_io, &wb->b_io); moved = move_expired_inodes(&wb->b_dirty, &wb->b_io, dirtied_before); if (!work->for_sync) time_expire_jif = jiffies - dirtytime_expire_interval * HZ; moved += move_expired_inodes(&wb->b_dirty_time, &wb->b_io, time_expire_jif); if (moved) wb_io_lists_populated(wb); trace_writeback_queue_io(wb, work, dirtied_before, moved); } static int write_inode(struct inode *inode, struct writeback_control *wbc) { int ret; if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode)) { trace_writeback_write_inode_start(inode, wbc); ret = inode->i_sb->s_op->write_inode(inode, wbc); trace_writeback_write_inode(inode, wbc); return ret; } return 0; } /* * Wait for writeback on an inode to complete. Called with i_lock held. * Caller must make sure inode cannot go away when we drop i_lock. */ static void __inode_wait_for_writeback(struct inode *inode) __releases(inode->i_lock) __acquires(inode->i_lock) { DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC); wait_queue_head_t *wqh; wqh = bit_waitqueue(&inode->i_state, __I_SYNC); while (inode->i_state & I_SYNC) { spin_unlock(&inode->i_lock); __wait_on_bit(wqh, &wq, bit_wait, TASK_UNINTERRUPTIBLE); spin_lock(&inode->i_lock); } } /* * Wait for writeback on an inode to complete. Caller must have inode pinned. */ void inode_wait_for_writeback(struct inode *inode) { spin_lock(&inode->i_lock); __inode_wait_for_writeback(inode); spin_unlock(&inode->i_lock); } /* * Sleep until I_SYNC is cleared. This function must be called with i_lock * held and drops it. It is aimed for callers not holding any inode reference * so once i_lock is dropped, inode can go away. */ static void inode_sleep_on_writeback(struct inode *inode) __releases(inode->i_lock) { DEFINE_WAIT(wait); wait_queue_head_t *wqh = bit_waitqueue(&inode->i_state, __I_SYNC); int sleep; prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE); sleep = inode->i_state & I_SYNC; spin_unlock(&inode->i_lock); if (sleep) schedule(); finish_wait(wqh, &wait); } /* * Find proper writeback list for the inode depending on its current state and * possibly also change of its state while we were doing writeback. Here we * handle things such as livelock prevention or fairness of writeback among * inodes. This function can be called only by flusher thread - noone else * processes all inodes in writeback lists and requeueing inodes behind flusher * thread's back can have unexpected consequences. */ static void requeue_inode(struct inode *inode, struct bdi_writeback *wb, struct writeback_control *wbc) { if (inode->i_state & I_FREEING) return; /* * Sync livelock prevention. Each inode is tagged and synced in one * shot. If still dirty, it will be redirty_tail()'ed below. Update * the dirty time to prevent enqueue and sync it again. */ if ((inode->i_state & I_DIRTY) && (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)) inode->dirtied_when = jiffies; if (wbc->pages_skipped) { /* * writeback is not making progress due to locked * buffers. Skip this inode for now. */ redirty_tail_locked(inode, wb); return; } if (mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) { /* * We didn't write back all the pages. nfs_writepages() * sometimes bales out without doing anything. */ if (wbc->nr_to_write <= 0) { /* Slice used up. Queue for next turn. */ requeue_io(inode, wb); } else { /* * Writeback blocked by something other than * congestion. Delay the inode for some time to * avoid spinning on the CPU (100% iowait) * retrying writeback of the dirty page/inode * that cannot be performed immediately. */ redirty_tail_locked(inode, wb); } } else if (inode->i_state & I_DIRTY) { /* * Filesystems can dirty the inode during writeback operations, * such as delayed allocation during submission or metadata * updates after data IO completion. */ redirty_tail_locked(inode, wb); } else if (inode->i_state & I_DIRTY_TIME) { inode->dirtied_when = jiffies; inode_io_list_move_locked(inode, wb, &wb->b_dirty_time); inode->i_state &= ~I_SYNC_QUEUED; } else { /* The inode is clean. Remove from writeback lists. */ inode_cgwb_move_to_attached(inode, wb); } } /* * Write out an inode and its dirty pages (or some of its dirty pages, depending * on @wbc->nr_to_write), and clear the relevant dirty flags from i_state. * * This doesn't remove the inode from the writeback list it is on, except * potentially to move it from b_dirty_time to b_dirty due to timestamp * expiration. The caller is otherwise responsible for writeback list handling. * * The caller is also responsible for setting the I_SYNC flag beforehand and * calling inode_sync_complete() to clear it afterwards. */ static int __writeback_single_inode(struct inode *inode, struct writeback_control *wbc) { struct address_space *mapping = inode->i_mapping; long nr_to_write = wbc->nr_to_write; unsigned dirty; int ret; WARN_ON(!