/* * This file is subject to the terms and conditions of the GNU General Public * License. See the file "COPYING" in the main directory of this archive * for more details. * * KVM/MIPS: Deliver/Emulate exceptions to the guest kernel * * Copyright (C) 2012 MIPS Technologies, Inc. All rights reserved. * Authors: Sanjay Lal */ #include #include #include #include #include "interrupt.h" static gpa_t kvm_trap_emul_gva_to_gpa_cb(gva_t gva) { gpa_t gpa; gva_t kseg = KSEGX(gva); if ((kseg == CKSEG0) || (kseg == CKSEG1)) gpa = CPHYSADDR(gva); else { kvm_err("%s: cannot find GPA for GVA: %#lx\n", __func__, gva); kvm_mips_dump_host_tlbs(); gpa = KVM_INVALID_ADDR; } kvm_debug("%s: gva %#lx, gpa: %#llx\n", __func__, gva, gpa); return gpa; } static int kvm_trap_emul_handle_cop_unusable(struct kvm_vcpu *vcpu) { struct mips_coproc *cop0 = vcpu->arch.cop0; struct kvm_run *run = vcpu->run; u32 __user *opc = (u32 __user *) vcpu->arch.pc; u32 cause = vcpu->arch.host_cp0_cause; enum emulation_result er = EMULATE_DONE; int ret = RESUME_GUEST; if (((cause & CAUSEF_CE) >> CAUSEB_CE) == 1) { /* FPU Unusable */ if (!kvm_mips_guest_has_fpu(&vcpu->arch) || (kvm_read_c0_guest_status(cop0) & ST0_CU1) == 0) { /* * Unusable/no FPU in guest: * deliver guest COP1 Unusable Exception */ er = kvm_mips_emulate_fpu_exc(cause, opc, run, vcpu); } else { /* Restore FPU state */ kvm_own_fpu(vcpu); er = EMULATE_DONE; } } else { er = kvm_mips_emulate_inst(cause, opc, run, vcpu); } switch (er) { case EMULATE_DONE: ret = RESUME_GUEST; break; case EMULATE_FAIL: run->exit_reason = KVM_EXIT_INTERNAL_ERROR; ret = RESUME_HOST; break; case EMULATE_WAIT: run->exit_reason = KVM_EXIT_INTR; ret = RESUME_HOST; break; default: BUG(); } return ret; } static int kvm_trap_emul_handle_tlb_mod(struct kvm_vcpu *vcpu) { struct kvm_run *run = vcpu->run; u32 __user *opc = (u32 __user *) vcpu->arch.pc; unsigned long badvaddr = vcpu->arch.host_cp0_badvaddr; u32 cause = vcpu->arch.host_cp0_cause; enum emulation_result er = EMULATE_DONE; int ret = RESUME_GUEST; if (KVM_GUEST_KSEGX(badvaddr) < KVM_GUEST_KSEG0 || KVM_GUEST_KSEGX(badvaddr) == KVM_GUEST_KSEG23) { kvm_debug("USER/KSEG23 ADDR TLB MOD fault: cause %#x, PC: %p, BadVaddr: %#lx\n", cause, opc, badvaddr); er = kvm_mips_handle_tlbmod(cause, opc, run, vcpu); if (er == EMULATE_DONE) ret = RESUME_GUEST; else { run->exit_reason = KVM_EXIT_INTERNAL_ERROR; ret = RESUME_HOST; } } else if (KVM_GUEST_KSEGX(badvaddr) == KVM_GUEST_KSEG0) { /* * XXXKYMA: The guest kernel does not expect to get this fault * when we are not using HIGHMEM. Need to address this in a * HIGHMEM kernel */ kvm_err("TLB MOD fault not handled, cause %#x, PC: %p, BadVaddr: %#lx\n", cause, opc, badvaddr); kvm_mips_dump_host_tlbs(); kvm_arch_vcpu_dump_regs(vcpu); run->exit_reason = KVM_EXIT_INTERNAL_ERROR; ret = RESUME_HOST; } else { kvm_err("Illegal TLB Mod fault address , cause %#x, PC: %p, BadVaddr: %#lx\n", cause, opc, badvaddr); kvm_mips_dump_host_tlbs(); kvm_arch_vcpu_dump_regs(vcpu); run->exit_reason = KVM_EXIT_INTERNAL_ERROR; ret = RESUME_HOST; } return ret; } static int kvm_trap_emul_handle_tlb_miss(struct kvm_vcpu *vcpu, bool store) { struct kvm_run *run = vcpu->run; u32 __user *opc = (u32 __user *) vcpu->arch.pc; unsigned long badvaddr = vcpu->arch.host_cp0_badvaddr; u32 cause = vcpu->arch.host_cp0_cause; enum emulation_result er = EMULATE_DONE; int ret = RESUME_GUEST; if (((badvaddr & PAGE_MASK) == KVM_GUEST_COMMPAGE_ADDR) && KVM_GUEST_KERNEL_MODE(vcpu)) { if (kvm_mips_handle_commpage_tlb_fault(badvaddr, vcpu) < 0) { run->exit_reason = KVM_EXIT_INTERNAL_ERROR; ret = RESUME_HOST; } } else if (KVM_GUEST_KSEGX(badvaddr) < KVM_GUEST_KSEG0 || KVM_GUEST_KSEGX(badvaddr) == KVM_GUEST_KSEG23) { kvm_debug("USER ADDR TLB %s fault: cause %#x, PC: %p, BadVaddr: %#lx\n", store ? "ST" : "LD", cause, opc, badvaddr); /* * User Address (UA) fault, this could happen if * (1) TLB entry not present/valid in both Guest and shadow host * TLBs, in this case we pass on the fault to the guest * kernel and let it handle it. * (2) TLB entry is present in the Guest TLB but not in the * shadow, in this case we inject the TLB from the Guest TLB * into the shadow host TLB */ er = kvm_mips_handle_tlbmiss(cause, opc, run, vcpu); if (er == EMULATE_DONE) ret = RESUME_GUEST; else { run->exit_reason = KVM_EXIT_INTERNAL_ERROR; ret = RESUME_HOST; } } else if (KVM_GUEST_KSEGX(badvaddr) == KVM_GUEST_KSEG0) { /* * All KSEG0 faults are handled by KVM, as the guest kernel does * not expect to ever get them */ if (kvm_mips_handle_kseg0_tlb_fault (vcpu->arch.host_cp0_badvaddr, vcpu) < 0) { run->exit_reason = KVM_EXIT_INTERNAL_ERROR; ret = RESUME_HOST; } } else if (KVM_GUEST_KERNEL_MODE(vcpu) && (KSEGX(badvaddr) == CKSEG0 || KSEGX(badvaddr) == CKSEG1)) { /* * With EVA we may get a TLB exception instead of an address * error when the guest performs MMIO to KSeg1 addresses. */ kvm_debug("Emulate %s MMIO space\n", store ? "Store to" : "Load from"); er = kvm_mips_emulate_inst(cause, opc, run, vcpu); if (er == EMULATE_FAIL) { kvm_err("Emulate %s MMIO space failed\n", store ? "Store to" : "Load from"); run->exit_reason = KVM_EXIT_INTERNAL_ERROR; ret = RESUME_HOST; } else { run->exit_reason = KVM_EXIT_MMIO; ret = RESUME_HOST; } } else { kvm_err("Illegal TLB %s fault address , cause %#x, PC: %p, BadVaddr: %#lx\n", store ? "ST" : "LD", cause, opc, badvaddr); kvm_mips_dump_host_tlbs(); kvm_arch_vcpu_dump_regs(vcpu); run->exit_reason = KVM_EXIT_INTERNAL_ERROR; ret = RESUME_HOST; } return ret; } static int kvm_trap_emul_handle_tlb_st_miss(struct kvm_vcpu *vcpu) { return kvm_trap_emul_handle_tlb_miss(vcpu, true); } static int kvm_trap_emul_handle_tlb_ld_miss(struct kvm_vcpu *vcpu) { return kvm_trap_emul_handle_tlb_miss(vcpu, false); } static int kvm_trap_emul_handle_addr_err_st(struct kvm_vcpu *vcpu) { struct kvm_run *run = vcpu->run; u32 __user *opc = (u32 __user *) vcpu->arch.pc; unsigned long badvaddr = vcpu->arch.host_cp0_badvaddr; u32 cause = vcpu->arch.host_cp0_cause; enum