/* * PowerPC version * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org) * * Modifications by Paul Mackerras (PowerMac) (paulus@cs.anu.edu.au) * and Cort Dougan (PReP) (cort@cs.nmt.edu) * Copyright (C) 1996 Paul Mackerras * * Derived from "arch/i386/mm/init.c" * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds * * Dave Engebretsen * Rework for PPC64 port. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version * 2 of the License, or (at your option) any later version. * */ #undef DEBUG #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "mmu_decl.h" #ifdef CONFIG_PPC_BOOK3S_64 #if H_PGTABLE_RANGE > USER_VSID_RANGE #warning Limited user VSID range means pagetable space is wasted #endif #endif /* CONFIG_PPC_BOOK3S_64 */ phys_addr_t memstart_addr = ~0; EXPORT_SYMBOL_GPL(memstart_addr); phys_addr_t kernstart_addr; EXPORT_SYMBOL_GPL(kernstart_addr); #ifdef CONFIG_SPARSEMEM_VMEMMAP /* * Given an address within the vmemmap, determine the pfn of the page that * represents the start of the section it is within. Note that we have to * do this by hand as the proffered address may not be correctly aligned. * Subtraction of non-aligned pointers produces undefined results. */ static unsigned long __meminit vmemmap_section_start(unsigned long page) { unsigned long offset = page - ((unsigned long)(vmemmap)); /* Return the pfn of the start of the section. */ return (offset / sizeof(struct page)) & PAGE_SECTION_MASK; } /* * Check if this vmemmap page is already initialised. If any section * which overlaps this vmemmap page is initialised then this page is * initialised already. */ static int __meminit vmemmap_populated(unsigned long start, int page_size) { unsigned long end = start + page_size; start = (unsigned long)(pfn_to_page(vmemmap_section_start(start))); for (; start < end; start += (PAGES_PER_SECTION * sizeof(struct page))) if (pfn_valid(page_to_pfn((struct page *)start))) return 1; return 0; } /* * vmemmap virtual address space management does not have a traditonal page * table to track which virtual struct pages are backed by physical mapping. * The virtual to physical mappings are tracked in a simple linked list * format. 'vmemmap_list' maintains the entire vmemmap physical mapping at * all times where as the 'next' list maintains the available * vmemmap_backing structures which have been deleted from the * 'vmemmap_global' list during system runtime (memory hotplug remove * operation). The freed 'vmemmap_backing' structures are reused later when * new requests come in without allocating fresh memory. This pointer also * tracks the allocated 'vmemmap_backing' structures as we allocate one * full page memory at a time when we dont have any. */ struct vmemmap_backing *vmemmap_list; static struct vmemmap_backing *next; /* * The same pointer 'next' tracks individual chunks inside the allocated * full page during the boot time and again tracks the freeed nodes during * runtime. It is racy but it does not happen as they are separated by the * boot process. Will create problem if some how we have memory hotplug * operation during boot !! */ static int num_left; static int num_freed; static __meminit struct vmemmap_backing * vmemmap_list_alloc(int node) { struct vmemmap_backing *vmem_back; /* get from freed entries first */ if (num_freed) { num_freed--; vmem_back = next; next = next->list; return vmem_back; } /* allocate a page when required and hand out chunks */ if (!num_left) { next = vmemmap_alloc_block(PAGE_SIZE, node); if (unlikely(!next)) { WARN_ON(1); return NULL; } num_left = PAGE_SIZE / sizeof(struct