(inode->i_state & I_SYNC)); trace_writeback_single_inode_start(inode, wbc, nr_to_write); ret = do_writepages(mapping, wbc); /* * Make sure to wait on the data before writing out the metadata. * This is important for filesystems that modify metadata on data * I/O completion. We don't do it for sync(2) writeback because it has a * separate, external IO completion path and ->sync_fs for guaranteeing * inode metadata is written back correctly. */ if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) { int err = filemap_fdatawait(mapping); if (ret == 0) ret = err; } /* * If the inode has dirty timestamps and we need to write them, call * mark_inode_dirty_sync() to notify the filesystem about it and to * change I_DIRTY_TIME into I_DIRTY_SYNC. */ if ((inode->i_state & I_DIRTY_TIME) && (wbc->sync_mode == WB_SYNC_ALL || time_after(jiffies, inode->dirtied_time_when + dirtytime_expire_interval * HZ))) { trace_writeback_lazytime(inode); mark_inode_dirty_sync(inode); } /* * Get and clear the dirty flags from i_state. This needs to be done * after calling writepages because some filesystems may redirty the * inode during writepages due to delalloc. It also needs to be done * after handling timestamp expiration, as that may dirty the inode too. */ spin_lock(&inode->i_lock); dirty = inode->i_state & I_DIRTY; inode->i_state &= ~dirty; /* * Paired with smp_mb() in __mark_inode_dirty(). This allows * __mark_inode_dirty() to test i_state without grabbing i_lock - * either they see the I_DIRTY bits cleared or we see the dirtied * inode. * * I_DIRTY_PAGES is always cleared together above even if @mapping * still has dirty pages. The flag is reinstated after smp_mb() if * necessary. This guarantees that either __mark_inode_dirty() * sees clear I_DIRTY_PAGES or we see PAGECACHE_TAG_DIRTY. */ smp_mb(); if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) inode->i_state |= I_DIRTY_PAGES; spin_unlock(&inode->i_lock); /* Don't write the inode if only I_DIRTY_PAGES was set */ if (dirty & ~I_DIRTY_PAGES) { int err = write_inode(inode, wbc); if (ret == 0) ret = err; } trace_writeback_single_inode(inode, wbc, nr_to_write); return ret; } /* * Write out an inode's dirty data and metadata on-demand, i.e. separately from * the regular batched writeback done by the flusher threads in * writeback_sb_inodes(). @wbc controls various aspects of the write, such as * whether it is a data-integrity sync (%WB_SYNC_ALL) or not (%WB_SYNC_NONE). * * To prevent the inode from going away, either the caller must have a reference * to the inode, or the inode must have I_WILL_FREE or I_FREEING set. */ static int writeback_single_inode(struct inode *inode, struct writeback_control *wbc) { struct bdi_writeback *wb; int ret = 0; spin_lock(&inode->i_lock); if (!atomic_read(&inode->i_count)) WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING))); else WARN_ON(inode->i_state & I_WILL_FREE); if (inode->i_state & I_SYNC) { /* * Writeback is already running on the inode. For WB_SYNC_NONE, * that's enough and we can just return. For WB_SYNC_ALL, we * must wait for the existing writeback to complete, then do * writeback again if there's anything left. */ if (wbc->sync_mode != WB_SYNC_ALL) goto out; __inode_wait_for_writeback(inode); } WARN_ON(inode->i_state & I_SYNC); /* * If the inode is already fully clean, then there's nothing to do. * * For data-integrity syncs we also need to check whether any pages are * still under writeback, e.g. due to prior WB_SYNC_NONE writeback. If * there are any such pages, we'll need to wait for them. */ if (!(inode->i_state & I_DIRTY_ALL) && (wbc->sync_mode != WB_SYNC_ALL || !mapping_tagged(inode->i_mapping, PAGECACHE_TAG_WRITEBACK))) goto out; inode->i_state |= I_SYNC; wbc_attach_and_unlock_inode(wbc, inode); ret = __writeback_single_inode(inode, wbc); wbc_detach_inode(wbc); wb = inode_to_wb_and_lock_list(inode); spin_lock(&inode->i_lock); /* * If the inode is freeing, its i_io_list shoudn't be updated * as it can be finally deleted at this moment. */ if (!(inode->i_state & I_FREEING)) { /* * If the inode is now fully clean, then it can be safely * removed from its writeback list (if any). Otherwise the * flusher threads are responsible for the writeback lists. */ if (!(inode->i_state & I_DIRTY_ALL)) inode_cgwb_move_to_attached(inode, wb); else if (!