emulation_result er = EMULATE_DONE; int ret = RESUME_GUEST; if (KVM_GUEST_KERNEL_MODE(vcpu) && (KSEGX(badvaddr) == CKSEG0 || KSEGX(badvaddr) == CKSEG1)) { kvm_debug("Emulate Store to MMIO space\n"); er = kvm_mips_emulate_inst(cause, opc, run, vcpu); if (er == EMULATE_FAIL) { kvm_err("Emulate Store to MMIO space failed\n"); run->exit_reason = KVM_EXIT_INTERNAL_ERROR; ret = RESUME_HOST; } else { run->exit_reason = KVM_EXIT_MMIO; ret = RESUME_HOST; } } else { kvm_err("Address Error (STORE): cause %#x, PC: %p, BadVaddr: %#lx\n", cause, opc, badvaddr); run->exit_reason = KVM_EXIT_INTERNAL_ERROR; ret = RESUME_HOST; } return ret; } static int kvm_trap_emul_handle_addr_err_ld(struct kvm_vcpu *vcpu) { struct kvm_run *run = vcpu->run; u32 __user *opc = (u32 __user *) vcpu->arch.pc; unsigned long badvaddr = vcpu->arch.host_cp0_badvaddr; u32 cause = vcpu->arch.host_cp0_cause; enum emulation_result er = EMULATE_DONE; int ret = RESUME_GUEST; if (KSEGX(badvaddr) == CKSEG0 || KSEGX(badvaddr) == CKSEG1) { kvm_debug("Emulate Load from MMIO space @ %#lx\n", badvaddr); er = kvm_mips_emulate_inst(cause, opc, run, vcpu); if (er == EMULATE_FAIL) { kvm_err("Emulate Load from MMIO space failed\n"); run->exit_reason = KVM_EXIT_INTERNAL_ERROR; ret = RESUME_HOST; } else { run->exit_reason = KVM_EXIT_MMIO; ret = RESUME_HOST; } } else { kvm_err("Address Error (LOAD): cause %#x, PC: %p, BadVaddr: %#lx\n", cause, opc, badvaddr); run->exit_reason = KVM_EXIT_INTERNAL_ERROR; ret = RESUME_HOST; er = EMULATE_FAIL; } return ret; } static int kvm_trap_emul_handle_syscall(struct kvm_vcpu *vcpu) { struct kvm_run *run = vcpu->run; u32 __user *opc = (u32 __user *) vcpu->arch.pc; u32 cause = vcpu->arch.host_cp0_cause; enum emulation_result er = EMULATE_DONE; int ret = RESUME_GUEST; er = kvm_mips_emulate_syscall(cause, opc, run, vcpu); if (er == EMULATE_DONE) ret = RESUME_GUEST; else { run->exit_reason = KVM_EXIT_INTERNAL_ERROR; ret = RESUME_HOST; } return ret; } static int kvm_trap_emul_handle_res_inst(struct kvm_vcpu *vcpu) { struct kvm_run *run = vcpu->run; u32 __user *opc = (u32 __user *) vcpu->arch.pc; u32 cause = vcpu->arch.host_cp0_cause; enum emulation_result er = EMULATE_DONE; int ret = RESUME_GUEST; er = kvm_mips_handle_ri(cause, opc, run, vcpu); if (er == EMULATE_DONE) ret = RESUME_GUEST; else { run->exit_reason = KVM_EXIT_INTERNAL_ERROR; ret = RESUME_HOST; } return ret; } static int kvm_trap_emul_handle_break(struct kvm_vcpu *vcpu) { struct kvm_run *run = vcpu->run; u32 __user *opc = (u32 __user *) vcpu->arch.pc; u32 cause = vcpu->arch.host_cp0_cause; enum emulation_result er = EMULATE_DONE; int ret = RESUME_GUEST; er = kvm_mips_emulate_bp_exc(cause, opc, run, vcpu); if (er == EMULATE_DONE) ret = RESUME_GUEST; else { run->exit_reason = KVM_EXIT_INTERNAL_ERROR; ret = RESUME_HOST; } return ret; } static int kvm_trap_emul_handle_trap(struct kvm_vcpu *vcpu) { struct kvm_run *run = vcpu->run; u32 __user *opc = (u32 __user *)vcpu->arch.pc; u32 cause = vcpu->arch.host_cp0_cause; enum