vmemmap_backing); } num_left--; return next++; } static __meminit void vmemmap_list_populate(unsigned long phys, unsigned long start, int node) { struct vmemmap_backing *vmem_back; vmem_back = vmemmap_list_alloc(node); if (unlikely(!vmem_back)) { WARN_ON(1); return; } vmem_back->phys = phys; vmem_back->virt_addr = start; vmem_back->list = vmemmap_list; vmemmap_list = vmem_back; } int __meminit vmemmap_populate(unsigned long start, unsigned long end, int node, struct vmem_altmap *altmap) { unsigned long page_size = 1 << mmu_psize_defs[mmu_vmemmap_psize].shift; /* Align to the page size of the linear mapping. */ start = _ALIGN_DOWN(start, page_size); pr_debug("vmemmap_populate %lx..%lx, node %d\n", start, end, node); for (; start < end; start += page_size) { void *p; int rc; if (vmemmap_populated(start, page_size)) continue; p = __vmemmap_alloc_block_buf(page_size, node, altmap); if (!p) return -ENOMEM; vmemmap_list_populate(__pa(p), start, node); pr_debug(" * %016lx..%016lx allocated at %p\n", start, start + page_size, p); rc = vmemmap_create_mapping(start, page_size, __pa(p)); if (rc < 0) { pr_warning( "vmemmap_populate: Unable to create vmemmap mapping: %d\n", rc); return -EFAULT; } } return 0; } #ifdef CONFIG_MEMORY_HOTPLUG static unsigned long vmemmap_list_free(unsigned long start) { struct vmemmap_backing *vmem_back, *vmem_back_prev; vmem_back_prev = vmem_back = vmemmap_list; /* look for it with prev pointer recorded */ for (; vmem_back; vmem_back = vmem_back->list) { if (vmem_back->virt_addr == start) break; vmem_back_prev = vmem_back; } if (unlikely(!vmem_back)) { WARN_ON(1); return 0; } /* remove it from vmemmap_list */ if (vmem_back == vmemmap_list) /* remove head */ vmemmap_list = vmem_back->list; else vmem_back_prev->list = vmem_back->list; /* next point to this freed entry */ vmem_back->list = next; next = vmem_back; num_freed++; return vmem_back->phys; } void __ref vmemmap_free(unsigned long start, unsigned long end, struct vmem_altmap *altmap) { unsigned long page_size = 1 << mmu_psize_defs[mmu_vmemmap_psize].shift; unsigned long page_order = get_order(page_size); start = _ALIGN_DOWN(start, page_size); pr_debug("vmemmap_free %lx...%lx\n", start, end); for (; start < end; start += page_size) { unsigned long nr_pages, addr; struct page *section_base; struct page *page; /* * the section has already be marked as invalid, so * vmemmap_populated() true means some other sections still * in this page, so skip it. */ if (vmemmap_populated(start, page_size)) continue; addr = vmemmap_list_free(start); if (!addr) continue; page = pfn_to_page(addr >> PAGE_SHIFT); section_base = pfn_to_page(vmemmap_section_start(start)); nr_pages = 1 << page_order; if (altmap) { vmem_altmap_free(altmap, nr_pages); } else if (PageReserved(page)) { /* allocated from bootmem */ if (page_size < PAGE_SIZE) { /* * this shouldn't happen, but if it is * the case, leave the memory there */ WARN_ON_ONCE(1); } else { while (nr_pages--) free_reserved_page(page++); } } else { free_pages((unsigned long)(__va(addr)), page_order); } vmemmap_remove_mapping(start, page_size); } } #endif void register_page_bootmem_memmap(unsigned long section_nr, struct page *start_page, unsigned long size) { } /* * We do not have access to the sparsemem vmemmap, so we fallback to * walking the list of sparsemem blocks which we already maintain for * the sake of crashdump. In the long run, we might want to maintain * a tree if performance of that linear walk becomes a problem. * * realmode_pfn_to_page functions can fail due to: * 1) As real sparsemem blocks do not lay in RAM continously (they * are in virtual address space which is not available in the real mode), * the requested page struct can be split between blocks so get_page/put_page * may fail. * 2) When huge pages are used, the get_page/put_page API will fail * in real mode as the linked addresses in the page struct are virtual * too. */ struct page *realmode_pfn_to_page(unsigned long pfn) { struct vmemmap_backing *vmem_back; struct page *page; unsigned long page_size = 1 << mmu_psize_defs[mmu_vmemmap_psize].shift; unsigned long pg_va = (unsigned long) pfn_to_page(pfn); for (vmem_back = vmemmap_list; vmem_back; vmem_back = vmem_back->list) { if (pg_va < vmem_back->virt_addr) continue; /* After vmemmap_list entry free is possible, need check all */ if ((pg_va + sizeof(struct page)) <= (vmem_back->virt_addr + page_size)) { page = (struct page *) (vmem_back->phys + pg_va - vmem_back->virt_addr); return page; } } /* Probably that page struct is split between real pages */ return NULL; } EXPORT_SYMBOL_GPL(realmode_pfn_to_page); #else struct page *realmode_pfn_to_page(unsigned long pfn) { struct page *page = pfn_to_page(pfn); return page; } EXPORT_SYMBOL_GPL(realmode_pfn_to_page); #endif /* CONFIG_SPARSEMEM_VMEMMAP */ #ifdef CONFIG_PPC_BOOK3S_64 static bool disable_radix = !IS_ENABLED(CONFIG_PPC_RADIX_MMU_DEFAULT); static int __init parse_disable_radix(char *p) { bool val; if (strlen(p) == 0) val = true; else if (kstrtobool(p, &val)) return -EINVAL; disable_radix = val; return 0; } early_param("disable_radix", parse_disable_radix); /* * If we're running under a hypervisor, we need to check the contents of * /chosen/ibm,architecture-vec-5 to see if the hypervisor is willing to do * radix. If not, we clear the radix feature bit so we fall back to hash. */ static void __init early_check_vec5(void) { unsigned long root, chosen; int size; const u8 *vec5; u8 mmu_supported; root = of_get_flat_dt_root(); chosen = of_get_flat_dt_subnode_by_name(root, "chosen"); if (chosen == -FDT_ERR_NOTFOUND) { cur_cpu_spec->mmu_features &= ~MMU_FTR_TYPE_RADIX; return; } vec5 = of_get_flat_dt_prop(chosen, "ibm,architecture-vec-5", &size); if (!vec5) { cur_cpu_spec->mmu_features &= ~MMU_FTR_TYPE_RADIX; return; } if (size <= OV5_INDX(OV5_MMU_SUPPORT)) { cur_cpu_spec->mmu_features &= ~MMU_FTR_TYPE_RADIX; return; } /* Check for supported configuration */ mmu_supported = vec5[OV5_INDX(OV5_MMU_SUPPORT)] & OV5_FEAT(OV5_MMU_SUPPORT); if (mmu_supported == OV5_FEAT(OV5_MMU_RADIX)) { /* Hypervisor only supports radix - check enabled && GTSE */ if (!early_radix_enabled()) { pr_warn("WARNING: Ignoring cmdline option disable_radix\n"); } if (!(vec5[OV5_INDX(OV5_RADIX_GTSE)] & OV5_FEAT(OV5_RADIX_GTSE))) { pr_warn("WARNING: Hypervisor doesn't support RADIX with GTSE\n"); } /* Do radix anyway - the hypervisor said we had to */ cur_cpu_spec->mmu_features |= MMU_FTR_TYPE_RADIX; } else if (mmu_supported == OV5_FEAT(OV5_MMU_HASH)) { /* Hypervisor only supports hash - disable radix */ cur_cpu_spec->mmu_features &= ~MMU_FTR_TYPE_RADIX; } } void __init mmu_early_init_devtree(void) { /* Disable radix mode based on kernel command line. */ if (disable_radix) cur_cpu_spec->mmu_features &= ~MMU_FTR_TYPE_RADIX; /* * Check /chosen/ibm,architecture-vec-5 if running as a guest. * When running bare-metal, we can use radix if we like * even though the ibm,architecture-vec-5 property created by * skiboot doesn't have the necessary bits set. */ if (!(mfmsr() & MSR_HV)) early_check_vec5(); if (early_radix_enabled()) radix__early_init_devtree(); else hash__early_init_devtree(); } #endif /* CONFIG_PPC_BOOK3S_64 */