(inode->i_state & I_SYNC_QUEUED)) { if ((inode->i_state & I_DIRTY)) redirty_tail_locked(inode, wb); else if (inode->i_state & I_DIRTY_TIME) { inode->dirtied_when = jiffies; inode_io_list_move_locked(inode, wb, &wb->b_dirty_time); } } } spin_unlock(&wb->list_lock); inode_sync_complete(inode); out: spin_unlock(&inode->i_lock); return ret; } static long writeback_chunk_size(struct bdi_writeback *wb, struct wb_writeback_work *work) { long pages; /* * WB_SYNC_ALL mode does livelock avoidance by syncing dirty * inodes/pages in one big loop. Setting wbc.nr_to_write=LONG_MAX * here avoids calling into writeback_inodes_wb() more than once. * * The intended call sequence for WB_SYNC_ALL writeback is: * * wb_writeback() * writeback_sb_inodes() <== called only once * write_cache_pages() <== called once for each inode * (quickly) tag currently dirty pages * (maybe slowly) sync all tagged pages */ if (work->sync_mode == WB_SYNC_ALL || work->tagged_writepages) pages = LONG_MAX; else { pages = min(wb->avg_write_bandwidth / 2, global_wb_domain.dirty_limit / DIRTY_SCOPE); pages = min(pages, work->nr_pages); pages = round_down(pages + MIN_WRITEBACK_PAGES, MIN_WRITEBACK_PAGES); } return pages; } /* * Write a portion of b_io inodes which belong to @sb. * * Return the number of pages and/or inodes written. * * NOTE! This is called with wb->list_lock held, and will * unlock and relock that for each inode it ends up doing * IO for. */ static long writeback_sb_inodes(struct super_block *sb, struct bdi_writeback *wb, struct wb_writeback_work *work) { struct writeback_control wbc = { .sync_mode = work->sync_mode, .tagged_writepages = work->tagged_writepages, .for_kupdate = work->for_kupdate, .for_background = work->for_background, .for_sync = work->for_sync, .range_cyclic = work->range_cyclic, .range_start = 0, .range_end = LLONG_MAX, }; unsigned long start_time = jiffies; long write_chunk; long total_wrote = 0; /* count both pages and inodes */ while (!list_empty(&wb->b_io)) { struct inode *inode = wb_inode(wb->b_io.prev); struct bdi_writeback *tmp_wb; long wrote; if (inode->i_sb != sb) { if (work->sb) { /* * We only want to write back data for this * superblock, move all inodes not belonging * to it back onto the dirty list. */ redirty_tail(inode, wb); continue; } /* * The inode belongs to a different superblock. * Bounce back to the caller to unpin this and * pin the next superblock. */ break; } /* * Don't bother with new inodes or inodes being freed, first * kind does not need periodic writeout yet, and for the latter * kind writeout is handled by the freer. */ spin_lock(&inode->i_lock); if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) { redirty_tail_locked(inode, wb); spin_unlock(&inode->i_lock); continue; } if ((inode->i_state & I_SYNC) && wbc.sync_mode != WB_SYNC_ALL) { /* * If this inode is locked for writeback and we are not * doing writeback-for-data-integrity, move it to * b_more_io so that writeback can proceed with the * other inodes on s_io. * * We'll have another go at writing back this inode * when we completed a full scan of b_io. */ requeue_io(inode, wb); spin_unlock(&inode->i_lock); trace_writeback_sb_inodes_requeue(inode); continue; } spin_unlock(&wb->list_lock); /* * We already requeued the inode if it had I_SYNC set and we * are doing WB_SYNC_NONE writeback. So this catches only the * WB_SYNC_ALL case. */ if (inode->i_state & I_SYNC) { /* Wait for I_SYNC. This function drops i_lock... */ inode_sleep_on_writeback(inode); /* Inode may be gone, start again */ spin_lock(&wb->list_lock); continue; } inode->i_state |= I_SYNC; wbc_attach_and_unlock_inode(&wbc, inode); write_chunk = writeback_chunk_size(wb, work); wbc.nr_to_write = write_chunk; wbc.pages_skipped = 0; /* * We use I_SYNC to pin the inode in memory. While it is set * evict_inode() will wait so the inode cannot be freed. */ __writeback_single_inode(inode, &wbc); wbc_detach_inode(&wbc); work->nr_pages -= write_chunk - wbc.nr_to_write; wrote = write_chunk - wbc.nr_to_write - wbc.pages_skipped; wrote = wrote < 0 ? 0 : wrote; total_wrote += wrote; if (need_resched()) { /* * We're trying to balance between building up a nice * long list of IOs to improve our merge rate, and * getting those IOs out quickly for anyone throttling * in balance_dirty_pages(). cond_resched() doesn't * unplug, so get our IOs out the door before we * give up the CPU. */ blk_flush_plug(current); cond_resched(); } /* * Requeue @inode if still dirty. Be careful as @inode may * have been switched to another wb in the meantime. */ tmp_wb = inode_to_wb_and_lock_list(inode); spin_lock(&inode->i_lock); if (!