emulation_result er = EMULATE_DONE; int ret = RESUME_GUEST; er = kvm_mips_emulate_trap_exc(cause, opc, run, vcpu); if (er == EMULATE_DONE) { ret = RESUME_GUEST; } else { run->exit_reason = KVM_EXIT_INTERNAL_ERROR; ret = RESUME_HOST; } return ret; } static int kvm_trap_emul_handle_msa_fpe(struct kvm_vcpu *vcpu) { struct kvm_run *run = vcpu->run; u32 __user *opc = (u32 __user *)vcpu->arch.pc; u32 cause = vcpu->arch.host_cp0_cause; enum emulation_result er = EMULATE_DONE; int ret = RESUME_GUEST; er = kvm_mips_emulate_msafpe_exc(cause, opc, run, vcpu); if (er == EMULATE_DONE) { ret = RESUME_GUEST; } else { run->exit_reason = KVM_EXIT_INTERNAL_ERROR; ret = RESUME_HOST; } return ret; } static int kvm_trap_emul_handle_fpe(struct kvm_vcpu *vcpu) { struct kvm_run *run = vcpu->run; u32 __user *opc = (u32 __user *)vcpu->arch.pc; u32 cause = vcpu->arch.host_cp0_cause; enum emulation_result er = EMULATE_DONE; int ret = RESUME_GUEST; er = kvm_mips_emulate_fpe_exc(cause, opc, run, vcpu); if (er == EMULATE_DONE) { ret = RESUME_GUEST; } else { run->exit_reason = KVM_EXIT_INTERNAL_ERROR; ret = RESUME_HOST; } return ret; } /** * kvm_trap_emul_handle_msa_disabled() - Guest used MSA while disabled in root. * @vcpu: Virtual CPU context. * * Handle when the guest attempts to use MSA when it is disabled. */ static int kvm_trap_emul_handle_msa_disabled(struct kvm_vcpu *vcpu) { struct mips_coproc *cop0 = vcpu->arch.cop0; struct kvm_run *run = vcpu->run; u32 __user *opc = (u32 __user *) vcpu->arch.pc; u32 cause = vcpu->arch.host_cp0_cause; enum emulation_result er = EMULATE_DONE; int ret = RESUME_GUEST; if (!kvm_mips_guest_has_msa(&vcpu->arch) || (kvm_read_c0_guest_status(cop0) & (ST0_CU1 | ST0_FR)) == ST0_CU1) { /* * No MSA in guest, or FPU enabled and not in FR=1 mode, * guest reserved instruction exception */ er = kvm_mips_emulate_ri_exc(cause, opc, run, vcpu); } else if (!(kvm_read_c0_guest_config5(cop0) & MIPS_CONF5_MSAEN)) { /* MSA disabled by guest, guest MSA disabled exception */ er = kvm_mips_emulate_msadis_exc(cause, opc, run, vcpu); } else { /* Restore MSA/FPU state */ kvm_own_msa(vcpu); er = EMULATE_DONE; } switch (er) { case EMULATE_DONE: ret = RESUME_GUEST; break; case EMULATE_FAIL: run->exit_reason = KVM_EXIT_INTERNAL_ERROR; ret = RESUME_HOST; break; default: BUG(); } return ret; } static int kvm_trap_emul_vm_init(struct kvm *kvm) { return 0; } static int kvm_trap_emul_vcpu_init(struct kvm_vcpu *vcpu) { vcpu->arch.kscratch_enabled = 0xfc; return 0; } static int kvm_trap_emul_vcpu_setup(struct kvm_vcpu *vcpu) { struct mips_coproc *cop0 = vcpu->arch.cop0; u32 config, config1; int vcpu_id = vcpu->vcpu_id; /* * Arch specific stuff, set up config registers properly so that the * guest will come up as expected */ #ifndef CONFIG_CPU_MIPSR6 /* r2-r5, simulate a MIPS 24kc */ kvm_write_c0_guest_prid(cop0, 0x00019300); #else /* r6+, simulate a generic QEMU machine */ kvm_write_c0_guest_prid(cop0, 0x00010000); #endif /* * Have