(inode->i_state & I_DIRTY_ALL)) total_wrote++; requeue_inode(inode, tmp_wb, &wbc); inode_sync_complete(inode); spin_unlock(&inode->i_lock); if (unlikely(tmp_wb != wb)) { spin_unlock(&tmp_wb->list_lock); spin_lock(&wb->list_lock); } /* * bail out to wb_writeback() often enough to check * background threshold and other termination conditions. */ if (total_wrote) { if (time_is_before_jiffies(start_time + HZ / 10UL)) break; if (work->nr_pages <= 0) break; } } return total_wrote; } static long __writeback_inodes_wb(struct bdi_writeback *wb, struct wb_writeback_work *work) { unsigned long start_time = jiffies; long wrote = 0; while (!list_empty(&wb->b_io)) { struct inode *inode = wb_inode(wb->b_io.prev); struct super_block *sb = inode->i_sb; if (!trylock_super(sb)) { /* * trylock_super() may fail consistently due to * s_umount being grabbed by someone else. Don't use * requeue_io() to avoid busy retrying the inode/sb. */ redirty_tail(inode, wb); continue; } wrote += writeback_sb_inodes(sb, wb, work); up_read(&sb->s_umount); /* refer to the same tests at the end of writeback_sb_inodes */ if (wrote) { if (time_is_before_jiffies(start_time + HZ / 10UL)) break; if (work->nr_pages <= 0) break; } } /* Leave any unwritten inodes on b_io */ return wrote; } static long writeback_inodes_wb(struct bdi_writeback *wb, long nr_pages, enum wb_reason reason) { struct wb_writeback_work work = { .nr_pages = nr_pages, .sync_mode = WB_SYNC_NONE, .range_cyclic = 1, .reason = reason, }; struct blk_plug plug; blk_start_plug(&plug); spin_lock(&wb->list_lock); if (list_empty(&wb->b_io)) queue_io(wb, &work, jiffies); __writeback_inodes_wb(wb, &work); spin_unlock(&wb->list_lock); blk_finish_plug(&plug); return nr_pages - work.nr_pages; } /* * Explicit flushing or periodic writeback of "old" data. * * Define "old": the first time one of an inode's pages is dirtied, we mark the * dirtying-time in the inode's address_space. So this periodic writeback code * just walks the superblock inode list, writing back any inodes which are * older than a specific point in time. * * Try to run once per dirty_writeback_interval. But if a writeback event * takes longer than a dirty_writeback_interval interval, then leave a * one-second gap. * * dirtied_before takes precedence over nr_to_write. So we'll only write back * all dirty pages if they are all attached to "old" mappings. */ static long wb_writeback(struct bdi_writeback *wb, struct wb_writeback_work *work) { long nr_pages = work->nr_pages; unsigned long dirtied_before = jiffies; struct inode *inode; long progress; struct blk_plug plug; blk_start_plug(&plug); spin_lock(&wb->list_lock); for (;;) { /* * Stop writeback when nr_pages has been consumed */ if (work->nr_pages <= 0) break; /* * Background writeout and kupdate-style writeback may * run forever. Stop them if there is other work to do * so that e.g. sync can proceed. They'll be restarted * after the other works are all done. */ if ((work->for_background || work->for_kupdate) && !list_empty(&wb->work_list)) break; /* * For background writeout, stop when we are below the * background dirty threshold */ if (work->for_background && !wb_over_bg_thresh(wb)) break; /* * Kupdate and background works are special and we want to * include all inodes that need writing. Livelock avoidance is * handled by these works yielding to any other work so we are * safe. */ if (work->for_kupdate) { dirtied_before = jiffies - msecs_to_jiffies(dirty_expire_interval * 10); } else if (work->for_background) dirtied_before = jiffies; trace_writeback_start(wb, work); if (list_empty(&wb->b_io)) queue_io(wb, work, dirtied_before); if (work->sb) progress = writeback_sb_inodes(work->sb, wb, work); else progress = __writeback_inodes_wb(wb, work); trace_writeback_written(wb, work); /* * Did we write something? Try for more * * Dirty inodes are moved to b_io for writeback in batches. * The completion of the current batch does not necessarily * mean the overall work is done. So we keep looping as long * as made some progress on cleaning pages or inodes. */ if (progress) continue; /* * No more inodes for IO, bail */ if (list_empty(&wb->b_more_io)) break; /* * Nothing written. Wait for some inode to * become available for writeback. Otherwise * we'll just busyloop. */ trace_writeback_wait(wb, work); inode = wb_inode(wb->b_more_io.prev); spin_lock(&inode->i_lock); spin_unlock(&wb->list_lock); /* This function drops i_lock... */ inode_sleep_on_writeback(inode); spin_lock(&wb->list_lock); } spin_unlock(&wb->list_lock); blk_finish_plug(&plug); return nr_pages - work->nr_pages; } /* * Return the next wb_writeback_work struct that hasn't been processed yet. */ static struct wb_writeback_work *get_next_work_item(struct bdi_writeback *wb) { struct wb_writeback_work *work = NULL; spin_lock_irq(&wb->work_lock); if (!list_empty(&wb->work_list)) { work = list_entry(wb->work_list.next, struct wb_writeback_work, list); list_del_init(&work->list); } spin_unlock_irq(&wb->work_lock); return work; } static long wb_check_background_flush(struct bdi_writeback *wb) { if (wb_over_bg_thresh(wb)) { struct wb_writeback_work work = { .nr_pages = LONG_MAX, .sync_mode = WB_SYNC_NONE, .for_background = 1, .range_cyclic = 1, .reason = WB_REASON_BACKGROUND, }; return wb_writeback(wb, &work); } return 0; } static long wb_check_old_data_flush(struct bdi_writeback *wb) { unsigned long expired; long nr_pages; /* * When set to zero, disable periodic writeback */ if (!dirty_writeback_interval) return 0; expired = wb->last_old_flush + msecs_to_jiffies(dirty_writeback_interval * 10); if (time_before(jiffies, expired)) return 0; wb->last_old_flush = jiffies; nr_pages = get_nr_dirty_pages(); if (nr_pages) { struct wb_writeback_work work = { .nr_pages = nr_pages, .sync_mode = WB_SYNC_NONE, .for_kupdate = 1, .range_cyclic = 1, .reason = WB_REASON_PERIODIC, }; return wb_writeback(wb, &work); } return 0; } static long wb_check_start_all(struct bdi_writeback *wb) { long nr_pages; if (!test_bit(WB_start_all, &wb->state)) return 0; nr_pages = get_nr_dirty_pages(); if (nr_pages) { struct wb_writeback_work work = { .nr_pages = wb_split_bdi_pages(wb, nr_pages), .sync_mode = WB_SYNC_NONE, .range_cyclic = 1, .reason = wb->start_all_reason, }; nr_pages = wb_writeback(wb, &work); } clear_bit(WB_start_all, &wb->state); return nr_pages; } /* * Retrieve work items and do the writeback they describe */ static long wb_do_writeback(struct bdi_writeback *wb) { struct wb_writeback_work *work; long wrote = 0; set_bit(WB_writeback_running, &wb->state); while ((work = get_next_work_item(wb)) != NULL) { trace_writeback_exec(wb, work); wrote += wb_writeback(wb, work); finish_writeback_work(wb, work); } /* * Check for a flush-everything request */ wrote += wb_check_start_all(wb); /* * Check for periodic writeback, kupdated() style */ wrote += wb_check_old_data_flush(wb); wrote += wb_check_background_flush(wb); clear_bit(WB_writeback_running, &wb->state); return wrote; } /* * Handle writeback of dirty data for the device backed by this bdi. Also * reschedules periodically and does kupdated style flushing. */ void wb_workfn(struct work_struct *work) { struct bdi_writeback *wb = container_of(to_delayed_work(work), struct bdi_writeback, dwork); long pages_written; set_worker_desc("flush-%s", bdi_dev_name(wb->bdi)); current->flags |= PF_SWAPWRITE; if (likely(!current_is_workqueue_rescuer() || !test_bit(WB_registered, &wb->state))) { /* * The normal path. Keep writing back @wb until its * work_list is empty. Note that this path is also taken * if @wb is shutting down even when we're running off the * rescuer as work_list needs to be drained. */ do { pages_written = wb_do_writeback(wb); trace_writeback_pages_written(pages_written); } while (!list_empty(&wb->work_list)); } else { /* * bdi_wq can't get enough workers and we're running off * the emergency worker. Don't hog it. Hopefully, 1024 is * enough for efficient IO. */ pages_written = writeback_inodes_wb(wb, 1024, WB_REASON_FORKER_THREAD); trace_writeback_pages_written(pages_written); } if (!list_empty(&wb->work_list)) wb_wakeup(wb); else if (wb_has_dirty_io(wb) && dirty_writeback_interval) wb_wakeup_delayed(wb); current->flags &= ~PF_SWAPWRITE; } /* * Start writeback of `nr_pages' pages on this bdi. If `nr_pages' is zero, * write back the whole world. */ static void __wakeup_flusher_threads_bdi(struct backing_dev_info *bdi, enum wb_reason reason) { struct bdi_writeback *wb; if (!bdi_has_dirty_io(bdi)) return; list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node) wb_start_writeback(wb, reason); } void wakeup_flusher_threads_bdi(struct backing_dev_info *bdi, enum wb_reason reason) { rcu_read_lock(); __wakeup_flusher_threads_bdi(bdi, reason); rcu_read_unlock(); } /* * Wakeup the flusher threads to start writeback of all currently dirty pages */ void wakeup_flusher_threads(enum wb_reason reason) { struct backing_dev_info *bdi; /* * If we are expecting writeback progress we must submit plugged IO. */ if (blk_needs_flush_plug(current)) blk_schedule_flush_plug(current); rcu_read_lock(); list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) __wakeup_flusher_threads_bdi(bdi, reason); rcu_read_unlock(); } /* * Wake