config1, Cacheable, noncoherent, write-back, write allocate. * Endianness, arch revision & virtually tagged icache should match * host. */ config = read_c0_config() & MIPS_CONF_AR; config |= MIPS_CONF_M | CONF_CM_CACHABLE_NONCOHERENT | MIPS_CONF_MT_TLB; #ifdef CONFIG_CPU_BIG_ENDIAN config |= CONF_BE; #endif if (cpu_has_vtag_icache) config |= MIPS_CONF_VI; kvm_write_c0_guest_config(cop0, config); /* Read the cache characteristics from the host Config1 Register */ config1 = (read_c0_config1() & ~0x7f); /* Set up MMU size */ config1 &= ~(0x3f << 25); config1 |= ((KVM_MIPS_GUEST_TLB_SIZE - 1) << 25); /* We unset some bits that we aren't emulating */ config1 &= ~(MIPS_CONF1_C2 | MIPS_CONF1_MD | MIPS_CONF1_PC | MIPS_CONF1_WR | MIPS_CONF1_CA); kvm_write_c0_guest_config1(cop0, config1); /* Have config3, no tertiary/secondary caches implemented */ kvm_write_c0_guest_config2(cop0, MIPS_CONF_M); /* MIPS_CONF_M | (read_c0_config2() & 0xfff) */ /* Have config4, UserLocal */ kvm_write_c0_guest_config3(cop0, MIPS_CONF_M | MIPS_CONF3_ULRI); /* Have config5 */ kvm_write_c0_guest_config4(cop0, MIPS_CONF_M); /* No config6 */ kvm_write_c0_guest_config5(cop0, 0); /* Set Wait IE/IXMT Ignore in Config7, IAR, AR */ kvm_write_c0_guest_config7(cop0, (MIPS_CONF7_WII) | (1 << 10)); /* * Setup IntCtl defaults, compatibility mode for timer interrupts (HW5) */ kvm_write_c0_guest_intctl(cop0, 0xFC000000); /* Put in vcpu id as CPUNum into Ebase Reg to handle SMP Guests */ kvm_write_c0_guest_ebase(cop0, KVM_GUEST_KSEG0 | (vcpu_id & MIPS_EBASE_CPUNUM)); return 0; } static unsigned long kvm_trap_emul_num_regs(struct kvm_vcpu *vcpu) { return 0; } static int kvm_trap_emul_copy_reg_indices(struct kvm_vcpu *vcpu, u64 __user *indices) { return 0; } static int kvm_trap_emul_get_one_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg, s64 *v) { switch (reg->id) { case KVM_REG_MIPS_CP0_COUNT: *v = kvm_mips_read_count(vcpu); break; case KVM_REG_MIPS_COUNT_CTL: *v = vcpu->arch.count_ctl; break; case KVM_REG_MIPS_COUNT_RESUME: *v = ktime_to_ns(vcpu->arch.count_resume); break; case KVM_REG_MIPS_COUNT_HZ: *v = vcpu->arch.count_hz; break; default: return -EINVAL; } return 0; } static int kvm_trap_emul_set_one_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg, s64 v) { struct mips_coproc *cop0 = vcpu->arch.cop0; int ret = 0; unsigned int cur, change; switch (reg->id) { case KVM_REG_MIPS_CP0_COUNT: kvm_mips_write_count(vcpu, v); break; case KVM_REG_MIPS_CP0_COMPARE: kvm_mips_write_compare(vcpu, v, false); break; case KVM_REG_MIPS_CP0_CAUSE: /* * If the timer is stopped or started (DC bit) it must look * atomic with changes to the interrupt pending bits (TI, IRQ5). * A timer interrupt should not happen in between. */ if ((kvm_read_c0_guest_cause(cop0) ^ v) & CAUSEF_DC) { if (v & CAUSEF_DC) { /* disable timer first */ kvm_mips_count_disable_cause(vcpu); kvm_change_c0_guest_cause(cop0, ~CAUSEF_DC, v); } else { /* enable timer last */ kvm_change_c0_guest_cause(cop0, ~CAUSEF_DC, v); kvm_mips_count_enable_cause(vcpu); } } else { kvm_write_c0_guest_cause(cop0, v); } break; case KVM_REG_MIPS_CP0_CONFIG: /* read-only for now */ break; case KVM_REG_MIPS_CP0_CONFIG1: cur = kvm_read_c0_guest_config1(cop0); change = (cur ^ v) & kvm_mips_config1_wrmask(vcpu); if (change) { v = cur ^ change; kvm_write_c0_guest_config1(cop0, v); } break; case KVM_REG_MIPS_CP0_CONFIG2: /* read-only for now */ break; case KVM_REG_MIPS_CP0_CONFIG3: cur = kvm_read_c0_guest_config3(cop0); change = (cur ^ v) & kvm_mips_config3_wrmask(vcpu); if (change) { v = cur ^ change; kvm_write_c0_guest_config3(cop0, v); } break; case KVM_REG_MIPS_CP0_CONFIG4: cur = kvm_read_c0_guest_config4(cop0); change = (cur ^ v) & kvm_mips_config4_wrmask(vcpu); if (change) { v = cur ^ change; kvm_write_c0_guest_config4(cop0, v); } break; case KVM_REG_MIPS_CP0_CONFIG5: cur = kvm_read_c0_guest_config5(cop0); change = (cur ^ v) & kvm_mips_config5_wrmask(vcpu); if (change) { v = cur ^ change; kvm_write_c0_guest_config5(cop0, v); } break; case KVM_REG_MIPS_COUNT_CTL: ret = kvm_mips_set_count_ctl(vcpu, v); break; case KVM_REG_MIPS_COUNT_RESUME: ret = kvm_mips_set_count_resume(vcpu, v); break; case KVM_REG_MIPS_COUNT_HZ: ret = kvm_mips_set_count_hz(vcpu, v); break; default: return -EINVAL; } return ret; } static int kvm_trap_emul_vcpu_load(struct kvm_vcpu *vcpu, int cpu) { return 0; } static int kvm_trap_emul_vcpu_put(struct kvm_vcpu *vcpu, int cpu) { kvm_lose_fpu(vcpu); return 0; } static struct kvm_mips_callbacks kvm_trap_emul_callbacks = { /* exit handlers */ .handle_cop_unusable = kvm_trap_emul_handle_cop_unusable, .handle_tlb_mod = kvm_trap_emul_handle_tlb_mod, .handle_tlb_st_miss = kvm_trap_emul_handle_tlb_st_miss, .handle_tlb_ld_miss = kvm_trap_emul_handle_tlb_ld_miss, .handle_addr_err_st = kvm_trap_emul_handle_addr_err_st, .handle_addr_err_ld = kvm_trap_emul_handle_addr_err_ld, .handle_syscall = kvm_trap_emul_handle_syscall, .handle_res_inst = kvm_trap_emul_handle_res_inst, .handle_break = kvm_trap_emul_handle_break, .handle_trap = kvm_trap_emul_handle_trap, .handle_msa_fpe = kvm_trap_emul_handle_msa_fpe, .handle_fpe = kvm_trap_emul_handle_fpe, .handle_msa_disabled = kvm_trap_emul_handle_msa_disabled, .vm_init = kvm_trap_emul_vm_init, .vcpu_init = kvm_trap_emul_vcpu_init, .vcpu_setup = kvm_trap_emul_vcpu_setup, .gva_to_gpa = kvm_trap_emul_gva_to_gpa_cb, .queue_timer_int = kvm_mips_queue_timer_int_cb, .dequeue_timer_int = kvm_mips_dequeue_timer_int_cb, .queue_io_int = kvm_mips_queue_io_int_cb, .dequeue_io_int = kvm_mips_dequeue_io_int_cb, .irq_deliver = kvm_mips_irq_deliver_cb, .irq_clear = kvm_mips_irq_clear_cb, .num_regs = kvm_trap_emul_num_regs, .copy_reg_indices = kvm_trap_emul_copy_reg_indices, .get_one_reg = kvm_trap_emul_get_one_reg, .set_one_reg = kvm_trap_emul_set_one_reg, .vcpu_load = kvm_trap_emul_vcpu_load, .vcpu_put = kvm_trap_emul_vcpu_put, }; int kvm_mips_emulation_init(struct kvm_mips_callbacks **install_callbacks) { *install_callbacks = &kvm_trap_emul_callbacks; return 0; }