up bdi's periodically to make sure dirtytime inodes gets * written back periodically. We deliberately do *not* check the * b_dirtytime list in wb_has_dirty_io(), since this would cause the * kernel to be constantly waking up once there are any dirtytime * inodes on the system. So instead we define a separate delayed work * function which gets called much more rarely. (By default, only * once every 12 hours.) * * If there is any other write activity going on in the file system, * this function won't be necessary. But if the only thing that has * happened on the file system is a dirtytime inode caused by an atime * update, we need this infrastructure below to make sure that inode * eventually gets pushed out to disk. */ static void wakeup_dirtytime_writeback(struct work_struct *w); static DECLARE_DELAYED_WORK(dirtytime_work, wakeup_dirtytime_writeback); static void wakeup_dirtytime_writeback(struct work_struct *w) { struct backing_dev_info *bdi; rcu_read_lock(); list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) { struct bdi_writeback *wb; list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node) if (!list_empty(&wb->b_dirty_time)) wb_wakeup(wb); } rcu_read_unlock(); schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ); } static int __init start_dirtytime_writeback(void) { schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ); return 0; } __initcall(start_dirtytime_writeback); int dirtytime_interval_handler(struct ctl_table *table, int write, void *buffer, size_t *lenp, loff_t *ppos) { int ret; ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); if (ret == 0 && write) mod_delayed_work(system_wq, &dirtytime_work, 0); return ret; } /** * __mark_inode_dirty - internal function to mark an inode dirty * * @inode: inode to mark * @flags: what kind of dirty, e.g. I_DIRTY_SYNC. This can be a combination of * multiple I_DIRTY_* flags, except that I_DIRTY_TIME can't be combined * with I_DIRTY_PAGES. * * Mark an inode as dirty. We notify the filesystem, then update the inode's * dirty flags. Then, if needed we add the inode to the appropriate dirty list. * * Most callers should use mark_inode_dirty() or mark_inode_dirty_sync() * instead of calling this directly. * * CAREFUL! We only add the inode to the dirty list if it is hashed or if it * refers to a blockdev. Unhashed inodes will never be added to the dirty list * even if they are later hashed, as they will have been marked dirty already. * * In short, ensure you hash any inodes _before_ you start marking them dirty. * * Note that for blockdevs, inode->dirtied_when represents the dirtying time of * the block-special inode (/dev/hda1) itself. And the ->dirtied_when field of * the kernel-internal blockdev inode represents the dirtying time of the * blockdev's pages. This is why for I_DIRTY_PAGES we always use * page->mapping->host, so the page-dirtying time is recorded in the internal * blockdev inode. */ void __mark_inode_dirty(struct inode *inode, int flags) { struct super_block *sb = inode->i_sb; int dirtytime = 0; struct bdi_writeback *wb = NULL; trace_writeback_mark_inode_dirty(inode, flags); if (flags & I_DIRTY_INODE) { /* * Inode timestamp update will piggback on this dirtying. * We tell ->dirty_inode callback that timestamps need to * be updated by setting I_DIRTY_TIME in flags. */ if (inode->i_state & I_DIRTY_TIME) { spin_lock(&inode->i_lock); if (inode->i_state & I_DIRTY_TIME) { inode->i_state &= ~I_DIRTY_TIME; flags |= I_DIRTY_TIME; } spin_unlock(&inode->i_lock); } /* * Notify the filesystem about the inode being dirtied, so that * (if needed) it can update on-disk fields and journal the * inode. This is only needed when the inode itself is being * dirtied now. I.e. it's only needed for I_DIRTY_INODE, not * for just I_DIRTY_PAGES or I_DIRTY_TIME. */ trace_writeback_dirty_inode_start(inode, flags); if (sb->s_op->dirty_inode) sb->s_op->dirty_inode(inode, flags & (I_DIRTY_INODE | I_DIRTY_TIME)); trace_writeback_dirty_inode(inode, flags); /* I_DIRTY_INODE supersedes I_DIRTY_TIME. */ flags &= ~I_DIRTY_TIME; } else { /* * Else it's either I_DIRTY_PAGES, I_DIRTY_TIME, or nothing. * (We don't support setting both I_DIRTY_PAGES and I_DIRTY_TIME * in one call to __mark_inode_dirty().) */ dirtytime = flags & I_DIRTY_TIME; WARN_ON_ONCE(dirtytime && flags != I_DIRTY_TIME); } /* * Paired with smp_mb() in __writeback_single_inode() for the * following lockless i_state test. See there for details. */ smp_mb(); if ((inode->i_state & flags) == flags) return; spin_lock(&inode->i_lock); if ((inode->i_state & flags) != flags) { const int was_dirty = inode->i_state & I_DIRTY; inode_attach_wb(inode, NULL); inode->i_state |= flags; /* * Grab inode's wb early because it requires dropping i_lock and we * need to make sure following checks happen atomically with dirty * list handling so that we don't move inodes under flush worker's * hands. */ if (!was_dirty) { wb = locked_inode_to_wb_and_lock_list(inode); spin_lock(&inode->i_lock); } /* * If the inode is queued for writeback by flush worker, just * update its dirty state. Once the flush worker is done with * the inode it will place it on the appropriate superblock * list, based upon its state. */ if (inode->i_state & I_SYNC_QUEUED) goto out_unlock; /* * Only add valid (hashed) inodes to the superblock's * dirty list. Add blockdev inodes as well. */ if (!S_ISBLK(inode->i_mode)) { if (inode_unhashed(inode)) goto out_unlock; } if (inode->i_state & I_FREEING) goto out_unlock; /* * If the inode was already on b_dirty/b_io/b_more_io, don't * reposition it (that would break b_dirty time-ordering). */ if (!was_dirty) { struct list_head *dirty_list; bool wakeup_bdi = false; inode->dirtied_when = jiffies; if (dirtytime) inode->dirtied_time_when = jiffies; if (inode->i_state & I_DIRTY) dirty_list = &wb->b_dirty; else dirty_list = &wb->b_dirty_time; wakeup_bdi = inode_io_list_move_locked(inode, wb, dirty_list); spin_unlock(&wb->list_lock); spin_unlock(&inode->i_lock); trace_writeback_dirty_inode_enqueue(inode); /* * If this is the first dirty inode for this bdi, * we have to wake-up the corresponding bdi thread * to make sure background write-back happens * later. */ if (wakeup_bdi && (wb->bdi->capabilities & BDI_CAP_WRITEBACK)) wb_wakeup_delayed(wb); return; } } out_unlock: if (wb) spin_unlock(&wb->list_lock); spin_unlock(&inode->i_lock); } EXPORT_SYMBOL(__mark_inode_dirty); /* * The @s_sync_lock is used to serialise concurrent sync operations * to avoid lock contention problems with concurrent wait_sb_inodes() calls. * Concurrent callers will block on the s_sync_lock rather than doing contending * walks. The queueing maintains sync(2) required behaviour as all the IO that * has been issued up to the time this function is enter is guaranteed to be * completed by the time we have gained the lock and waited for all IO that is * in progress regardless of the order callers are granted the lock. */ static void wait_sb_inodes(struct super_block *sb) { LIST_HEAD(sync_list); /* * We need to be protected against the filesystem going from * r/o to r/w or vice versa. */ WARN_ON(!rwsem_is_locked(&sb->s_umount)); mutex_lock(&sb->s_sync_lock); /* * Splice the writeback list onto a temporary list to avoid waiting on * inodes that have started writeback after this point. * * Use rcu_read_lock() to keep the inodes around until we have a * reference. s_inode_wblist_lock protects sb->s_inodes_wb as well as * the local list because inodes can be dropped from either by writeback * completion. */ rcu_read_lock(); spin_lock_irq(&sb->s_inode_wblist_lock); list_splice_init(&sb->s_inodes_wb, &sync_list); /* * Data integrity sync. Must wait for all pages under writeback, because * there may have been pages dirtied before our sync call, but which had * writeout started before we write it out. In which case, the inode * may not be on the dirty list, but we still have to wait for that * writeout. */ while (!list_empty(&sync_list)) { struct inode *inode = list_first_entry(&sync_list, struct inode, i_wb_list); struct address_space *mapping = inode->i_mapping; /* * Move each inode back to the wb list before we drop the lock * to preserve consistency between i_wb_list and the mapping * writeback tag. Writeback completion is responsible to remove * the inode from either list once the writeback tag is cleared. */ list_move_tail(&inode->i_wb_list, &sb->s_inodes_wb); /* * The mapping can appear untagged while still on-list since we * do not have the mapping lock. Skip it here, wb completion * will remove it. */ if (!mapping_tagged(mapping, PAGECACHE_TAG_WRITEBACK)) continue; spin_unlock_irq(&sb->s_inode_wblist_lock); spin_lock(&inode->i_lock); if (inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW)) { spin_unlock(&inode->i_lock); spin_lock_irq(&sb->s_inode_wblist_lock); continue; } __iget(inode); spin_unlock(&inode->i_lock); rcu_read_unlock(); /* * We keep the error status of individual mapping so that * applications can catch the writeback error using fsync(2). * See filemap_fdatawait_keep_errors() for details. */ filemap_fdatawait_keep_errors(mapping); cond_resched(); iput(inode); rcu_read_lock(); spin_lock_irq(&sb->s_inode_wblist_lock); } spin_unlock_irq(&sb->s_inode_wblist_lock); rcu_read_unlock(); mutex_unlock(&sb->s_sync_lock); } static void __writeback_inodes_sb_nr(struct super_block *sb, unsigned long nr, enum wb_reason reason, bool skip_if_busy) { struct backing_dev_info *bdi = sb->s_bdi; DEFINE_WB_COMPLETION(done, bdi); struct wb_writeback_work work = { .sb = sb, .sync_mode = WB_SYNC_NONE, .tagged_writepages = 1, .done = &done, .nr_pages = nr, .reason = reason, }; if (!bdi_has_dirty_io(bdi) || bdi == &noop_backing_dev_info) return; WARN_ON(!rwsem_is_locked(&sb->s_umount)); bdi_split_work_to_wbs(sb->s_bdi, &work, skip_if_busy); wb_wait_for_completion(&done); } /** * writeback_inodes_sb_nr - writeback dirty inodes from given super_block * @sb: the superblock * @nr: the number of pages to write * @reason: reason why some writeback work initiated * * Start writeback on some inodes on this super_block. No guarantees are made * on how many (if any) will be written, and this function does not wait * for IO completion of submitted IO. */ void writeback_inodes_sb_nr(struct super_block *sb, unsigned long nr, enum wb_reason reason) { __writeback_inodes_sb_nr(sb, nr, reason, false); } EXPORT_SYMBOL(writeback_inodes_sb_nr); /** * writeback_inodes_sb - writeback dirty inodes from given super_block * @sb: the superblock * @reason: reason why some writeback work was initiated * * Start writeback on some inodes on this super_block. No guarantees are made * on how many (if any) will be written, and this function does not wait * for IO completion of submitted IO. */ void writeback_inodes_sb(struct super_block *sb, enum wb_reason reason) { return writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason); } EXPORT_SYMBOL(writeback_inodes_sb); /** * try_to_writeback_inodes_sb - try to start writeback if none underway * @sb: the superblock * @reason: reason why some writeback work was initiated * * Invoke __writeback_inodes_sb_nr if no writeback is currently underway. */ void try_to_writeback_inodes_sb(struct super_block *sb, enum wb_reason reason) { if (!down_read_trylock(&sb->s_umount)) return; __writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason, true); up_read(&sb->s_umount); } EXPORT_SYMBOL(try_to_writeback_inodes_sb); /** * sync_inodes_sb - sync sb inode pages * @sb: the superblock * * This function writes and waits on any dirty inode belonging to this * super_block. */ void sync_inodes_sb(struct super_block *sb) { struct backing_dev_info *bdi = sb->s_bdi; DEFINE_WB_COMPLETION(done, bdi); struct wb_writeback_work work = { .sb = sb, .sync_mode = WB_SYNC_ALL, .nr_pages = LONG_MAX, .range_cyclic = 0, .done = &done, .reason = WB_REASON_SYNC, .for_sync = 1, }; /* * Can't skip on !bdi_has_dirty() because we should wait for !dirty * inodes under writeback and I_DIRTY_TIME inodes ignored by * bdi_has_dirty() need to be written out too. */ if (bdi == &noop_backing_dev_info) return; WARN_ON(!rwsem_is_locked(&sb->s_umount)); /* protect against inode wb switch, see inode_switch_wbs_work_fn() */ bdi_down_write_wb_switch_rwsem(bdi); bdi_split_work_to_wbs(bdi, &work, false); wb_wait_for_completion(&done); bdi_up_write_wb_switch_rwsem(bdi); wait_sb_inodes(sb); } EXPORT_SYMBOL(sync_inodes_sb); /** * write_inode_now - write an inode to disk * @inode: inode to write to disk * @sync: whether the write should be synchronous or not * * This function commits an inode to disk immediately if it is dirty. This is * primarily needed by knfsd. * * The caller must either have a ref on the inode or must have set I_WILL_FREE. */ int write_inode_now(struct inode *inode, int sync) { struct writeback_control wbc = { .nr_to_write = LONG_MAX, .sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE, .range_start = 0, .range_end = LLONG_MAX, }; if (!mapping_can_writeback(inode->i_mapping)) wbc.nr_to_write = 0; might_sleep(); return writeback_single_inode(inode, &wbc); } EXPORT_SYMBOL(write_inode_now); /** * sync_inode_metadata - write an inode to disk * @inode: the inode to sync * @wait: wait for I/O to complete. * * Write an inode to disk and adjust its dirty state after completion. * * Note: only writes the actual inode, no associated data or other metadata. */ int sync_inode_metadata(struct inode *inode, int wait) { struct writeback_control wbc = { .sync_mode = wait ? WB_SYNC_ALL : WB_SYNC_NONE, .nr_to_write = 0, /* metadata-only */ }; return writeback_single_inode(inode, &wbc); } EXPORT_SYMBOL(sync_inode_metadata);